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Abstract: Predicting rock bursts is essential for maintaining worker safety and the long-term growth
of subsurface infrastructure. The purpose of this study is to investigate the precursor reactions and
processes of rock instability. To determine the degree of rock damage, the research examines the
time-varying acoustic emission (AE) features that occur when rocks are compressed uniaxially and
introduces AE parameters such as the b-value, γ-value, and βt-value. The findings suggest that the
evolution of rock damage during loading is adequately reflected by the b-value, γ-value, and βt-value.
The relationships between b-value, γ-value, and βt-value are studied, as well as the possibility of
using these three metrics as early-warning systems for rock failure.

Keywords: acoustic emission; rock burst; γ-value; b-value; βt-value; early warning

1. Introduction

Rock burst refers to a phenomenon in which the sudden and violent release of energy
accumulated within rock formations occurs in deep underground mining or areas subjected
to high tectonic stress, leading to the abrupt and catastrophic failure of overlying rock
masses [1,2]. In underground engineering, particularly in mining engineering, the release
of energy is often unavoidable during excavation, which can lead to the rapid occurrence
of rock bursts, posing a threat to the safety of underground personnel and impacting the
safety of mine operations [3]. Therefore, the short-term prediction of rock bursts is one of
the crucial research areas for the sustainable development of underground engineering and
the protection of underground facilities and personnel safety [4].

Acoustic emission (AE) is a non-destructive testing technique widely employed for
material damage monitoring. This geophysical monitoring method has become a sig-
nificant tool for the monitoring and prediction of coal-rock material damage due to its
non-destructive, non-contact, and real-time transmission characteristics [5–9]. AE not only
encompasses spatial information regarding internal fractures in complex materials but also
conveys the temporal and frequency information associated with the evolution of material
fracture. The temporal patterns and frequency characteristics of AE time–frequency feature
parameters have been extensively studied and reported [10–13].

In the field of seismology, the famous Gutenberg-Richter Law is well-known, and
its “b-value” is considered an effective indicator for earthquake prediction [14]. In recent
years, many scholars have integrated the “b-value” with AE technology for analyzing
the damage and fracture instability of solid materials. For example, Huang et al. [15]
investigated the precursor characteristics of failure of weathered granite, combining the
critical slowing down theory with the synchronous analysis of the b-value, which can
accurately grasp the failure characteristics of rock. Chen et al. [16] conducted laboratory
direct shear tests and AE tests on standard cylindrical specimens with different levels
of rock-surface roughness. The evolution of AE b-values indicates that the macroscopic
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fracture surface of the bonded surface is the result of repeated conversion between large
and small microcracks. The fluctuation of the AE b-value is not affected by the roughness
of the rock interface. Hirata [17] studied the fractal structure of seismic activity in terms of
spatial, temporal, and magnitude distributions, which are represented by fractal dimension
D, Omori exponent p, and b-value, respectively. Colombo et al. [18] used an AE system to
carry out cyclic loading and continuous monitoring of concrete specimens and compared
the b-value with the applied load, damage parameters, and cracks appearing on the beam.
Some quantitative conclusions are obtained by studying the whole loading cycle and the
b-value calculation of each channel. The AE b-value reflects the relationship between
amplitude and frequency within a time series, following a power-law distribution within
a specific time range. A sudden decrease in the b-value can be regarded as a precursor
indicator of impending instability in solid materials [19]. However, due to the complexity
of rock as a porous material, relying solely on extracting the b-value from time series to
assess the damage process and criteria in rock is not entirely reliable. This is because the
calculation of the AE b-value is entirely dependent on amplitude and often overlooks the
crucial frequency-domain information.

In the frequency domain, the Flicker Noise Spectroscopy (FNS) method is used to
quantify the characteristics of signal frequency distribution and is effective in predicting
instability in nonlinear signals [19,20]. The characteristic of 1/f is presented in unstable
signal analysis, where f is the signal frequency. This method has been researched and
applied in multiple fields. For example, Matthaeus et al. [21] think that the 1/f spectrum
results from the superposition of uncorrelated samples of solar surface turbulence that have
log-normal distributions of correlation lengths. Demin et al. [22] use a new multi-parameter
analysis method to study magnetohydrodynamic formations on the basis of scintillation
noise spectra. The maximum value of the calculated non-stationarity factor may be a
precursor to a major reconstruction of solar magnetic activity. Ryabinin et al. [23] employed
the FNS method to study AE signals and time series of water salinity. Introducing two
parameters based on the FNS, they discovered new precursors for earthquake prediction.
However, there are few reports regarding the study of FNS in the context of rock damage
and instability. Specifically, a more detailed investigation is required to explore the time-
varying characteristics of the spectral feature γ in FNS.

Furthermore, an increasing number of scholars are considering the integrated ap-
plication of multi-parameter approaches from different perspectives for the precursory
prediction of rock damage and instability, therefore compensating for potential inaccuracies
associated with a singular perspective. Wang et al. [24] established a rock-burst prediction
model with the average number of microseismic events N, the average energy released E,
the decrease of seismological parameter ∆b, and the decrease of seismological parameter b
as the prediction parameters. Tan et al. [25] used the microseismic method, electromagnetic
radiation method, and drilling bits method to monitor rock bursts in Yangcheng Mine
and established a system of multi-index monitoring and evaluation for rock bursts. How-
ever, very few researchers have simultaneously considered the influences of time domain,
frequency domain, and time scale. In this study, uniaxial compression was applied to
rocks, and AE was collected. The distribution patterns of b-value, γ-value, and βt-value
during the rock damage process were analyzed from the perspectives of the time domain,
frequency domain, and time scale. The relationships among these three indicators were
explored. The research results provide theoretical support and an experimental basis for
rock-burst early warning in deep underground engineering.

2. Materials and Methods
2.1. Sample Preparation

The experiments employed basalt and granite rocks. The specific sample dimensions
are provided in Tables 1 and 2. The samples were subjected to constant displacement
loading using a uniaxial compression method.
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Table 1. Cylindrical sample, basalt-rock parameters.

Specimens Diameter
(mm)

Length
(mm)

Velocity
(mm/s)

Peak Stress
(MPa)

Elastic Modulus
(Gpa)

0–1 42 110 0.001 134.4 17.05
0–2 42 100 0.01 179.3 13.7

Table 2. Prismatic Sample, Granite Parameters.

Specimens Dimension
(mm) Velocity (mm/s) Peak Stress

(MPa)
Elastic Modulus

(Gpa)

1–1 55 × 55 × 100 0.0025 144.20 5.16
1–2 55 × 55 × 100 0.0025 212.41 6.44

2.2. Experimental System

The experimental system in this study consists of a universal testing machine and an
AE monitoring system. The tests were performed on a Baldwin-Instron universal testing
machine (capacity 900 kN), produced in Darmstadt, Germany, which is connected to a
computer for data logging. The AE monitoring system is produced by the Lunitek S.r.l.
Company of Sarzana in Italy. The system is equipped with eight piezoelectric sensors
model LT18-003-PRD-00-R0 working in a frequency range of 15–625 kHz. These sensors
were attached to each specimen using plasticine to prevent them from detaching during
the loading process, and they were secured with rubber bands around the periphery, as
shown in Figure 1. Figure 1a depicts the uniaxial loading system and AE system used in
this study, while Figure 1b shows the Prismatic sample, granite. Figure 1c illustrates the
cylindrical sample, basalt-rock. The AE sensor is bonded to the specimen and secured with
rubber bands. The data acquisition system used a 5 MHz sampling frequency and stored
data in parametric form. The AE waveforms generated during rock failure contain valuable
information, such as AE ring-down counts, AE energy, AE amplitude, and duration, which
can describe the rock’s failure process. These parameters are illustrated in Figure 2.
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The recorded parameters for each detected signal were as follows [26]:
Signal start time: the moment of the first reading that exceeded the detection threshold

of 49 dB (280 µV).
Peak amplitude: the maximum amplitude expressed in dB.
Number of oscillations (counts): the number of intermediate crossings of the threshold

by the signal.
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AE energy (EAE): integral of the waveform. When the acquisition of the signal is
parametric, it can be approximated by the envelope area of the triangle formed by the signal
peak amplitude and its duration. The calculation of energy is described as Equation (1):

EAE =
N

∑
i=1

Ai × ∆ti
2

(1)

where Ai is the amplitude of signal i, mV.

Signals 2024, 5, FOR PEER REVIEW  4 
 

 

 
Figure 2. AE parameters diagram. 

The recorded parameters for each detected signal were as follows [26]: 
Signal start time: the moment of the first reading that exceeded the detection 

threshold of 49 dB (280 μV). 
Peak amplitude: the maximum amplitude expressed in dB. 
Number of oscillations (counts): the number of intermediate crossings of the 

threshold by the signal. 
AE energy (EAE): integral of the waveform. When the acquisition of the signal is 

parametric, it can be approximated by the envelope area of the triangle formed by the 
signal peak amplitude and its duration. The calculation of energy is described as Equa-
tion (1): 

𝐸 = 𝐴 ∆𝑡2  (1) 

where Ai is the amplitude of signal i, mV. 

3. Results and Analysis 
3.1. Time-Varying Characteristics of AE Parameter 

AE parameters effectively reflect the rock failure process, providing essential in-
formation about the rock’s condition and facilitating the study and understanding of rock 
failure processes. The stress and AE parameter evolution curves during uniaxial com-
pression of basalt and granite rocks can be observed in Figure 3. 

 

Figure 2. AE parameters diagram.

3. Results and Analysis
3.1. Time-Varying Characteristics of AE Parameter

AE parameters effectively reflect the rock failure process, providing essential informa-
tion about the rock’s condition and facilitating the study and understanding of rock failure
processes. The stress and AE parameter evolution curves during uniaxial compression of
basalt and granite rocks can be observed in Figure 3.

Clearly, basalt rocks exhibit higher uniaxial compressive strength due to having fewer
pores in the samples. In contrast, granite rocks, characterized by a relatively higher number
of pores, exhibit lower uniaxial compressive strength and produce many AE signals.

We can observe that each stress drop is accompanied by high-amplitude AE signals.
Before the initial stress drop, the sample absorbs energy continuously without undergoing
failure, resulting in fewer AE signals. During the stress drop, the sample releases some
of its energy, including dissipative and emitted energy, leading to higher AE amplitudes
and energy. After the stress drop, internal cracks within the sample begin to merge and
propagate, eventually releasing all the stored energy, causing catastrophic collapse. This
stage generates numerous and densely packed AE signals, with the highest AE energy at
the time of collapse. Therefore, AE parameters are closely linked to crack development and
can simultaneously characterize energy variations in the rock instability process.

Figure 4 presents images after experiments on two types of rocks, with the red line
indicating the main fracture direction of the specimen. It is worth noting that, as evident
from Figure 4, fracture occurred after the specimen reached strength, with the primary
mode of failure being cleavage. During the testing process, significant cleavage fractures
occurred along the direction of the red line, revealing the brittle characteristics of the rock.
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men 1–2. The red line represents the main fractured direction of the rock.

3.2. b-Value and γ-Value
3.2.1. Calculation of AE b-Value

The seismic b-value was initially introduced by Gutenberg-Richter [14] and later was
progressively utilized to study the evolution of damage and fracture processes in solid
materials using the AE b-value. The calculation of the b-value is based on Equation (2):

log10N(N ≥ M) = a − bM, (2)

where M is the magnitude of AE signals, and a is constant. N is the number of earthquakes
with a magnitude greater than or equal to M.

The relationship between AE amplitude and magnitude, considering that the max-
imum signal peak amplitude can be expressed in dB as AdB = 20log10

(
Vmax
Vre f

)
, can be

calculated using Equation (3):

M = log10

(
Vmax

Vre f

)
, (3)
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where Vref is a reference amplitude (in this study, taken as 1 µV).
Therefore, the AE b-value can be represented by Equation (4):

log10N(N ≥ M) = a − b·log10

(
Vmax

Vre f

)
(4)

According to Equation (4), it is evident that the b-value can be calculated based on the
relationship between AE amplitude and their frequency. By linearly fitting log10N and M,
the negative of the slope is the desired AE b-value. To clearly depict the evolution of the
b-value over time, this study applied time windows to the acquired data. Subsequently, the
b-value for each specific time window was calculated. The detailed calculation steps are
illustrated in Figure 5.
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3.2.2. Calculation of AE γ-Value

A potential precursor indicator for studying the compressive failure process of rocks
is known as the FNS method. It follows a power-law form of 1/fγ, where f represents
frequency, and γ is a characteristic parameter of frequency. This γ-value can capture
variations in complex systems within time series data. When γ = 1, the AE signal follows
the pattern of 1/f noise, which is also known as “pink noise”. When rocks produce a
significant number of AE, it indicates an unstable state and the AE signal consistently
exhibits the 1/f characteristic in the power spectrum. When rocks generate fewer AE, it
implies better rock integrity, and the sample is in a stable state, with γ approaching 0.

The calculation method for the characteristic parameter γ-value is as follows: Assum-
ing the waveform of AE at any time t is represented by f (t), then the Fourier transform of
AE is described as Equation (5):

F( f ) =
∫ ∞

−∞
f (t)e−j f tdt, (5)

where f is frequency. The power spectral density (PSD) is given by Equation (6):

PSD( f ) = |F( f )|2, (6)

Taking the natural logarithm of both sides of Equation (6):

log10(PSD) = c + γ·log10( f ). (7)

In Equation (7), the γ-value is the parameter we are seeking.
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According to Equation (7), the γ-value can be calculated using the power spectrum
of AE. By linearly fitting log10(PSD) and log10(f ), the negative slope of the line is the γ-
value. To demonstrate the trend of γ-value over time, time windows were applied to
the experimental AE waveform data. The power spectrum was calculated for each time
window, and γ-value were determined sequentially. The calculation process is illustrated
in Figure 6.

Signals 2024, 5, FOR PEER REVIEW  7 
 

 

er AE, it implies better rock integrity, and the sample is in a stable state, with γ ap-
proaching 0. 

The calculation method for the characteristic parameter γ-value is as follows: As-
suming the waveform of AE at any time t is represented by f(t), then the Fourier trans-
form of AE is described as Equation (5): 𝐹(𝑓) = 𝑓(𝑡) 𝑒 𝑑𝑡, (5) 

where f is frequency. The power spectral density (PSD) is given by Equation (6): 𝑃𝑆𝐷(𝑓) = |𝐹(𝑓)| , (6)

Taking the natural logarithm of both sides of Equation (6): 𝑙𝑜𝑔 (𝑃𝑆𝐷) = 𝑐 + 𝛾 ∙ 𝑙𝑜𝑔 (𝑓). (7)

In Equation (7), the γ-value is the parameter we are seeking. 
According to Equation (7), the γ-value can be calculated using the power spectrum 

of AE. By linearly fitting log10(PSD) and log10(f), the negative slope of the line is the 
γ-value. To demonstrate the trend of γ-value over time, time windows were applied to 
the experimental AE waveform data. The power spectrum was calculated for each time 
window, and γ-value were determined sequentially. The calculation process is illustrated 
in Figure 6. 

 
(a) (b) 

Figure 6. Calculation Process of γ-value: AE waveform (a); Power spectrum of the signal, a nega-
tive slope in the fitted curve represents the γ-value (b). 

3.3. b-Value and γ-Value Analysis 
Based on the calculation methods outlined in Section 3.2, the evolution curves of the 

b-value and γ-value during the entire loading process are depicted in Figure 7. Since 
both basalt and granite rocks exhibited similar results, this paper only displays the re-
sults for basalt rock Samples 0–1 and 0–2. Combining the analysis of stress and AE 
curves (as shown in Figure 3), we can observe that for Specimen 0–1, stress drops oc-
curred at 996 s and 1172 s. At these moments, high-amplitude AE signals were generat-
ed, resulting in a sudden decrease in the b-value (0.3), while the γ-value concurrently in-
creased rapidly. At 1399 s, Specimen 0–1 collapsed, leading to a decrease in the b-value 
and a sharp increase in the γ-value. Notably, whenever stress drops and sudden col-
lapses occurred in the specimens, the b-value and γ-value consistently exhibited oppos-
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Figure 6. Calculation Process of γ-value: AE waveform (a); Power spectrum of the signal, a negative
slope in the fitted curve represents the γ-value (b).

3.3. b-Value and γ-Value Analysis

Based on the calculation methods outlined in Section 3.2, the evolution curves of the
b-value and γ-value during the entire loading process are depicted in Figure 7. Since both
basalt and granite rocks exhibited similar results, this paper only displays the results for
basalt rock Samples 0–1 and 0–2. Combining the analysis of stress and AE curves (as shown
in Figure 3), we can observe that for Specimen 0–1, stress drops occurred at 996 s and
1172 s. At these moments, high-amplitude AE signals were generated, resulting in a sudden
decrease in the b-value (0.3), while the γ-value concurrently increased rapidly. At 1399 s,
Specimen 0–1 collapsed, leading to a decrease in the b-value and a sharp increase in the
γ-value. Notably, whenever stress drops and sudden collapses occurred in the specimens,
the b-value and γ-value consistently exhibited opposing trends. Similar patterns were
observed in Specimen 0–2. This indicates that both the b-value and γ-value can effectively
reflect the rock damage process, especially showing sensitivity to stress drops. When
specimens undergo catastrophic collapse, both parameters undergo significant changes,
thus serving as valuable precursor indicators of rock catastrophic instability.
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Compared to Specimen 0–1, the b-value of Specimen 0–2 exhibits an overall trend
of fluctuating decline, whereas the b-value of Specimen 0–1 experiences multiple sudden
drops. Simultaneously, the γ-value of Specimen 0–2 shows a continuous overall increase,
while Specimen 0–1 only undergoes sudden increases at certain moments. This discrepancy
arises from the differences between the two samples. The scale of crack propagation
during the rock failure process is significantly related to the AE signals. The generation
of microcracks corresponds to signals with low amplitude and high frequency, while
the occurrence of penetrating cracks, macrocracks, and collapse-induced unstable cracks
corresponds to signals with high amplitude and low frequency in AE.

According to Equation (2), the b-value of AE is entirely dependent on the relationship
between AE magnitude and frequency. Signals with high amplitude and low frequency
correspond to lower b-value, whereas signals with low amplitude and high frequency
correspond to higher b-value. Therefore, the b-value can reflect the scale of rock crack
propagation from a time-domain perspective. Similarly, according to Equation (3), the
magnitude of the γ-value in AE is related to frequency and power spectral density. Signals
with low amplitude and high frequency correspond to high power spectral density and
high amplitude. Thus, the γ-value can reflect the scale of rock crack propagation from a
frequency-domain perspective.

After the initial stress drop, internal cracks develop in Specimen 0–1, continuously
generating signals with high amplitude as stress increases. In contrast, Specimen 0–2 does
not further expand cracks after the initial stress drop, producing signals with high ampli-
tude only when complete failure occurs. This discrepancy contributes to the differences
between the parameters of the two specimens.

3.4. βt-Value
3.4.1. Calculation of βt-Value

The energy release W measured by the AE technique follows the time-effect law [27]:

W(t) ∝ H(t) ∝ tβt , (8)

In which t represents the test time, H is the cumulative number of detected AE events,
and βt represents the exponent of the release energy scale. The extent of material damage
and failure can be expressed as a function of the number of AE events and time:

η =
H

Hmax
=

(
t

tmax

)βt

, (9)

Taking the natural logarithm of both sides of Equation (9):

log
(

H
Hmax

)
= βtlog

(
t

tmax

)
. (10)

where Hmax represents the total number of AE events during the monitoring period when
the stress reaches its peak value σmax, and tmax represents the corresponding monitoring
duration. To analyze the distribution patterns of βt at different stress stages, we calculate
βt separately for different stages of AE. For a specific time interval, βt can be determined
using Equation (11).

log
(

H
Hd

)
= βtlog

(
t
td

)
. (11)

where Hd and td represent the cumulative AE counts and monitoring duration within the
selected time interval. A schematic diagram illustrating the calculation of βt is shown in
Figure 8.
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3.4.2. βt-Value Analysis

Previous research has revealed that when βt is less than 1, the specimen is in a stable
state; when βt equals 1, it is in a metastable state; and when βt is greater than 1, it is in
an unstable state [27]. To process the acquired AE signals using the calculation method
described in Section 3.4.1, we calculate the βt-value for different stress stages. Based on the
stress distribution characteristics, the data are segmented for analysis.

Before the initial stress drop, due to compaction or linear elastic behavior, the specimen
generates fewer cracks, resulting in fewer AE signals. After the stress drop, the specimen’s
damage increases, leading to more AE signals. Therefore, we use the initial stress drop as
the dividing point, dividing the entire loading stage into three phases: Stage 1⃝ extends
from the beginning to the first stress drop, Stage 2⃝ spans from the first stress drop to the
final failure, and Stage 3⃝ encompasses the entire loading stage, as illustrated in Figure 3.

This paper uses a 0–1 specimen as an example to illustrate the changes in βt-value
at different AE stages, as shown in Figure 9. From Figure 9a, it can be observed that in
Stage 1⃝, the βt-value is 1.72. This phase includes a stress drop, during which the rock
releases a significant amount of energy, resulting in a higher occurrence of AE signals,
indicating an unstable state. In Stage 2⃝, the βt-value is 1.14, which is close to 1. In this
phase, AE signals are relatively dense, indicating that the specimen is in a metastable state.
In Stage 3⃝, the βt-value is 1.95, encompassing the entire loading process of the specimen,
and it ultimately experiences a catastrophic failure.
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βt-value calculations were performed for all specimens, and the results are shown in
Table 3. In Stages 1⃝ and 3⃝, the βt-value is greater than 1, indicating that these two stages
are both unstable. The experimental results for these two stages also contain significant
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stress drops, confirming the consistency between the calculated results and the experimental
data. As for Stage 2⃝, the βt-value for the 0–1, 1–2, and 1–3 specimens are all near 1, while
the 0–2 specimen’s βt-value is greater than 1. This variation is related to the different AE
behaviors of the specimens.

Table 3. βt-value at different stages.

Specimen Stage t/s βt

0–1
1⃝ 800–1000 1.72
2⃝ 1000–1400 1.14
3⃝ 800–1400 1.95

0–2
1⃝ 0–50 0.98
2⃝ 50–61 1.76
3⃝ 0–61 1.07

1–2
1⃝ 0–380 1.32
2⃝ 380–840 0.97
3⃝ 0–840 1.59

1–3
1⃝ 0–105 2.27
2⃝ 105–500 1.16
3⃝ 0–540 1.4

For the 0–1, 1–2, and 1–3 specimens, damage continually intensifies after the first stress
drop, leading to a continuous generation of AE signals. In contrast, the 0–2 specimen only
produces signals at the moment of collapse after the initial stress drop.

According to Equation (11), it is evident that the value of βt-value is solely dependent
on time and the number of AE events. It reflects the relative rate of AE signal generation
concerning time. Within a specific time interval, if AE signals continue to be generated, and
considering signal amplitude, time is also continuously changing, resulting in a βt-value
approximately equal to 1. However, it is clear that during the initial loading stage of any
specimen, if there is a continuous generation of AE signals within a certain time period, the
calculation based on Equation (11) would also yield a βt-value close to 1. However, in this
stage, it is actually a stable state.

Therefore, the criterion for determining the instability of material damage and failure
based on βt-value is as follows:

• βt < 1: The specimen structure is in a stable state.
• βt ≈ 1: The specimen structure can be in both stable and unstable states.
• βt > 1: The specimen structure is in an unstable state.

3.5. The Relationship between b-Value, γ-Value, and βt-Value

From the above analysis, it is evident that the values of b, γ, and βt can all be used to
analyze the material’s damage process and assess whether the specimen is on the verge of
catastrophic collapse. This section explores the relationships among these three indicators.

The relationship between AE amplitude and PSD can be explained using Fourier
transformation. Fourier transformation converts a time-domain signal into a frequency-
domain signal, during which the temporal information of the signal is transformed into
frequency-domain information. PSD represents the energy magnitude at different signal
frequencies, with larger amplitudes typically corresponding to higher PSD. Additionally,
higher AE amplitudes are associated with a higher number of AE events. Assuming the
following relationship:

A ∝ PSD ∝
H

Hm
(12)
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Therefore, by performing equivalent substitutions based on Equations (4), (7) and (11),
we can derive the relationship between b and γ:

log10N(N ≥ M) = a − bk1(c + γ·log( f )), (13)

b =
a − log10N(N ≥ M)

k1(c + γ·log( f ))
. (14)

where k1 is the proportionality coefficient between A and PSD, and k1 is greater than 0.
Similarly, we can obtain the relationship between b and βt:

log10N(N ≥ M) = a − bk2

(
βtlog10

(
t

tmax

))
, (15)

b =
a − log10N(N ≥ M)

k2

(
βtlog10

(
t

tmax

)) (16)

where k2 is the proportionality coefficient between A and log10(H/Hmax), k2 is less than 0.
From Equations (13) to (16), it is evident that the b-value is inversely proportional to both
γ-value and βt-value. This is also consistent with the experimental results presented in
this paper.

3.6. Discussion

This paper analyzes the variations in the AE b-value and the characteristic parameter
γ-value using the flicker noise spectrum method during the process of rock failure under
uniaxial compression. Simultaneously, the study investigates the relationship between
the AE events and loading time on a time scale. By comparing with existing AE b-value,
the research emphasizes exploring the potential of γ and βt values as indicators for pre-
dicting dynamic hazards in rocks. These research findings provide a fresh perspective for
understanding the fracture and instability behavior of rocks, offering theoretical support
for predicting dynamic hazards in these materials. In this section, an analysis is conducted
on the relationships and disparities between the results of this study and existing research,
along with the reasons behind these disparities.

Descherevsky [28] and Moura [29] have observed interesting 1/f (γ = 1) scaling in the
power spectra of monitoring signals as they transition from a critical state to catastrophic
failure. The consistency of these findings with our study demonstrates relatively consistent
results across different research domains. However, it is worth noting that this paper also
found some other interesting phenomena. In this paper, when the catastrophic failure of
rock occurs, γ is not around 1.0 but exceeds 1.0, which seems to indicate that the failure
process of rock does not always satisfy the law of 1/f noise (γ = 1).

This is related to the window length used in calculating the γ-value. Similar to the
b-value, calculating the γ-value requires an appropriate window length. This is because the
γ-value reflects the relationship between the power spectrum of the signal over a certain
time interval and its frequency. If the time window is too small, the calculated results may
not effectively represent the frequency-domain characteristics of that time period. On the
other hand, if the time window is too large, it cannot accurately reflect the real-time damage
process of rocks during the loading process.

The proposed βt-value in this work can reflect the evolution of rock damage processes
over time scales. Previous research [30] suggested that the specimen is in a quasi-stable
state when the βt-value is 1. Interestingly, the findings of this study indicate that when the
βt-value is 1, the specimen is in a stable or quasi-stable state. This is because the βt-value is
closely associated with the number of AE events and the loading time. Even if the specimen
is in a stable state, there may be a phase where the AE amplitude is small, but the number
of AE events and time increase simultaneously, resulting in a βt-value of 1. In such cases,
the specimen is considered to be in a stable state.
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4. Conclusions

This paper conducted uniaxial compression tests on basalt rock and granite while
also collecting AE data throughout the entire loading process. Based on AE analysis, the
distribution patterns of b-value, γ-value, and βt-value during the rock-loading process
were investigated, and their relationships were explored. The main conclusions obtained
are as follows:

(1) AE b-value, γ-value, and βt-values monitored during the uniaxial compression process
of the rock can effectively reflect the evolution of rock damage. These three values
can be used to assess whether the rock is approaching catastrophic failure.

(2) There is a negative correlation between the b-value and the γ-value, as well as between
the b-value and the βt-value.

(3) The b-value, γ-value, and βt-value, as precursory indicators of rock instability and
catastrophic collapse, provide a theoretical and experimental foundation for the
prevention and control of dynamic hazards in deep mining.
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