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Propagation of anisotropic Gabor singularities for Schrödinger type
equations

Marco Cappiello, Luigi Rodino and Patrik Wahlberg

Abstract. We show results on propagation of anisotropic Gabor wave front sets for solutions to a class
of evolution equations of Schrödinger type. The Hamiltonian is assumed to have a real-valued principal
symbol with the anisotropic homogeneity a(λx, λσ ξ) = λ1+σ a(x, ξ) for λ > 0 where σ > 0 is a rational
anisotropy parameter. We prove that the propagator is continuous on anisotropic Shubin–Sobolev spaces.
The main result says that the propagation of the anisotropic Gabor wave front set follows the Hamilton flow
of the principal symbol.

1. Introduction

We prove results on propagation of anisotropic phase space singularities for the
initial value Cauchy problem for evolution equations of the form

{
∂t u(t, x) + iaw(x, Dx )u(t, x) = 0, x ∈ Rd , t ∈ [−T, T ] \ {0},

u(0, ·) = u0.
(1.1)

Here T > 0, aw(x, Dx ) is a Weyl pseudodifferential operator and u0 ∈ S ′(Rd) is a
tempered distribution.
The Hamiltonian aw(x, Dx ) is assumed to have real-valued principal symbol a0.

Following the fundamental idea of Hörmander we show that the singularities at time
t ∈ [−T, T ] are the singularities of the initial datum u0 transported by the Hamilton
flow χt of the principal symbol a0. The Hamilton flow (x(t), ξ(t)) = χt (x, ξ) is the
solution to Hamilton’s equation with initial datum (x, ξ) ∈ T ∗Rd\{(0, 0)}, that is the
solution to the system of ordinary differential equations

⎧⎪⎪⎨
⎪⎪⎩

x ′(t) = ∇ξa0 (x(t), ξ(t)) ,

ξ ′(t) = −∇xa0 (x(t), ξ(t)) ,

x(0) = x,
ξ(0) = ξ.
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Keywords: Tempered distributions, Globalwave front sets,Microlocal analysis, Phase space, Anisotropy,
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The concept of phase space singularities that we use is the anisotropic Gabor wave
front set, which is determined by an anisotropy parameter σ > 0. For u ∈ S ′(Rd)

the anisotropic Gabor wave front set WFσ
g (u) is a σ -conic closed subset of T ∗Rd \ 0.

A σ -conic subset of T ∗Rd \ 0 contains anisotropic phase space curves of the form

λ �→ (λx, λσ ξ) ∈ T ∗Rd \ 0, λ > 0, (1.2)

if one point of the curve belongs to the subset.
The anisotropic Gabor wave front set WFσ

g (u) is defined by means of the short-

time Fourier transform Vϕu(x, ξ) = F
(
u ϕ(· − x)

)
(ξ) where ϕ ∈ S (Rd)\{0} is

a window function. To wit z0 = (x0, ξ0) ∈ T ∗Rd\0 satisfies z0 /∈ WFσ
g (u) if there

exists an open set U ⊆ T ∗Rd such that z0 ∈ U and

sup
(x,ξ)∈U, λ>0

λN |Vϕu(λx, λσ ξ)| < +∞ ∀N � 0.

This means that the short-time Fourier transform, which a priori is polynomially
upper bounded, decays superpolynomially along curves of the form (1.2) in a neigh-
borhood of z0. For u ∈ S ′(Rd) we have WFσ

g (u) = ∅ if and only if u ∈ S (Rd) so
WFσ

g (u) measures globally singular behavior in the sense of lack of smoothness or
decay at infinity comprehensively.
We impose the condition that the Hamiltonian aw(x, D) has a real-valued principal

symbol a0 which satisfies the anisotropic homogeneity

a0(λx, λ
σ ξ) = λ1+σa0(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0. (1.3)

This condition turns out to have several beneficial consequences for the problem we
study.
First it implies that theHamilton flowχt of a0 commuteswith the anisotropic scaling

map

T ∗Rd \ 0 � (x, ξ) �→ (λx, λσ ξ) ∈ T ∗Rd \ 0
for each λ > 0. This is a natural requirement for propagation results of the form
WFσ

g (Kt u0) ⊆ χtWFσ
g (u0), whereKt u0 = e−i taw(x,D)u0 denotes the solution opera-

tor (propagator) for (1.1), thatwe aim for, sinceWFσ
g (u) isσ -conic for all u ∈ S ′(Rd).

Secondly if σ > 0 is rational then condition (1.3) on the principal symbol allows
us to prove the main result of this paper, that is the propagation of singularities

WFσ
g (Kt u0) = χt (WFσ

g (u0)), t ∈ [−T, T ], u0 ∈ S ′(Rd), (1.4)

where T > 0.
The term“principal symbol” refers here to thepseudodifferential calculus of anisotropic

Shubin symbols [7,27,32]. The symbols exhibit anisotropic behavior on phase space
according to the assumed estimates

|∂α
x ∂

β
ξ a(x, ξ)| � (1 + |x | + |ξ | 1σ )m−|α|−σ |β|, (x, ξ) ∈ T ∗Rd , α, β ∈ Nd ,
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where again σ > 0 is a given anisotropy parameter, and m ∈ R is the order. These
symbol classes are denoted Gm,σ .

In the main result Theorem 8.3, we show (1.4) under the following assumptions.
Suppose k,m ∈ N\0, σ = k

m , and let a ∈ G1+σ,σ , a ∼ ∑∞
j=0 a j , where a0 ∈

C∞(R2d\0) is real-valued and satisfies (1.3), whereas the lower order terms satisfy
a j ∈ G(1+σ)(1−2 j),σ for j � 1. An example of a symbol that satisfies the criteria is

a(x, ξ) = cψ(x, ξ)
(
|x |2k + |ξ |2m

) 1
2

(
1
k + 1

m

)

where c ∈ R \0 andψ is a smooth function vanishing in a small ball around the origin
in T ∗Rd .

We show that the solution operator is continuous on anisotropic Shubin–Sobolev
spaces. This is of independent interest but also a tool for the proof of Theorem 8.3.
The proof of the main result is based on ideas from [16]. More precisely our result is
an anisotropic version of [21, Theorem 4.2] which treats propagation of the (isotropic)
Gabor wave front set when the principal symbol is real-valued and homogeneous of
order two on T ∗Rd .With σ = 1 our result implies aweaker form of [21, Theorem 4.2].
The proof ideas for Theorem 8.3 and [21, Theorem 4.2] are based on Hörmander’s

proof of [16, Theorem 23.1.4]. This result concerns Hamiltonians with first-order
Hörmander type symbols, the continuity concerns classical Sobolev spaces, and the
singularities are the classical smooth wave front set. The proof techniques rely on
energy estimates, functional analysis and pseudodifferential calculus. Our proofs in
this paper are worked out in detail as opposed to the rather brief arguments in [16,
Chapter 23.1] and [21].
We also prove the propagation (1.4) for a different type of Hamiltonian of the form

aw(x, D) = p(D) + 〈v, x〉 where p ∈ C∞(Rd) is a sum of polynomials of each
variable in Rd , with real coefficients, of order m � 2, v ∈ Rd is a vector each
of whose coordinate is nonzero, and σ = 1

m−1 . Since this setup includes the Airy

operator d2

dx2
− x when d = 1 we say that the corresponding equation (1.1) is of Airy–

Schrödinger type. Using results from [31] we also formulate a version of (1.4) in
the Gelfand–Shilov space functional framework and corresponding anisotropic wave
front sets [26].
Denoting by Pm the principal part of p, we show (1.4) where χt is the Hamilton flow

of Pm(ξ). This generalizes a particular case of [32, Theorem 5.1] where v = 0. Since
Pm(ξ) does not depend on x , the Hamiltonian flow for Pm is trivial in the sense that it is
constant in time with respect to the dual coordinates as χt (x, ξ) = (x + t∇Pm(ξ), ξ).
This contrasts to the Hamilton flow in the main result Theorem 8.3 where both space
anddual coordinatesmaydependon time.The techniquesweuse forAiry–Schrödinger
equations are an explicit formula for the Schwartz kernel of the propagator and general
results on propagation of singularities from [26,27,31,32].
Our results in this paper fit in a project to investigate globally anisotropic pseu-

dodifferential operators [3,5,7,19,26,27] and propagation of global singularities for
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evolution equations [24,31,32]. The techniques are inspired from those of pseudodif-
ferential operators defined by symbols that are anisotropic in the dual variables for
fixed space coordinates. These ideas have been investigated e.g. in [11,18,22].
A major new feature of our main result Theorem 8.3 as opposed to earlier propaga-

tion results [32], is that it admits Hamiltonians that give rise to flows that are non-trivial
in the sense that the dynamics involve all phase space coordinates.
Concerning the organization of the paper, Sect. 2 contains notations, background

concepts and conventions, and Sect. 3 recalls material on anisotropic Shubin pseu-
dodifferential calculus. Section4 is devoted to Shubin–Sobolev modulation spaces in
the anisotropic context, a recollection of localization operators, and an inequality of
sharp Gårding type which is essential. In Sect. 5 we deduce propagation results for
Airy–Schrödinger equations. Section6 treats Hamiltonians that are anisotropically ho-
mogeneous as in (1.3) and their Hamilton flows, and in Sect. 7 we show existence and
uniqueness of solutions to an inhomogeneous form of (1.1) in anisotropic Shubin–
Sobolev spaces for Hamiltonian symbols in G1+σ,σ with bounded imaginary part
and σ > 0 rational. Then Sect. 8 is dedicated to the main result on propagation of
singularities, and finally Sect. 9 consists of a very short discussion of examples.

2. Preliminaries

The unit sphere in Rd is denoted Sd−1 ⊆ Rd . An open ball of radius r > 0 centered
in x ∈ Rd is denoted Br (x), and Br (0) = Br . The transpose of a matrix A ∈ Rd×d is
denoted AT and the inverse transpose of A ∈ GL(d, R) is A−T .Wewrite f (x) � g(x)
provided there exists C > 0 such that f (x) � C g(x) for all x in the domain of f
and of g. If f (x) � g(x) � f (x) then we write f � g. We use the partial derivative
Dj = −i∂ j , 1 � j � d, acting on functions and distributions on Rd , with extension

tomulti-indices. The bracket 〈x〉 = (1+|x |2) 1
2 for x ∈ Rd satisfies Peetre’s inequality

with optimal constant [26, Lemma 2.1], that is

〈x + y〉s �
(

2√
3

)|s|
〈x〉s〈y〉|s| x, y ∈ Rd , s ∈ R. (2.1)

We use the normalization of the Fourier transform

F f (ξ) = f̂ (ξ) = (2π)−
d
2

∫
Rd

f (x)e−i〈x,ξ〉 dx, ξ ∈ Rd ,

for f ∈ S (Rd) (the Schwartz space), where 〈 · , · 〉 denotes the scalar product on Rd .
The conjugate linear action of a distribution u on a test function φ is written (u, φ),
consistent with the L2 inner product ( · , · ) = ( · , · )L2 which is conjugate linear in
the second argument.
Denote translationbyTx f (y) = f (y−x) andmodulationbyMξ f (y) = ei〈y,ξ〉 f (y)

for x, y, ξ ∈ Rd where f is a function or distribution defined onRd . Ifϕ ∈ S (Rd)\{0}
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then the short-time Fourier transform (STFT) of a tempered distribution u ∈ S ′(Rd)

is defined by

Vϕu(x, ξ) = (2π)−
d
2 (u, MξTxϕ) = F (uTxϕ)(ξ), x, ξ ∈ Rd .

The function Vϕu is smooth and polynomially bounded [13, Theorem 11.2.3], that is
there exists k � 0 such that

|Vϕu(x, ξ)| � 〈(x, ξ)〉k, (x, ξ) ∈ T ∗Rd . (2.2)

We have u ∈ S (Rd) if and only if

|Vϕu(x, ξ)| � 〈(x, ξ)〉−N , (x, ξ) ∈ T ∗Rd , ∀N � 0. (2.3)

The transform inverse to the STFT is given by

u = (2π)−
d
2

∫∫
R2d

Vϕu(x, ξ)MξTxϕ dx dξ (2.4)

provided ‖ϕ‖L2 = 1, with action under the integral understood, that is

(u, f ) = (Vϕu, Vϕ f )L2(R2d ) = (V ∗
ϕ Vϕu, f ) (2.5)

for u ∈ S ′(Rd) and f ∈ S (Rd), cf. [13, Theorem 11.2.5].
According to [13, Corollary 11.2.6] the topology forS (Rd) can be defined by the

collection of seminorms

S (Rd) � ψ �→ ‖ψ‖m := sup
z∈R2d

〈z〉m |Vϕψ(z)|, m ∈ N, (2.6)

for any ϕ ∈ S (Rd) \ 0.
The Beurling type Gelfand–Shilov space 

μ
ν (Rd) is for ν, μ, h > 0 is defined as

the topological projective limit

μ
ν (Rd) =

⋂
h>0

Sμ
ν,h(R

d)

where Sμ
ν,h(R

d) is the Banach space of smooth functions that have finite

‖ f ‖Sμ
ν,h

≡ sup
x∈Rd , α,β∈Nd

|xαDβ f (x)|
h|α+β|α!ν β!μ

norm [12]. The space
μ
ν (Rd) is a Fréchet space with respect to the seminorms ‖·‖Sμ

ν,h

for h > 0, and 
μ
ν (Rd) �= {0} if and only if ν + μ > 1 [23].

If ν + μ > 1 the topological dual of 
μ
ν (Rd) is the space of (Beurling type)

Gelfand–Shilov ultradistributions [12, Section I.4.3]

(μ
ν )′(Rd) =

⋃
h>0

(Sμ
ν,h)

′(Rd).



   36 Page 6 of 46 M. Cappiello et al. J. Evol. Equ.

The space of ultradistributions (
μ
ν )′(Rd) may be equipped with several possibly

different topologies [31]. In this paper we use exclusively the weak∗ topology.
The Gelfand–Shilov (ultradistribution) spaces enjoy invariance properties, with re-

spect to translation, dilation, tensorization, coordinate transformation and (partial)
Fourier transformation. The Fourier transform extends uniquely to homeomorphisms
on S ′(Rd), from (

μ
ν )′(Rd) to (ν

μ)′(Rd), and restricts to homeomorphisms on
S (Rd), from 

μ
ν (Rd) to ν

μ(Rd), and to a unitary operator on L2(Rd).

3. Anisotropic Shubin pseudodifferential calculus

In this section we retrieve some essential facts from pseudodifferential calculus of
anisotropic Shubin symbols [27,32].
Let σ > 0. We use the weight function on (x, ξ) ∈ T ∗Rd

θσ (x, ξ) = 1 + |x | + |ξ | 1σ . (3.1)

For this weight we have the following inequality of Peetre type [27]. If s ∈ R then

θσ (x + y, ξ + η)s � Cσ,sθσ (x, ξ)|s|θσ (y, η)s, x, y, ξ, η ∈ Rd . (3.2)

When σ is rational, σ = k
m , k,m ∈ N\0, an alternative weight is

wk,m(x, ξ) =
(
1 + |x |2k + |ξ |2m

) 1
2
. (3.3)

Note that

wk,m � θkσ . (3.4)

The motivation for using wk,m instead of θkσ is that the former is smooth as opposed
to the latter.
By [27, Eq. (3.4)] we have for σ > 0

〈(x, ξ)〉min
(
1, 1

σ

)
� θσ (x, ξ) � 〈(x, ξ)〉max

(
1, 1

σ

)
, (x, ξ) ∈ T ∗Rd , (3.5)

and for k,m ∈ N \ 0
〈(x, ξ)〉min(k,m) � wk,m(x, ξ) � 〈(x, ξ)〉max(k,m), (x, ξ) ∈ T ∗Rd . (3.6)

The anisotropic Shubin symbols are defined as follows.

Definition 3.1. Let σ > 0 be real and m ∈ R. The space of (σ -)anisotropic Shubin
symbolsGm,σ of orderm consists of functions a ∈ C∞(R2d) that satisfy the estimates

|∂α
x ∂

β
ξ a(x, ξ)| � (1 + |x | + |ξ | 1σ )m−|α|−σ |β|, (x, ξ) ∈ T ∗Rd , α, β ∈ Nd .

(3.7)
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The space Gm,σ is a Fréchet space with respect to the seminorms on a ∈ Gm,σ

indexed by j ∈ N

‖a‖ j = max|α+β|� j
sup

(x,ξ)∈R2d
θσ (x, ξ)−m+|α|+σ |β|

∣∣∣∂α
x ∂

β
ξ a(x, ξ)

∣∣∣ .

If σ = 1 then Gm,σ is the space of isotropic Shubin symbols with parameter ρ = 1
[20,28]. Recall that the isotropic Shubin symbol of orderm and parameter 0 � ρ � 1,
denoted a ∈ Gm

ρ , satisfies

|∂α
x ∂

β
ξ a(x, ξ)| � 〈(x, ξ)〉m−ρ|α+β|, (x, ξ) ∈ T ∗Rd , α, β ∈ Nd .

We have Gm,σ ⊆ Gm0
ρ , where m0 = max(m,m/σ) and ρ = min(σ, 1/σ), and

⋂
m∈R

Gm,σ = S (R2d). (3.8)

The following lemma is a tool for verification of membership in Gm,σ .

Lemma 3.2. If m ∈ R, σ, r > 0 and a ∈ C∞(R2d) satisfies
∣∣∣∂α

x ∂
β
ξ a(λx, λσ ξ)

∣∣∣ � λm−|α|−σ |β|, (x, ξ) ∈ T ∗Rd , |(x, ξ)| = r, λ � 1, α, β ∈ Nd ,

(3.9)

then a ∈ Gm,σ .

Proof. Let (y, η) ∈ R2d \ Br . By [27, Section 3] (y, η) = (λx, λσ ξ) for a unique
(x, ξ) ∈ R2d such that |(x, ξ)| = r and λ � 1. Combining

1 + |y| + |η| 1σ = 1 + λ(|x | + |ξ | 1σ ) � 1 + λ

with (3.9) we obtain for any α, β ∈ Nd

∣∣∣∂α
y ∂β

η a(y, η)

∣∣∣ � (1 + λ)m−|α|−σ |β| � (1 + |y| + |η| 1σ )m−|α|−σ |β|.

The same estimate is trivial for (y, η) ∈ Br so referring to (3.7) we may conclude that
a ∈ Gm,σ . �

Corollary 3.3. If σ > 0, m � 0 and a ∈ C∞(R2d) is anisotropically homogeneous
as

a(λx, λσ ξ) = λma(x, ξ), (x, ξ) ∈ T ∗Rd , λ > 0, (3.10)

then a ∈ Gm,σ .

For a ∈ Gm,σ and τ ∈ R a pseudodifferential operator in the τ -quantization is
defined by
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aτ (x, D) f (x) = (2π)−d
∫

R2d
ei〈x−y,ξ〉a((1 − τ)x + τ y, ξ) f (y) dy dξ, (3.11)

for f ∈ S (Rd) when m < −dσ . The definition extends to m ∈ R if the in-
tegral is viewed as an oscillatory integral. If τ = 0 we get the Kohn–Nirenberg
quantization a0(x, D) = a(x, D) and if τ = 1

2 we have the Weyl quantization
a1/2(x, D) = aw(x, D). The Weyl quantization enjoys a simple formal adjoint re-
lation: aw(x, D)∗ = aw(x, D). We will use exclusively the Weyl quantization in this
paper. By [27, Proposition 3.3 (i)] the symbol classes Gm,σ are homeomorphically
invariant under change of quantization parameter τ ∈ R, for any σ > 0 and m ∈ R.
If a ∈ Gm,σ then the operator aw(x, D) acts continuously on S (Rd) and extends
uniquely by duality to a continuous operator on S ′(Rd) [27,28]. If a ∈ S ′(R2d)

then aw(x, D) extends to a continuous operator aw(x, D) : S (Rd) → S ′(Rd).
If a ∈ S (R2d) then aw(x, D) is regularizing, in the sense that it is continuous
aw(x, D) : S ′(Rd) → S (Rd) with S ′(Rd) equipped with the strong topology
[6].
If a ∈ S ′(R2d) then

(aw(x, D) f, g) = (2π)−d(a,W (g, f )), f, g ∈ S (Rd), (3.12)

where the cross-Wigner distribution [10,13] is defined as

W (g, f )(x, ξ) =
∫

Rd
g(x + y/2) f (x − y/2)e−i〈y,ξ〉dy, (x, ξ) ∈ R2d .

If f, g ∈ S (Rd) then W (g, f ) ∈ S (R2d).
Given a sequence of symbols a j ∈ Gm j ,σ , j = 1, 2, . . . , such that m j → −∞ as

j → ∞ we write

a ∼
∞∑
j=1

a j

provided that for any n � 2

a −
n−1∑
j=1

a j ∈ Gμn ,σ

where μn = max j�n m j . By [27, Lemma 3.2] there exists a symbol a ∈ Gm,σ where
m = max j�1m j such that a ∼ ∑∞

j=1 a j under the stated circumstances. The symbol

a is unique modulo S (R2d).
The bilinear Weyl product a#b of two symbols a ∈ Gm,σ and b ∈ Gn,σ is defined

as the product of symbols corresponding to operator composition: (a#b)w(x, D) =
aw(x, D)bw(x, D). By [27, Proposition 3.3 (ii)] the Weyl product is continuous # :
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Gm,σ × Gn,σ → Gm+n,σ . The asymptotic expansion formula for the Weyl product
[16,28] is

a#b(x, ξ) ∼
∑

α,β�0

(−1)|β|

α!β! 2−|α+β|Dβ
x ∂α

ξ a(x, ξ) Dα
x ∂

β
ξ b(x, ξ). (3.13)

If a ∈ Gm,σ and b ∈ Gn,σ then each term in the sum belongs to Gm+n−(1+σ)|α+β|,σ .
For σ > 0 a σ -conic subset � ⊆ T ∗Rd\0 is closed under the operation T ∗Rd\0 �

(x, ξ) �→ (λx, λσ ξ) for all λ > 0. By [27, Definition 3.4 and Lemma 3.5] (cf. also
[32, Remark 3.4]) it is possible to construct σ -conic open subsets of given points in
T ∗Rd\0, and corresponding cutoff functions.
A symbol a ∈ Gm,σ is said to be non-characteristic at z0 ∈ T ∗Rd \ 0, if

|a(x, ξ)| � Cθσ (x, ξ)m, (x, ξ) ∈ �, |(x, ξ)| � R (3.14)

for C, R > 0, where � ⊆ T ∗Rd\0 is an open σ -conic subset containing z0. The
complement in T ∗Rd\0 of the non-characteristic points is called the characteristic set
charσ (a) ⊆ T ∗Rd\0. It is a closed and σ -conic subset of T ∗Rd\0. This is a particular
case of [27, Definition 3.8].
In most respects the anisotropic Shubin pseudodifferential calculus for the symbol

classes Gm,σ withm ∈ R and σ > 0 works as the isotropic calculus in [20,28]. In fact
[27, Section 3] contains the basics of the anisotropic pseudodifferential calculus, and
by [27, Lemma 6.3] and its proof it is possible to construct parametrices for elliptic
symbols. Thus if σ > 0 and a ∈ Gm,σ is elliptic in the sense of charσ (a) = ∅, that is,

|a(x, ξ)| � Cθσ (x, ξ)m, (x, ξ) ∈ R2d \ BR, (3.15)

for C, R > 0, then there exists an elliptic symbol b ∈ G−m,σ such that

a#b = 1 + r1, b#a = 1 + r2,

where r1, r2 ∈ S (R2d).
The following definition concerns the anisotropic Gabor wave front set WFσ

g (u) ⊆
T ∗Rd \ 0 of u ∈ S ′(Rd) [27, Definition 4.1] which is important in this paper. It is a
closed and σ -conic subset of T ∗Rd \0 well adapted to the anisotropic Shubin calculus.
Definition 3.4. Suppose u ∈ S ′(Rd), ϕ ∈ S (Rd) \ 0, and σ > 0. Then z0 =
(x0, ξ0) ∈ T ∗Rd \0 satisfies z0 /∈ WFσ

g (u) if there exists an open setU ⊆ T ∗Rd such
that z0 ∈ U and

sup
(x,ξ)∈U, λ>0

λN |Vϕu(λx, λσ ξ)| < +∞ ∀N � 0. (3.16)

If σ = 1 then WFσ
g (u) = WFg(u) that denotes the usual Gabor wave front set

[17,25], which is isotropic in phase space. The σ -conic sets are then ordinary cones
in T ∗Rd \ 0, that is sets closed under multiplication with a positive parameter.
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The definition of WFσ
g (u) does not depend on ϕ ∈ S (Rd)\0 [27, Proposition 4.2],

and [27, Proposition 4.3 (i)] says that

WFσ
g (̂u) = JWF

1
σ
g (u), u ∈ S ′(Rd), (3.17)

where

J =
(

0 Id
−Id 0

)
∈ R2d×2d (3.18)

is the matrix that defines the symplectic group [10].
By [32, Proposition 3.5] we may express the anisotropic Gabor wave front set of

u ∈ S ′(Rd) as

WFσ
g (u) =

⋂
a∈Gm,σ : aw(x,D)u∈S

charσ (a) (3.19)

for anym ∈ R. For σ > 0,m ∈ R, a ∈ Gm,σ and u ∈ S ′(Rd)we have the microlocal
and microelliptic inclusions

WFσ
g (aw(x, D)u) ⊆ WFσ

g (u) ⊆ WFσ
g (aw(x, D)u)

⋃
charσ (a)

(cf. [27, Proposition 5.1 and Theorem 6.4] which are stated slightly more generally).
At a few occasions we will use anisotropic wave front sets in the Gelfand–Shilov

functional framework. The Gelfand–Shilov wave front set of u ∈ (
μ
ν )′(Rd) with

ν + μ > 1 is based on the following facts. If ϕ ∈ 
μ
ν (Rd)\0 then

|Vϕu(x, ξ)| � er(|x |
1
ν +|ξ | 1μ )

for some r > 0, and u ∈ 
μ
ν (Rd) if and only if

|Vϕu(x, ξ)| � e−r(|x | 1ν +|ξ | 1μ )

for all r > 0. See e.g., [30, Theorems 2.4 and 2.5]. The ν, μ-Gelfand–Shilov wave
front set WFν,μ(u) ⊆ T ∗Rd\0 is defined as follows.

Definition 3.5. Let ν, μ > 0 satisfy ν + μ > 1, and suppose ϕ ∈ 
μ
ν (Rd)\0 and

u ∈ (
μ
ν )′(Rd). Then (x0, ξ0) ∈ T ∗Rd\0 satisfies (x0, ξ0) /∈ WFν,μ(u) if there exists

an open set U ⊆ T ∗Rd \ 0 containing (x0, ξ0) such that

sup
λ>0, (x,ξ)∈U

erλ|Vϕu(λνx, λμξ)| < ∞, ∀r > 0.

The requested decay is thus exponential rather than superpolynomial as for WFσ
g .

The ν, μ-Gelfand–Shilov wave front set is a closed and μ/ν-conic subset of T ∗Rd \0
[26].
The next result identifies powers of the weight wk,m defined in (3.3) as anisotropic

Shubin symbols.
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Lemma 3.6. Let k,m ∈ N \ 0 and σ = k
m . If n ∈ R then wn

k,m ∈ Gnk,σ .

Proof. To simplify notation we write w = wk,m . It is clear that w ∈ C∞(R2d) and
that w is positive everywhere. We claim that for α, β ∈ Nd we can write

∂α
x ∂

β
ξ wn(x, ξ) =

(
w(x, ξ)2

) n
2−|α+β|

pα,β(w, x, ξ) (3.20)

where pα,β are polynomials of the form

pα,β(w, x, ξ) =
∑

2 j+ |γ |
k + |κ|

m �
(
2− 1

k

)
|α|+

(
2− 1

m

)
|β|

c j,γ,κw2 j xγ ξκ (3.21)

with real coefficients c j,γ,κ for ( j, γ, κ) ∈ N × Nd × Nd .
In fact the claim follows from an induction argument with respect to |α+β|, starting

with

∂x�

((
w(x, ξ)2

) n
2
)

= nk|x |2(k−1)x�

(
w(x, ξ)2

) n
2−1

and

∂ξ�

((
w(x, ξ)2

) n
2
)

= nm|ξ |2(m−1)ξ�

(
w(x, ξ)2

) n
2−1

for 1 � � � d.
Next we estimate a genericmonomial in (3.21), using 2 j+ |γ |

k + |κ|
m �

(
2 − 1

k

) |α|+(
2 − 1

m

) |β|, as
∣∣∣w2 j xγ ξκ

∣∣∣ � w(x, ξ)2 j+
|γ |
k + |κ|

m � w(x, ξ)

(
2− 1

k

)
|α|+

(
2− 1

m

)
|β|

.

Inserting into (3.20) and exploiting (3.4) finally give for any α, β ∈ Nd the estimate∣∣∣∂α
x ∂

β
ξ wn(x, ξ)

∣∣∣ = w(x, ξ)n−2|α+β| ∣∣pα,β(w, x, ξ)
∣∣

� w(x, ξ)n− 1
k |α|− 1

m |β|

� θσ (x, ξ)nk−|α|−σ |β|.

�
Suppose σ > 0 is rational, that is σ = k

m with k,m ∈ N \ 0. In [7, Proposition 4.2]
the authors identify the symbol class a ∈ Gn,σ with n ∈ R as the Weyl–Hörmander
symbol class [16, Chapter 18.4]

Gn,σ = S(h
− n

1+σ
g , g) (3.22)

defined by the metric

g = dx2(
1 + |x |2k + |ξ |2m) 1

k

+ dξ2(
1 + |x |2k + |ξ |2m) 1

m
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and the weight h
− n

1+σ
g . Here hg is the so called Planck function associated to g [7,16].

The Planck function is according to [7, Remark 2.4]

hg(x, ξ) =
(
1 + |x |2k + |ξ |2m

)− 1
2

(
1
k + 1

m

)
= (

wk,m(x, ξ)
)−

(
1
k + 1

m

)
. (3.23)

From this two conclusions follows: First we observe that hg satisfies the so-called
uncertainty principle

hg(x, ξ) � 1 ∀(x, ξ) ∈ T ∗Rd , (3.24)

and secondly by Lemma 3.6 we have hg ∈ G−1−σ,σ .

4. Globally anisotropic Shubin–Sobolev spaces, localization operators and a
sharp Gårding inequality

In this paper we will often use the following parametrized family of Hilbert mod-
ulation spaces. These spaces also have an independent interest. Proposition 4.2 com-
plements the anisotropic Shubin pseudodifferential calculus in [27].

Definition 4.1. Let ϕ ∈ S (Rd) \ 0. The anisotropic Shubin–Sobolev modulation
space Mσ,s(Rd) with anisotropy parameter σ > 0 and order s ∈ R is the Hilbert
subspace of S ′(Rd) defined by the norm

‖u‖Mσ,s =
(∫∫

R2d
|Vϕu(x, ξ)|2 θσ (x, ξ)2s dx dξ

) 1
2

. (4.1)

For any σ > 0 we have Mσ,0(Rd) = L2(Rd) [13], and Mσ,s1(R
d) ⊆ Mσ,s2(R

d) is
a continuous inclusion when s1 � s2. It holds

S (Rd) =
⋂
s∈R

Mσ,s(Rd), S ′(Rd) =
⋃
s∈R

Mσ,s(Rd), (4.2)

and {‖ · ‖Mσ,s , s � 0} is a family of seminorms that defines the Fréchet space topology
on S (Rd) [13].
The next continuity result is a natural generalization of the isotropic Shubin calculus.

More precisely it generalizes [20, Proposition 1.5.5] and [28, Theorem 25.2].

Proposition 4.2. Let σ > 0 and m, s ∈ R. If a ∈ Gm,σ then

aw(x, D) : Mσ,s+m(Rd) → Mσ,s(Rd) (4.3)

is continuous.

Proof. By a small modification of the proof of [4, Proposition 3.2] it follows that
a ∈ Gm,σ if and only if



J. Evol. Equ. Propagation of anisotropic Gabor singularities Page 13 of 46    36 

∣∣∂α
z1∂

β
z2Tϕa(z, ζ )

∣∣ � θσ (z)m−|α|−σ |β|〈ζ 〉−N , z, ζ ∈ R2d , α, β ∈ Nd , N � 0,

(4.4)

where z = (z1, z2) with z1, z2 ∈ Rd , g ∈ S (R2d)\0, and where Tϕu is defined by

Tϕu(x, ξ) = (2π)−
d
2 (u, TxMξ ϕ) = ei〈x,ξ〉Vϕu(x, ξ), x, ξ ∈ Rd ,

for u ∈ S ′(Rd) and ϕ ∈ S (Rd) \ 0. In fact in the original proof [4] we only have to
replace the weight 〈·〉 used there by θσ , take into account the behavior with respect to
derivatives of a ∈ Gm,σ with respect to z1 and z2 respectively, and use (3.2).

Let ϕ ∈ S (Rd) \ 0 and set � = W (ϕ, ϕ) ∈ S (R2d)\0. If u ∈ S ′(Rd) then by
[27, Eq. (5.3)] we have

|Vϕ(aw(x, D)u)(z)| �
∫

R2d
|Vϕu(z − w)|

∣∣∣V�a
(
z − w

2
,Jw

)∣∣∣ dw. (4.5)

We obtain from (4.4), (3.2) and (3.5) the estimates∣∣∣V�a
(
z − w

2
,Jw

)∣∣∣ � θσ (z − w)mθσ (w)|m|〈w〉−N

� θσ (z − w)m〈w〉−
(
N−|m|max(1, 1

σ
)
)
, z, w ∈ R2d , N � 0.

Combining this with (4.5), Minkowski’s inequality and again (3.2) yields

‖aw(x, D)u‖Mσ,s = ∥∥Vϕ(aw(x, D)u) θ sσ

∥∥
L2(R2d )

�
∥∥∥∥
∫

R2d
|Vϕu(· − w)|

∣∣∣V�a
(
· − w

2
,Jw

)∣∣∣ dw θσ (·)s
∥∥∥∥
L2(R2d )

�
∥∥∥∥
∫

R2d
|Vϕu(· − w)| θσ (· − w)m+s〈w〉−

(
N−(|m|+|s|)max(1, 1

σ
)
)
dw

∥∥∥∥
L2(R2d )

�
∥∥Vϕu θm+s

σ

∥∥
L2(R2d )

= ‖u‖Mσ,m+s

provided N � 0 is sufficiently large. �
Let ϕ ∈ S (Rd) satisfy ‖ϕ‖L2 = 1. A localization operator Aa with symbol a ∈

S ′(R2d) is defined as

(Aa f, g) = (aVϕ f, Vϕg) = (V ∗
ϕ aVϕ f, g), f, g ∈ S (Rd), (4.6)

that is Aa = V ∗
ϕ aVϕ . Then Aa : S (Rd) → S ′(Rd) is continuous. We will assume

that ϕ is a Gaussian.
By [14, Theorem 1.1] we have for any σ > 0 and s ∈ R

‖Aθ sσ
u‖L2(Rd ) � ‖u‖Mσ,s (Rd ) (4.7)

which means that Aθ sσ
: Mσ,s(Rd) → L2(Rd) is an isometry.

If a ∈ S ′(R2d) andϕ is aGaussian onRd we have Aa = bw(x, D)where b = a∗ψ

with ψ a Gaussian on R2d [20, Proposition 1.7.9]. If σ > 0 and a ∈ Gm,σ then also
b ∈ Gm,σ , and a real-valued implies that also b is real-valued [20, Theorem 1.7.10].
In Sect. 7 we will need the following inequality of sharp Gårding type.
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Lemma 4.3. Let k,m ∈ N \ 0 and σ = k
m . If a ∈ G2(1+σ),σ and a � 0 then there

exists c > 0 such that

(aw(x, D) f, f ) � −c‖ f ‖2L2 , f ∈ S (Rd). (4.8)

Proof. By (3.22) we have G2(1+σ),σ = S(h−2
g , g), where the Planck function hg is

defined by (3.23) and satisfies the uncertainty principle (3.24). The conclusion is now
a consequence of the Fefferman–Phong inequality [16, Theorem 18.6.8]. �

5. Propagation of anisotropic Gabor wave front sets for evolution equations of
Airy–Schrödinger type

In this section we consider the evolution equation
{

∂t u(t, x) + i (p(Dx ) + 〈v, x〉) u(t, x) = 0, x ∈ Rd , t ∈ R,

u(0, ·) = u0.
(5.1)

Here v = (v1, . . . , vd) ∈ Rd is a vector with nonzero entries: v j �= 0, 1 � j � d, and
p : Rd → R is a polynomial with real coefficients of order m � 2 which is a sum of
one variable polynomials, that is

p(ξ) =
d∑
j=1

p j (ξ j ), ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd , (5.2)

where

p j (ξ j ) =
m j∑
k=0

c j,kξ
k
j , c j,k ∈ R, c j,m j �= 0, (5.3)

and maxdj=1 deg p j = maxdj=1m j = m. The principal part of p is

Pm(ξ) =
∑

j∈{1,...,d}: m j=m

c j,mξmj . (5.4)

We say that the equation (5.1) is of Airy–Schrödinger type, since when d = 1 a
particular case of the Hamiltonian is the operator

a(x, D) = d2

dx2
− x

which defines the Airy equation a(x, D) f = 0. This equation is satisfied by the Airy
function [16, Chapter 7.6].
First we deduce the explicit solution u(t, x) = Kt u0(x) to (5.1) defined by the

propagator Kt , and in particular an expression for the Schwartz kernel Kt of Kt for
each t ∈ R. Let q j be primitive polynomials of p j :

q ′
j = p j , 1 � j � d. (5.5)
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If u0 ∈ S (Rd) then the solution to (5.1) is given by

u(t, x) = (2π)−
d
2

∫
Rd

e
i
(
〈x,ξ−vt〉+∑d

j=1 v−1
j (q j (ξ j−tv j )−q j (ξ j ))

)
û0(ξ)dξ

= e−i t〈x,v〉F−1
(
eiϕt û0

)
(x) = M−tvF

−1
(
eiϕt û0

)
(x)

(5.6)

where

ϕt (ξ) =
d∑
j=1

v−1
j

(
q j (ξ j − tv j ) − q j (ξ j )

)
. (5.7)

This can be confirmed by insertion of (5.6) into (5.1).
The solution operator

Kt f = M−tvF
−1

(
eiϕt f̂

)
(5.8)

is unitary on L2(Rd), and since ϕ−t (ξ) = −ϕt (ξ + tv) we obtain for f, g ∈ S (Rd)

(Kt f, g) =
(
f̂ , e−iϕtF (Mtvg)

)
=

(
f̂ , e−iϕt Ttv ĝ

)
=

(
f̂ , Ttv

(
e−iϕt (·+tv)ĝ

))

=
(
f,F−1

(
Ttv

(
eiϕ−t ĝ

)))
=

(
f, MtvF

−1
(
eiϕ−t ĝ

))
= ( f,K−t g)

soK ∗
t = K−t = K −1

t . If t1, t2 ∈ R then

ϕt1(ξ − t2v) + ϕt2(ξ) = ϕt1+t2(ξ)

which gives

Kt1Kt2 f = M−t1vF
−1

(
eiϕt1F

(
M−t2vF

−1
(
eiϕt2 f̂

)))

= M−t1vF
−1

(
eiϕt1 T−t2v

(
eiϕt2 f̂

))

= M−t1vF
−1

(
T−t2v

(
ei

(
ϕt1 (·−t2v)+ϕt2

)
f̂
))

= M−(t1+t2)vF
−1

(
eiϕt1+t2 f̂

)
= Kt1+t2 f

so the map R � t �→ Kt is in fact a one-parameter group of unitary operators.
The Schwartz kernel of the solution operator Kt is

Kt (x, y) = (2π)−d
∫

Rd
ei(〈x,ξ−vt〉−〈y,ξ〉+ϕt (ξ))dξ

= (2π)−
d
2 e−i t〈x,v〉F−1

(
eiϕt

)
(x − y)

= (2π)−
d
2 e−i t〈x,v〉 (

1 ⊗ F−1eiϕt
)

◦ κ−1(x, y) ∈ S ′(R2d) (5.9)
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where κ ∈ R2d×2d is the matrix defined by κ(x, y) = (x + y
2 , x − y

2 ) for x, y ∈ Rd .
We note thatKt acts continuously onS (Rd) for any t ∈ R, and extends uniquely to
a continuous linear operator on S ′(Rd) by

(Kt u, ϕ) := (u,K−tϕ), u ∈ S ′(Rd), ϕ ∈ S (Rd).

For each 1 � j � d we have

q j (ξ j − tv j ) − q j (ξ j ) =
m j∑
k=0

c j,k
k + 1

(
(ξ j − tv j )

k+1 − ξ k+1
j

)

=
m j∑
k=0

(
−c j,k tv jξ

k
j + c j,k

k + 1

k+1∑
n=2

(
k + 1

n

)
(−tv j )

nξ k+1−n
j

)
.

Hence the phase function ϕt (ξ) is a polynomial of order m with highest order term

ϕt,m(ξ) = −t
∑

j∈{1,...,d}: m j=m

c j,mξmj = −t Pm(ξ).

Wemay now give a result which generalizes a particular case of [32, Theorem 5.1].
More precisely, in the quoted result the polynomial p is arbitrary with real coefficients,
whereas here we assume the particular “separable” form (5.2). On the other hand, in
Theorem 5.1 below we allow a vector v ∈ Rd with nonzero entries. The result uses
the Hamilton flow corresponding to the principal part Pm(ξ) of the polynomial p(ξ),
that is

χt (x, ξ) = (x + t∇Pm(ξ), ξ), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0. (5.10)

Theorem 5.1. Let p be a polynomial with real coefficients defined by (5.2), (5.3),
of order m = maxdj=1 deg p j � 2, with principal part Pm defined by (5.4). Denote

the Hamilton flow of Pm(ξ) as in (5.10). Suppose Kt : S ′(Rd) → S ′(Rd) is the
solution operator for the evolution equation (5.1), with Schwartz kernel (5.9) where
ϕt is defined by (5.5) and (5.7). Then

WFσ
g (Kt u) = χt

(
WFσ

g (u)
)

, t ∈ R, u ∈ S ′(Rd), σ = 1

m − 1
, (5.11)

WFσ
g (Kt u) = WFσ

g (u), t ∈ R, u ∈ S ′(R), σ <
1

m − 1
. (5.12)

Proof. By [27, Theorems 7.1 and 7.2] we have

WFm−1
g

(
eiϕt

)
⊆ {(x,∇ϕt,m(x)

) ∈ R2d : x ∈ Rd \ 0}
= {(x,−t∇Pm(x)) ∈ R2d : x ∈ Rd \ 0},

WFσ
g

(
eiϕt

)
⊆

(
Rd \ 0

)
× {0}, σ > m − 1.

(5.13)



J. Evol. Equ. Propagation of anisotropic Gabor singularities Page 17 of 46    36 

Combining (5.13) with [27, Eq. (4.6) and Proposition 4.3 (i)], cf. (3.17), gives

WF
1

m−1
g

(
F−1eiϕt

)
⊆ {(t∇Pm(x), x)) ∈ R2d : x ∈ Rd \ 0},

WFσ
g

(
F−1eiϕt

)
⊆ {0} ×

(
Rd \ 0

)
, σ <

1

m − 1
.

(5.14)

Now (5.9), [27, Corollary 5.2 and Proposition 4.3 (ii)], [32, Proposition 3.2], [27,
Proposition 5.3 (iii)] and (5.14) yield if σ = 1

m−1

WFσ
g (Kt ) = WFσ

g (
(
1 ⊗ F−1eiϕt

)
◦ κ−1)

=
(

κ 0
0 κ−T

)
WFσ

g

(
1 ⊗ F−1eiϕt

)

⊆ {(κ(x1, x2), κ
−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFσ
g (1) ∪ {0}, (x2, ξ2) ∈ WFσ

g (F−1eiϕt ) ∪ {0}} \ 0
= {(κ(x1, t∇Pm(x2)), κ

−T (0, x2) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0
=

{(
x1 + t

1

2
∇Pm(x2), x1 − t

1

2
∇Pm(x2), x2,−x2

)
∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0

=
{
(x1 + t∇Pm(x2), x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

Since m � 2 we have ∇Pm(0) = 0. Hence WFσ
g (Kt ) does not contain points of

the form (x, 0, ξ, 0) nor of the form (0, x, 0,−ξ) for any (x, ξ) ∈ T ∗Rd\0. We may
therefore apply [32, Theorem 4.4] which gives for u ∈ S ′(Rd)

WFσ
g (Kt u) ⊆WFσ

g (Kt )
′ ◦ WFσ

g (u)

={(x, ξ) ∈ T ∗Rd : ∃(y, η) ∈ WFσ
g (u), (x, y, ξ,−η) ∈ WFσ

g (Kt )}
⊆{(x1 + t∇Pm(x2), x2) ∈ T ∗Rd : (x1, x2) ∈ WFσ

g (u)}
=χt

(
WFσ

g (u)
)

. (5.15)

Since K −1
t = K−t and χ−1

t = χ−t we may strengthen (5.15) into

WFσ
g (Kt u) = χt

(
WFσ

g (u)
)

, t ∈ R, u ∈ S ′(Rd), σ = 1

m − 1
.

We have proved (5.11).
Likewise if σ < 1

m−1 then again (5.9), [27, Corollary 5.2 and Proposition 4.3 (ii)],
[32, Proposition 3.2], [27, Proposition 5.3 (iii)] and (5.14) yield

WFσ
g (Kt ) ⊆ {(κ(x1, x2), κ

−T (ξ1, ξ2)) ∈ T ∗R2d :
(x1, ξ1) ∈ WFσ

g (1) ∪ {0}, (x2, ξ2) ∈ WFσ
g (F−1eiϕt ) ∪ {0}} \ 0

⊆ {(κ(x1, 0), κ
−T (0, x2) ∈ T ∗R2d : x1, x2 ∈ Rd } \ 0

=
{
(x1, x1, x2, −x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.
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Again [32, Theorem 4.4] gives

WFσ
g (Kt u) = WFσ

g (u), t ∈ R, u ∈ S ′(Rd), σ <
1

m − 1
,

which proves (5.12). �

Remark 5.2. The conclusion from (5.11) and (5.12) is that the propagation of sin-
gularities for the equation (5.1) works exactly as when v = 0, as described in [32,
Theorem5.1]. TheHamiltonian in (5.1) is a(x, ξ) = p(ξ)+〈v, x〉, but the propagation
of singularities follows the Hamiltonian flow of Pm(ξ). Note that a0(x, ξ) = Pm(ξ)

satisfies the anisotropic homogeneity

a0(λx, λ
σ ξ) = λ1+σa0(x, ξ), (x, ξ) ∈ T ∗Rd , λ > 0,

if σ = 1
m−1 , so a0 ∈ G1+σ,σ according to Corollary 3.3.

If we decompose the polynomial p as

p(ξ) = Pm(ξ) +
m−1∑
j=0

Pj (ξ)

where each term Pj (ξ) is homogeneous of degree j for 0 � j � m, then each term
Pj satisfies

Pj (λ
σ ξ) = λ

j
m−1 Pj (ξ), ξ ∈ Rd , λ > 0, 0 � j � m.

Thus a−a0 = ∑m−1
j=0 Pj +〈v, x〉 = ∑m−1

j=0 b j with terms b j , considered as functions

on (x, ξ) ∈ T ∗Rd , of homogeneities

b j (λx, λ
σ ξ) = λ

j
m−1 b j (x, ξ), (x, ξ) ∈ T ∗Rd , λ > 0, 0 � j � m − 1.

(5.16)

The terms b j have all smaller order j
m−1 = jσ of anisotropic homogeneity than

the principal part a0 = Pm which has order 1 + σ = mσ , and which governs the
propagationof singularities. Thus onemay seea−a0 as lower order perturbations of the
Hamiltonian that do not affect propagation of singularities. Note that the Hamiltonian
term 〈v, x〉 satisfies (5.16) with j = m − 1.

As a complementary result we formulate a version of Theorem 5.1 in the frame-
work of Beurling type Gelfand–Shilov spaces 

μ
ν (Rd) for ν + μ > 1 and their dual

ultradistribution spaces
(


μ
ν

)′
(Rd).

Theorem 5.3. Let p be a polynomial with real coefficients defined by (5.2), (5.3),
of order m = maxdj=1 deg p j � 2, with principal part Pm defined by (5.4). Denote

the Hamilton flow of Pm(ξ) as in (5.10). Suppose Kt : S (Rd) → S (Rd) is the
solution operator for the evolution equation (5.1), with Schwartz kernel (5.9) where
ϕt is defined by (5.5) and (5.7).
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If ν � μ(m − 1) > 1 then Kt is continuous on 
μ
ν (Rd), extends uniquely to a

continuous linear operator on
(


μ
ν

)′
(Rd), and

WFν,μ(Kt u) = χt
(
WFν,μ(u)

)
, t ∈ R, u ∈ (

μ
ν

)′
(Rd), ν = μ(m − 1) > 1,

(5.17)

WFν,μ(Kt u) = WFν,μ(u), t ∈ R, u ∈ (
μ

ν

)′
(Rd), ν > μ(m − 1) > 1.

(5.18)

Proof. In the Gelfand–Shilov functional framework we have, similar to (5.13), by [31,
Theorems 6.1 and 6.2] if ν > 1

m−1

WFν,ν(m−1)
(
eiϕt

)
⊆ {(x,−t∇Pm(x)) ∈ R2d : x ∈ Rd \ 0},

WFν,μ
(
eiϕt

)
⊆

(
Rd \ 0

)
× {0}, μ > ν(m − 1).

(5.19)

As before [26, Eq. (3.8) and Proposition 3.6 (i)] give

WFν(m−1),ν
(
F−1eiϕt

)
⊆ {(t∇Pm(x), x) ∈ R2d : x ∈ Rd \ 0},

WFμ,ν
(
F−1eiϕt

)
⊆ {0} ×

(
Rd \ 0

)
, μ > ν(m − 1).

(5.20)

From [31, Proposition 4.5] and [26, Proposition 3.6 (ii), Corollary 6.4 and Propo-
sition 7.1 (iii)] we obtain if ν = μ(m − 1) > 1

WFν,μ(Kt ) ⊆
{
(x1 + t∇Pm(x2), x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0,

and if ν > μ(m − 1) > 1

WFν,μ(Kt ) ⊆
{
(x1, x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

At this point [31, Theorem 5.5] yields the following two final conclusions: If ν �
μ(m−1) > 1 thenKt is continuous on

μ
ν (Rd) and extends uniquely to a continuous

linear operator on
(


μ
ν

)′
(Rd), and the propagation of singularities follows (5.17) and

(5.18). �

Again the overall conclusion is that propagation of singularities works as if v = 0.

5.1. Fourier transformation of the evolution equation

Next we take the Fourier transform Fu(t, ·). If we denote this Fourier transform
for simplicity still by u(t, ·), then we obtain from (5.1) the evolution equation

{
∂t u(t, x) + i (−〈v, Dx 〉 + p(x)) u(t, x) = 0, x ∈ Rd , t ∈ R,

u(0, ·) = u0.
(5.21)

where again v ∈ Rd is a vector with nonzero entries: v j �= 0, 1 � j � d.
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Referring to (5.7) and (5.8) the solution is now for u0 ∈ S (Rd)

u(t, x) = K̃t u0 = FKtF
−1u0 = T−tv

(
eiϕt u0

)
(x)

= eiϕt (x+tv)u0(x + tv)

= e−iϕ−t (x)u0(x + tv).

(5.22)

The solution operator K̃t is continuous onS (Rd) and extends to a continuous operator
on S ′(Rd). Now (5.11) combined with [27, Proposition 4.3 (i)] give

WFσ
g (K̃t u0) = χ̃t

(
WFσ

g (u0)
)

, t ∈ R, u0 ∈ S ′(Rd), σ = m − 1, (5.23)

where

χ̃t (x, ξ) = J χt (−J )(x, ξ) = (x, ξ − t∇Pm(x)), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0,
(5.24)

and χt is defined by (5.10). This is the Hamilton flow corresponding to the principal
part Pm(x) of the polynomial p(x). We also obtain

WFσ
g (K̃t u0) = WFσ

g (u0), t ∈ R, u ∈ S ′(Rd), σ > m − 1. (5.25)

These considerations, combined with a similar discussion in the Gelfand–Shilov
framework, may be summarized as follows.

Theorem 5.4. Let p be a polynomial with real coefficients defined by (5.2), (5.3), of
order m = maxdj=1 deg p j � 2, with principal part Pm defined by (5.4). Denote the

Hamilton flow of Pm(x) as in (5.24). Suppose K̃t : S (Rd) → S (Rd) is the solution
operator (5.22), where ϕt is defined by (5.5) and (5.7), for the evolution equation
(5.21). Then

WFσ
g (K̃t u) = χ̃t

(
WFσ

g (u)
)

, t ∈ R, u ∈ S ′(Rd), σ = m − 1,

WFσ
g (K̃t u) = WFσ

g (u), t ∈ R, u ∈ S ′(Rd), σ > m − 1.

If ν � μ(m − 1) > 1 then K̃t is continuous on ν
μ(Rd), extends uniquely to a

continuous linear operator on
(
ν

μ

)′
(Rd), and

WFμ,ν(K̃t u) = χ̃t
(
WFμ,ν(u)

)
, t ∈ R, u ∈ (

ν
μ

)′
(Rd), ν = μ(m − 1) > 1,

WFμ,ν(K̃t u) = WFμ,ν(u), t ∈ R, u ∈ (
ν

μ

)′
(Rd), ν > μ(m − 1) > 1.

The conclusion from Theorem 5.4 is that the propagation of singularities for (5.21)
works again exactly as when v = 0, in both the tempered Schwartz distribution and
the Gelfand–Shilov ultradistribution frameworks, respectively.
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Remark 5.5. Consider theHamiltonian a(x, ξ) = p(x)−〈v, ξ 〉 in the equation (5.21),
with deg p = m. The propagation of WFσ

g with σ = m − 1 is governed by a0(x, ξ) =
Pm(x) which satisfies

a0(λx, λ
σ ξ) = λm Pm(x) = λ1+σa0(x, ξ), (x, ξ) ∈ T ∗Rd , λ > 0.

Thus a0 ∈ G1+σ,σ = Gm,m−1 according to Corollary 3.3. This is similar to Re-
mark 5.2. In Sect. 6 we will study more general Hamiltonians that satisfy this type of
anisotropic homogeneity.

When the Hamiltonian Weyl symbol a(x, ξ) = p(ξ) is a polynomial in ξ of the
form (5.2) then the Hamilton flow is as in (5.10) that is

χt (x, ξ) = (x + t∇Pm(ξ), ξ), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0, (5.26)

where Pm is the principal part of p. When instead the Weyl symbol depends on x ,
a(x, ξ) = p(x), with the same assumptions on p, we obtain the Hamilton flow (5.24)
that is

χt (x, ξ) = (x, ξ − t∇Pm(x)), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0. (5.27)

Define for σ > 0 the anisotropic scaling map �σ (λ) : T ∗Rd → T ∗Rd as

�σ (λ)(x, ξ) = (λx, λσ ξ), (x, ξ) ∈ T ∗Rd , λ > 0. (5.28)

For suitable σ > 0 the Hamilton flows (5.26) and (5.27) commute with �σ (λ) for
all λ > 0. In fact, if χt is defined by (5.26) and σ = 1

m−1 then for λ > 0

χt (λx, λ
σ ξ) = (λx + t∇Pm(λσ ξ), λσ ξ) = (λ(x + t∇Pm(ξ)), λσ ξ) = �σ (λ)χt (x, ξ).

Likewise if χt is defined by (5.27) and σ = m − 1 then for λ > 0

χt (λx, λ
σ ξ) = (λx, λσ ξ − t∇Pm(λx)) = (λx, λσ (ξ − t∇Pm(x))) = �σ (λ)χt (x, ξ).

Thus in both cases the Hamilton flow χt commutes with anisotropic scaling �σ

χt�σ (λ) = �σ (λ)χt , λ > 0, t ∈ R, (5.29)

suppressing the variables (x, ξ) ∈ T ∗Rd \ 0.
Remark 5.6. The commutativity (5.29) means that the considered Hamilton flows are
consistent with the propagation inclusion that we aim for, namely

WFσ
g (Kt u) ⊆ χt

(
WFσ

g (u)
)

, t ∈ R, u ∈ S ′(Rd), (5.30)

for the solution operator (propagator) Kt of a Schrödinger type evolution equation.
Indeed the inclusion (5.30) requires that the image of χt of anyWFσ

g (u) ⊆ T ∗Rd\0
for u ∈ S ′(Rd) contains a closed σ -conic subset of T ∗Rd \ 0. It is not known if
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for any closed σ -conic subset of � ⊆ T ∗Rd\0 there exists u ∈ S ′(Rd) such that
WFσ

g (u) = � except when σ = 1. In fact if σ = 1 then [29, Theorem 6.1] answers the
question affirmatively. Nevertheless it seems reasonable to ask that the image of χt of
any closed σ -conic subset of T ∗Rd \ 0 contains a closed σ -conic subset of T ∗Rd \ 0.
Then in particular a σ -conic curve of the form

Rx,ξ = {(λx, λσ ξ) ∈ T ∗Rd \ 0, λ > 0}
where (x, ξ) ∈ S2d−1, must be mapped into another such curve, that is, χt Rx,ξ = Rz

where z ∈ S2d−1.

6. Anisotropically homogeneous Hamiltonians and their flows

Given a Hamiltonian a : R2d \0 → R of classC∞, Hamilton’s system of equations
is ⎧⎪⎪⎨

⎪⎪⎩

x ′(t) = ∇ξa (x(t), ξ(t)) ,

ξ ′(t) = −∇xa (x(t), ξ(t)) ,

x(0) = x,
ξ(0) = ξ,

(6.1)

for initial datum (x, ξ) ∈ T ∗Rd\0 and t ∈ (−T, T ) with T > 0. By the Picard–
Lindelöf theorem there is a unique solution (x(t), ξ(t)) = χt (x, ξ), χt : R2d\0 →
R2d\0, t ∈ (−T, T ), for some T > 0. It is called the Hamiltonian flow. In general the
maximal T depends on (x, ξ). The map (−T, T ) � t → χt satisfies χt1+t2 = χt1χt2
and χ−1

t = χ−t [1]. The solution χt is a symplectomorphism on T ∗Rd for fixed
t ∈ (−T, T ) [8], C1 with respect to t , and hence a C1 diffeomorphism on T ∗Rd . If
the level sets of a are compact then the solution χt (x, ξ) extends to all t ∈ R [1].
Using the matrix (3.18) we may write the differential equation in (6.1) as(

x ′(t)
ξ ′(t)

)
= J∇x,ξa (x(t), ξ(t)) . (6.2)

Suppose the solution χt : R2d\0 → R2d\0 is well defined for t ∈ (−T, T ) with
the parameter T > 0 valid for all initial data (x, ξ) ∈ T ∗Rd\0. The assumption
a ∈ C∞(R2d\0) and [15, Theorem V.4.1] imply that

(−T, T ) × R2d \ 0 � (t, x, ξ) �→ ∂α
x ∂

β
ξ χt (x, ξ) ∈ R2d \ 0 ∈ C((−T, T ) × R2d \ 0)

∀α, β ∈ Nd , (6.3)

and in particular χt ∈ C∞(R2d\0, R2d\0) for each t ∈ (−T, T ).
The next lemma will be used in the proofs of Proposition 6.2 and its converse

Proposition 6.4.

Lemma 6.1. If σ > 0 and a ∈ C∞(R2d \ 0) is real-valued then

a(λx, λσ ξ) = λσ+1a(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0, (6.4)



J. Evol. Equ. Propagation of anisotropic Gabor singularities Page 23 of 46    36 

holds if and only if

lim
(x,ξ)→(0,0)

a(x, ξ) = 0, (6.5)

∇xa(λx, λσ ξ) = λσ ∇xa(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0, and (6.6)

∇ξa(λx, λσ ξ) = λ∇ξa(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0, (6.7)

hold.

Proof. It is immediate to see that (6.4) implies (6.6) and (6.7). Since any (y, η) ∈
T ∗Rd \ 0 can be written as (y, η) = (λx, λσ ξ) for a unique λ > 0 and a unique
(x, ξ) ∈ S2d−1 [27, Section 3], also (6.5) follows from (6.4).

Assume on the other hand (6.5), (6.6) and (6.7). Let (x, ξ) ∈ T ∗Rd \ 0 and define
the function f (t) = a(t x, tξ) for t > 0. Then we have for 0 < ε < 1

a(x, ξ) = f (1) =
∫ 1

ε

f ′(t) dt + f (ε) =
∫ 1

ε

〈∇x,ξa(t (x, ξ)), (x, ξ)〉 dt + a(ε(x, ξ))

which gives for λ > 0, using (6.6) and (6.7),

a(λx, λσ ξ) =
∫ 1

ε

〈∇x,ξa(t (λx, λσ ξ)), (λx, λσ ξ)〉 dt + a(ε(λx, λσ ξ))

= λσ+1
∫ 1

ε

〈∇x,ξa(t (x, ξ)), (x, ξ)〉 dt + a(ε(λx, λσ ξ))

= λσ+1
(
a(x, ξ) − a(ε(x, ξ))

)
+ a(ε(λx, λσ ξ)).

The claim (6.4) now follows from the limit as ε → 0+ using the assumption (6.5).
�

In the following result we show that the Hamilton flow commutes with anisotropic
scaling for Hamiltonians with the anisotropic homogeneity (6.4).

Proposition 6.2. Letσ > 0, and suppose a ∈ C∞(R2d\0) is real-valued and satisfies
a(λx, λσ ξ) = λσ+1a(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0. (6.8)

Then there exists T > 0 such that the Hamilton flow χt (x, ξ) defined by the function
a is well defined for t ∈ [−T, T ] uniformly for all (x, ξ) ∈ T ∗Rd \ 0, and χt satisfies

χt (�σ (λ)(x, ξ)) = �σ (λ)χt (x, ξ), λ > 0, (x, ξ) ∈ T ∗Rd \ 0, t ∈ [−T, T ],
(6.9)

where �σ (λ) : T ∗Rd → T ∗Rd is defined in (5.28).

Proof. The assumption (6.8) and Lemma 6.1 give the anisotropic homogeneities

∇xa(λx, λσ ξ) = λσ ∇xa(x, ξ),

∇ξa(λx, λσ ξ) = λ∇ξa(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0,
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which can be written as

∇x,ξa(λx, λσ ξ) = � 1
σ
(λσ )∇x,ξa(x, ξ). (6.10)

This gives lim(x,ξ)→(0,0) ∇x,ξa(x, ξ) = 0. Set

M = sup
0<|(x,ξ)|� 3

2

|∇x,ξa(x, ξ)| < +∞.

If (x, ξ) ∈ S2d−1 then by the Picard–Lindelöf theorem [15, Theorem II.1.1] the
Hamilton flow stays in the ball χt (x, ξ) ∈ B1

2
(x, ξ) if −T � t � T and T = 1

2M .

Thus there exists T > 0 such that the Hamilton flow χt : S2d−1 → R2d \ 0 is well
defined for −T � t � T uniformly over S2d−1.
Let (x, ξ) ∈ T ∗Rd \0 and set (x(t), ξ(t)) = χt (x, ξ). For T0 > 0 sufficiently small

we have (x(t), ξ(t)) ∈ T ∗Rd\0 for t ∈ [−T0, T0]. From (6.2), (6.10) and

J� 1
σ
(λ−σ ) = �σ (λ−1)J (6.11)

we obtain

d

dt
χt (x, ξ) =

(
x ′(t)
ξ ′(t)

)
= J∇x,ξa (x(t), ξ(t))

= J� 1
σ
(λ−σ )∇x,ξa

(
λx(t), λσ ξ(t)

)
= �σ (λ−1)J∇x,ξa

(
λx(t), λσ ξ(t)

)
which may be written

(λx ′(t), λσ ξ ′(t)) = J∇x,ξa
(
λx(t), λσ ξ(t)

)
.

Thus (λx(t), λσ ξ(t)) solves (6.1) for t ∈ [−T0, T0] with initial datum (λx, λσ ξ),
for any λ > 0. If we choose λ > 0 such that |(λx, λσ ξ)| = 1 then the solution is well
defined for t ∈ [−T, T ] by the first part of the proof. The solution (λx(t), λσ ξ(t))
hence extends to t ∈ [−T, T ] for all λ > 0. By the uniqueness of the solution we
have χt (λx, λσ ξ) = (λx(t), λσ ξ(t)). It follows that the Hamilton flow χt : R2d\0 →
R2d\0 is well defined in the interval t ∈ [−T, T ] uniformly over the phase space
R2d \ 0. In conclusion we have

�σ (λ)χt (x, ξ) = (λx(t), λσ ξ(t)) = χt (λx, λ
σ ξ) = χt (�σ (λ)(x, ξ))

for (x, ξ) ∈ T ∗Rd \ 0, λ > 0 and t ∈ [−T, T ]. �
Remark 6.3. With the assumptions of Proposition 6.2, for any t ∈ [−T, T ] we have

lim
(x,ξ)→(0,0)

χt (x, ξ) = 0.

In fact this is an immediate consequence of (6.9). So defining χt (0, 0) = (0, 0)
we could extend the Hamilton flow as a continuous bijection χt : R2d → R2d for
t ∈ [−T, T ]. By [15, Theorem V.4.1] we know that χt ∈ C∞(R2d\0, R2d\0) but we
cannot extend the smoothness to the new domain point (0, 0).
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Next we show a converse of Proposition 6.2.

Proposition 6.4. Let a ∈ C∞(R2d \ 0) be real-valued and suppose

lim
(x,ξ)→(0,0)

a(x, ξ) = 0.

Suppose the solution χt (x, ξ) to (6.1) is well defined for t ∈ [−T, T ] for some T > 0
for all (x, ξ) ∈ T ∗Rd\0. If σ > 0 and (6.9) holds true then a satisfies the homogeneity

a(λx, λσ ξ) = λσ+1a(x, ξ), (x, ξ) ∈ T ∗Rd \ 0, λ > 0. (6.12)

Proof. For (x, ξ) ∈ T ∗Rd \ 0 we denote (x(t), ξ(t)) = χt (x, ξ). Formula (6.9)
means that the solution to (6.1) with (x, ξ) replaced by (λx, λσ ξ) for λ > 0 is
�σ (λ)χt (x, ξ) = (λx(t), λσ ξ(t)).
Let (x, ξ) ∈ T ∗Rd \ 0. From (6.2) and (6.9) we obtain for any λ > 0

J∇x,ξa (x(t), ξ(t)) = d

dt
χt (x, ξ) = d

dt

(
�σ (λ−1)χt (�σ (λ)(x, ξ))

)

= �σ (λ−1)
d

dt
(χt (�σ (λ)(x, ξ)))

= �σ (λ−1)J∇x,ξa
(
λx(t), λσ ξ(t)

)
.

With aid of (6.11) and J −1 = −J this gives

∇x,ξa (x(t), ξ(t)) = −J�σ (λ−1)J∇x,ξa
(
λx(t), λσ ξ(t)

)
= � 1

σ
(λ−σ )∇x,ξa

(
λx(t), λσ ξ(t)

)
.

For t = 0 we get

∇xa(λx, λσ ξ) = λσ ∇xa(x, ξ),

∇ξa(λx, λσ ξ) = λ∇ξa(x, ξ)

which together with the assumption lim(x,ξ)→(0,0) a(x, ξ) = 0 is equivalent to (6.12)
by Lemma 6.1. �

We note that a function a that satisfies (6.12) is determined by its values on the unit
sphere S2d−1, and

a(x, ξ) = λσ+1
σ (x, ξ) a(pσ (x, ξ)), (x, ξ) ∈ T ∗Rd \ 0,

where λσ : R2d \ 0 → R+ and pσ : R2d \ 0 → S2d−1 are smooth functions defined
in [27, Section 3].
Examples of Hamiltonians that satisfy a ∈ C∞(R2d\0) and (6.12) are the homo-

geneous polynomials that depend on either x or ξ (but not both) studied in Sect. 5 (cf.
Remarks 5.2 and 5.5), that is

a(x, ξ) = Pm(x), σ = m − 1,
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a(x, ξ) = Pm(ξ), σ = 1

m − 1
,

where m ∈ N and m � 2. Other examples are

a(x, ξ) = c
(
|x | + |ξ | 1σ

)σ+1
,

where σ > 0 and c ∈ R \ 0, and

a(x, ξ) = c
(
|x |2k + |ξ |2m

) 1
2

(
1
k + 1

m

)
,

with k,m ∈ N\0, σ = k
m and c ∈ R\0.

Note that the Hamiltonians

a(x, ξ) = c1|x |σ+1 + c2|ξ |1+ 1
σ

with c1, c2 ∈ R and σ > 0,

a(x, ξ) = c1|x |2k + c2|ξ |1+ 1
2k−1

with k ∈ N\0, σ = 2k − 1 and c1, c2 ∈ R, and

a(x, ξ) = c1|x |1+ 1
2k−1 + c2|ξ |2k

with σ = 1
2k−1 and c1, c2 ∈ R, all satisfy (6.12). But none of them satisfy a ∈

C∞(R2d\0).
The final result in this section will be useful in Sect. 8. It says that theGm,σ property

of a symbol is preserved under composition with a Hamiltonian flow that satisfies
the anisotropic scaling commutativity (6.9). We need a cutoff function ψδ(x, ξ) =
ϕ(|x |2 + |ξ |2) ∈ C∞(R2d) where ϕ ∈ C∞(R), 0 � ϕ � 1, ϕ(t) = 0 for t � δ2

4 and
ϕ(t) = 1 for t � δ2 for a given δ > 0. Thus ψδ

∣∣
B δ

2

≡ 0 and ψδ

∣∣
R2d\Bδ

≡ 1.

Proposition 6.5. Let σ, δ, T > 0, and suppose χt ∈ C∞(R2d\0, R2d\0) for −T �
t � T is a Hamiltonian flow that satisfies the anisotropic scaling commutativity (6.9).
If a ∈ Gm,σ then bt = ψδ(a ◦ χt ) ∈ Gm,σ uniformly for all −T � t � T .

Proof. Let (x, ξ) ∈ T ∗Rd satisfy |(x, ξ)| � δ and let λ � 1. From (6.9) we obtain

bt (λx, λ
σ ξ) = a

(
χt (λx, λ

σ ξ)
) = a (�σ (λ)χt (x, ξ)) = a

(
λχt,1(x, ξ), λσ χt,2(x, ξ)

)
decomposing χt = (χt,1, χt,2) into its two Rd component functions. For 1 � k � d
we denote by χt, j,k the component with index k of χt, j for j = 1, 2.
We claim that for |(x, ξ)| > δ, λ � 1, and α, β ∈ Nd we have

∂α
x ∂

β
ξ

(
a

(
λχt,1(x, ξ), λσ χt,2(x, ξ)

) )

=
∑

|γ+κ|�|α+β|
λ|γ |+σ |κ| (∂

γ
x ∂κ

ξ a
) (

�σ (λ)χt (x, ξ)
)
fγ,κ (x, ξ)

(6.13)
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where fγ,κ ∈ C∞(R2d \0) are smooth functions. In fact the claim follows by induction
with respect to |α + β|, starting with |α + β| = 1, as follows. With ek ∈ Nd denoting
the standard basis vector, 1 � k � d, we may write ∂xk a(x, ξ) = ∂

ek
x a(x, ξ) and

∂ξk a(x, ξ) = ∂
ek
ξ a(x, ξ). If |α + β| = 1 we have either

∂x j

(
a

(
λχt,1(x, ξ), λσ χt,2(x, ξ)

) )

=
d∑

k=1

(
λ

(
∂ekx a

) (
�σ (λ)χt (x, ξ)

)∂χt,1,k

∂x j
(x, ξ) + λσ

(
∂
ek
ξ a

) (
�σ (λ)χt (x, ξ)

)∂χt,2,k

∂x j
(x, ξ)

)

or

∂ξ j

(
a

(
λχt,1(x, ξ), λσ χt,2(x, ξ)

) )

=
d∑

k=1

(
λ

(
∂ekx a

) (
�σ (λ)χt (x, ξ)

)∂χt,1,k

∂ξ j
(x, ξ) + λσ

(
∂
ek
ξ a

) (
�σ (λ)χt (x, ξ)

)∂χt,2,k

∂ξ j
(x, ξ)

)

for 1 � j � d. Thus (6.13) holds when |α + β| = 1. The induction step follows
straight-forwardly. It follows that (6.13) holds for all α, β ∈ Nd , |(x, ξ)| > δ, and
λ � 1, as claimed.

We fix r > δ and consider any (x, ξ) ∈ T ∗Rd such that |(x, ξ)| = r . Using (6.13),
the assumption a ∈ Gm,σ and

inf|t |�T
|(x,ξ)|=r

|χt (x, ξ)| > 0, sup
|t |�T

|(x,ξ)|=r

|χt (x, ξ)| < ∞,

we estimate for α, β ∈ Nd

λ|α|+σ |β|
∣∣∣(∂α

x ∂
β
ξ bt

)
(λx, λσ ξ)

∣∣∣ =
∣∣∣∂α

x ∂
β
ξ

(
bt (λx, λ

σ ξ)
)∣∣∣

=
∣∣∣∂α

x ∂
β
ξ

(
a (�σ (λ)χt (x, ξ))

)∣∣∣
�

∑
|γ+κ|�|α+β|

λ|γ |+σ |κ|
∣∣∣(∂

γ
x ∂κ

ξ a
) (

�σ (λ)χt (x, ξ)
)∣∣∣

�
∑

|γ+κ|�|α+β|
λ|γ |+σ |κ|θσ

(
λχt,1(x, ξ), λσ χt,2(x, ξ)

)m−|γ |−σ |κ|

� λm

for all λ � 1. The conclusion bt ∈ Gm,σ uniformly for all −T � t � T is now a
consequence of Lemma 3.2. �

7. Solutions to a class of Schrödinger type equations with anisotropic
Hamiltonians

In the sequel we use k,m ∈ N \ 0 and σ = k
m . We consider in this section first the

Cauchy problem{
∂t u(t, x) + iaw(x, D)u(t, x) = f (t, x), x ∈ Rd , 0 < t � T,

u(0, ·) = u0,
(7.1)
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where T > 0 and a ∈ G1+σ,σ . Later we will extend the time domain to [−T, T ].
Simplifying notation we set Ms = Mσ,s(Rd) for s ∈ R and aw = aw(x, D). The

main purpose of the section is to show existence and uniqueness of solutions to (7.1)
considering u(t, ·) as a function of t with values in Ms spaces.
We will need the following lemma which says that C1([0, T ],S ) is dense in

C([0, T ], Mμ) ∩ C1([0, T ], Mν) for any μ, ν ∈ R.

Lemma 7.1. If μ, ν ∈ R and u ∈ C([0, T ], Mμ) ∩ C1([0, T ], Mν) then there exists
a sequence (un)n�1 ⊆ C1([0, T ],S ) such that

lim
n→+∞ sup

0�t�T
‖un(t, ·) − u(t, ·)‖Mμ = 0, (7.2)

lim
n→+∞ sup

0�t�T
‖∂t un(t, ·) − ∂t u(t, ·)‖Mν = 0. (7.3)

Proof. Let ϕ ∈ S (Rd) satisfy ‖ϕ‖L2 = 1. We use the approximations (cf. [13])

un(t, ·) = V ∗
ϕ χnVϕu(t, ·) ∈ S (Rd), 0 � t � T,

where χn is the indicator function of the ball Bn ⊆ R2d , n ∈ N\0.
By [13, Eq. (11.29)] we have on the one hand

∣∣Vϕ (un(t, ·) − un(τ, ·))
∣∣ �

(
χn

∣∣Vϕ (u(t, ·) − u(τ, ·))∣∣) ∗ |Vϕϕ| (7.4)

and on the other hand, using (2.5) in the form V ∗
ϕ Vϕ = idS ′ ,

∣∣Vϕ (un(t, ·) − u(t, ·))∣∣ �
(
(1 − χn)

∣∣Vϕu(t, ·)∣∣) ∗ |Vϕϕ|. (7.5)

With m � 0 we write using (3.2) and (3.5)

〈z〉m � θσ (z)mmax(1,σ ) � θσ (z − w)mmax(1,σ )θσ (w)mmax(1,σ )

� θσ (z − w)mmax(1,σ )+|μ|+μθσ (w)mmax(1,σ ), z, w ∈ R2d ,

which inserted into (7.4) gives by means of the Cauchy–Schwarz inequality, again
(3.5) and (2.3)

〈z〉m ∣∣Vϕ (un(t, ·) − un(τ, ·)) (z)
∣∣

�
(
χnθ

mmax(1,σ )+|μ|
σ θμ

σ

∣∣Vϕ (u(t, ·) − u(τ, ·))∣∣) ∗
(
θmmax(1,σ )
σ |Vϕϕ|

)
(z)

� sup
R2d

(
χnθ

mmax(1,σ )+|μ|
σ

) ∥∥θμ
σ

∣∣Vϕ (u(t, ·) − u(τ, ·))∣∣∥∥L2(R2d )

∥∥∥θmmax(1,σ )
σ |Vϕϕ|

∥∥∥
L2(R2d )

� ‖u(t, ·) − u(τ, ·)‖Mμ .

Referring to the assumption u ∈ C([0, T ], Mμ) and to the seminorms (2.6) this
shows that un ∈ C([0, T ],S ), and un ∈ C1([0, T ],S ) follows similarly from
∂t un(t, ·) = V ∗

ϕ χnVϕ∂t u(t, ·), replacing μ with ν and using the assumption u ∈
C1([0, T ], Mν).
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From (7.5) and Young’s inequality we obtain, again using (3.2), (2.3) and (3.5),

‖un(t, ·) − u(t, ·)‖Mμ = ∥∥θμ
σ

∣∣Vϕ (un(t, ·) − u(t, ·))∣∣∥∥L2(R2d )

�
∥∥∥(

(1 − χn)θ
μ
σ

∣∣Vϕu(t, ·)∣∣) ∗
(
θ |μ|
σ |Vϕϕ|

)∥∥∥
L2(R2d )

�
∥∥(1 − χn)θ

μ
σ Vϕu(t, ·)∥∥L2(R2d )

∥∥∥θ |μ|
σ Vϕϕ

∥∥∥
L1(R2d )

�
∥∥(1 − χn)θ

μ
σ Vϕu(t, ·)∥∥L2(R2d )

:= fn(t).

Note the monotonicity fn(t) � fn+1(t) for each n ∈ N\0, and by the assumption
u ∈ C([0, T ], Mμ) and dominated convergence we get limn→∞ fn(t) = 0 for each
t ∈ [0, T ]. For each n ∈ N \ 0 we have fn ∈ C([0, T ]). In fact

| fn(t) − fn(τ )| =
∣∣∣∥∥(1 − χn)θ

μ
σ Vϕu(t, ·)∥∥L2(R2d )

− ∥∥(1 − χn)θ
μ
σ Vϕu(τ, ·)∥∥L2(R2d )

∣∣∣
�

∥∥(1 − χn)θ
μ
σ

(
Vϕu(t, ·) − Vϕu(τ, ·))∥∥L2(R2d )

�
∥∥θμ

σ

(
Vϕu(t, ·) − Vϕu(τ, ·))∥∥L2(R2d )

= ‖u(t, ·) − u(τ, ·)‖Mμ

so fn ∈ C([0, T ]) follows from the assumption u ∈ C([0, T ], Mμ). Now it follows
from Dini’s theorem that fn(t) → 0 uniformly for t ∈ [0, T ] as n → ∞. This means
that we have shown (7.2), and (7.3) follows in the same fashion. �

Remark 7.2. We note that Lemma 7.1 is true also when we replace the interval [0, T ]
with [−T, T ].

By (3.4) we have w
1/k
k,m � θσ when σ = k

m and k,m ∈ N\0. Combining this with
(4.1), (4.7) and [14, Theorem 1.1] it follows that if s ∈ R then the symbol θ sσ for
the localization operator (4.7) that defines the isometry Ms → L2 can be replaced
by w

s/k
k,m . We denote for simplicity this localization operator by As = A

w
s/k
k,m

. We will

need the following auxiliary result.

Lemma 7.3. Let k,m ∈ N\0, σ = k
m and a ∈ G1+σ,σ , and suppose that

Im a(x, ξ) � C1, (x, ξ) ∈ T ∗Rd ,

for C1 > 0. If s ∈ R then As awA−1
s = bw where b ∈ G1+σ,σ and

Im b(x, ξ) � C2, (x, ξ) ∈ T ∗Rd ,

for some C2 > 0.

Proof. By Lemma 3.6 we have w
s/k
k,m ∈ Gs,σ for the symbol of As . From [20, Theo-

rem 1.7.10] it follows that As = aw
1 where a1 ∈ Gs,σ is real-valued, cf. Sect. 4.

The symbol w
s/k
k,m for As is positive everywhere and elliptic, cf. (3.15). By the

proof of [2, Theorem 8.2] (cf. also [20, Proposition 1.7.12]), slightly modified to the
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anisotropic calculus, it follows that As is invertible on S , and A−1
s = cw where

c ∈ G−s,σ . From

(As f, f ) =
∫

R2d
w

s/k
k,m(z)|Vϕ f (z)|2 dz > 0

for all f ∈ S \ 0 it follows that (cw f, f ) > 0 for all f ∈ S \ 0 which implies that c
is a real-valued symbol. Indeed we have

2i ((Im c)w f, f ) = (cw f, f ) − (cw f, f )

= (cw f, f ) − ( f, cw f ) = (cw f, f ) − (cw f, f ) = 0

for all f ∈ S , which by polarization yields

4((Im c)w f, g) = (
(Im c)w( f + g), f + g

) − (
(Im c)w( f − g), f − g

)
+ i

(
(Im c)w( f + ig), f + ig

)−i
(
(Im c)w( f − ig), f −ig

) = 0

for all f, g ∈ S . This implies Im c ≡ 0.
Finally from bw = As awA−1

s = aw
1 a

wcw and (3.13) we obtain

b = a1#a#c = a1 a c + b1

where b1 ∈ G0,σ is bounded. Thus since a1 c ∈ G0,σ is also bounded we get

Im b = (Im a) a1 c + Im b1 � C1 sup
R2d

(a1 c) + sup
R2d

Im b1 = C2 < ∞

for some C2 > 0. �
Remark 7.4. The proof of Lemma 7.3 shows that from the added assumption

|Im a(x, ξ)| � C1, (x, ξ) ∈ T ∗Rd ,

follows the stronger conclusion

|Im b(x, ξ)| � C2, (x, ξ) ∈ T ∗Rd .

The following two results Lemma 7.5 and Theorem 7.9 are detailed adaptations of
[16, Lemma 23.1.1 and Theorem 23.1.2] from the calculus of Hörmander symbols to
the anisotropic Shubin calculus.

Lemma 7.5. Let k,m ∈ N\0, σ = k
m , a ∈ G1+σ,σ , and suppose that

Im a(x, ξ) � C, (x, ξ) ∈ T ∗Rd , (7.6)

for C > 0. If s ∈ R, u ∈ C([0, T ], Ms+1+σ ) ∩ C1([0, T ], Ms) then

f (t) = ∂t u(t, ·) + iawu(t, ·) ∈ C([0, T ], Ms), (7.7)

and there exists c > 0 such that

‖u(t)‖Ms � ect‖u(0)‖Ms +
∫ t

0
ec(t−τ)‖ f (τ )‖Msdτ (7.8)

for 0 � t � T .
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Proof. First we prove the result for s = 0. The assumptions, M1+σ ⊆ L2 and Propo-
sition 4.2 imply

⎧⎨
⎩
t �→ u(t, ·) ∈ C([0, T ], L2),

t �→ ∂t u(t, ·) ∈ C([0, T ], L2),

t �→ awu(t, ·) ∈ C([0, T ], L2)

�⇒ t �→ f (t) ∈ C([0, T ], L2).

The conclusion (7.7) follows.
By Lemma 7.1 we may replace L2 byS above. The assumptions a ∈ G1+σ,σ and

Im a(x, ξ) � C make Lemma 4.3 applicable. Combining with (3.12) and the fact that
W (g, g) is real-valued [13] we get for g ∈ S (Rd)

Re(iawg, g) = −Im(awg, g) = −(2π)−d Im(a,W (g, g)) = −(2π)−d(Im a,W (g, g))

= −((Im a)wg, g) = ((C − Im a)wg, g) − C‖g‖2L2 � −(b + C)‖g‖2L2

where b > 0. If 0 � t � T and μ ∈ R this gives, writing u(t) = u(t, ·) for brevity,

∂t

(
e−2μt‖u(t)‖2L2

)
= 2e−2μt

(
Re (∂t u(t), u(t)) − μ‖u(t)‖2L2

)

= 2e−2μt (Re ( f (t), u(t)) − Re
(
(ia + μ)wu(t), u(t)

))
� 2e−2μtRe ( f (t), u(t))

provided μ � b + C .
Integration gives for any 0 � ν � t

e−2μν‖u(ν)‖2L2 � ‖u(0)‖2L2 + 2
∫ ν

0
e−2μτ‖ f (τ )‖L2 ‖u(τ )‖L2 dτ

� ‖u(0)‖2L2 + 2
∫ t

0
e−2μτ‖ f (τ )‖L2 ‖u(τ )‖L2 dτ

� ‖u(0)‖2L2 + 2M(t)
∫ t

0
e−μτ‖ f (τ )‖L2 dτ

with

M(t) = sup
0�τ�t

e−μτ‖u(τ )‖L2 .

Thus

(
M(t) −

∫ t

0
e−μτ‖ f (τ )‖L2 dτ

)2

�
(

‖u(0)‖L2 +
∫ t

0
e−μτ‖ f (τ )‖L2 dτ

)2

which yields

e−μt‖u(t)‖L2 � M(t) � ‖u(0)‖L2 + 2
∫ t

0
e−μτ‖ f (τ )‖L2 dτ.

We have now shown (7.8) for s = 0 and c = μ.
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Next let s ∈ R and u ∈ C([0, T ], Ms+1+σ ) ∩ C1([0, T ], Ms). Then ∂t u, awu ∈
C([0, T ], Ms), again appealing to Proposition 4.2, and the conclusion (7.7) follows.
By the proof of Lemma 7.3 we know that As = aw

1 with a1 ∈ Gs,σ . Proposition 4.2
yields

Asu ∈ C([0, T ], Mσ+1) ∩ C1([0, T ], L2), awAsu ∈ C([0, T ], L2)

�⇒ ∂t Asu + iawAsu ∈ C([0, T ], L2).

ByLemma7.3 the symbolb ∈ G1+σ,σ definedbybw = As awA−1
s satisfies Im b � C2

for some C2 > 0. The inequality (7.8) with a = b and s = 0 thus gives

‖Asu(t)‖L2 � ect‖Asu(0)‖L2 +
∫ t

0
ec(t−τ)‖∂t Asu(τ ) + ibwAsu(τ )‖L2dτ

which finally yields

‖u(t)‖Ms � ‖Asu(t)‖L2 � ect‖Asu(0)‖L2

+
∫ t

0
ec(t−τ)‖As

(
∂t u(τ ) + i A−1

s bwAsu(τ )
)

‖L2dτ

� ect‖u(0)‖Ms +
∫ t

0
ec(t−τ)‖∂t u(τ ) + iawu(τ )‖Msdτ.

�

Remark 7.6. If we strengthen the assumption (7.6) with a lower bound as

− C � Im a(x, ξ) � C, (x, ξ) ∈ T ∗Rd , (7.9)

for C > 0, then the time direction may be reversed in Lemma 7.5. More precisely the
lower bound in (7.9) yields the estimate

Re(iawg, g) � (b + C)‖g‖2L2 , g ∈ S .

Straightforward modifications of the argument in the proof for the case s = 0 leads to
the estimate

‖u(−t)‖L2 � ect‖u(0)‖L2 +
∫ 0

−t
ec(t+τ)‖ f (τ )‖L2 dτ

for c > 0 and 0 � t � T . Taking into account Remark 7.4 a statement replacing
(7.8) can then be formulated as follows. If s ∈ R, u ∈ C([−T, T ], Ms+1+σ ) ∩
C1([−T, T ], Ms) then

‖u(t)‖Ms � ec|t |‖u(0)‖Ms +
∫

|τ |�|t |
ec(|t |+|τ |)‖ f (τ )‖Msdτ

for −T � t � T , where c > 0.
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The final tool for the proof of existence and uniqueness of a solution to (7.1) we
need is the following approximation lemma.

Lemma 7.7. Let s ∈ R. If f ∈ L1([0, T ], Ms) then there exists a sequence ( fn)n�1 ⊆
C∞
c ((0, T ),S (Rd)) such that

lim
n→+∞ ‖ fn − f ‖L1([0,T ],Ms )

= 0. (7.10)

Proof. SinceC([0, T ], Ms)⊆L1([0, T ], Ms) is densewemayassume f ∈C([0, T ], Ms),
and by Lemma 7.1 we may assume f ∈ C([0, T ],S ). Thus we have

lim
n→+∞ sup

|τ |� 1
2

∫ T+ τ−1
n

τ+1
n

∥∥∥ f
(
t − τ

n

)
− f (t)

∥∥∥
Ms

dt = 0. (7.11)

We regularize f with respect to t ∈ [0, T ] as
fn(t) = ψn ∗ ( f χn) (t) ∈ C∞

c ((0, T ),S (Rd))

where χn ∈ C∞
c (R) is the indicator function for the interval [ 1n , T − 1

n ] ⊆ R, ψ ∈
C∞
c (R), ψ � 0, suppψ ⊆ [− 1

2 ,
1
2 ],

∫
R ψ(x) dx = 1, and ψn(x) = nψ(nx).

Writing

fn(t) − f (t) =
∫ 1

2n

− 1
2n

ψn(τ )
((

f (t − τ) − f (t)
)
χn(t − τ)+ f (t)

(
χn(t − τ) − 1

))
dτ

we may estimate

∫ T

0
‖ fn(t) − f (t)‖Ms dt � In + Jn

where

In =
∫ 1

2n

− 1
2n

ψn(τ )

∫ T

0
‖ f (t − τ) − f (t)‖Msχn(t − τ) dt dτ

=
∫ 1

2n

− 1
2n

ψn(τ )

∫ T+τ− 1
n

τ+ 1
n

‖ f (t − τ) − f (t)‖Ms dt dτ

=
∫ 1

2

− 1
2

ψ(τ)

∫ T+ τ−1
n

τ+1
n

∥∥∥ f
(
t − τ

n

)
− f (t)

∥∥∥
Ms

dt dτ

−→ 0, n → +∞
using (7.11). Finally

Jn =
∫ 1

2n

− 1
2n

ψn(τ )

∫ T

0
‖ f (t)‖Ms (1 − χn(t − τ)) dt dτ
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=
∫ 1

2

− 1
2

ψ(τ)

∫ T

0
‖ f (t)‖Ms

(
1 − χn

(
t − τ

n

))
dt dτ

=
∫ 1

2

− 1
2

ψ(τ)

(∫ τ+1
n

0
+

∫ T

T+ τ−1
n

)
‖ f (t)‖Ms dt dτ

�
∫ 1

2

− 1
2

ψ(τ)

(∫ 3
2n

0
+

∫ T

T− 3
2n

)
‖ f (t)‖Ms dt dτ

=
(∫ 3

2n

0
+

∫ T

T− 3
2n

)
‖ f (t)‖Ms dt

−→ 0, n → +∞.

We have shown (7.10). �

Remark 7.8. Again we note (cf. Remark 7.2) that Lemma 7.7 is true also when we
replace the interval [0, T ] with [−T, T ].
We have now finally arrived at a point where we may state and prove the existence

and uniqueness of solutions to (7.1) that are continuous on the spaces Ms .

Theorem 7.9. Let T > 0, k,m ∈ N\0, σ = k
m , a ∈ G1+σ,σ , suppose

Im a(x, ξ) � C, (x, ξ) ∈ T ∗Rd ,

for C > 0, and let s ∈ R. If u0 ∈ Ms and f ∈ L1([0, T ], Ms), then the equation (7.1)
has a unique solution u ∈ C([0, T ], Ms).

Proof. First we assume u0 ∈ S and f ∈ C∞
c ((0, T ),S (Rd)).

Let ψ ∈ C∞
c ((0, T ) × Rd). With ψ(t) = ψ(t, ·) we have ψ(t), ∂tψ(t), awψ(t) ∈

C((0, T ),S ). Let ν ∈ R. Lemma 7.5 applied to t �→ ψ(T − t, ·) and −a gives

sup
0�t�T

‖ψ(t)‖M−ν �
∫ T

0
‖ − ∂tψ(T − t, ·) − iawψ(T − t, ·)‖M−ν dt

=
∫ T

0
‖∂tψ(t, ·) + iawψ(t, ·)‖M−ν dt.

This implies
∣∣∣∣
∫ T

0
( f (t), ψ(t)) dt

∣∣∣∣ � ‖ f ‖L1([0,T ],Mν )‖ψ‖L∞([0,T ],M−ν ) � sup
0�t�T

‖ψ(t)‖M−ν

�
∫ T

0
‖∂tψ(t, ·) + iawψ(t, ·)‖−ν dt.

Thus

L1((0, T ], M−ν) � −∂tψ(t, ·) − iawψ(t, ·) �→
∫ T

0
( f (t), ψ(t)) dt
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is an anti-linear continuous functional. By the Hahn–Banach theorem it can be ex-
tended to a functional on L1((0, T ], M−ν). From [9, Theorem IV.1 and Corollary IV.4]
weknow that the dual space of L1((0, T ], M−ν) can be identifiedwith L∞((0, T ], Mν)

through the natural pairing. Hence there exists u ∈ L∞((0, T ], Mν) ⊆ D ′((0, T ) ×
Rd) such that

∫ T

0
( f (t), ψ(t)) dt =

∫ T

0
(u(t),−∂tψ(t, ·) − iawψ(t, ·)) dt

=
∫ T

0
(∂t u(t) + iawu(t), ψ(t)) dt.

It follows from this argument that ∂t u + iawu = f in D ′((0, T ) × Rd). From u ∈
L∞((0, T ], Mν), a ∈ G1+σ,σ and Proposition 4.2 it follows that ∂t u ∈ L∞((0, T ],
Mν−(1+σ)). If we set g(0) = u0 and

g(t) =
∫ t

0
∂t u(τ ) dτ + u0, 0 < t � T,

then g ∈ C([0, T ], Mν−(1+σ)), and it follows fromLebesgue’s differentiation theorem
for Bochner integrals [9, Theorem II.2.9] that g′(t) = ∂t u(t) for almost all t ∈ [0, T ].
If ψ ∈ C∞

c ((0, T ) × Rd) then we obtain from this

(u, ∂tψ) = −(∂t u, ψ) = −
∫

Rd

∫ T

0
∂t g(t, x)ψ(t, x) dt dx = (g, ∂tψ)

which shows that u = g ∈ C([0, T ], Mν−(1+σ)). Now ∂t u + iawu = f and a ∈
G1+σ,σ yields u ∈ C1([0, T ], Mν−2(1+σ)). We may now apply Lemma 7.5 and con-
clude

sup
0�t�T

‖u(t)‖Mν−2(1+σ)
� ‖u0‖Mν−2(1+σ)

+
∫ T

0
‖ f (t)‖Mν−2(1+σ)

dt.

Since ν ∈ R is arbitrary we get the following conclusion. If u0 ∈ S and f ∈
C∞
c ((0, T ),S (Rd)) then for any ν ∈ R there exists a solution

u ∈ C([0, T ], Mν+1+σ ) ∩ C1([0, T ], Mν)

to (7.1) such that

sup
0�t�T

‖u(t)‖Mν � ‖u0‖Mν +
∫ T

0
‖ f (t)‖Mν dt. (7.12)

If u0 ∈ Ms and f ∈ L1([0, T ], Ms) we take sequences (un)∞n=1 ⊆ S and
( fn)∞n=1 ⊆ C∞

c ((0, T ),S (Rd)) such that‖un−u0‖Ms → 0 and‖ fn− f ‖L1([0,T ],Ms )
→

0 as n → +∞. The former is possible due to [13, Proposition 11.3.4], and the
latter thanks to Lemma 7.7. By the first part of the proof there exists a sequence
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(un(t))
+∞
n=1 ⊆ C([0, T ], Ms+1+σ ) such that ∂t un(t) + iawun(t) = fn(t) and un(0) =

un for each n � 1. By (7.12) with ν = s the sequence (un(t))n is a Cauchy sequence
in C([0, T ], Ms). It follows that (∂t un(t))

+∞
n=1 ⊆ C([0, T ], Ms) is a Cauchy sequence

in L1([0, T ], Ms−1−σ ).
The sequence (un(t))n converges inC([0, T ], Ms) to u(t) ∈ C([0, T ], Ms), and the

sequence (∂t un(t))n converges in L1([0, T ], Ms−1−σ ) to v(t) ∈ L1([0, T ], Ms−1−σ ),
v + iawu = f in L1([0, T ], Ms−1−σ ), and u(0) = u0.

If ψ ∈ C∞
c ((0, T ) × Rd) then

(∂t u, ψ) = −(u, ∂tψ) = − lim
n→∞

∫ T

0
(un(t), ∂tψ(t, ·)) dt

= lim
n→∞

∫ T

0
(∂t un(t), ψ(t, ·)) dt

=
∫ T

0
(v(t), ψ(t, ·)) dt = (v, ψ)

which shows that v = ∂t u in L1([0, T ], Ms−1−σ ). We conclude that ∂t u + iawu = f
in L1([0, T ], Ms−1−σ ), u(0) = u0, u ∈ C([0, T ], Ms), and

sup
0�t�T

‖u(t)‖Ms � ‖u0‖Ms +
∫ T

0
‖ f (t)‖Ms dt.

It remains to prove the uniqueness of the solution. Suppose u ∈ C([0, T ], Ms),
∂t u+ iawu = 0 and u(0) = 0. Then u ∈ C1([0, T ], Ms−1−σ ) by Proposition 4.2, and
thus by Lemma 7.5 we have u(t) = 0 in Ms−1−σ , which implies u(t) = 0 in Ms , for
each t ∈ [0, T ]. �

By Remarks 7.2, 7.6, 7.8 and straightforward modifications in the proof of Theo-
rem 7.9 we may strengthen the assumption on Im a, reverse the time direction and
obtain results for the equation{

∂t u(t, x) + iaw(x, D)u(t, x) = f (t, x), x ∈ Rd , t ∈ [−T, T ] \ 0,
u(0, ·) = u0.

(7.13)

Corollary 7.10. Let T > 0, k,m ∈ N\0, σ = k
m , a ∈ G1+σ,σ , suppose

|Im a(x, ξ)| � C, (x, ξ) ∈ T ∗Rd ,

for C > 0, and let s ∈ R. If u0 ∈ Ms and f ∈ L1([−T, T ], Ms), the equation (7.13)
has a unique solution u ∈ C([−T, T ], Ms).

Since

L1([−T, T ],S (Rd)) =
⋂
s∈R

L1([−T, T ], Ms),

C([−T, T ],S (Rd)) =
⋂
s∈R

C([−T, T ], Ms)

we get the following corollary taking into account (4.2).
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Corollary 7.11. Let T > 0, k,m ∈ N\0, σ = k
m , a ∈ G1+σ,σ , and suppose

|Im a(x, ξ)| � C, (x, ξ) ∈ T ∗Rd ,

for C > 0. If f ∈ L1([−T, T ],S (Rd)) and u0 ∈ S (Rd) then the unique solution
to (7.13) satisfies u ∈ C([−T, T ],S (Rd)).

Finally we state a result dual to Corollary 7.11.

Corollary 7.12. Let T > 0, k,m ∈ N\0, σ = k
m , a ∈ G1+σ,σ , and suppose

|Im a(x, ξ)| � C, (x, ξ) ∈ T ∗Rd ,

for C > 0. If u0 ∈ S ′ then by (4.2) there exists s ∈ R such that u0 ∈ Ms. If f ∈
L1([−T, T ], Ms) then the unique solution to (7.13) satisfies u ∈ C([−T, T ], Ms).

8. Propagation of anisotropic Gabor wave front sets for Schrödinger type
equations

The following lemma is an anisotropic version of [6, Lemma 3.6]. Its proof is
similar so we omit it (cf. also [27, Lemma 3.2]). The lemma will be used in the proof
of Proposition 8.2 which is essential for our main result Theorem 8.3.

Lemma 8.1. Supposeσ > 0, r j (t) ∈ C([−T, T ],Gm j ,σ ) for j � 0, where (m j )
∞
j=0 ⊆

R is decreasing, [−T, T ] � t �→ ∂t r j (t)(z) is continuous for each z ∈ T ∗Rd , and
∂t r j (t) ∈ L∞([−T, T ],Gm j ,σ ) for all j � 0. Then there exists r(t) ∈ C([−T, T ],
Gm0,σ ) such that for any n � 1

r(t) −
n−1∑
j=0

r j (t) ∈ C([−T, T ],Gmn ,σ ).

We write r(t) ∼ ∑∞
j=0 r j (t).

Note that r(t) is unique modulo an element in C([−T, T ],S (R2d)).
If r j (t) ∈ L∞([−T, T ],Gm j ,σ ) for j � 0we abuse the notation r(t) ∼ ∑∞

j=0 r j (t)
to mean

r(t) −
n−1∑
j=0

r j (t) ∈ L∞([−T, T ],Gmn ,σ )

for n � 1. In this interpretation r(t) is unique modulo an element in L∞([−T, T ],
S (R2d)). Thus in Lemma 8.1 it holds ∂t r(t) ∼ ∑∞

j=0 ∂t r j (t) in the latter sense.
In the next result we use the cutoff function ψδ introduced prior to Proposition 6.5.
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Proposition 8.2. Let δ > 0, k,m ∈ N\0, σ = k
m , and suppose that a ∈ G1+σ,σ ,

a ∼ ∑∞
j=0 a j , where a0 ∈ C∞(R2d\0) is real-valued,

a0(λx, λ
σ ξ) = λ1+σa0(x, ξ), λ > 0, (x, ξ) ∈ T ∗Rd \ 0, (8.1)

and a j ∈ G(1+σ)(1−2 j),σ for j � 1. The Hamiltonian flow χt : T ∗Rd\0 → T ∗Rd\0
corresponding to the Hamiltonian a0 is then defined for −T � t � T with T > 0.

If q0 ∈ G0,σ then there exists a function t �→ q(t) such that q(0) = ψδq0,

q(t) ∈ C([−T, T ],G0,σ ), (8.2)

q(t) ∼
∞∑
j=0

q j (t), q j (t) ∈ C([−T, T ],G−2 j (1+σ),σ ), (8.3)

∂t q(t) ∼
∞∑
j=0

∂t q j (t), ∂t q j (t) ∈ L∞([−T, T ],G−2 j (1+σ),σ ), (8.4)

q0(t)(x, ξ) = ψδ(x, ξ)q0(χ−t (x, ξ)), (x, ξ) ∈ T ∗Rd , t ∈ [−T, T ], (8.5)

and r(t) ∈ L∞([−T, T ],S (R2d)) where

r(t)w = q(t)w
(
∂t + iaw

) − (
∂t + iaw

)
q(t)w.

Proof. The claim that the Hamiltonian flow χt (x, ξ) ∈ T ∗Rd\0 corresponding to the
Hamiltonian a0 is defined for −T � t � T with the same parameter T > 0 for all
initial data (x, ξ) ∈ T ∗Rd \ 0 is a consequence of Proposition 6.2.
We will design q(t) such that (8.2), (8.3), (8.4) and (8.5) are satisfied, and, noting

that ∂t q(t)w = q(t)w∂t + (∂t q(t))w,

r(t) = i (q(t)#a − a#q(t)) − ∂t q(t) ∈ L∞([−T, T ],S (R2d)). (8.6)

By [16, Theorem 18.5.4] we have

i (q(t)#a − a#q(t)) (x, ξ)

∼
∞∑
j=0

(−1) j+1

(2 j + 1)!22 j
(〈∂x , ∂η〉 − 〈∂y, ∂ξ 〉

)2 j+1
q(t)(x, ξ)a(y, η)

∣∣∣
(y,η)=(x,ξ)

∼ {q(t), a}(x, ξ)

+
∞∑
j=1

(−1) j+1

(2 j + 1)!22 j
(〈∂x , ∂η〉 − 〈∂y, ∂ξ 〉

)2 j+1
q(t)(x, ξ)a(y, η)

∣∣∣
(y,η)=(x,ξ)

(8.7)

where we use the Poisson bracket notation

{q(t), a} = 〈∇ξq(t),∇xa〉 − 〈∇xq(t),∇ξa〉 = 〈J∇x,ξq(t),∇x,ξa〉.
If we introduce for j � 0 the bilinear differential operator

{ f, g} j (x, ξ) = (−1) j
(〈∂x , ∂η〉 − 〈∂y, ∂ξ 〉

) j
f (x, ξ)g(y, η)

∣∣∣
(y,η)=(x,ξ)

(8.8)
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then { f, g}1 = { f, g}, so { f, g} j extends thePoissonbracket to higher order differential
operators. Note that for j � 0

a ∈ Gm,σ , b ∈ Gn,σ �⇒ {a, b} j ∈ Gm+n− j (1+σ),σ . (8.9)

The notation (8.8) allows us to abbreviate (8.7) as

i (q(t)#a − a#q(t)) ∼
∞∑
j=0

(−1) j

(2 j + 1)!22 j {q(t), a}2 j+1.

Inserting a ∼ ∑∞
j=0 a j and q(t) ∼ ∑∞

j=0 q j (t), and collecting terms of order j � 0
gives

i (q(t)#a − a#q(t)) ∼
∞∑
j=0

∑
k+n+m= j

(−1)m

(2m + 1)!22m {qk(t), an}2m+1 (8.10)

since {qk(t), an}2m+1 ∈ C([−T, T ],G−2 j (1+σ),σ ) when k + n + m = j .
The remainder (8.6) can now be written r(t) ∼ ∑∞

j=0 r j (t) as an asymptotic sum

in L∞([−T, T ],G0,σ ) with

r j (t) =
∑

k+n+m= j

(−1)m

(2m + 1)!22m {qk(t), an}2m+1 − ∂t q j (t) ∈ L∞([−T, T ],G−2 j (1+σ),σ )

(8.11)

for j � 0. In the proof we show how to pick {q j (t)}∞j=0 with the stated properties so

that r(t) ∈ L∞([−T, T ],S (R2d)).
Set for (x, ξ) ∈ T ∗Rd and t ∈ [−T, T ]

q0(t)(x, ξ) = ψδ(x, ξ)q0(χ−t (x, ξ))

so that (8.5) is satisfied. The purpose of the factor ψδ is to make q0(t) a well defined
smooth function also around (0, 0) ∈ T ∗Rd where χ−t may not be smooth. For
each (x, ξ) ∈ T ∗Rd , t �→ q0(t)(x, ξ) ∈ C([−T, T ]). By Proposition 6.5 we have
q0(t) ∈ G0,σ uniformly for all t ∈ [−T, T ].

Wewrite q0(t)(χt (x, ξ)) = ψδ(χt (x, ξ))q0(x, ξ). Then differentiation with respect
to t , ∂tχt (x, ξ) = J∇a0(χt (x, ξ)) (cf. (6.2)) and the Chain Rule give for (x, ξ) ∈
T ∗Rd\0

{a0, ψδ}(χt (x, ξ))q0(x, ξ) = 〈∇ψδ(χt (x, ξ)),J∇a0(χt (x, ξ))〉q0(x, ξ)

= 〈∇ψδ(χt (x, ξ)), ∂tχt (x, ξ)〉q0(x, ξ)

= (∂t q0(t)) (χt (x, ξ)) + 〈∇q0(t)(χt (x, ξ)),J∇a0(χt (x, ξ))〉
= (∂t q0(t)) (χt (x, ξ)) − {q0(t), a0}(χt (x, ξ)). (8.12)

Thus for all (x, ξ) ∈ T ∗Rd

∂t q0(t)(x, ξ) = {q0(t), a0}(x, ξ) − {ψδ, a0}(x, ξ)q0(χ−t (x, ξ)).
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Note that the right hand side is supported inR2d\B δ
2
, and the second term is compactly

supported in Bδ ⊆ T ∗Rd .
The function [−T, T ] � t �→ ∂t q0(t)(x, ξ) is continuous for each (x, ξ) ∈ T ∗Rd .

Indeed the continuity of the first term

[−T, T ] � t �→ {q0(t), a0}(x, ξ) = −〈∇q0(t)(x, ξ),J∇a0(x, ξ)〉

is a consequence of (6.3) and the chain rule, and the continuity of the second term has
been verified above.
From q0(t) ∈ G0,σ and (8.9) it now follows that ∂t q0(t) ∈ L∞([−T, T ],G0,σ ),

and then the continuity of [−T, T ] � t �→ ∂t q0(t)(x, ξ) and the mean value theorem
gives q0(t) ∈ C([−T, T ],G0,σ ). By (8.11) we have

r0(t) = {q0(t), a0} − ∂t q0(t) = {ψδ, a0}q0 ◦ χ−t ∈ L∞([−T, T ],G0,σ )

which implies that supp r0(t) ⊆ Bδ ⊆ T ∗Rd for all t ∈ [−T, T ] so in fact we have
r0(t) ∈ L∞([−T, T ],C∞

c ). This means that the principal symbol of r(t) vanishes:
r0(t) ∼ 0.

Next we eliminate the second highest order term in (8.11) r1(t) ∈ L∞([−T, T ],
G−2(1+σ),σ ) by a proper choice of q1(t) ∈ C([−T, T ],G−2(1+σ),σ ). The term in
C([−T, T ],G−2(1+σ),σ ) in (8.10) is

{q0(t), a1} + {q1(t), a0} − 1

24
{q0(t), a0}3.

Define

ρ1(t) = {q0(t), a1} − 1

24
{q0(t), a0}3 ∈ C([−T, T ],G−2(1+σ),σ ) (8.13)

so that ρ1(t) + {q1(t), a0} is the term in C([−T, T ],G−2(1+σ),σ ) in (8.10). Define

q1(t)(χt (x, ξ)) =
∫ t

0
ρ1(τ )(χτ (x, ξ)) dτ (8.14)

or equivalently

q1(t)(x, ξ) =
∫ t

0
ρ1(τ )(χτ−t (x, ξ)) dτ.

From (8.13) and Proposition 6.5 it follows that q1(t) ∈ G−2(1+σ),σ uniformly for all
t ∈ [−T, T ]. We differentiate (8.14) with respect to t which gives if (x, ξ) ∈ T ∗Rd \0

ρ1(t)(χt (x, ξ)) = (∂t q1(t))(χt (x, ξ)) + 〈∇q1(t)(χt (x, ξ)), ∂tχt (x, ξ)〉
= (∂t q1(t))(χt (x, ξ)) − {q1(t), a0}(χt (x, ξ)).

Thus ∂t q1(t)−{q1(t), a0} = ρ1(t)which implies ∂t q1(t) ∈ L∞([−T, T ],G−2(1+σ),σ ).
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Let (x, ξ) ∈ T ∗Rd be fixed. We know that [−T, T ] � t �→ ρ1(t)(x, ξ) is continu-
ous, and the continuity of

[−T, T ] � t �→ {q1(t), a0}(x, ξ) = −〈∇q1(t)(x, ξ),J∇a0(x, ξ)〉
is a consequence of the continuity of

[−T, T ] � t �→ ∂zq1(t)(x, ξ) =
∫ t

0
∂z (ρ1(τ )(χτ−t (x, ξ))) dτ

for z = x j and z = ξ j for all 1 � j � d. In turn, the latter is a consequence of

∂z (q1(t + s) − q1(t)) (x, ξ) =
∫ t+s

t
∂z (ρ1(τ )(χτ−t−s(x, ξ))) dτ

+
∫ t

0
∂z

(
ρ1(τ )(χτ−t−s(x, ξ)) − ρ1(τ )(χτ−t (x, ξ))

)
dτ,

the chain rule, and again (6.3).
It follows that [−T, T ] � t �→ ∂t q1(t)(x, ξ) is continuous for each (x, ξ) ∈

T ∗Rd . Combining this with ∂t q1(t) ∈ L∞([−T, T ],G−2(1+σ),σ ) we may conclude
that q1(t) ∈ C([−T, T ],G−2(1+σ),σ ). Referring to (8.11) this implies that r1(t) ∈
L∞([−T, T ],G−2(1+σ),σ ) and

r1(t) = {q1(t), a0} + {q0(t), a1} − 1

24
{q0(t), a0}3 − ∂t q1(t)

= {q1(t), a0} + ρ1(t) − ∂t q1(t) = 0

which shows that the choice of q1(t) in (8.14) indeed eliminates r1(t) ∈ L∞([−T, T ],
G−2(1+σ),σ ).
In a similar way we construct q j (t) ∈ C([−T, T ],G−2 j (1+σ),σ ) for j � 2 using

{qk(t)} j−1
k=0, by defining

ρ j (t) =
∑

k+n+m= j, k< j

(−1)m

(2m + 1)!22m {qk(t), an}2m+1 ∈ C([−T, T ],G−2 j (1+σ),σ )

(8.15)

and

q j (t)(χt (x, ξ)) =
∫ t

0
ρ j (τ )(χτ (x, ξ)) dτ. (8.16)

As before ∂t q j (t) ∈ L∞([−T, T ],G−2 j (1+σ),σ ), q j (t) ∈ C([−T, T ],G−2 j (1+σ),σ ),
and ∂t q j (t) − {q j (t), a0} = ρ j (t), which yields r j (t) ∈ L∞([−T, T ],G−2 j (1+σ),σ )

(cf. (8.11)) and

r j (t) =
∑

k+n+m= j

(−1)m

(2m + 1)!22m {qk(t), an}2m+1 − ∂t q j (t)
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= {q j (t), a0} + ρ j (t) − ∂t q j (t) = 0.

So r j (t) ∼ 0 for all j � 0 which means that

r(t) ∈
⋂
j�0

L∞([−T, T ],G−2 j (1+σ),σ ) = L∞([−T, T ],S (R2d)).

Finally defining q(t) by (8.3), Lemma 8.1 shows that (8.2) and (8.4) hold. The claim
q(0) = ψδq0 is a consequence of q0(0) = ψδq0 and q j (0) = 0 for j � 1. �

Combining Corollaries 7.10 and 7.11with Proposition 8.2 we obtain ourmain result
about propagation of anisotropic Gabor singularities for the evolution equation

{
∂t u(t, x) + iaw(x, D)u(t, x) = 0, x ∈ Rd , t ∈ [−T, T ] \ 0,

u(0, ·) = u0.
(8.17)

Theorem 8.3. Let k,m ∈ N\0, σ = k
m , and suppose that a ∈ G1+σ,σ , a ∼ ∑∞

j=0 a j ,

where a0 ∈ C∞(R2d\0) is real-valued,
a0(λx, λ

σ ξ) = λ1+σa0(x, ξ), λ > 0, (x, ξ) ∈ T ∗Rd \ 0, (8.18)

and a j ∈ G(1+σ)(1−2 j),σ for j � 1. The Hamiltonian flow χt : T ∗Rd\0 → T ∗Rd\0
corresponding to the Hamiltonian a0 is then defined for −T � t � T with T > 0. If
u0 ∈ S ′(Rd) then (8.17) has a unique solution denoted Kt u0, and we have

WFσ
g (Kt u0) = χtWFσ

g (u0), t ∈ [−T, T ].
Proof. By Proposition 6.2 there exists T > 0 such that the Hamiltonian flow χt :
T ∗Rd\0 → T ∗Rd\0 corresponding to the Hamiltonian a0 is well defined for −T �
t � T .
By (4.2) there exists s ∈ R such that u0 ∈ Ms . From Corollary 7.10 we obtain the

existence of a unique solution u(t) = Kt u0 ∈ C([−T, T ], Ms) to (8.17).

Let z0 ∈ T ∗Rd\
(
WFσ

g (u0) ∪ {0}
)
. We may assume that |z0| = 1. By (3.19) with

m = 0 there exists q0 ∈ G0,σ such that qw
0 u0 ∈ S and z0 /∈ charσ (q0). By (3.14) there

exists aσ -conic neighborhood� ⊆ T ∗Rd\0 such that z0 ∈ �, and |q0(x, ξ)| � C > 0
when (x, ξ) ∈ � \ Br for some r > 0.

Let 0 < δ � |χt (z0)| for all t ∈ [−T, T ]. By Proposition 8.2 there exists q(t) ∈
C([−T, T ],G0,σ ) such thatq(t) ∼ ∑∞

j=0 q j (t)withq j (t) ∈ C([−T, T ],G−2 j (1+σ),σ )

for j � 0, q0(t)(x, ξ) = ψδ(x, ξ)q0(χ−t (x, ξ)) and r(t) ∈ L∞([−T, T ],S (R2d))

where

r(t)w = q(t)w
(
∂t + iaw

) − (
∂t + iaw

)
q(t)w.

This gives

0 = q(t)w
(
∂t + iaw

)
u(t) = (

∂t + iaw
)
q(t)wu(t) + r(t)wu(t)
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that is

(
∂t + iaw

)
q(t)wu(t) = −r(t)wu(t).

Set f (t) = −r(t)wu(t). By (3.8) and Proposition 4.2 we have for any m ∈ R

sup
|t |�T

‖ f (t)‖Mm+s � sup
|t |�T

‖u(t)‖Ms < ∞

which by (4.2) implies that f ∈ L∞([−T, T ],S (Rd)) ⊆ L1([−T, T ],S (Rd)).
Thus q(t)wu(t) solves the equation (7.13), and for the initial value we have

q(0)wu(0) = q0(0)
wu(0) = (ψδq0)

w u0 = qw
0 u0 + ((ψδ − 1)q0)

w u0 ∈ S

due to ψδ − 1 ∈ C∞
c (R2d). At this point we may apply Corollary 7.11 which gives

q(t)wu(t) ∈ S (Rd) for all t ∈ [−T, T ]. We note that q0(t)(χt (x, ξ)) = q0(x, ξ)

if |χt (x, ξ)| � δ, and χt� ⊆ T ∗Rd\0 is a σ -conic neighborhood of χt (z0), which
is a consequence of Proposition 6.2. This implies that χt (z0) /∈ charσ (q(t)), since
the lower order terms {q j (t)} j�1 in q(t) decay on T ∗Rd . By (3.19) this means that
χt (z0) /∈ WFσ

g (u(t)) = WFσ
g (Kt u0). We have shown

WFσ
g (Kt u0) ⊆ χtWFσ

g (u0), t ∈ [−T, T ].

The opposite inclusion follows from K −1
t = K−t and χ−1

t = χ−t . �

Remark 8.4. In Theorem 5.1 the Hamiltonian has by Remark 5.2 the form

a =
m∑
j=0

a j

where a j is real-valued for all 0 � j � m, σ = 1
m−1 , a0 ∈ G1+σ,σ satisfies (8.18),

and a j ∈ Gσ(m− j),σ = G
(1+σ)

(
1− j

m

)
,σ ⊆ G1,σ for 1 � j � m.

In Theorem 8.3 on the other hand σ = k
m and the Hamiltonian is a ∼ ∑∞

j=0 a j ,

a0 is again real-valued and satisfies (8.18), and a j ∈ G(1+σ)(1−2 j),σ ⊆ G−(1+σ),σ for
j � 1.
Comparing Theorem 5.1 and Theorem 8.3 we may conclude that the former is not a

particular case of the latter, due to the different assumptions on the perturbation a−a0
of the Hamiltonian.

9. Examples

Let again ψδ(x, ξ) = ϕ(|x |2 + |ξ |2) ∈ C∞(R2d) where ϕ ∈ C∞(R), 0 � ϕ � 1,
ϕ(t) = 0 for t � δ2

4 and ϕ(t) = 1 for t � δ2 for a given δ > 0. Thus ψδ

∣∣
B δ

2

≡ 0 and

ψδ

∣∣
R2d\Bδ

≡ 1.
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Example 9.1. Let δ > 0, c ∈ R\0, k,m ∈ N\0, σ = k
m , and set

a(x, ξ) = cψδ(x, ξ)
(
|x |2k + |ξ |2m

) 1
2

(
1
k + 1

m

)
.

Then

a(λx, λσ ξ) = λ1+σa(x, ξ), λ � 1, (x, ξ) ∈ T ∗Rd , |(x, ξ)| � δ,

and a ∈ G1+σ,σ . Theorem 8.3 applies to this Hamiltonian.

Example 9.2. Let c1, c2 ∈ R \ 0, k ∈ N \ 0, and set

a(x, ξ) = ψδ(x, ξ)
(
c1|x | 2k

2k−1 + c2|ξ |2k
)

.

With σ = 1
2k−1 we have

a(λx, λσ ξ) = λ1+σa(x, ξ), λ � 1, (x, ξ) ∈ T ∗Rd , |(x, ξ)| � δ.

However, we note that the singularity (non-smoothness) of the term |x | 2k
2k−1 =

|x |1+σ at the origin is not annihilated by the cutoff function ψδ unless k = 1. For this
purpose, we would need a cutoff function that depends on x only. But this type of
cutoff function does not fit into the calculus with Gm,σ symbols. So a /∈ G1+σ,σ and
we cannot apply Theorem 8.3 to this Hamiltonian.
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