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POTENTIAL SPACES ON LIE GROUPS

TOMMASO BRUNO, MARCO M. PELOSO, AND MARIA VALLARINO

ABSTRACT. In this paper we discuss function spaces on a general noncompact Lie group, namely
the scales of Triebel-Lizorkin and Besov spaces, defined in terms of a sub-Laplacian with drift. The
sub-Laplacian is written as negative the sum of squares of a collection of left-invariant vector fields
satisfying Hormander’s condition. These spaces were recently introduced by the authors. In this
paper we prove a norm characterization in terms of finite differences, the density of test functions,
and related isomorphism properties.

Dedicated to Fulvio Ricci on the occasion of his 70th birthday

INTRODUCTION

The theory of function spaces, regularity of integral operators, and of solutions of differential
equations, began in the setting of Euclidean spaces, with smoothness measured in terms of Sobolev
and Lipschitz norms, see e.g. [44]. A. Calderén and A. Zygmund developed the theory of singular
integrals, proving their boundedness in the Lebesgue spaces, as well as regularity of solutions of
classical differential equations, such as the Dirichlet and Neumann problems, in the case of a half-
space and of smooth domains. Among the operators studied were the singular integrals, hence
in particular the Hilbert and Riesz transforms, the Poisson integral, and the heat propagator. It
is worth noticing that the singularities of the integral kernels of such operators, or better, of the
level sets of their moduli, were naturally described in terms of the underlying Euclidean geometry.
Such theory then included embedding and interpolation results for Lebesgue, Sobolev and Lipschitz
spaces, see e.g. [3]. In this analysis, the Fourier series and transform played a crucial role, and a
noticeable application of such techniques was the decomposition initially introduced by Littlewood
and Paley, and later developed in depth by E. M. Stein [45]. The Littlewood—Paley decomposition
was initially intended to provide a substitute for the Plancherel formula to the LP-norms, with p # 2,
but proved to be an invaluable tool in many other situtations. The function spaces that naturally
arose in studying the regularity properties of aforementioned operators, were indeed, besides the
Lebesgue spaces, the Sobolev and Lipschitz spaces, and also the Besov spaces. It became then
natural to obtain other characterizations for such norms, and in this setting the Littlewood—Paley
decomposition proved to be very useful, and was also used to define another, related, scale of spaces,
the so-called Triebel-Lizorkin spaces, see e.g. [51], which include the Sobolev spaces as a special
case.

While such theory was in its full development, L. Hormander produced two breakthrough re-
sults, [24] and [25]. In [24] Hérmander extended a previous result by Mihlin, developing the theory
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2 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

of LP-multipliers of the Laplacian. This approach also stimulated the study of a class of operators
that naturally appear while solving partial differential equations involving the Laplacian — for
instance the wave equation in the Euclidean space R%.

In [25] Hérmander showed that operators that are sum of squares of vector fields whose commu-
tators up to a finite order span all directions of R?, although non-elliptic, enjoy many interesting
and strong properties of elliptic operators, in particular hypoelliticity. Such phenomenon appeared
for instance in the case of the Kohn-Laplacian on the boundary of the Siegel upper half-space in
C9*1! in the works of A. Koranyi and S. Végi [29], J. J. Kohn [27] and, with most relevance to this
discussion and the present work, of G. B. Folland and Stein [12]. The operators that were consid-
ered in [12], that is the Kohn-Laplacian, the sub-Laplacian, the so-called Folland—Stein operators,
their fundamental solution, or the relative fundamental solution in some cases, had the singularity
that could be described in terms of a different underlying geometry. The boundary of the Siegel
upper half-space can be identified with the Heisenberg group, and such geometry was more effi-
ciently described using the nilpotent Lie group structure of the Heisenberg group. As metric space,
the Heisenberg group Hy is not equivalent to the Euclidean space R2%*!, and in fact the distance
coincides with the Carnot—Carathéodory distance defined by the sub-Laplacian on Hy. The Lie
algebra of Hy can be written as the linear span of a family of vector fields X = {X1, ..., Xo4} and of
their commutators, which reduce in fact to a single “transversal” vector field 7. The sub-Laplacian
on Hy is the (negative) sum of squares — Z?dzl X ]2, and thus is of the type studied by Hérmander
in [25]. The function spaces that better describe the smoothness of functions in this setting can
be described by their behaviour with respect to the action of only the vector fields X. Such sys-
tem of vector fields were called horizontal and they were studied in [12] and [9] and again differed
from their Euclidean analogue. In these papers, the authors proved analogue of embedding and
interpolation results for the newly defined Sobolev and Lipschitz spaces, in the case of Hy, and of
Carnot—Carathéodory groups, respectively.!

These results gave tremendous impetus to the development of analysis on H, and more in general
on Carnot—Carathéodory groups. In a series of papers, F. Ricci and E. M. Stein [40, 41, 42] studied
the boundedness of singular integrals on nilpotent Lie groups, exploring again the connection
between the geometry of the metric balls, the size properties of the integral kernels, and the
boundedness of the singular integral operators. In [46] R. Strichartz pointed out the importance
of the role of the joint spectrum of the sub-Laplacian and T'. In two fundamental papers, [34, 35]
D. Miiller, F. Ricci, and E. M. Stein then proved the boundedness of joint spectral multipliers of
the sub-Laplacian and 7" on Hy and the closely related Heisenberg type groups — results that are
yet to be extended to more general groups. Other related results, on spaces of differential forms,
in the spirit of this discussion are [32, 33] and [38, 37].

Thus, a common theme of this circle of ideas is that the underlying manifold, Riemannian or sub-
Riemannian, and the collection of vector fields X satisfying Hérmander’s condition and defining the
corresponding sub-Laplacian, determine a metric structure and the most efficient way to describe
smoothness of functions and regularity of canonical operators is via scale of spaces that are modeled
by the sub-Laplacian, hence by X, itself.

In the setting of Carnot—Carathéodory groups, and more in general of Lie groups of polynomial
growth, endowed with the sub-Riemannian structure induced by a family X of vector fields satisfy-
ing Hérmander’s condition, then a Mihlin—-Hérmander multiplier theorem holds. This fact allowed

ln [9] the Carnot—Carathéodory groups were called stratified nilpotent Lie groups.
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G. Furioli, C. Melzi and A. Veneruso [13] to introduce Besov spaces on such groups, which were
later studied by I. Gallagher and Y. Sire [15]. The theory was recently extended to any unimodular
Lie group by J. Feneuil [8].

This work aims to contribute to the analysis of function spaces on general noncompact Lie groups,
hence including the nonunimodular groups, with Haar measures of exponential growth.

Concerning the function spaces, their algebra properties are of great importance, in particular
in application to well-posedness results for nonlinear differential equations. In this direction, a
remarkable paper is [6] by T. Coulhon, E. Russ and V. Tardivel-Nachev, where they proved algebra
properties for the Sobolev spaces, in particular on any unimodular Lie group. The algebra properties
were extended to the scale of Besov spaces on groups of polynomial growth in [15] and in [8] on
unimodular Lie groups.

A number of the aforementioned results were also obtained in the context of doubling measure
metric spaces with the reverse doubling property, see e.g. [21, 36] and in the setting of Riemannian
manifolds of bounded geometry, see e.g. [47, 48, 49], [6], and references therein. On the other hand,
not much is known in the setting of a sub-Riemannian manifold. This work is part of a program [39],
[4] and [5], whose main long term goal is to address this type of questions on a sub-Riemannian
manifold, and we started with the case of a general Lie group. The paper [39] studies Sobolev
spaces with respect to the sum of squares sub-Laplacian, results then extended to Sobolev spaces
with respect to sub-Laplacians with drift in [4], while in [5] we develop the theory of Besov and
Triebel-Lizorkin spaces with respect to sub-Laplacians with drift, that we further analyse in this
work.

We conclude this part of the introduction by pointing out that the literature in this area is
extremely vast, and it is just impossible to give credit to all the authors that have contributed to
its development. We apologise to everyone whom we did not explicitly mention.

Let G be a noncompact connected Lie group and let X = {X,..., Xy} be a family of linearly
independent left-invariant vector fields on G satisfying Hormander’s condition. We denote by §
the modular function on G. Let p be a right Haar measure of GG, let x be a continuous positive
character of G, and consider the measure p, defined by the relation du, = xdp. Consider now the
differential operator

¢
Z X2+c] (1)

7j=1

with domain C°(G), where ¢; = (X;x)(e), 7 =1,...,¢, and e is the identity of G.

This operator was introduced by W. Hebisch, G. Mauceri and S. Meda in [22], where they showed
that A, is essentially self-adjoint on L?(u,). Moreover, they proved that if a sub-Laplacian with
drift is symmetric on L?(p) for a positive measure p on G, then necessarily y = u, for a positive
character x on G, and moreover the drift has the form X := Z§:1 ¢; X, where ¢; = (X;x)(e),
j=1,...,¢ asin (1). Notice that when the character y is the modular function, us = A is a left
Haar measure and the operator A coincides with the intrinsic hypoelliptic Laplacian associated
with the Carnot-Carathéodory metric induced on G by the vector fields X — see [1]. The operator
Ajs is the natural substitute of the Laplacian on a general Lie group G. This also reflects on the
fact that the measure A is privileged among the measures p,. As shown in [1, 4], As is not a
sum-of-squares operator unless the group is unimodular. In this paper we continue the study of
function spaces associated with A, for a generic positive continuous character x. The more general



4 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

treatment allows one extra flexibility, see e.g. the embedding results, Theorems 1.1 and 4.4 in [4]
and Theorems 5.2 and 5.3 in [5], and at the same time, highlights the naturality of As.

In this paper we further develop the investigation of Besov and Triebel-Lizorkin spaces on G,
defined in terms of A,, spaces that were introduced by the authors in the recent paper [5].

We prove characterizations of the norms in term of finite differences (Theorems 3.1 and 3.2),
the density of the test functions in Besov and Triebel-Lizorkin spaces, and the boundedness of a
simplified version of the local Riesz transforms (Theorem 5.2).

The plan of the paper is as follows. In the next section we recall the basic facts about our setting
and in particular the heat semigroup generated by A,. In Section 2 we recall the definitions of
Besov and Triebel-Lizorkin spaces, and the results of [5] needed in the present work. In Section
3 we prove finite difference characterizations for the Besov and Triebel-Lizorkin spaces. Such
characterizations are then used in Section 4 to show that test functions are dense in such spaces,
and in Section 5 we prove an isomorphism result and the boundedness of the aforementioned version
of the local Riesz transforms for both scales of Besov and Triebel-Lizorkin spaces. We conclude by
mentioning some directions for future work.

Foreword by the second named author. Soon after getting my Ph. D., I obtained a position at
the Politecnico in Torino, where Fulvio had been for a number of years. He was my main reason for
seeking this position at the Politecnico. I immediately found myself immersed in a very pleasant
enviroment, with Fulvio being the organiser of many activities, such as advanced courses, regular
seminars, and the visits of many leading mathematicians. I was exposed to a flurry of recent
and as well as ongoing research, on a variety of different topics. This gave me the possibility of
meeting and interacting with many experts. Fulvio personally introduced me to this world, taking
the time to explain to me a lot of mathematics, while advising and guiding me. I have always
been very impressed by his poise, kindness, and, most of all, generosity in teaching all the younger
mathematicians who had the fortune to interact with him. He has had a great impact on me, both
professionally and personally.

I wish to express to Fulvio my most sincere gratitude for all he has taught me, and for his
invaluable friendship.

1. BASIC FACTS AND DEFINITIONS

Let G be any Lie group with identity element e. We denote by p a right Haar measure, and by
6 the modular function. We let A be the left Haar measure such that d\ = ddp. We recall that §
is a smooth positive character, that is, a smooth group homomorphism of G' onto R*. If y is any
continuous positive character of GG, then x is automatically smooth. For any such x, we define p,
to be the measure whose density with respect to p is x, that is, du, = xdp. Notice that 1 = p
and us = A

We fix once for all a family of left-invariant linearly independent vector fields X = {X7,..., X;}
satisfying Hormander’s condition. These vector fields induce the Carnot—Charathéodory distance,
denoted by d¢, which turns out to be left-invariant. Then, for z € G we set |z| = do(x,e) and
we denote with B(z,r) the ball centered at x and of radius r > 0. If z = e and r > 0, we write
B, = B(e,r), and define V(r) = p(B,). In general, we denote by B(cp,rp) the ball with center cp
and radius rp, in the metric d¢.
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It is known that there exist two constants d, D > 0 such that

p(B,) ~ r? if r € (0,1]
p(By) <ePr ifre(1,4m),

see [20, 52]. It is worth to point out that d = d(X, G), while D = D(G).

For any quantities A and B, we write A < B to indicate that there exists a constant ¢ > 0,
independent of the relevant parameters, such that A <c¢B. If A < B and B < A, we write A ~ B.
In order to emphasize the dependence on a given parameter, say R, we write <pr, and analogously
for the other cases.

We observe that, having fixed R > 0, every character x satisfies the estimates

x(z) ~r x(y) (3)
for all z,y € G such that do(z,y) < R. This equivalence easily implies that (G, dc, p1y) is locally
doubling, that is, for all 0 < r < R and zg € G,

pix (B(o,2r) SR piy(B(wo,7)) - (4)
Having fixed X, we consider the operator A, defined in (1). With an abuse of notation, we still
denote by A, its smallest closed extension on LP(p, ), where, for p € (1,+00), LP(1,) denotes the
standard Lebesgue space. The space L™ is the space of p-essentially bounded functions. We refer
to [22] and [4] for further details about A,.
We set # = {1,...,} and we say that a multi-index J = (j1,...,jm) € F™ if jp € # for
k=1,...,m. Moreover, we write

(2)

X;=X; . Xj, .
Next, we observe that, since A, is left-invariant, the associated heat semigroup admits a convo-
lution kernel py € D'(G), i.e.
et f = fapf.
It is known (see [4]) that
pY = e Xt T12p, (5)
where cx = (Z§:1(X jx(e))Q)l/ ? and p, is the convolution kernel of the heat semigroup in the case

X = 1, for which the estimates in [53] are available.
We recall the expressions of the convolution on G. We have

- JGf(:cy_l)g J fy)g(yz) dp(y)
:ff(y)y 12) dA(y foy “HdA(y). (6)

The following result is essentially Lemma 3.1 in [5].

Lemma 1.1. The following properties hold:
(i) (e7*Ax)y=0 is a diffusion semigroup on (G, iy );

(ii) for everyr >0, supg x = eX";

(iii) there exist two constants ci,ca > 0 such that
(Ox 2 @) VIV e < g (@) £ (xR @) V(VE ek
for every t € (0,1) and x € G;
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(iv) given m € N, there exist a positive constant b = by, such that for x e G, Je g™
Xk @) < (G ) 2@ PV V)T e forte (0,1);
(v) there exists c3 > 0 such that for every t € (0,1) and z € G,
& pk@)| s Ox ) ) Ve

Only the bound in (v) needs to be justified. It follows from the estimates for the unweighted heat
kernel provided in [53, Section IX] (see also [39, Section 2.1, estimates (ii)-(iv)]) together with [4,

(2.8)].

Definition 1.2. We define the Schwartz space S(G) as the space of functions ¢ € C*(G) such
that for all n,m e N, J € .#™ the seminorms

Nin(p) = sup ™| X ()|
zeG

are finite. The space §'(G) is defined as the dual space of S(G).

As a consequence of the gaussian estimates (iv) in Lemma 1.1, we have the following simple
lemma.

Lemma 1.3. For allt > 0, pf € §. Moreover, e ™% 1 § — S is bounded, with seminorms

uniformly bounded for t € [e, R], for any 0 < & < R. Therefore, e 7t?x eatends to a continous map
et 8" - S, for all t > 0.

Proof. We indicate the argument for sake of completeness. Given n € N and a multi-index J, we
have

X (0 p)(@)] = (o« Xyp) ()]

< L eml=v o2y~ e X 1pX ()] dp(y)

< Non(9) L 11X pX ()] dp(y)

<t PNoa(p) (7)
where the last inequality is obtained arguing as in the proof of Lemma 3.4 in [5]. The conclusions
now follow easily. ]

Definition 1.4. For m € N and ¢t > 0, we define the operator Wt(m) by setting
Wt(m) _ (tAX)meftAX )
For m e N and t > 0, Wt(m) : S — S is bounded, and therefore it extends to a continuous map

Wt(m) : 8" — §’. We also observe that, for f e &', Wt(m)f is a C® function, for all ¢ > 0 and m € N.

We also recall the definition of the Littlewood—Paley—Stein g-function. Given a positive integer

k, for f € S we set
400 d 1/2
alh) = ([ o) 0
0

S
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Since A, generates a symmetric diffusion semigroup, for p € (1, +0), g satisfies the estimate

gk () e ) = 1f 1 2p () 9)
see [45], and also [31].

2. TRIEBEL-LIZORKIN AND BESOV SPACES ON G

Here and in what follows, given a measure space ({2,v) and a Banach space X, for p € [1, +00],
we denote by L ((Q, X), 1/) the space of measurable functions f : 2 — X such that

1/
o = { | 1@l )} " <o

when p € [1,+00), with the obvious modification if p = +00. We also denote by [7] the integral
part of 7 = 0.

We are now in the position to introduce the Triebel-Lizorkin and Besov spaces on G, defined in
terms of the sub-Laplacian A, see [5].

Definition 2.1. Let p,q € [1, +], and « > 0. Then we define:
(1) the Triebel-Lizorkin space F&'?(u,) as

FE(n) = {f € S'(G) : o PW p e pr((G, 19((0,1), dt/t), ) and e ™54 f € LP(uy) |

endowed with the norm )
| fll o i= ZEIUL) + le 225 fllroguy) - (10)

L N 4 g\ Ve
f (12w /2]+1)f|> t)

0

where

gz = |(

L (py)
if ¢ < 400, while

, — - ([e/2]+1) .
T (f) = | t:’(‘épl)t 2w Pl

(2) the Besov space BY?(py) as
BL () = { € S'(G) + o PW{ I p e pa(((0,1), L7(G, ), dt/t) and 758 f € LP(uy) |

endowed with the norm

_1
| flsge = BEA) + e 225 f oy » (11)

1 N a dt 1/q
[} (o e i) )
0

where

a0 = (
if ¢ < 400, while
B (f) 1= sup =2 (WD gy
te(0,1)
We emphasize that, when p € (1,+0) and a > 0, the Triebel-Lizorkin space FOIZ’Q(;LX) coincides
with the Sobolev space L5 (i) defined in [4], with equivalence of norms, see [5, Theorem 5.2].

We now recall the main results in [5] about equivalence of norms in Besov and Triebel-Lizorkin
spaces. The following is [5, Theorem 4.1].
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Theorem 2.2. Let o > 0, m > «/2 be an integer, ty € [0,1) and g € [1, +0].
(i) If pe (1,+00), then the norm | f| gra is equivalent to the norm

1 1/q
—a/2yppm) o)1 4t —toA
([ ommton) ) et
(ii) If p € [1,+o0], then the norm | f|pgra is equivalent to the norm
L . a di\ Ve B
<L (W™ Pl ) t> + 172 f 1oy (13)

Ifa =0, the norms | f| gr.a and || f| gra are equivalent to those in (12) and (13) respectively provided
tg € (0, 1)

The next result concerns a discretization of the norm that resembles the Littlewood—Paley char-
acterization of Besov and Triebel-Lizorkin spaces in the classical cases. In our case, for j € N, the
operators (m) play the role of the operators A; in the classical Littlewood-Paley decomposition,

2-i
while e~%2x plays the role of Sp; see e.g. [19] for such notation in the case of R?.

We point out that in the case of A, the classical Littlewood-Paley characterization of Besov and
Triebel-Lizorkin spaces cannot hold since any bounded spectral multiplier of A, on LP(u, ), with
p # 2, admits a holomorphic extension to a parabolic region in C, see [22]. This is [5, Theorem
4.2].

Theorem 2.3. Let o > 0, m > «/2 be an integer, ty € [0,1) and q € [1, +0].
(i) If pe (1,+00), then the norm | f| gra is equivalent to the norm

(S ey

(ii) If p e [1,+o0], then the norm | f|pgra is equivalent to the norm

(o2 (m) "N toA
<Z <2m/ Wy f||LP(uX)> > + e Lp gy ) - (15)

§=0

—toA
|y #1725 F o (14)

Ifa =0, the norms | f|| gr.a and || f| gra are equivalent respectively to those in (14) and (15) provided
tg € (0, 1).

3. FINITE DIFFERENCES CHARACTERIZATIONS

In this section we prove characterizations for the spaces F4'? and B5? in terms of finite differences.
Such characterizations provide a key tool for the proof of the density lemma of Section 4. We begin
by introducing the finite difference operator.

Given a measurable function f, for x,y € G we define

Dy f(z) = flay™) - f(z). (16)
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3.1. Characterization of Triebel-Lizorkin norm by differences. For ¢ € [1,00] and « €
(0,1), we define the functional
1/q

loc,q ) = ! 1 T ! @
7 f<>—(f0 v | >rdp<y>] u) . (1)

We point out that in the case ¢ = 2, such functional coincides with the classical functional .#°¢ used
to characterize the Sobolev norm, see [6] for the unimodular case, and [4] for the nonunimodular
(and weighted) case.

The first result of this section is the characterization of the Triebel-Lizorkin norm of FX? in
terms of the LP(u,)-integrability of the functional .7, lo¢4 Ty the best of our knowledge, such
characterization is new even in the case of R%.

Theorem 3.1. For every p,q € (1,0), a € (0,1), we have

|l ~ |L22 f liagug) + 1F I Logay)

Hoat = ([ (o s1)° dt>l/q,

and observe that, since a € (0,1),

I flEpa < [Haqf oy + 1 1Leguy) -
Step 1. We shall prove that for all f € FL,

1 flgra S 1229 f | pogug) + 1 Loy - (18)

Proof. Set

by showing that
| Hog f 2oy < 1700 floquy) + 1 1oy - (19)
We first notice that for every ¢ € (0,1) and z € G, since % S dp = 0, we have

A es@) = [Ge2 @] = |5 ([ s - [ e )]
JID fl@ I‘apt )‘dp(y)

Using the estimates (v) of Lemma 1.1 we have

z))? —qa/2 —q
(Hoqf () SL 92y (V) (Jy
0 1 ,
—qo/2 —q z —1\1/2 6_04‘y|2/t @
+1;)J0t Vv (Lk\/z<|y<2k+%|Dyf( )I@x) 7 () dp(y)> .

< 1 v | |<J|Dyf<x>|dp<y>)qff

+2 et [y (|

5 q
1D, Sl 0x ) e dply) )
|<v/t

) (Sv—1)1/2 dat
o DTN o)) G



10 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

By the change of variables u = 2¥+14/t we obtain

2k+1 9(k+1)qa

oc. s 2(k+1)qa q du
(yl o +2 | v (] 1D i@lant)

u

=&

2k+1 9(k+1)qa

+Z | uqav@—k_lu)q( Lku|Dyf(ﬂ:)l(5x‘1)1/2(y)dp(y)>

By the estimates (2), we obtain that

q

<[5

0

(Hogf ()" s (L2090 ()" + (S22 f () Z o a2 o (k+1)(qa+qd)

k=0
9k+1
+Z —c422k o (k+1) qa+qd)J~ uqa+qd|f (2)|? <J|y<u(5xl)1/2(y)dp(y)> "

(ylow f@)? + Z Ju(z) + Z I(x). (20)
k=0

By the growth estimates of characters in Lemma 1.1 (ii), we deduce that there exists C' > 0 such
that

2k+1
1 du
gl @) rurtercn

MS

0
2, (@) =

e—ca2* o (k+1)(qa+qd) j

k=0

|f( )|qe—0422k2(k+1)(qa+qd)€qc2k

N
s

= 7T
Il

0
f@)]. (21)

We now notice that there exists ¢ > 0 such that

(%) : (7 (] oo =mam))

0
_022l€
s Qe
p(MX) k=0

LP(uy)
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Here and in the rest of this work, we denote by 1g the characteristic function of the measurable
set E. For every integer k, by Minkowski’s integral inequality, we get

UQ(J Py HIL, () 6x () doly >)qdu>1/q

2k+1

<[] werhmamecea) aw

< | @y HIexH ) . du 1/qdp(y)
J, () )

1
2k+1

1/q
o e DI J. ) oty
<|y|<2k+1 Y
s 2 f |F(22)] dA(z) + 2V f [F@2)(670 " (2) dA(z)
B 1

<|z|<2k+1

By applying again Minkowski’s inequality, we then obtain that

<f<f ey, ><6x—1>1/2(y>dp(w)qd“)l/q ()
< ([ ’f(arz)|pdﬂx(a?)> i) + 2 | P € ECSINE) e i)

< 259 Fll oy + 25 Fll o () J XYP(ex )2 dp
2k+1

< 2k/q+kd602k”fHLp(uX) ]
We then have
- Ya - 22k ok Jq+kd C2F
(X 0) ], S 2 e 2 ) 5 Wl )
k=0 ) k=0

In conclusion, by (21) and (22) we get (19), as required.
It remains to show that for all f € F&?
|- 722 Fl o gy S [ f Iz (23)
In order to prove this, we write f = (f —e~2x f)+e~2x f and we estimate |.7o°%Y(f —e AXf)HLp(MX)
and Hﬂéoc’qe*AXfHLp(ux) separately.

Step 2. We prove that
|72 = e ) o uy) S 1F e - (24)

Arguing similarly to [6, 2.1.2.] we write

2—m+1

—e A f = Zf *tAxfdt_me (25)
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We then obtain

1 ! du
(Focd(f — e Bxf)(x))? = f (MJ - |Dy(f — e 2xf)) ()] dP(Z/)) %

0

B +00 i+l 1 - e_AX i q dj
- ]zll L—j (uo‘V(u) J|y|<u ‘ Dy(f f)( )| dp(y)) U
+0

< Y2 <2ﬂ'd | ] dp<y>>

J=1

+00 400 p
< 2Jjq 2J f
JZI <mZ=1 |

yl<2-itt

zzzma@d( mz+ | IR LAt RCD

m=2j+1

| Dy frn ()] dp(.v))

where f,, is defined in (25). If m > 2j, then
24 [ Dy @] dple) S Mo (@), 1)
lyl<2-9+t

where
2—m+1

0 _
Im+1 = J ’ae tAXf

and M is the local maximal function with respect to the right Haar measure,

1
Mf(x) - IEBS,L}'I:;S:L ﬁ JB ‘f| dp, (28)

dt

which is bounded on LP(pu, ) for every p € (1,0), see [4, Subsection 5.1].
In order to treat the case when m < 2j, we notice that for every j > 1, ye By—j-1 and z € G

Dy frl2)] <277 sup {| X fr(w)] 1i =1,..., ¢ Jwta| <2777, (29)
Since,
fm = f_m i(e*Q’fAXf) dt =2 f o e*mxi(e%xf) dt (30)
me 2—m—1 at - 2—m—1 at ’

by applying the estimates of the heat kernel in Lemma 1.1 (v) and (iii), for every w such that
lw™tx| < 277+ we have

.
Xita) = [ ] |G @K o))
ﬁ(e—mxfxz)\t‘”szirl<x—16>1/2(z—1w>e—*"’~"1w""/f dt dX(2)

9—m
<J.]
G J2—m—1 at

<2 [ g ()Y ) 2 )
G

< 2m/2€_62_mAXgm(l‘)

)
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for a suitable constant c¢. From (29) it follows that

2jdf Dy fm()| dply) $ 2792 Ax g, (). (31)
ly|<2=3+1
Thus, putting together (26), (27) and (31) we obtain

)
+00 q
< Z 2](104( Z 2—j+m/2€—02_mA XGm Z Mgm+1( )>

m=1 m=25+1
+00 +00 q
<] 2”“( Z 27ITmM2e= 2 A g ( ) Z 2an< > Mgm+1(95)>
j=1 m=1 m=2j+1
= 21(.7}) + EQ(LU) . (32)

Now we apply Holder’s inequality to see that, for any € > 0

2 o q % N E -m
< Z 27j+m/26702 Axgm(x>> < ( Z 2smq) Z 27JQ+mQ/275mq(€fc2 Axgm(m))q
m=1 m=1

m=1
2j
o _ o-m
< Z 22qu jqt+mq/2 smq(6 c2 Axgm($))q‘
m=1

Therefore, since « € (0,1), choosing € € (0, (1 — a))/2) we obtain

+00 T
21(1’) < Z Z 27j(17a72€)q+mq/275mq(6702_mAXgm(x))q < Z (2ma/26702_mAXgm(x))q'
m=1j>m/2 m=1
(33)
Analogously, using Holder’s inequality again, we see that, for € > 0
+o0 q/qd 4o
(3 Monaw) < 3 )" S i)’
m=2j+1 m=2j+1 m=2j5+1
+0
<2729 N (2" Mg ()
m=2j+1
so that, if ¢ < «/2
+00 +%©
o) € Y, Y 2O (Mg, (@) S Y (27 Mg (2)" (34)
m=1j<m/2 m=1

Therefore, from (32) we have

| Fae(f —e™8 S Rl PR D P

f)HLP(#x)



14 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

We first estimate the latter term. By the Fefferman—Stein vector-valued theorem (see [16] p. 481)
with the LP-boundedness of the local maximal function, and Hélder’s inequality, we have

T +00 y 1/q
q mao/2 q
=5 i = | ( 2 2 0m)") ],
+00 " . 1/q
< 2ma m
~ (mz_l( 1) > L2(1y)
N /2—m(q—1) o tAy ¢|? e
< gmaq/2—m(q— f —_ e tBx dt>
(;1 2—m ‘ ot f LP(uy)
! /2117 (1) q dt Ha
< YW, x)|) —
(L( W s @) t) L2 (uy)
< | fllpea -

Next, using (33) and applying Proposition 2.4 in [5] and then arguing as before, we estimate

1/q < ma/2 ,—c27 ™A q M
54 gy [ (2 720
3 (% (2ma/29m)q> 1/q
el L (py)
< ( 2 gmaq/2—m(q—1) JZ "o e_tAqudt) a
- g-m-110t LP (1)
< HfHFzz*‘h

This completes Step 2.
Step 3. We finish the proof by showing that

“yéoc’qe_AXfHLp(ux) < ey -

We first notice that for every x € G and y € By,
Dy 1) (@) < Jylsup {|Xie 2 fw)] : [wta] < Jyl, i = 1,...,¢}
< |y| sup {|Xie_AXf(w)\ SwTlzl <1, i =1, N3
By Lemma 1.1 there exists to > 0 such that for every w such that |[w™'z| < 1,and i =1,...,¢,

Xie 2 f(w)| = | * Xip}(w)
< [y YK W1 o) < [ 17y HIEx 2 w)e dp(y)

< [ 1wyt () doto) = [ 1)l (= ) a2

< [ 1 Ga axe)
108X f| ().
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Therefore,
1 1 du

(F29 (e f(2)))* fl <uav(u)fly<umy(eAxf)(x)mp(y)) —

< e8| fl()1,
where we used the fact that o € (0,1). Hence,

_A —toA
|22 f o) < le™ X £l Loy S 1F 1oy

which completes Step 3, and the proof of the theorem. O

3.2. Characterization of Besov norm by differences. We now prove a characterization of the
Besov norm in terms of the difference operator (16). Its proof is inspired by the one of Theorem
1.16 in [8], in the case of a sub-Laplacian without drift on a unimodular group G with respect to
the Haar measure.

We set
API(f) = (‘[ ('ijfWLqu>>q dp(y))l/q7 (35)
lyl<1 |y|« V(lyl)
Theorem 3.2. Let a € (0,1) and p,q € [1,+o]. Then
| F iz ~ A9CF) + 1 f () - (36)

Proof. We separate the proof in three steps. The first step deals with some simple integral estimates
relying on the classical Schur’s test, while the second and third steps contain the inequality < and
2, respectively, in the statement.

Step 1. Let a € R, s = 0, ¢ > 0 and define the integral kernel K : (0,1) x G — [0,40) by

2
K(t,y) = x*(y) (|yt|> V((Bge‘cy'g/t,

and the corresponding integral operator

dp(y)
Trg(?) fKty V)

Then, we show that for all ¢ € [1,4+00)
Ty : LG, dp/V(] - ) = L((0,1), dt/t)
is bounded.

To this end, it suffices to apply Schur’s test, see e.g. [10, Theorem 6.18] after showing that

o [ Ko pRSs1 fKty (37)
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It is easy to check that I < 1. Moreover, since by (2) for every j = 0 and t € (0, 1)
j+1
V(2711 < 9dlj+1) DY+

V(vt) ’

we have

e}
I < ZJ #223.36‘13)(2]“"1\/{6—0227' dp(y) <1.

= Jaivispyl<2itvi VIVE)

Thus, condition (a) in (37) is satisfied. In order to prove (b), we separate two cases. If |y| > 1,
then
dt

Jl K(t,y) dt < etexll=< WPy (|y|) Jl 1 et <
0 t o V(V1) t

while, if |y| < 1, (hence x(y) < 1)

1 1 2\ 5+d/2 2 2N s+d/2
f K(t,y) ét f lyI” dt + jy| ly* e—clyl?/t dt
0 ’ t ~ |y|2 t t 0 t t

1o r27y[?
<1+ f ! 93 (s+d/2) j—clyl|*/t dt
j=0J27 U D]y t
g 1 )
which proves (37). This completes Step 1.
Step 2. We show that, for p,q € [1,+o0] and a > 0,

BUf) = FLUE) + 1 Le i) - (38)

We claim that there exists ¢ > 0 such that, for all f e LP(u,),

s ([ (P ) .

Assuming the claim, we prove the estimate (38). By the claim, it suffices to prove that

D ) —cyl’\a 4 1/q
(L(| yf|L|y(|‘2‘)e ) Tn) A

We split the integral on G as {|y| < 1} u {|y| = 1}. On the one hand, it is easy to see that

| Dy pr(ux)edy'Q)q dp(y) )M P,
<J|y|<1 ( |y|« V() < @YUf),

while since | Dy flzo(u) < (1+ X" (9))[.f] Lo (),

| Dy f|Lp(ux)e_Cy|2>q dp(y) >1/q (J 2 1/q
< 1 4 ecOlulye—calsl? g )
(Lm < lyl V() Wi { | (o ePHe p(y)

< Hf”LP(,u,X) )

since the volume of balls grows at most exponentially (see (2)).
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It remains to prove the claim (39). Since §, o (y) dp(y) = 0: §, vi (y) dp(y) = 0,

S = [ far) L) doty

aﬂ(y) Dy f(z) dp(y) -

B c Ot
Thus,
_ ('}'p
tAy A
H ot° L7 (uy) f ’ )‘” Dy fllioguy) dp(y) - (40)
By Lemma 1.1 (v), (40) and [5, Lemma 3.3]
N

e 2

t
A, e 38
‘ x¢ ot

PPA(f) ~ Jl (tla/2 xf >q @
“ 0 LP(py) t
T dt

sf | (tla/2 f (O ) P Dy 1o, dily )> t
0 G t

1 q
gf (t“ﬂf (Ox NP (y)t e W D, fIprX)eb/'y'zdp(y)) %

J(JK”’ v |)>)qcfft

with
b HD fHLP /10012 |4 y y2 a/2 _ a2
V= gl = ) = SO (WY g et
By Step 1 we obtain
o 2
Iyl ¢ ly|* V(lyl)

The claim is proved, and Step 2 is complete.
Step 3. We prove that, for p,q € [1, +o0] and a € (0, 1),
AZUS) < BEI) + 1| Lr(uy) -

We write again f as f = (f — e ®xf) + e"®xf and decompose the (f — e 2xf) = 3°_| f,, as
n (25). Then, using also (30), we have

27m+1 27m+1

2—m

fom = f %e_mx fdt = f Aye B fdt = 2f Ay e 2Bx f dt

9—m—1

277774
— 272" A f e*(tfzimil)AXAxe*tAXf dt =:2¢ 2" By,

2—m—1

>0 tA
m = —e ox dt
7 Lml 8t€ ! LP (1)

We set

and observe that
| fm Lo (uy) < Omes1 - (41)
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Hence,

I Dy frnllzoquy) < (1 + X2 D) frnll 2o () S Ot -
By [5, Lemma 3.3] it follows that for i = 1,...,¢,

2 m
e 0
X.fo < om2y - 2m/2f —t—2-m=1)a, O _ia, dt < 22,
12X finll o (uy) < P Lo () < - ¢ iy B2
Therefore,
‘
I Dy fnll oy < [0l D 1 Xifml Lo (uy) < 191272 0m
i=1
Since oy, < 2041, (43), (41) and (42) imply
y|2™ 0y, if |y? <27
Dy fin < .
1Dy fmllar o {amﬂ iyl > 2
Therefore, by Lemma 4.3 (i) in [5], we have
1_x < ¢ dp(y)
P — e Bx < f 9Jqc/2 Dy fn
( ' f)> le 2-i|y|2<2—d+1 (ﬂ;l H v/ HLP(MX)> V(lyl)
o0 +00 q
< 2 2m/2< 2 2m)2g, 1 S 0m+1>
m=1 m=j+1
© q
<y zjqw—w?( 3 2 01+ )
j=1 m=1
& q
<) (2m°‘/2(0m+1 +Gm))
m=1
C Y N !
< ome —e X dt
mZ:O< L—m—l ot d LP(piy) )
S gmaa2g-mig-1) [* |0
< gmya 22—m q—1 f v —tAX dt
mZ:O 9-m—1 ot f LP (i)
oo 9—m
dt
< - 04/2H o—tAx 1At a4
~ Z Lm1( at° / LP(NX)) t (#21()

3
L

Therefore, by (9) we have
AP — e B f) s BRIUS).

(42)

(43)

It remains to estimate @2 (e~2x f). Asin (43), one can see that | D, e*AXfHLp(uX) S Il e (uy)

so that, using the decomposition of the integral as sum of integrals over annuli,

B o dp(y 1/q
P AXf)<pr<MX)< [ ) ”) < v
Yy

V(lyl)

The proof of Step 3 is complete. This concludes the proof of Theorem 3.2.
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4. A DENSITY RESULT

The main goal of this section is to show that the smooth functions with compact support are
dense in the Triebel-Lizorkin and Besov spaces on G. This is the analogue of the classical density
result in the Euclidean setting [51]; we refer the reader to [21, 23, 50] for its counterpart in other
settings.

To prove our density results we shall use the following version of Young’s inequality.

Lemma 4.1. If n has support in By, then

1m % flloruy < eyl flze ) - (44)
Proof. Suppose n has compact support contained in Bj, then by Minkowski’s integral inequality,

% Flzoguy = | Ln(yl)f(y-) ), < jB ™ DIF W) o) o)

L (px
Now,
)y = | P06 a) M) = (D) | 177 (167)) dAa)
= (D) [ 1F@F din(a).
G
Therefore,
% Fleogey) < (fB (™ 9)a) " dow)) 1FLo(u)
= (] IO @) 30 11500y
< sup (x5l ) o
The conclusion follows. O

We now prove the density result.

Theorem 4.2. Let a > 0, p,q € (1,0) and let X5? denote either space Fi'* or BE?. Then, C*(G)
is dense in XB1.

Proof. We begin by observing that Lemma 1.3 implies that S, hence C¥, are contained in X%.
Indeed, if m,n € N with m > [a/2] and n to be chosen, for ¢ € S, using (7) we have

W) < tmeml ST N a(p) .

|J|<2m

Then, in order to estimate the norms in (10) and (11), it suffices to chose n large enough so that
§o e Prleldp (2) is finite.

Step 1. We first prove that we can approximate functions in F%5'? with functions having compact
support when a € (0,1).

Let n e CX(B1), n =1 on Byj. Given any R > 2, define nr = 1p, * 7. Then, ng € C(Br+1)
and nr(z) = 1 on Br—1. We observe that | X ngll«w < 1, for |J| < n. In order to show such bounds,
we apply Young’s inequality (44). For any J e #*, Wlth k < n, we have

IXsmrlo = 1k * Xonleo < [ Xl S 1.
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Then, let f € F&? be given. We shall estimate the norm || f — fng| zr.« using the F0%_functional.
Since a€ (0,1), f € LP(uy) and | f — fnr|Lr(u,) — 0 as R — +o0. Next, we show that also

|54 (f = 1) |y = O (45)
as R — 4+o0. Set (r = 1 — nr and observe that (p vanishes identically on Br_1. Then, we have

oc,q _ ! 1 _ _ q du
[.720(f — fnr)(2)]? _fo [m jy|su‘CR(xy Df(y™) —CR(w)f(l’ﬂdP(y)] "

'r 1 - -
< [} v ), L Gt s = sl ot
adu

Ff@) f: [ |, o™ — oot 5

q du

<[ [=w |, cater s — sl o]
9 du

+|f(x)|q£ v | s 9]

2€B(zx,1)

[

< Lappr @) ([Z00F@)]" + [F@)]7)
since (r(z) = 0if |2| < R —1, and ||(gllcc = 1. Therefore,
yloc,q yloc,q Pd P )
et = )l < [ @Y A+ [ @)

This proves (45) and therefore we can approximate any element of F'? with elements with compact
support.

Step 2. Using the charaterization of the norm in BE? by finite differences for « € (0, 1), Theo-
rem 3.2, we prove that we can approximate functions in B5? with functions with compact support.
Let f € BEY be given and let ng and (g be as in Step 1. Then, for y € By and x € G we write

Dy(fCr)(®) = (f¢r)(zy™") — (fCr) ()
= Crlay [ f(ay™") = f(@)] + f(@)[Cr(zy™") — Cr(z)] =: Fr(z,y) + Gr(z,y) .
‘We observe that

HGR<-,y>Lp(u))qdmy))“q ( f g dply) \ M
. < y|(1-a ) Ve o fle
<f|< e V(i) IR i A M

S [1ga=r—2y fllzr(uy) -

that tends to 0 as R — +oo. Next, we observe that |Fr(x,y)| < 1{z=r—2;| Dy f(z)| < |Dy f(z)],
so that

1/p
R < ([ D P () 0,0 R o

o IFRC, Y Lr(uy) < [ Dy fllr(uy), which is indipendent of R.
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Lebesgue’s theorem now gives that

(fo () )

as R — +o0. Hence, recalling (35), we have

-] () )

(Lo (55 ) -0

Step 3. We select a smooth approximation of the identity. Precisely, for 0 < k < 1/2, select
Nk € CL(Bk), e = 0, and ||kl z1(ny = 1. Moreover, we require that n, < V(2k)~! (where the

as R — +o0. This completes Step 2.

constant does not depend on ).2 We then have

0w f(2)] < Mf(x), (46)

where M is the local maximal function, defined in (28). Indeed, we estimate

e * ()] = | L ey ) £ () dp(y) F@)dp < Mf(z),

< v ),
V(2k) JB (k)

as claimed.
Arguing as in [11] Proposition 2.44, by Minkowski’s integral inequality, for any g € LP(u,),

I 9 = gllLoguy) = | f )(7y9 = 9) dAW)| 1., ) < L k(W) 799 = glLe () dAY)

< sup [7y9 — gllze(uy) >
lyl<r

which tends to 0, as k — 0. Next, notice that, by left invariance Wt(m) (M f) = mi = W, m)f.
Moreover, if f € 8’ has compact support, then 7, = f € CX(G).

Step 4. We complete the proof that C is dense in the Triebel-Lizorkin spaces, F5? in the case
€ (0,1). To this end, let f € F4? have compact support so that 7, * f € CZ.
By Theorem 2.3 we have

+00
Hn,{*f—f”Fg,q < H(E (2]06/2‘77H*W(m f Wm)f’) ) H Lo() + “nﬁ*f—fHLp(ux).
=0 x
We only need to estimate the first term in the right hand side above. Observe that, since f has
compact support, Wt(m) feS, forallte(0,1). Hence, [11] Proposition 2.44 gives that, for each j
fixed
[ * Q(T-)f Wm)fHoo—>0 as k—0.

J

2This can achieved as follows. Let 7€ CP 0<n <1, suppn S Bye, 7 = 1 on By, and define n, =
C,@V(2/i)7lle/A1 * 7). By requiring that |n.[,1n) = 1, we obtain that Ci ~ C™*!, where C is the local doubling
constant.
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We wish to apply Lebesgue’s theorem to the inner sum. We observe that by (46) we have that

(27 W) f = W )T < (2P )+ (Wi A1)
which is (independent of x and) summable by [16] p. 481. Thus, the inner sum tends to 0, as
k — 0, for every x € GG, that is, the family of vector-valued functions S,

S o= (20« WM f) G > 41

as k — 0 converges pointwise to the vector-valued function S : G — ¢4, where S := (2j0‘/ QWQ(TJ-) f )j'
Since, as before, for 0 < k < 1,
+00 y

ISl < (3 (@) r)?)

J=0

We can apply Lebesgue’s theorem to obtain that S, — S in Lp((G,Eq), ux), that is,

€ Lp((G,Eq), ,ux) .

—0 as k—0,
LP(py)

H ( JFZO:O (2j04/2|77,<; * WQ(@f _ WQ(Tj)fDq) 1/q
J=0

as we wished to show. Hence, C¥ is dense in Fy'?, for p,q € (1,0), a € (0,1).

Step 5. We complete the proof that C® is dense in B5? in the case o € (0,1). Let f € BY? have
compact support so that 7, * f € CF. We then have

g dt\1/a

/
*) + 0= f = Flloe(uy) -

1
I £ = Flpge < ( fo (e WS = W F o) 5

Now, |1 * f — fllze(u,) and [ * W f W fHLp — 0, as kK — 0, the latter term for each
t € (0,1) fixed. Using Young’s inequality (44) we see that

I+ W F = W oy < W Flisgy
so that we may use Lebesgue’s theorem to obtain that
dt\1/q
(f (7 W F =W Flia) ) =0 —
0
This gives that |9, * f — fllgre — 0, as k — 0, and completes the proof that C° is dense in
B4, for p,q € (1,0), a e (0,1).

Step 6. We now prove that C is dense in X7, for p,q € (1,%0), a € (0,1). We use the

recursive characterizations of the spaces X%, see Theorem 4.5 in [5], that is, f € XP7, if and

only if f € X5? and X;f € X§?. Let € > 0. By the arguments in Steps 1 and 2, using the same
notation, there exists R > 0 sufficiently large such that

Hf - fnR”Xg’q <é&, and HX]f - (Xjf)'r]RHngq < 8/2,

for j =1,...,¢. Since X;ng is a C° function vanishing in the ball B R, by the arguments involving
Cr in Steps 1 and 2 we can also assume that |fX;ng|xre« <¢/2, j = ., L. Therefore,

|f = forlxzpa <e,  and [X;f —Xj(fUR)HXg»q <e,
that is, [ f — fnr|xrs < e
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Next, given f e X g’ﬁl having compact support, let {n,}, 0 < k < 1 be the approximation of the
identity of Step 3, and consider 7, * f. Then, by Steps 4 and 5, . * f — f, X;(nr*f) = ne+ X; f —
Xif,j=1,...,0, in X5 as k — 0. This implies that ngf — f in X2, as kK — 0. This shows
that C° is dense in X2, for a € (0,1).

Step 7. We now finish the proof. Arguing as in the previous step, we obtain that C'¥ is dense
in X517 for all « € R\N. Let n be a positive integer, and 6 € (0,1). By the complex interpolation

results of Theorem 6.1 in [5], X757 = (X5, XP1))11/9), with 6 € (0,1). By Theorem 4.2.2 in [3]

XM, 0 XP, s dense in X9, Let f e XM n XP7, and let n € C such that | f — Mxes, <
so that also ||f — 77||X”*_qg < e. By the interpolation inequality (see e.g. [3, Theorem 4.7.1, p. 102]
and [3, p. 49])

1/2 1/2
If = nllxpe < If = nlima If —nllee  <e
n—=0 n+1—0

we obtain that CZ is also dense in X}5%. O

5. ISOMORPHISMS OF TRIEBEL—LIZORKIN AND BESOV SPACES

Goal of this section is to prove that Bessel potentials provide isomorphisms in both the Triebel—-
Lizorkin and Besov scales and that a simplified version of local Riesz transforms is bounded on
both the Triebel-Lizorkin and Besov spaces. We continue to denote by X457 either space F4'?, or
BE. We begin by showing that for all ¢ > 0, the fractional powers of A, + ¢I are bounded on the
spaces X5, Precisely, we prove the following.

Lemma 5.1. Let p,qe (1,+0), a =0 and let v > 0. Then, for all ¢ = 0,
(Ay + )2 XPL — XPa

1s bounded.

Proof. If 8 > 0, then for 7 > 0 we have

1 +00
r = — f P le T8 ds
0

so that, if v > 0 and k is an integer, k > [v/2] + 1,
(A + e = (A + D)~ FVD (A + el)F
B 1
I'(k—~/2)

We first prove the result for ¢ = 0. The case ¢ > 0 will then follow easily from the former case.

T 2 —sA ) ds
sV EeTIOX (A 4 ) - (47)
0

Step 1. We prove that for all f e X5

_1 _1
le™2 A2 f Loy S le T Fllinuy - (48)
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Using (47) (with ¢ = 0), Lemma 3.3 in [5], the Cauchy—Schwarz inequality and the boundedness of
the g-function (9), we notice that

—1A AY/2 o k—a/2| , —(s+1/4) Ay Ak ,—1A ds
7203 fHLp(ux SL 5 e XAye XfHLp(NX)?

* —sAy —1A 2d5 2
+H(L/4 [(s8) e e ] LP(1y)

1 Skz—a/Q 1 ds 1
SL Gl o 5+ o Dl

S He_%AXfHLp(MX) 7

and thus (48) holds true.

In order to proceed with the main part of the estimates, we need to consider, for m > «/2,

1 400
(m) v/2 ¢ _ 1 f f k—v/2 ,—sA Ak (m) @
WIS g ([ e
::Fl(ta')+FOO(t>')7 (49)

and observe that both Fy, Fi, are functions defined on (0,1) x G.
Step 2. We first prove that
2 . k] 5
AY?: BRI — BRA
is bounded, by showing that for any f € S

Lo m adt L m adt
L <t 2w )A;ﬂfHLP(uX)) - Sjo <t 2|y Hx) - (50)

By the norm equivalence in Theorem 2.2 and (48), Step 2 will follow.

We now prove (50). Using the decomposition (49), we first estimate the latter term. We observe
that, by the Cauchy—Schwarz inequality and the boundedness of the g-function (9)

It 5 [ [ e 2w g &

p(#x)
1/2
\( J (20 Femsx (™) £ Mj) o
Mx
< Jgn (W™ Iy
S LA PN

Therefore,

1 1
~af2 . vdt —a/2p(m) adt
LG“MNJWWJtSLG“WQﬂmw)tﬂwwﬁf@g- (51)
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Next,
s ds
I3 i < [ 542 A g &
—k k—/2|| ,—sAy py7 (m+E) ds
- (L+£ )t k=12 e s A fHLP(uX)?
=:I(t) + II(t).
Now,
t t
—k k— —s m+k ds - m+k _1—
I(t) =f0t B e L | P L )flle(uX)L SF=17/2 g
— m+k
~ TP
so that
1 1
—a/2 adt (o 9 (m+k) qdt
L (t /I(t)> ry §JO (t 2w fHLp(MX) S Iflpps -
Next,
—a/2 ! k—a/2 gk—/2|| ,—sAx g7 (M) ds
2 II(t) = 2 Je=s2x w7, fHLP(M .
! s\ k+e/2 a+7)/2| ,—sA (m+k)
[t ()
! tym—e/2 _ « 2 ,—tA m—+k
:L 1{t<s}<;) s~ (et+7)/ He ¢ XWS( + )fHLP(ux) ds.
Hence,
! dt <t
J (t—a/2I( q J (J KSt ‘g > wv
0 t’
where

m—a/2

and g(s) = 5_(5”7)/2He‘SAXW£m+k)f”Lp

K(s,t) = 14 (2) )

It is easy to check that

sttd<1 and sttit 1

so that Schur’s lemma (see [10] e.g.) gives that

1
[ coomay® < i
0
Thus, putting together (51) to (54) we obtain (50). This completes Step 2.

Step 3. We now prove that
2 . ] y
AY?: FDE — PR
is bounded, by showing that for any f e S

)(L (t O4/2}12[/(’” Av/ZfDq dt> Ya . - H(L ( (@42 m)ﬂ)q dt> 1/q

Lp(

Mx) .

25

(52)

(53)

(54)

(55)
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Again, this, together with Theorem 2.2 and (48), will give the desired boundedness.

We use decomposition (49) again. We notice that, since f € S we can switch the integration
order so that

Fot,) — _ b f+oo h=2e—(a=1/2 A Amth —3Ax ds
o L'(k—~/2) 1 X &

1 +o f—1—ry/2
_ tme—tAX J s+ -, —SAXAm+ke QAXf ds .
k=) , bra)

Hence, by the Cauchy—Schwarz inequality and recalling (8), we have

+00 1/2
|Foo(t, )| < tme—tAX <J |(5A )m+k —sAy —7Axf|2 ds)

0
— e P g (e T f)

Now we use Proposition 3.6 (ii) in [5] and the boundedness of the g-function to obtain

([ (Fpa ) Cff)l/q o =] (treirettng, (1)) dt>1/q

LP(py)
_1
< Ngman (€2 )l Lo (uy)
_1
< e 2 fliuy) - (56)
Finally,

1 q dt ! t 1 ds\? dt

t—a/QF . bt <J 75—&/2 f J k—v/2 —SAXAk (m) ¢ @8 -

[ (orma) < [ (e ([ o] )i atwio )
=T+1, (57)

where in this case, I and II are functions on G. Similarly to the argument in Step 1, we have

1
_ a2 | k)2 —sAy AR q dt
- j (1 L 2| A Ak f| ) =
1 tm a/2 k—v/2 (m-+k) q dt
0 ( (s+1) (s + t)ktm | s+t | 7) +
1 2t tm— OZ/Q t)k 1—v/2 (m q dt
L <J Tk+m—1 ‘ +k)f‘ > t
q dt
<J K(t,t)g ) rl

1
J
tmfa/2 T —t k‘flf’y/Q -
K(7,t) = 1yyercon Tkﬂgl(c)yﬂ)/z and g(7) =7 (04+“/)/2|W7§m+k)f|‘

where

Since

JKTt <1 andJKTtit 1,
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we obtain that
I< f <t (a+7) /Q\W (m+k) f‘)q d (58)
0

To estimate II we argue in a different fashion, using a discretization that is at the foundation of
the norm equivalence Theorem 2.3. Namely, by Proposition 3.6 (iv) in [5]
> 1/q

([ oy
5 ‘%

1Y) £y

LP(1y)

1 1/
< ( tm a/2 —tAy f g~m— ’y/ZIW m+k dS ) ! i
t s P(
< tm /2 S—m—'y/2|W(m+k “o q@
5 s t LP (1)
g dt\
_. H( f K(s,b)g ) t> oy’ (59)
where we have set
t\m—a/2 o m
K(s,1) = Ly () and  g(s) = s~V p|
Again, since
f K(s,t)— <1 and J K(s,t)— <1,
0 0
we see that
1 1/q
1q (o) 2|y ) g\ A
sy < |( [ (2w 0) ) (60)
Therefore, (57), (58) and (60) give
1 1/q
~a2p )" 9 1g 1/q
([ (omen) ) L 1y + 1
1
< H (120 1) dt
~ ¢ t 1zp(uy)
S HfHFM : (61)

a+y

This, together with (56), prove (55), and finally estimates (48) and (55) complete Step 3.

Step 4. We finally consider the case ¢ > 0. Precisely, we show that given any ¢ > 0 if p,q €
(1,400), a,y = 0, then

(Ay + )2 XPL — XPa

is bounded.
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We use the subordination (47) (with n > [y/2] + 1 in place of k) to write

(Ay+el)?f = L FOO sV 2 (AN (AL 4 D) f ds
* I'(n—~/2) Jo X s
- Moy, JJF ny/2slet A Ak g dS’
k=0 0 s

for suitable positive constants oj. Therefore, in order to estimate Wt(m)(AX +cl )“// 2 ¢ it suffices to
estimate each term, for kK =0,1,...,n,

+00 A ds
akf $n77/26708|€75 XAf(ﬂ —
0 S
However, since for all k = 0,1,...,n, s"e”™® < s* for s € (0,4), such estimates follow at once
from the previous Steps 2 and 3. The proof of the lemma is complete. O
We are finally ready to prove the main result of this section.

Theorem 5.2. Let « = 0, v = 0, p,q € (1,+00), and let X5 denote either space Fy? or BRY.
Then for c > 0 sufficiently large,

Ay +el)V? XD xPa
( X a+y a

is a surjective isomorphism, and its inverse is (Ay + cI)*V/2. Moreover, if ¢ > 0 is sufficiently
large, then for all o,y = 0, the operators

AV(Ay + )77 XBT — XD
are bounded.
We point out that for any v > 0, c is to be chosen so that the local Riesz transforms X (A, +

el)7W172 are bounded on LP(uy), for 1 < p < o and |J| < [y/2] + 1. Moreover, the operators
AY(A, + ¢I)™7 can be thought as a simplified version of the local Riesz transforms.

Proof. Step 1. We first prove that for n e N,

(Ay+e)™: XB?T— X1,

is bounded.

Since (A, +cl)™# 1 LP(uy) — LP(uy) is bounded, for p € (1, +00) and 8 > 0, see [28] or also [4],
we trivially have that

=28 (A + D)y S le 225 (62)

(1)

Let m > [a/2] + 1. In the case of Besov spaces, it suffices to apply Theorem 3.2 in [4] to obtain

(W Dt eD) 7 gy = (A A+ D)W f
St Y XA+ D)W
|J|<2n

< "I g
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1 . g dt\ "
(J;) (t /2||Wt( )f”LP(ux)) t)

< [ £z (63)

Therefore, (62) and (63) show that (Ay +¢I)™™: BY? — B9, 'is bounded, p,q € (1,+o), a = 0,
neN.

Hence,

1 1/q
—(n+a/2) (m+n) n q ﬂ
(L (t WA+ e ) >

A

Next we consider the case of the Triebel-Lizorkin spaces. Arguing as in (47) we write

( ) 1 +00
Wm+n (A —i—CI) nf_ J Sne—cse—sAxw m4n) f*

(
o[ oo
S

Ag(t, ) + Awl(t, ).

SOl
We begin with the latter term and observe that, since f € S we can switch the integration order,
so that by the Cauchy—Schwarz inequality

+ao
| Ao (t, )] = ™" e_mxf Sne_cse_(s_1/2)AXA;nJme_%Axf ds
1

n 1/2
< gmtng—thy (J * \WS(ern —7Axf‘2 dS)
0

1
= tm+ne_tAXgm+n(€_§AXf) )

where ¢p,+n is defined in (8). Therefore, by the above estimate, Proposition 3.6 (ii) in [5] and the

boundedness of the g-function,
1 q dt\ V9
([ (it 4)
LP(ny) o Gmen( f) ’

1 1/q
[(RGEEIEIES
0
< [gmante™ 2 Al o
< e 22 f ] Loy - (64)

Now we turn to Aj(t,-), and also in this case we can switch the integration order so that

LP(uy)

1
d
|A1(t, )| = ‘tmﬂbemxf s"e*CSG*SAXAZLJrnf j‘
0 s

m+n —tA ! n|, —sA ds
<MTeTEX | s ‘e XA f ’ —
X s
0
Therefore, using Proposition 3.6 (ii) in [5] we have

1
J ( (n+a/2)|A q dt J tm a/QJ n‘ —sAy Am+nf| )th
0 0 t

L[ resarentys.

2/\
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In order to estimate the first term on the right hand side of (65) we use Jensen’s inequality to see
that

1 t 1
L tq(m—oz/Z)—l(fo Sn—l‘e—sAXA;’H-nf’ ds)th < JO Sq(m—a/Q)—lsqn’e—sAXA;n+nf|q ds

_ fo (e f|>q dt (66)

For the second term on the right hand side of (65) we use Schur’s test. Precisely, arguing as at the
end of Step 2 in the proof of Lemma 5.1, we have

[ oo syt [ (e

< [ ()4 (67)

Thus, we obtain that
! 1a 1/q
—(n+a/2) )¢ @ J —a/2 g (ntm q dt
H (Jo <t At )D t ) () H< <t Wi f') LP(1y)
< | fll e (68)

as we wished to show. Estimates (64) and (68) complete the proof of Step 1.

Step 2. We now complete the proof.
We first observe that for v > 0, the operator
(Ay + D)2 XP9 — XPO
is bounded. Indeed, it suffices to notice that, choosing n € N, n > /2 we have
(A + e = (A + )" VEA F )T

The conclusion follows from the boundedness of the two operators on the right hand side given by
Step 1 and Lemma 5.1.

It now follows that
(A + eI XDE, — XBa
is a surjective isomorphisms. For given any f € X%, indeed, we can write
f= (A +cD)2(Ay +cD)2f,
since f e LP(puy).
Finally, it is now clear that for o,y = 0,
AYH(Ay +el) T2 XPT > XD

is bounded. The proof is now complete. O
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6. FINAL REMARKS AND OPEN PROBLEMS

In this final section we discuss some directions for future work and indicate some open problems.

First of all, we stress the fact that in this work and [5] we have limited ourselves to the cases
p,q € [1,40] and > 0. It would be interesting to investigate whether the spaces F5’2(,ux)
with p = 1, +00, correspond respectively to the local Hardy space h!(u,) and its dual bmo(su,),
introduced in [4], in analogy to the Euclidean setting. Such spaces turn out to be useful in many
problems, most noticeably in the boundedness of singular integral operators. Moreover, Triebel—
Lizorkin and Besov spaces with 0 < p,q < 1 are quasi-Banach and their treatment often requires
different techniques. Finally, the spaces X5 (s, ) with o < 0 should appear as natural duals of the
spaces with positive index of regularity and are also of considerable interest.

We recall that Besov and also Triebel-Lizorkin spaces are instrumental to applications to solv-
ability and regularity of solutions of nonlinear differential equations, as, for instance, in the spirit
of the results in Section 6 in [4]. It would also be interesting to study the homogeneous versions of
Sobolev, Besov and Triebel-Lizorkin spaces in the setting of this work. These spaces, in particular
the homogeneous Besov spaces, appear naturally in the Strichartz estimates for the wave equation
in the Euclidean space, or Lie groups of polynomial growth, see e.g. [18], [2] and [14].

Another set of natural and interesting questions concerns the generalization of some classical
geometric inequalities, which have already been studied in the setting of manifolds and metric
spaces under suitable geometric assumptions. In particular, we mention the Poincaré inequality,
see [30] for the classical case and [26] for Carnot—Carathéodory groups, the trace inequalities,
see [30] for the classical case and [7] for Carnot—Carathéodory groups, isoperimetric and Sobolev
inequalities [30] and [17], to name just a few. We intend to study extensions of these classical
inequalities to the case of the sub-Laplacian A, on a general Lie group G and of the Sobolev,
Triebel-Lizorkin and Besov spaces. We point out that in [43] the authors proved versions of Hardy,
Hardy—Sobolev, Caffarelli-Nirenberg, Gagliardo—Nirenberg inequalities in the case of the Sobolev

spaces L& (py).
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