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Abstract
In this paper we investigate some properties of the harmonic Bergman spaces Ap(σ ) on a
q-homogeneous tree, where q ≥ 2, 1 ≤ p < ∞, and σ is a finite measure on the tree with
radial decreasing density, hence nondoubling. These spaces were introduced by J. Cohen,
F. Colonna, M. Picardello and D. Singman. When p = 2 they are reproducing kernel Hilbert
spaces and we compute explicitely their reproducing kernel. We then study the boundedness
properties of the Bergman projector on L p(σ ) for 1 < p < ∞ and their weak type (1,1)
boundedness for radially exponentially decreasing measures on the tree. The weak type (1,1)
boundedness is a consequence of the fact that the Bergman kernel satisfies an appropriate
integral Hörmander’s condition.

Keywords Bergman spaces · Homogeneous trees · Bergman projectors ·
Calderón-Zygmund theory
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Introduction

The main focus of this paper is on the projectors associated to the harmonic Bergman spaces
on homogeneous trees introduced in [9]. The Bergman spaces Ap(σ ), 1 ≤ p < ∞, are
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in some ways the harmonic analogues of the classical holomorphic Bergman spaces on the
hyperbolic disk, whereby p-integrability is relative to the reference measure σ on the tree,
that is a finite measure with radial density with respect to the counting measure, and where
harmonicity is relative to the so-called combinatorial Laplacian. The analogy between the
hyperbolic disk and the homogeneous tree inspires many ideas behind our constructions
(see [6, 8]).

The space A2(σ ) is, as expected, a reproducing kernel Hilbert space (RKHS) and the
problem of understanding the associated projectors hinges on the explicit knowledge of the
kernel, an information that we derive by introducing a somewhat canonical basis for A2(σ ).
The core of this contribution is devoted to proving that, for a prototypical class of measures,
the extension of the Bergman projector is bounded on L p(σ ) if and only if p > 1, and is of
weak type (1,1). The results are thus almost faithful reformulations of those that hold true
for the holomorphic Bergman spaces on the hyperbolic disk [5, 15, 17, 20, 22], but many of
the key ingredients, first and foremost the explicit determination of the reproducing kernel,
call for a rather different approach.

Let X be a homogeneous tree. A function on the tree is said to be harmonic if the mean
of its values on the neighbors of any vertex coincides with the value at that vertex. J. Cohen,
F. Colonna, M. Picardello, and D. Singman introduce harmonic Bergman spaces on homo-
geneous trees in [9]. They consider a family of reference measures which consists of finite
measures that are absolutely continuous with respect to the counting measure and whose
Radon-Nikodym derivative σ is a radial strictly positive decreasing function on X . For every
1 ≤ p < ∞, the harmonic Bergman spaceAp(σ ) is the closed subspace of L p(σ ) consisting
of harmonic functions. The requirement for the measure σ to be finite is suggested by the fact
that the only harmonic function which is p-integrable with respect to the counting measure
is the null function.

In the context of the hyperbolic disk, when p = 2, the weighted Bergman spaces are
RKHS, and the holomorphic Bergman kernel is known as well as the properties of the
associated projector. Indeed, the extension of the holomorphic Bergman projector to the
weighted L p-spaces is bounded if and only if p > 1, see [17, 20, 22]. Furthermore, it is of
weak type (1, 1), see [5, 15]. In our work, first of all, we show that A2(σ ) is a RKHS for
every reference measure σ and we provide an explicit formula for the reproducing kernel
Kσ in Theorem 11. Since A2(σ ) is closed in L2(σ ), there exists an orthogonal projection
Pσ : L2(σ ) → A2(σ ).We prove that, for a particular class of referencemeasures, Pσ extends
to a bounded operator from L p(σ ) to Ap(σ ) if and only if p > 1. Moreover, we show that
Pσ is of weak type (1,1): to do so we use a Calderón-Zygmund decomposition of integrable
functions adapted to the measure σ . Notice that the measure σ is not doubling with respect to
the standard discrete metric on X , but it turns out to be doubling with respect to the so-called
Gromov metric (see Section 4). Hence a Calderón-Zygmund theory in this setting holds, and
we show that the Bergman kernel satisfies an integral Hörmander’s condition related to such
theory, so that it is of weak type (1,1).

The measures we focus on are exponentially decreasing radial measures, i.e. they are
exponentially decreasing with respect to the distance from o and can be viewed as natural
counterparts of the measures involved in the definition of the standard weighted holomorphic
Bergman spaces on the hyperbolic disk. The fact that the extension of the projector to the
weighted L p-spaces is bounded if and only if p > 1 follows from the fact that the projector
coincides with a particular Toepliz-type operator (see Section 3.4 in [22]).

In the spirit of the results of [3, 4] on the disk, one could investigate the boundedness of
the Bergman projectors for general reference measures. In [9–11], the authors introduce and
study the optimal measures, a subclass of the reference measures which, roughly speaking,
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Harmonic Bergman Projectors on Homogeneous Trees 155

decrease fast as the distance from the origin increases. The exponentially decreasing radial
measures are optimal in this sense. The study of the boundedness of the Bergman projector for
optimal measures is still work in progress. Another related question is whether the Calderón-
Zygmund theory that we develop here could be applied to other operators.

The paper is organized as follows. In the first section we recall the definition of the
harmonic Bergman spaces and, for every reference measure, we provide an orthonormal
basis of the Hilbert space A2(σ ). The basis plays a fundamental role in Section 2 in the
proof of the two formulae for the kernel of the RKHSA2(σ ): the first is a recursive formula,
while the second is the explicit formula of the kernel given in Theorem 11. In Section 3 we
focus on the exponentially decreasing radial measures and state two results characterizing the
boundedness of the extension of a class of Toeplitz-type operators inspired by the operators
considered in [22] (see Theorems 14 and 15). As a consequence, in Theorem 17 we show
that the extension of the harmonic Bergman projector to the weighted L p spaces is bounded
if and only if p > 1. The last section is devoted to the Calderón-Zygmund decomposition
of integrable functions (presented in Proposition 30), the formulation of the Hörmander’s
type condition, see Eq. 32, and the weak type (1,1) boundedness of the Bergman projectors
is obtained as byproduct.

In what follows, we shall use the symbol� (�, or�) between two quantities when the left
hand side is equal (smaller than or equal to, or greater than or equal to, respectively) to the
right hand side up to multiplication by a (fixed) positive constant. Furthermore we assume
the following convention on sums: the sum is null whenever the starting index is greater than
the final index. If Y ⊆ X , we denote by 1Y the characteristic function of Y . Finally, we adopt
the symbol � for disjoint unions and 	x
 for the largest integer less than or equal to x ∈ R.

1 Harmonic Bergman Spaces

1.1 Preliminaries on Homogeneous Trees

We present some preliminary notions and results on homogeneous trees; for more details we
refer to [7, 13, 14, 16].

A graph is a pair (X ,E), where X is the set of vertices and E is the family of unoriented
edges, where an edge is a two-element subset of X . If two vertices u, v in X are joined by
an edge, they are called adjacent and this is denoted by u ∼ v. A tree is an undirected,
connected, cycle-free graph. A q-homogeneous tree is a tree in which each vertex has exactly
q + 1 adjacent vertices. With slight abuse, we refer to the set of vertices X as the tree itself.
We fix an origin o ∈ X .

From now on we consider a q-homogeneous tree X with q ≥ 2. Given u, v ∈ X , with
u = v, we denote by [u, v] the unique ordered t-uple (x0 = u, x1, . . . , xt−1 = v) ∈ Xt ,
where {xi , xi+1} ∈ E and all the xi are distinct. We say that [u, v] is the path starting at u and
ending at v. With slight abuse of notation, if [u, v] = (x0, . . . , xt−1) we write xi ∈ [u, v],
i ∈ {0, . . . , t −1}. In particular, if u and v are adjacent, both [u, v], [v, u] ∈ X2 are oriented,
unlike the edge {u, v} ∈ E which is not. A homogeneous tree X carries a natural distance
d : X × X → N, where for every u, v ∈ X the distance d(u, v) is the minimal length of a
path joining u and v. If v ∈ X , then we denote by S(v, n) and B(v, n) the sphere and the
ball centered at v with radius n ∈ N, respectively, i.e.,

S(v, n) = {x ∈ X : d(v, x) = n} and B(v, n) = {x ∈ X : d(v, x) ≤ n}.
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156 F. D. Mari et al.

It is straightforward to check that

#S(v, n) =
{
1, n = 0,

(q + 1)qn−1, n = 0.
(1)

We call norm of a vertex v in X its distance from o, i.e. |v| = d(o, v). We say that a function
f on X is radial (with respect to o) if its value at a vertex x ∈ X depends only on |x |. If
v = o, then we define the sector of v as the subset

Tv := {x ∈ X : [o, v] ⊆ [o, x]},
and we adopt the convention To = X . Moreover, we call successors of v the elements of the
set s(v) = {u ∈ X : u ∼ v, |u| = |v| + 1}. Evidently,

#s(v) =
{
q, if v = o;
q + 1, if v = o.

For every v = o we call predecessor of v and denote it by p(v) the only neighbor of v which
is not a successor of v; it follows that |p(v)| = |v| − 1. The vertex o is the only one having
no predecessors, and s(o) = S(o, 1). This defines the predecessor function p : X \ {o} → X ,
and, for every positive integer �, its �-fold composition p� : X \ B(o, � − 1) → X is the �-th
predecessor function.

1.2 Harmonic Functions and Harmonic Bergman Spaces

Definition 1 Let f be a complex valued function on X . The combinatorial Laplacian of f
is defined by

L f (v) := f (v) − 1

q + 1

∑
u∼v

f (u), v ∈ X .

We say that f is harmonic on Y ⊆ X if L f = 0 on Y . Equivalently, f is harmonic on Y if

f (v) = 1

q + 1

∑
u∼v

f (u), v ∈ Y . (2)

We shall call a function harmonic if it is harmonic on X .

It is easy to prove that a function is harmonic if and only if for every v ∈ X and n ∈ N,
we have

f (v) = 1

#S(v, n)

∑
d(v,x)=n

f (x). (3)

The harmonicity property Eq. 2 implies a certain rigidity for the function. In particular,
the value of a harmonic function at a vertex y ∈ X “propagates” to every layer of the sector
Ty , as showed in the following proposition, which is a modified version of [9, Lemma 4.1].
In that lemma, the authors show that a function which is harmonic and radial on a sector Ty ,
y ∈ X \ {o}, is completely described by its values at y and p(y). We consider a harmonic
function on the sector Ty , removing the radiality assumption, and we formulate a result for
its average on S(o, n) ∩ Ty , n ≥ |y|. We omit the proof since it is an easy adaptation of the
proof of [9, Lemma 4.1].
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Harmonic Bergman Projectors on Homogeneous Trees 157

Proposition 2 Let y ∈ X \ {o}. If f : X → C is harmonic on Ty, then for every n ∈ N,
n ≥ |y|, we have

∑
|x |=n
x∈Ty

f (x) =
⎛
⎝n−|y|∑

j=0

q j

⎞
⎠ f (y) −

⎛
⎝n−|y|−1∑

j=0

q j

⎞
⎠ f (p(y)). (4)

Furthermore, if f : X → C is radial on Ty and satisfies Eq. 4 for every n ≥ |y|, then f is
harmonic on Ty.

We introduce a technique which allows to extend a function which is harmonic on a ball
centered in o to a function harmonic on X . Let n ∈ N and g be a function on X which is
harmonic on B(o, n). It is easy to see that there are infinitely many ways to extend g to a
harmonic function on X which coincides with g on B(o, n + 1). As we see next, there is
however a unique harmonic function gHn on X which is radial when restricted on Ty for every
y ∈ S(o, n + 1).

Let x ∈ X \ B(o, n). There exists a unique y ∈ S(o, n + 1) such that x ∈ Ty , and
y = p|x |−n−1(x) (where p0 = idX ). Since we aim to construct gHn radial and harmonic on
Ty , by Proposition 2 we have that

gHn (x) = 1

#S(o, |x |) ∩ Ty

∑
|z|=|x |,
z∈Ty

gHn (z)

= q |y|−|x |
⎡
⎣
⎛
⎝|x |−|y|∑

j=0

q j

⎞
⎠ g(y) −

⎛
⎝|x |−|y|−1∑

j=0

q j

⎞
⎠ g(p(y))

⎤
⎦

= qn+1−|x |
⎡
⎣
⎛
⎝|x |−n−1∑

j=0

q j

⎞
⎠ g(p|x |−n−1(x)) −

⎛
⎝|x |−n−2∑

j=0

q j

⎞
⎠ g(p|x |−n(x))

⎤
⎦

=
⎛
⎝|x |−n−1∑

j=0

q− j

⎞
⎠ g(p|x |−n−1(x)) −

⎛
⎝|x |−n−1∑

j=1

q− j

⎞
⎠ g(p|x |−n(x)).

For simplicity we introduce the notation

an =
n∑
j=0

q− j = q − q−n

q − 1
, n ∈ N,

and we set a−1 = 0. Hence

gHn (x) =
{
g(x), |x | ≤ n,

a|x |−n−1g(p|x |−n−1(x)) − (a|x |−n−1 − 1
)
g(p|x |−n(x)), |x | > n.

(5)

The function gHn defined above is harmonic on X by Proposition 2 and because

X = B(o, n) ∪
⋃

y∈S(o,n+1)

Ty .

Observe that gHn is indeed harmonic on B(o, n) because a0 = 1 and a−1 = 0, yield gHn = g
on B(o, n + 1), and not only on B(o, n). Furthermore, the extension gHn is radial on every
sector “starting” from a point in S(o, n + 1) by construction (Fig. 1).
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158 F. D. Mari et al.

Fig. 1 The function g is harmonic on B(o, 2), that is the set of vertices in the blue area. The function gH2
is obtained by extending the values of g in S(o, 3) (the green area) along sectors in such a way that gH2 is
harmonic on X and constant on the vertices lying on the same red arc, that is on the “layers” of the sectors

1.3 Harmonic Bergman spaces

Homogeneous trees are classically endowed with the counting measure. The main feature
of such measure is the invariance under the group of isometries of the tree. When studying
spaces of harmonic functions, this measure is however inadequate because the only harmonic
function that is p-summable, 1 ≤ p < ∞, with respect to the counting measure is the null
function, as we show in the following statement.

Proposition 3 If f is a harmonic function in L p(X), 1 ≤ p < ∞, then f is the null function.

Proof Suppose that f is harmonic. We have that

∑
x∈X

| f (x)|p =
+∞∑
n=0

∑
|x |=n

| f (x)|p

= 1

(q + 1)p

+∞∑
n=0

∑
|x |=n

∣∣∣∣∣
∑
y∼x

f (y)

∣∣∣∣∣
p

≤ (q + 1)p−1

(q + 1)p

+∞∑
n=0

∑
|x |=n

∑
y∼x

| f (y)|p

= 1

q + 1
(q + 1)‖ f ‖p

L p(X) = ‖ f ‖p
L p(X) < +∞,
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since every vertex is neighbor of exactly q + 1 other vertices. Hence the unique inequality
in the computation above is an equality, so that

(q + 1)p−1
∑
y∼x

| f (y)|p =
∣∣∣∣∣
∑
y∼x

f (y)

∣∣∣∣∣
p

= (q + 1)p| f (x)|p,

which means that | f |p is harmonic, too. If f is not the null function, then there exists v ∈ X
such that f (v) = 0. Hence by Eq. 3, we have

∑
x∈X

| f (x)|p =
+∞∑
n=0

∑
d(v,x)=n

| f (x)|p = | f (v)|p
+∞∑
n=0

#S(v, n) = +∞,

which is a contradiction. Hence f = 0. ��
Sincewe are interested in Bergman spaces of harmonic functions, the previous proposition

leads to consider finitemeasures on X . In [9], the authors introduce harmonicBergman spaces
with respect to the following class of measures.

Definition 4 A reference measure on X is a finite measure that is absolutely continuous with
respect to the counting measure and whose Radon-Nikodym derivative σ is a radial strictly
positive decreasing function on X . With slight abuse of notation we denote by σ the reference
measure, too. Given a reference measure σ on X for every p ∈ [1,∞) the Bergman space
Ap(σ ) is the space of harmonic functions on X such that

‖ f ‖p
Ap(σ ) :=

∑
x∈X

| f (x)|pσ(x) < +∞.

Every Bergman space Ap(σ ) is a Banach space and when p = 2, it is a Hilbert space
with the scalar product

〈 f , g〉A2(σ ) :=
∑
x∈X

f (x)g(x)σ (x), f , g ∈ A2(σ ). (6)

If σ is a reference measure on X , and if we denote by σn the value of σ on the sphere
S(0, n), and by Bσ the total mass of σ , then by Eq. 1 its value is

Bσ = σ0 + q + 1

q

+∞∑
n=1

σnq
n < +∞.

Example 5 Let α > 1. Interesting examples of reference measures are the exponentially
decreasing radial measures, consisting of the measures having density

μα(x) = q−α|x |, x ∈ X .

Indeed, μα is radial, positive and decreasing. Furthermore, we write Bα in place of Bμα ,
namely

Bα = 1 + q + 1

q

+∞∑
n=1

q(1−α)n = 1 + q + 1

q

q1−α

1 − q1−α
= qα + 1

qα − q
< +∞. (7)

Proposition 6 For every reference measure σ the measure metric space (X , d, σ ) is nondou-
bling.
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Proof Let σ be a reference measure. For every n ∈ N, let vn ∈ X be such that |vn | = 2n.
Then max{σ(x) : x ∈ B(vn, n)} = σn and so

σ(B(vn, n)) =
∑

x∈B(vn ,n)

σ (x) ≤ σn |B(vn, n)| � qnσn .

On the other hand, since o ∈ B(vn, 2n), we have

σ(B(vn, 2n))

σ (B(vn, n))
� σ(o)

qnσn

n→∞−−−→ ∞,

by the finiteness of σ . This concludes the proof. ��
Given a referencemeasureσ ,we introduce the decreasing sequence (bn)n∈Nwhich collects

some important information on σ . For every n ∈ N, we define

bn = bn(σ ) =
+∞∑

m=n+1

[
σmam−n−1

(
m−n−1∑
k=0

qk
)]

. (8)

The sums are finite because σ is a finite measure on X . We shall use the notation bn instead
of bn(σ ) whenever the measure is clear from the context.

The next lemma is a technical result that is very useful in what follows.

Lemma 7 Let n ∈ N and g be a function on X which is harmonic and vanishes on B(o, n).
Then there exists a constant b′

n > 0 such that for every f ∈ A2(σ )

〈 f , gHn 〉A2(σ ) =
∑

|y|=n+1

(
bn f (y) − b′

n f (p(y))
)
g(y),

where bn is defined in Eq. 8 and 〈·, ·〉A2(σ ) in Eq. 6.

Remark 8 The constant b′
n has a structure similar to that of bn , as can be seen in the proof

below, but we are not interested in it.

Proof Observe that, from the fact that g|B(o,n) = 0 andEq. 5, for every x ∈ X with |x | > nwe
have gHn (x) = a|x |−n−1g(p|x |−n−1(x)). Take f ∈ A2(σ ). Then, by applying Proposition 2
to f , we have

〈 f ,gHn 〉A2(σ ) =
+∞∑

m=n+1

σm
∑

|x |=m

f (x)gHn (x)

=
+∞∑

m=n+1

σm
∑

|y|=n+1

∑
|x |=m
x∈Ty

f (x)a|x |−n−1g(p|x |−n−1(x))

=
∑

|y|=n+1

g(y)
+∞∑

m=n+1

σmam−n−1

∑
|x |=m
x∈Ty

f (x)

=
∑

|y|=n+1

g(y)
+∞∑

m=n+1

σmam−n−1

[(
m−n−1∑
k=0

qk
)

f (y) −
(
m−n−2∑
k=0

qk
)

f (p(y))

]

=
∑

|y|=n+1

(
bn f (y) − b′

n f (p(y))
)
g(y),

as required. ��
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1.4 A Canonical Orthonormal Basis ofA2(�)

The goal of this section is the construction of an orthonormal basis of the space A2(σ ).
Let us consider the linear spaces

Wv := {ϕ : s(v) → C :
∑
z∈s(v)

ϕ(z) = 0
} � C

|s(v)|−1 =
{

C
q , v = o,

C
q−1, v ∈ X \ {o}.

For every v ∈ X we set Iv = {1, . . . , |s(v)| − 1}. For every v ∈ X we fix an orthonormal
basis {ev, j } j∈Iv of Wv with respect to to the scalar product

〈ϕ,ψ〉Wv =
∑
y∈s(v)

ϕ(y)ψ(y).

Let v ∈ X and j ∈ Iv . We consider the extension by zero to all of X of ev, j , namely,

Ev, j (x) =
{
ev, j (x), x ∈ s(v);
0, x /∈ s(v).

It is immediate to see that Ev, j is harmonic on B(o, |v|) and vanishes on B(o, |v|). We denote
the harmonic extension of Ev, j by fv, j = (Ev, j )

H|v|, namely

fv, j (x) =
{
0, if x /∈ Tv \ {v},
a|x |−|v|−1Ev, j (p|x |−|v|−1(x)), otherwise.

(9)

Hence fv, j is harmonic for every v ∈ X and j ∈ Iv . Furthermore fv, j is bounded, since for
every x ∈ X

| fv, j (x)| ≤ (1 − q−1)−1‖ev, j‖∞.

Hence fv, j ∈ A2(σ ) for every reference measure σ . Notice that, upon setting f0(x) ≡ 1, the
family

B = { f0} ∪ { fv, j : v ∈ X , j ∈ Iv} ⊆ A2(σ )

is independent of the choice of the reference measure σ .

Proposition 9 The family B is a complete orthogonal system in A2(σ ) for every reference
measure σ .

Proof Fix a reference measure σ . The fact that f0 is orthogonal to every other function of
the family follows from the harmonicity of fv, j and Eq. 3. Indeed

〈 fv, j , f0〉A2(σ ) =
∑
x∈X

fv, j (x)σ (x) =
+∞∑
n=0

σn
∑
|x |=n

fv, j (x) = 0.

Let us consider v, w ∈ X with v = w. Without loss of generality we may consider two
situations: either Tv ∩ Tw = ∅ or Tv � Tw. In the first case fv, j ⊥ fw,k for every j ∈ Iv and
k ∈ Iw , because their supports are disjoint. If Tv � Tw , then we can suppose that |w| < |v|.
Since fv, j |B(o,|w|+1) = 0, from Lemma 7 we have

〈 fv, j , fw,k〉A2(σ ) =
∑

|y|=|w|+1

(b|w| fv, j (y) − b′|w| fv, j (p(y)))Ew,k(y) = 0.
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162 F. D. Mari et al.

It remains to prove the orthogonality in the case v = w. Let j, k ∈ Iv be such that j = k.
We know that fv,k |B(o,|v|) = 0, so that by Lemma 7

〈 fv, j , fv,k〉A2(σ ) = b|v|
∑

|y|=|v|+1

Ev, j (y)Ev,k(y) = b|v|
∑
y∈s(v)

ev, j (y)ev,k(y) = 0,

where we used the fact that supp(Ev,k), supp(Ev, j ) ⊆ s(v) and the orthogonality of ev, j and
ev,k in Wv .

We now show that B is complete. Take g ∈ A2(σ ) such that 〈g, f 〉A2(σ ) = 0 for every
f ∈ B. We show that g is the null function in A2(σ ). In particular we prove by induction
that g = 0 on every B(o,m), m ∈ N.
We start by observing that 〈g, f0〉A2(σ ) = 0 implies g(o) = 0. Indeed by Eq. 3

0 = 〈g, f0〉A2(σ ) =
+∞∑
n=0

σn
∑
|x |=n

g(x) =
(
1 + q + 1

q

+∞∑
n=1

qnσn

)
g(o) = Bσ g(o). (10)

We assume now g = 0 on B(o,m) for some m ∈ N. Let v ∈ S(o,m). Observe that since g
is harmonic and g(v) = 0, we have g|s(v) ∈ Wv . Hence for every j ∈ Iv

0 = 〈g, fv, j 〉A2(σ ) = bm
∑
y∈s(v)

ev, j (y)g(y) (11)

and this implies that g(y) = 0 for every y ∈ s(v) and so for every y ∈ S(o,m + 1), namely
g vanishes on B(o,m + 1). The fact that g ≡ 0 follows by induction. ��

We now fix a reference measure σ and compute the norm of functions of the family B in
A2(σ ). Evidently, ‖ f0‖2A2(σ )

= Bσ . Let v ∈ X and j ∈ Iv . By Eq. 11, we have

‖ fv, j‖2A2(σ )
= 〈 fv, j , fv, j 〉A2(σ ) = b|v|

∑
y∈s(v)

ev, j (y)ev, j (y) = b|v|. (12)

Hence the norm of fv, j does not depend on j and coincides with the constant in Eq. 8. Hence

Bσ = {B− 1
2

σ f0} ∪ {b− 1
2|v| fv, j : v ∈ X , j ∈ Iv} (13)

is an orthonormal basis of A2(σ ).

2 The reproducing kernel ofA2(�)

In this section we fix a reference measure σ . We show that the Bergman space A2(σ ) is a
RKHS and we first obtain a recursive formula for the kernel and we then derive a formula in
closed form. Observe that the main ingredient used in the proofs are the harmonic extension
and the orthonormal basis defined in the previous section together with the fact that Wv are
reproducing kernel Hilbert spaces, too.

Let z ∈ X . We consider the evaluation functional �z : A2(σ ) → C defined by �zg =
g(z). Observe that �z is a bounded operator. Indeed by the Cauchy-Schwarz inequality

|�zg|2 = |g(z)|2 ≤ 1

σ(z)

∑
x∈X

|g(x)|2σ(x) = ‖g‖22
σ(z)

.
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Thus A2(σ ) is a RKHS, that is for every z ∈ X there exists Kz ∈ A2(σ ) such that

〈g, Kz〉A2(σ ) = g(z), g ∈ A2(σ ).

Let K : X × X → C be the kernel defined by K (z, x) := Kz(x).
Since Bσ defined in Eq. 13 is an orthonormal basis of A2

σ , for every z ∈ X we can write

Kz =
∑
f ∈Bσ

〈Kz, f 〉A2(σ ) f =
∑
f ∈Bσ

f (z) f = 1

Bσ

+
∑
v∈X

∑
j∈Iv

fv, j (z) fv, j

b|v|
. (14)

We recall that by Eq. 9, for every z ∈ X

{v ∈ X : fv, j (z) = 0 for some j ∈ Iv} =
{

∅, ifv = o;
[o, p(z)], ifv = o.

Hence for every z ∈ X the sum in Eq. 14 is finite and the decomposition of Kz holds true
pointwise.

Our goal is to compute Kz . To this end, we introduce the auxiliary function � : X ×
X × X → R which is a parametrization of the family of reproducing kernels for the spaces
{Wv}v∈X . For every (v, z, x) ∈ X × X × X we set

�(v, z, x) =

⎧⎪⎨
⎪⎩
0, if {z, x} � Tv \ {v};
#s(v)−1
#s(v)

, if{z, x} ⊆ Ty for some y ∈ s(v);
− 1

#s(v)
, otherwise.

Observe that � is symmetric in the second and third variables. Furthermore, �(v, z, ·) is the
null function if z /∈ Tv \ {v} and whenever z ∈ Tv \ {v} we have supp(�(v, z, ·)) = Tv \ {v}.
Moreover, the values of �(v, z, ·) on Tv \ {v} are completely determined by the values on
s(v), as the value of �(v, z, ·) at x ∈ Tv \ {v} is equal to the value at p|x |−|v|−1(x) ∈ s(v)

(see Fig. 2).
We now show that �(v, ·, ·) is the reproducing kernel of Wv , namely that for z ∈ s(v) we

have
ϕ(z) = 〈ϕ, �(v, z, ·)〉Wv , ϕ ∈ Wv.

First of all �(v, z, ·) ∈ Wv because∑
y∈s(v)

�(v, z, y) = −(#s(v) − 1)
1

#s(v)
+ #s(v) − 1

#s(v)
= 0.

Fig. 2 Partial representation of the function �(v, z, ·) on Tv . The value of �(v, z, ·) at the vertices in the red
area is #s(v)−1

#s(v)
, while in the blue area is − 1

#s(v)
. Clearly, �(v, z, v) = 0
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Furthermore,

〈ϕ, �(v, z, ·)〉Wv = #s(v) − 1

#s(v)
ϕ(z) − 1

#s(v)

∑
y∈s(v)
y =z

ϕ(y)

= #s(v) − 1

#s(v)
ϕ(z) + 1

#s(v)
ϕ(z) = ϕ(z),

because ϕ ∈ Wv .
It is easy to see that�(v, z, ·) is harmonic on B(o, |v|) so thatwe can consider the harmonic

extension (�(v, z, ·))H|v|, which is bounded by construction. Indeed from the definition of
harmonic extension we have for every x ∈ Tv \ {v}

(�(v, z, ·))H|v|(x) =
⎛
⎝|x |−|v|−1∑

j=0

q− j

⎞
⎠�(v, z, p|x |−|v|−1(x)) = a|x |−|v|−1�(v, z, x), (15)

and it vanishes elsewhere. We recall that if z /∈ Tv , then �(v, z, ·) = (�(v, z, ·))H|v| is the null
function.

Proposition 10 Let z ∈ X and [o, z] = {vt }|z|t=0. The kernel Kz is

Kz =

⎧⎪⎨
⎪⎩

1
Bσ

, if z = o,

Ko + 1
b0

(�(o, z, ·))H0 , if |z| = 1,

− 1
q Kvm−2 + q+1

q Kvm−1 + 1
bm−1

(�(vm−1, z, ·))Hm−1, if |z| = m > 1.

Proof Since the measure σ is finite and the constant functions are harmonic, Ko = 1
Bσ

∈
A2(σ ). The reproducing property follows from the computations in Eq. 10. Now we observe
that for every v, z ∈ X such that z ∈ Tv and g ∈ A2(σ ), by Lemma 7 and supp(�(v, z, ·)) =
Tv \ {v}, we have

〈g, (�(v, z, ·))H|v|〉A2(σ ) =
∑

|y|=|v|+1

(b|v|g(y) − b′|v|g(p(y)))�(v, z, y)

= b|v|
∑
y∈s(v)

g(y)�(v, z, y) − b′|v|g(v)
∑
y∈s(v)

�(v, z, y)

= b|v|
∑
y∈s(v)

g(y)�(v, z, y), (16)

where we used �(v, z, ·)|s(v) ∈ Wv .
We now consider the case when |z| = 1. The function Kz ∈ A2(σ ) because it is sum of
functions in A2(σ ). We prove the reproducing property. For g ∈ A2(σ ), by the reproducing
formula of Ko and Eq. 16 with v = o,

〈g, Kz〉A2(σ ) = g(o) + 1

b0
〈g, (�(o, z, ·))H0 〉A2(σ )

= g(o) +
∑
|y|=1

g(y)�(o, z, y)

= g(o) + q

q + 1
g(z) − 1

q + 1

∑
|y|=1
y =z

g(y) = g(z),
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where we used that g is harmonic at o.
It remains to consider the case when |z| = m > 1. We have Kz ∈ A2(σ ) since it is the
sum of bounded and harmonic functions. For g ∈ A2(σ ) by induction on m and Eq. 16 with
v = vm−1 we have

〈g, Kz〉A2(σ ) = − 1

q
g(vm−2) + q + 1

q
g(vm−1) + 1

bm−1
〈g, (�(vm−1, z, ·))Hm−1〉A2(σ )

= − 1

q
g(vm−2) + q + 1

q
g(vm−1) +

∑
y∈s(vm−1)

�(vm−1, z, y)g(y)

= − 1

q
g(vm−2) + 1

q

∑
y∼vm−1

g(y) + q − 1

q
g(z) − 1

q

∑
y∈s(vm−1)

y =z

g(y) = g(z),

where we used the fact that g is harmonic at vm−1. ��
In Proposition 10 the kernel Kz is expressed through a two-step recursive formula. We

want to find an explicit formula for Kz .

Theorem 11 For every (z, x) ∈ X × X

K (z, x) = 1

Bσ

+ q2

(q − 1)2
∑
v∈X

1

b|v|
�(v, z, x)(1 − q |v|−|z|)(1 − q |v|−|x |). (17)

Proof Let z ∈ X and [o, z] = {vt }|z|t=0. We start by proving that

Kz(x) = 1

Bσ

+
|z|−1∑
t=0

a|z|−t−1
1

bt
(�(vt , vt+1, x))

H
t , x ∈ X . (18)

The case z = o follows trivially from Proposition 10 and the convention on sums stated in
the Introduction. We prove Eq. 18 by induction on m = |z| ≥ 1. The case m = 1 directly
follows from Proposition 10, too. Let m ∈ N, m > 1 and z ∈ X , with |z| = m, and suppose
that Eq. 18 holds for every vertex in B(o,m − 1). Hence by Proposition 10 we have

Kz = − 1

q
Kvm−2 + q + 1

q
Kvm−1 + 1

bm−1
(�(vm−1, z, ·))Hm−1

= − 1

q

[
1

Bσ

+
m−3∑
t=0

am−t−3
1

bt
(�(vt , vt+1, ·))Ht

]

+ q + 1

q

[
1

Bσ

+
m−2∑
t=0

am−t−2
1

bt
(�(vt , vt+1, ·))Ht

]
+ 1

bm−1
(�(vm−1, z, ·))Hm−1

= 1

Bσ

+
m−2∑
t=0

(
q + 1

q
am−t−2 − 1

q
am−t−3

)
1

bt
(�(vt , vt+1, ·))Ht

+ 1

bm−1
(�(vm−1, z, ·))Hm−1

= 1

Bσ

+
m−1∑
t=0

am−t−1
1

bt
(�(vt , vt+1, ·))Ht ,
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where we used (q + 1)an−1 − an−2 = qan . Hence we proved Eq. 18 by induction. Since
supp((�(vt , vt+1, ·))Ht ) = Tvt \ {vt }, we have that the t-th term of the sum in Eq. 18 does not
vanish if and only if x ∈ Tvt \ {vt }, that is when vt ∈ [o, x], and hence by Eq. 15, we have

K (z, x) = 1

Bσ

+
∑
v∈X

1

b|v|
a|z|−|v|−1a|x |−|v|−1�(v, z, x)

= 1

Bσ

+ q2

(q − 1)2
∑
v∈X

1

b|v|
(1 − q |v|−|z|)(1 − q |v|−|x |)�(v, z, x).

��

Remark 12 The confluent of two vertices z, x ∈ X is the common vertex of [o, x] and [o, z]
farthest from o, denoted by z ∧ x . It is possible to see that the value of the kernel K at
(z, x) ∈ X × X depends only on the values of |x |, |z| and |z ∧ x |. Indeed, from Eq. 17 and
the fact that �(v, z, x) does not vanish if and only if v ∈ [o, z] ∩ [o, x] = [o, z∧ x], we have

Kz(x) = 1

Bσ

+ q2

(q − 1)2

|z∧x |∑
t=0

1

bt
a|z|−t−1a|x |−t−1(1 − qt−|z|)(1 − qt−|x |)

= 1

Bσ

+ q2

(q − 1)2

|z∧x |∑
t=0

1

bt
�(vt , z, x)(1 − qt−|z|)(1 − qt−|x |),

(19)

where {vt }|z|t=0 = [o, z]. Furthermore, it is clear that K is symmetric, that is K (z, x) =
K (x, z).

In the following sectionswe restrict our attention to the family of the exponentially decreas-
ing radial measures μα , α > 1, defined in Example 5.

We shall use the notation L p
α and Ap

α for the Lebesgue and Bergman spaces with respect
to μα , respectively. Furthermore, we denote by Kα : X × X → R the reproducing kernel of
A2

α . It will be useful to keep track of the weight in the constants introduced in Eq. 8, so we
denote them by bα,n . In particular observe that in this case there is a relation between the
constants: for every n ∈ N

bα,n =
+∞∑

m=n+1

⎡
⎣q−αm

(
m−n−1∑
k=0

qk
)⎛⎝m−n−1∑

j=0

q− j

⎞
⎠
⎤
⎦

=
+∞∑
�=1

⎡
⎣q−α(�+n)

(
�−1∑
k=0

qk
)⎛
⎝�−1∑

j=0

q− j

⎞
⎠
⎤
⎦ = q−αnbα,0.

(20)

Furthermore we set Bα = μα(X).
Now we show that the kernel Kα satisfies an integral condition which will be formalized

in Section 4, see Eq. 32.

Proposition 13 The following holds

sup
v∈X\{o}

sup
x,y∈Tv

∑
z∈X\Tv

|Kα(z, x) − Kα(z, y)|q−α|z| < +∞. (21)
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Proof Let v ∈ X \ {o}. We start by proving that Eq. 21 holds for y = v. Consider x ∈ Tv

and observe that if z ∈ X \ Tv , then z ∧ x = z ∧ v and �(u, z, x) = �(u, z, v) for every
u ∈ [o, z ∧ v]. Hence, if we put [o, z ∧ v] = {ut }|z∧v|

t=0 , then from Eq. 19 we have

Kα(z, x) − Kα(z, v) = q2bα,0

(q − 1)2

|z∧v|∑
t=0

qαt�(ut , z, v)(1 − qt−|z|)(qt−|v| − qt−|x |)

= q2bα,0

(q − 1)2

|z∧v|∑
t=0

q(1+α)t�(ut , z, v)(1 − qt−|z|)(q−|v| − q−|x |).

Then, since |�(ut , z, v)| < 1 and 0 < q−|v| − q−|x | ≤ q−|v|, we have

∑
z∈X\Tv

|Kα(z, x) − Kα(z, v)|q−α|z| �
∑

z∈X\Tv

|z∧v|∑
t=0

q(1+α)t q−|v|q−α|z|.

Observe that, since z ∈ X \ Tv , then |z ∧ v| ∈ {0, . . . , |v| − 1}. Then, for every � ∈
{0, . . . , |v| − 1}, we put

Y� = {z ∈ X : |z ∧ v| = �} = Tu�
\ Tu�+1 .

Since μα is radial,

μα(Y�) = μα(u�) + (#s(u�) − 1)μα(Tu�+1) =
{ 1

1−q1−α , if � = 0;
q−α� 1−q−α

1−q1−α , if 1 ≤ � < |v|.
Hence we have that

∑
z∈X\Tv

|Kα(z, x) − Kα(z, v)|q−α|z| �
|v|−1∑
�=0

q(1+α)�q−|v|∑
z∈Y�

q−α|z|

�
|v|−1∑
�=0

q(1+α)�q−|v|q−α�

�
|v|−1∑
�=0

q�−|v| ≤ q

q − 1
.

Finally, by the triangular inequality we have Eq. 21 for every y ∈ Tv . ��

3 Boundedness of the Bergman projector on Lp˛

In this section we study the boundedness properties of the extension of the Bergman projector
to L p

α spaces. For the class of exponentially decreasing radial measures we are able to prove
that the extension of the Bergman projector to the relative weighted L p-space is bounded if
and only if p > 1 (see Theorem 17).

In analogy with the operators studied by Zhu in Section 3.4 of [22], we introduce two
families of operators. For any real parameters a, b and for c > 1, we define the integral
operators

Sa,b,c f (z) = q−a|z|∑
x∈X

|Kc(z, x)| f (x)q−b|x |,
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Ta,b,c f (z) = q−a|z|∑
x∈X

Kc(z, x) f (x)q
−b|x |.

We prove two results that imply the boundedness properties of the Bergman projectors.
Theorem 14 is devoted to the study of the boundedness of Sa,b,c and Ta,b,c on weighted
L p-spaces for p > 1; the case p = 1 needs different arguments and for this reason is treated
apart in Theorem 15. The two theorems are the analogues of Theorem 3.11 and Theorem 3.12
in [22], respectively. The proofs of both theorems are postponed to Section 3.1.

Theorem 14 Let α > 1, c > 1 and 1 < p < ∞. The following conditions are equivalent:

(i) the operator Sa,b,c is bounded on L p
α ;

(ii) the operator Ta,b,c is bounded on L p
α ;

(iii) the parameters satisfy

c ≤ a + b, −pa < α − 1 < p (b − 1) .

Theorem 15 Let α > 1 and c > 1. The following conditions are equivalent:

(i) the operator Sa,b,c is bounded on L1
α;

(ii) the operator Ta,b,c is bounded on L1
α;

(iii) the parameters either satisfy

c = a + b, −a < α − 1 < b − 1,

or satisfy
c < a + b, −a < α − 1 ≤ b − 1.

We state a corollary which is simply a reformulation of the previous theorems when
c = a + b.

Corollary 16 Let 1 ≤ p < ∞ and α > 1. If a, b ∈ R are such that a + b > 1, then the
following conditions are equivalent:

(i) the operator Sa,b,a+b is bounded on L p
α ;

(ii) the operator Ta,b,a+b is bounded on L p
α ;

(iii) the parameters satisfy
−pa < α − 1 < p (b − 1) .

Let β > 1. Since A2
β is a closed subspace of L2

β , there exists an orthogonal projection

Pβ : L2
β → A2

β . Observe that by the reproducing property of Kβ,z = Kβ(z, ·), z ∈ X , we

can write the projection Pβ f of f ∈ L2
β as follows

Pβ f (z) = 〈Pβ f , Kβ,z〉A2
β

= 〈 f , PβKβ,z〉L2
β

= 〈 f , Kβ,z〉L2
β
,

where we used the orthogonality of Pβ . Hence we can rewrite Pβ as the integral operator on
L2

β associated to the reproducing kernel Kβ , that is

Pβ f (z) =
∑
x∈X

Kβ(z, x) f (x)q−β|x |, f ∈ L2
β, z ∈ X .

Since μβ is finite, L p
β ⊆ L2

β whenever p ≥ 2. It is then natural to investigate whether the

restriction of Pβ to L p
β is bounded. Furthermore, when 1 ≤ p < 2 one has L2

β � L p
β and we

shall study whether Pβ admits a bounded extension to L p
β . A more general question that we
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want to answer is whether the integral operator Kα
β , α > 1, with kernel Kβ(z, x)q(α−β)|x |

with respect to the measure μα , that is

Kα
β f (z) =

∑
x∈X

Kβ(z, x) f (x)q(α−β)|x |q−α|x |, f ∈ L p
α ∩ L2

β, z ∈ X , (22)

extends to a bounded operator from L p
α to Ap

α . The following result answers the above
questions.

Theorem 17 Let 1 ≤ p < ∞, α, β > 1. The operator Kα
β extends to a bounded operator

from L p
α to Ap

α if and only if
p (β − 1) > α − 1.

In particular, Pα is bounded on L p
α if and only if p > 1.

Proof It is sufficient to observe that from Eq. 22,Kα
β = T0,β,β on L p

α ∩ L2
β . Hence, the result

follows from Corollary 16. ��
Remark 18 It is worthwhile observing that the unboundedness of Pα on L1

α may be seen
directly with the following example. We make use of Lemma 23 that will be proved in the
next subsection.
For every n ∈ N, we fix a vertex vn in S(o, n), and define

fn(x) = 1{vn}(x)qα|x |, x ∈ X .

Clearly, ‖ fn‖L1
α

= 1 and fn ∈ L2
α . Hence, Pα fn(z) = Kα(z, vn) and by Lemma 23

‖Pα fn‖L1
α

=
∑
z∈X

|Kα(z, vn)|q−α|z| � |vn | = n.

This shows that Pα does not admit a bounded extension to L1
α .

As a direct application of Theorem 17, we deduce the following result on the dual of
Bergman spaces.

Corollary 19 Let 1 < p < ∞ and α > 1. Then

(Ap
α)∗ = Ap′

α ,

where 1 < p′ < ∞ is such that 1
p + 1

p′ = 1, with equivalent norms under the pairing

〈 f , g〉Ap
α×Ap′

α
=
∑
z∈X

f (z)g(z)q−α|z| f ∈ Ap
α, g ∈ Ap′

α . (23)

Proof Let g ∈ Ap′
α . By Hölder inequality we have that

|〈 f , g〉Ap
α×Ap′

α
| ≤ ‖g‖Ap′

α
‖ f ‖Ap

α
,

for every f ∈ Ap
α so that g defines a functional in (Ap

α)∗. Conversely, for � ∈ (Ap
α)∗, by

the Hahn-Banach theorem, there exists �̃ ∈ (L p
α)∗ such that �̃|Ap

α
= � and ‖�‖(Ap

α )∗ ≥
‖�̃‖(L p

α )∗ . Then, there exists h ∈ L p′
α such that

�( f ) = �̃( f ) = 〈 f , h〉
L p

α×L p′
α

,
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for every f ∈ Ap
α . By the orthogonality of Pα and Theorem 17,

�( f ) = 〈Pα f , Pαh〉Ap
α×Ap′

α
= 〈 f , Pαh〉Ap

α×Ap′
α

.

Hence � corresponds to Pαh ∈ A2
α under the pairing Eq. 23. ��

3.1 Proofs of Theorems 14 and 15

This subsection is devoted to the proofs of Theorems 14 and 15, splitting them up in various
steps. In both statements it is obvious that (i) implies (ii). For the rest of the section α, a, b, c
denote real parameters with c > 1.

3.1.1 Proof that (ii) implies (iii)

In this subsection we suppose that the operator Ta,b,c is bounded on L p
α and we deduce

necessary conditions on the parameters a, b, c, α.

Proposition 20 Let 1 ≤ p < ∞. If Ta,b,c f ∈ L p
α for every f ∈ L p

α , then −pa < α − 1.

Proof Consider, for x ∈ X , f (x) = q−R|x | with R ∈ R such that

R > max

{
1 − α

p
, 1 − b

}
.

Since Rp > 1 − α we have that f ∈ L p
α and for every z ∈ X

Ta,b,c f (z) = q−a|z|∑
x∈X

Kc(z, x)q
−(b+R)|x |

= q−a|z|
+∞∑
n=0

q−(b+R)n
∑
|x |=n

Kc(z, x)

= q−a|z|
+∞∑
n=0

q−(b+R)n#S(o, n)Kc(z, o)

by Eq. 3 applied to the harmonic function Kc(z, · ). Hence, since R > 1 − b,

Ta,b,c f (z) = q−a|z| 1

Bc

[
1 + q + 1

q

+∞∑
n=1

q(−b−R+1)n

]
= Bb+R

Bc
q−a|z|, z ∈ X .

Now observe that Ta,b,c f ∈ L p
α implies

∑
z∈X

q−(ap+α)|z| = 1 + q + 1

q

+∞∑
n=1

q(1−ap−α)n < +∞,

which holds if and only if −pa < α − 1, as required. ��
From now on we write, for 1 ≤ p < ∞

‖ev, j‖p =
⎛
⎝ ∑

y∈s(v)

|ev, j (y)|p
⎞
⎠

1/p

, v ∈ X , j ∈ Iv.
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Proposition 21 Let 1 ≤ p < ∞. If Ta,b,c is bounded on L p
α , then a + b ≥ c.

Proof Fix R ∈ R such that

R > max

{
1 − α

p
, c − b

}
.

For every v ∈ X \{o} and j ∈ Iv , we define gv, j (x) = fv, j (x)q−R|x |, x ∈ X , where fv, j ∈ B
are defined in Eq. 9. Since R > 1−α

p , we have that gv, j ∈ L p
α . Thus,

Ta,b,cgv, j (z) = q−a|z|∑
x∈X

Kc(z, x) fv, j (x)q
−(b+R)|x |

= q−a|z|〈 fv, j , Kc,z〉L2
b+R

since Kc,z ∈ L2
c ⊆ L2

b+R because R > c− b. Now we use the decomposition Eq. 14 of Kc,z

on the orthonormal basis of A2
c and obtain

〈Kc,z, fv, j 〉L2
b+R

= 〈 1

Bc
+
∑
u∈X

∑
k∈Iu

fu,k(z) fu,k

bc,|u|
, fv, j 〉L2

b+R

= fv, j (z)

bc,|v|
〈 fv, j , fv, j 〉L2

b+R

= bb+R,|v|
bc,|v|

fv, j (z),

where we use the orthogonality of B and Eq. 12. The norm of Ta,b,cgv, j in L p
α is

‖Ta,b,cgv, j‖p
L p

α
=
(
bb+R,|v|
bc,|v|

)p∑
z∈X

| fv, j (z)|pq−(ap+α)|z|

=
(
bb+R,|v|
bc,|v|

)p +∞∑
n=0

q−(ap+α)n
∑
|z|=n

| fv, j (z)|p.

Since supp( fv, j ) ⊆ Tv \ {v}, the sum of | fv, j |p on the sphere S(o, n) vanishes for every
n ≤ |v|. If n > |v|, then the sum is on S(o, n) ∩ Tv and if z ∈ Tv is such that |z| = n then
p|z|−|v|−1(z) is the unique vertex in s(v) such that z lies in its sector. Hence by Eq. 9 we have∑

|z|=n

| fv, j (z)|p =
∑
|z|=n
z∈Tv

|ev, j (p
|z|−|v|−1(z))|pa p

n−|p|z|−|v|−1(z)|

= a p
n−|v|−1

∑
|z|=n
z∈Tv

|ev, j (p
|z|−|v|−1(z))|p

= a p
n−|v|−1q

n−|v|−1
∑
y∈s(v)

|ev, j (y)|p

= a p
n−|v|−1q

n−|v|−1‖ev, j‖p
p.

For simplicity, for every s ∈ R and 1 ≤ p < ∞, we put

C(s, p) :=
+∞∑
m=1

q(1−s)m−1a p
m−1,
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which is finite whenever s > 1. The above computation yields

‖Ta,b,cgv, j‖p
L p

α
=
(
bb+R,|v|
bc,|v|

)p +∞∑
n=|v|+1

q−(ap+α)na p
n−|v|−1q

n−|v|−1‖ev, j‖p
p

= ‖ev, j‖p
p

(
bb+R,|v|
bc,|v|

)p +∞∑
m=1

q−(ap+α)(m+|v|)a p
m−1q

m−1

= ‖ev, j‖p
p

(
bb+R,|v|
bc,|v|

)p

q−(ap+α)|v|
+∞∑
m=1

q(1−(ap+α))m−1a p
m−1

= ‖ev, j‖p
p C(ap + α, p)

(
bb+R,|v|
bc,|v|

)p

q−(ap+α)|v|,

where C(ap + α, p) converges because ap + α > 1, by Proposition 20. Furthermore,

‖gv, j‖p
L p

α
=
∑
x∈X

| fv, j (x)|pq−(Rp+α)|x |

=
+∞∑
n=0

q−(Rp+α)n
∑
|x |=n

| fv, j (x)|p

=
+∞∑

n=|v|+1

q−(Rp+α)na p
n−|v|−1q

n−|v|−1‖ev, j‖p
p

= ‖ev, j‖p
pq

−(Rp+α)|v|
+∞∑
m=1

q(1−(Rp+α))m−1a p
m−1

= ‖ev, j‖p
p C(Rp + α, p)q−(Rp+α)|v|,

where C(Rp + α, p) → 1 when R → +∞. From the boundedness of Ta,b,c and by Eq. 20,
it follows that for every v ∈ X \ {o}:

‖Ta,b,cgv, j‖p
L p

α

‖gv, j‖p
L p

α

�
(
bb+R,|v|
bc,|v|

)p

q−(ap+α−Rp−α)|v|

� q−p(R+b−c)|v|q−(ap−Rp)|v|

= q(c−a−b)p|v|,

which is bounded if and only if c ≤ a + b. ��
Proposition 22 Let 1 < p < ∞. If Ta,b,c is bounded on L p

α , then α − 1 < p(b − 1).

Proof The boundedness of Ta,b,c on L p
α is equivalent to the boundedness of the adjoint

operator T ∗
a,b,c on L p′

α . It is easy to see that

T ∗
a,b,cg(x) = q−(b−α)|x |∑

z∈X
Kc(x, z)g(z)q

−(a+α)|z| = Tb−α,a+α,cg(x), g ∈ L p′
α .

Hence, the fact that T ∗
a,b,c is bounded on L p′

α implies, by Proposition 20, that −p′(b − α) <

α − 1, that is α − 1 < p(b − 1). ��
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Propositions 20, 21, 22 show that (ii) implies (iii) in Theorem 14. Now we focus on the
case p = 1, and we prove that (ii) implies (iii) in Theorem 15.

Lemma 23 Let α > 1. Then:∑
z∈X

|Kα(x, z)|q−α|z| � |x |, x ∈ X .

Proof The case x = o is trivial. For every x ∈ X \ {o}, we put {vt }|x |t=0 = [o, x]. Then, by
Eq. 19

∑
z∈X

|Kα(x, z)|q−α|z| ≥
|x |∑
t=1

|Kα(x, vt )|q−αt

=
|x |∑
t=1

(
1

Bα

+ q2

(q + 1)2
∑
v∈X

1

bα,|v|
�(v, vt , x)(1 − q |v|−t )(1 − q |v|−|x |)

)
q−αt

� b−1
α,o

|x |∑
t=1

∑
v∈X

qα(|v|−t)�(v, vt , x)(1 − q |v|−t )(1 − q |v|−|x |)

=
|x |∑
t=1

t−1∑
�=0

qα(�−t)�(v�, vt , x)(1 − q�−t )(1 − q�−|x |)

�
|x |∑
t=1

t−1∑
�=0

qα(�−t) �
|x |∑
t=1

q−αt qαt = |x |,

where we used the fact that supp(�(·, vt , x)) = [o, vt−1] = [v0, vt−1] and the function is
greater than or equal to q−1

q there. ��

Proposition 24 If Ta,b,c is bounded on L1
α , then

α < b, when c = a + b;
α ≤ b, when c < a + b.

Proof From Proposition 21, if Ta,b,c is bounded on L1
α , then c ≤ a + b. The boundedness of

Ta,b,c on L1
α implies the boundedness of the adjoint operator T ∗

a,b,c on L∞
α which is given by

T ∗
a,b,cg(x) = q−(b−α)|x |∑

z∈X
Kc(x, z)g(z)q

−(a+α)|z|, g ∈ L∞
α .

In particular, by Eq. 3

T ∗
a,b,c1X (x) = q−(b−α)|x |∑

z∈X
Kc(x, z)q

−(a+α)|z|

= q−(b−α)|x |
+∞∑
n=0

q−(a+α)n
∑
|z|=n

Kc(x, z)

= q−(b−α)|x | 1
Bc

+∞∑
n=0

#S(o, n)q−(a+α)n = Ba+α

Bc
q−(b−α)|x |,

which belongs to L∞
α if and only if α ≤ b.
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Suppose now that a + b = c. We know that α ≤ b and we want to prove that α < b.
Suppose by contradiction that α = b. For every x ∈ X define

gx (z) =
{

|Kc(z, x)|Kc(z, x)−1, if Kc(z, x) = 0,

0, otherwise.

Then ‖gx‖L∞
α

= 1 and

T ∗
a,b,cgx (x) =

∑
z∈X

|Kc(x, z)|q−c|z| � |x |,

by Lemma 23. Thus T ∗
a,b,c is unbounded on L∞

α and consequently Ta,b,c is unbounded on

L1
α for α = b and c = a + b. ��

Propositions 20, 21, 24 show that (ii) implies (iii) in Theorem 15.

3.1.2 Proof that (iii) implies (i)

We start by stating a technical lemma, which will be useful both in Propositions 26 and 27,
that are devoted to prove that (iii) implies (i) in the case p > 1 and p = 1, respectively.

Lemma 25 Let β, γ > 1. There exist C1,C2 > 0 depending only on β and γ such that

∑
x∈X

|Kγ (z, x)|q−β|x | ≤
{
C1(1 + q−(β−γ )|z|), if γ = β,

C2(1 + |z|), if γ = β.

Proof Let z ∈ X and {v j }|z|j=0 = [o, z]. We start by applying Eqs. 19 and 20 to the kernel
Kγ , obtaining∑

x∈X
|Kγ (z, x)|q−β|x |

=
∑
x∈X

∣∣∣∣∣∣
1

Bγ

+ q2b−1
γ,0

(q − 1)2

|z∧x |∑
j=0

qγ j�(v j , z, x)(1 − q j−|z|)(1 − q j−|x |)

∣∣∣∣∣∣ q−β|x |

≤ Bβ

Bγ

+ q2b−1
γ,0

(q − 1)2
∑
x∈X

|z∧x |∑
j=0

qγ j
∣∣�(v j , z, x)

∣∣ (1 − q j−|z|)(1 − q j−|x |)q−β|x |

≤ Bβ

Bγ

+ q2b−1
γ,0

(q − 1)2
∑
x∈X

q−β|x |
|z∧x |∑
j=0

qγ j ,

where we used that |�| < 1 and |z|, |x | > j . Now observe that, for every x ∈ X and
0 ≤ � < |z|, |z ∧ x | = � is equivalent to x ∈ Tv�

\ Tv�+1 and z ∧ x = z if and only if x ∈ Tz .
Furthermore, we have that

|S(o,m) ∩ Tv�
\ Tv�+1 | =

⎧⎪⎨
⎪⎩
0, if m < �;
1, if m = �;
(q − 1)qm−�−1, if m > �.
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Hence, we have

∑
x∈X

q−β|x |
|z∧x |∑
j=0

qγ j =
|z|−1∑
�=0

∑
x∈Tv�

\Tv�+1

q−β|x |
�∑

j=0

qγ j +
∑
x∈T z

q−β|x |
|z|∑
j=0

qγ j

�
|z|−1∑
�=0

⎛
⎝ �∑

j=0

qγ j

⎞
⎠ +∞∑

m=�

qm−�q−βm +
+∞∑
n=|z|

qn−|z|q−βn
|z|∑
j=0

qγ j

�
|z|∑

�=0

q(γ−1)�
+∞∑
m=�

q(1−β)m �
|z|∑

�=0

q(γ−β)�,

where we used that |Tz ∩ S(o, n)| = qn−|z| when n ≥ |z| and β > 1. This proves that there
exist C1,C2 > 0 (depending on γ and β) such that the thesis holds true. ��
Proposition 26 Let 1 < p < ∞. If a + b ≥ c > 1 and −pa < α − 1 < p(b − 1), then
Sa,b,c is bounded on L p

α .

Proof We set
H(z, x) = |Kc(z, x)|q−a|z|q−(b−α)|x |,

so that the operator Sa,b,c becomes

Sa,b,c f (z) =
∑
x∈X

H(z, x) f (x)q−α|x |.

Our purpose is to apply Schur’s test (see Theorem 3.6 in [22]) to the integral operator with
positive kernel H : X × X → [0,+∞). To do so, we have to show that there exists a positive
function h on X such that∑

z∈X
H(z, x)h(z)p

′
q−α|z| � h(x)p

′
,

∑
x∈X

H(z, x)h(x)pq−α|x | � h(z)p. (24)

Observe that the two inequalities assumed for α are equivalent to

−a + α − 1

p
<

a

p′ , −b − 1

p′ <
b − α

p
.

Hence, since a + b > 1, it is possible to choose an element

γ ∈
(

−b − 1

p′ ,
a

p′

)
∩
(

−a + α − 1

p
,
b − α

p

)
= ∅. (25)

We want to show that h(x) = q−γ |x | satisfies Eq. 24. Let z ∈ X . We suppose γ = c−b
p′ . We

can apply Lemma 25 since b + γ p′ > 1 by Eq. 25, obtaining∑
x∈X

H(z, x)h(x)p
′
q−α|x | = q−a|z|∑

x∈X
|Kc(z, x)|q−(b+γ p′)|x |

� q−a|z|(1 + q−(b+γ p′−c)|z|)

� q−γ p′|z| = h(z)p
′
,

where we used a + b − c ≥ 0 and a > γ p′. Similarly, when γ = c−b
p′ we can apply again

Lemma 25 and conclude by using a > γ p′. On the other hand, we have that if γ = c−a−α
p ,
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by a + γ p + α > 0 and by Lemma 25,∑
z∈X

H(z, x)h(z)pq−α|z| = q−(b−α)|x |∑
z∈X

|Kc(z, x)|q−(a+γ p+α)|z|

� q−(b−α)|x |(1 + q−(a+γ p+α−c)|z|)
� q−γ p|z| = h(z)p,

since a + b ≥ c and, by Eq. 25, b − α > γ p. Similarly when γ = c−a−α
p .

In conclusion, Eq. 24 holds and by Schur’s test the operator Sa,b,c is bounded on L p
α(X).

��
Notice that Proposition 26 shows that (iii) implies (i) in Theorem 14.

Proposition 27 If a + b ≥ c and

− a < α − 1 < b − 1, when c = a + b;
− a < α − 1 ≤ b − 1, when c < a + b,

then Sa,b,c is bounded on L1
α .

Proof Let f ∈ L1
α . We suppose c = a + α and we observe that, since a + α > 1, by

Lemma 25

‖Sa,b,c f ‖L1
α

=
∑
z∈X

∣∣∣∣∣
∑
x∈X

|Kc(z, x)| f (x)q−b|x |
∣∣∣∣∣ q−(a+α)|z|

≤
∑
x∈X

| f (x)|q−b|x |∑
z∈X

|Kc(z, x)|q−(a+α)|z|

�
∑
x∈X

| f (x)|q−b|x |(1 + q−(a+α−c)|x |)

�
∑
x∈X

| f (x)|q−α|x | = ‖ f ‖L1
α
,

where we used the fact that a + b − c ≥ 0 and b ≥ α. The case c = a + α follows similarly
using again Lemma 25 and b > α. Hence, Sa,b,c is bounded on L1

α . ��
Proposition 27 shows that (iii) implies (i) in Theorem 15.

4 Calderón-Zygmund Decomposition

In this section, we discuss a Calderón-Zygmund decomposition of functions in L1
α and we

formulate the integral Hörmander’s condition for kernels on the tree which guarantees the
weak type (1,1) boundedness of integral operators which are bounded on L2

α . As byproduct,
we have that Pα is of weak type (1,1) for every α > 1.

By Proposition 6 the measure metric space (X , d, μα) is nondoubling. We now introduce
the Gromov distance ρ, see [2, 18], and show that the measure metric space (X , ρ, μα) is
doubling. For every u, v ∈ X define

ρ(v, u) =
{
0, if u = v;
e−|v∧u|, if v = u.
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For every v ∈ X , observe that if u ∈ X \ {v} then ρ(v, u) = e−|v∧u| ∈ [e−|v|, 1] and
|v ∧ u| = − log(ρ(v, u)), that is

u ∈ Tp|v|+log(ρ(v,u))(v) \ Tp|v|+log(ρ(v,u))−1(v).

Thus, the nontrivial balls with respect to ρ centred at v are sectors of the tree.More in general,
we have

Bρ(v, r) := {u ∈ X : ρ(v, u) < r} =

⎧⎪⎨
⎪⎩

{v}, if 0 < r ≤ e−|v|,
Tp|v|+	log r
(v), if e−|v| < r ≤ 1,

X , if r > 1.

(26)

Observe that in the special case v = o we have that Bρ(o, r) = {o} if 0 < r ≤ 1 and
Bρ(o, r) = X for every r > 1. Hence every vertex v is the center of exactly |v| + 2 balls.

Proposition 28 For every α > 1 the measure metric space (X , ρ, μα) is globally doubling
with doubling constant

Dα = max

{
qα + 1,

qα + 1

qα − q

}
,

that is
μα(Bρ(v, 2r)) ≤ Dαμα(Bρ(v, r)), v ∈ X , r > 0.

Proof Let α > 1. We start by observing that for every u ∈ X \ {o}

μα(Tu) =
+∞∑
�=0

q�q−α(�+|u|) = q−α|u| 1

1 − q1−α
.

Let 0 < r ≤ 1. Observe that if {x} := x − 	x
 ∈ [0, 1), then

	log(2r)
 =
{

	log r
, if 0 ≤ {log r} < 1 − log 2,

1 + 	log r
, if 1 − log 2 ≤ {log r} < 1.

Hence whenever Bρ(v, r) = {v} we have that Bρ(v, 2r) ∈ {{v}, Tv}, and if Bρ(v, r) = Tu
for some u ∈ X \ {o} then Bρ(v, 2r) ∈ {Tu, Tp(u)}.

If v ∈ X \ {o}, then
μα(Tv)

μα({v}) = q−α|v|(1 − q1−α)−1

q−α|v| = 1

1 − q1−α
. (27)

If |v| > 1, then
μα(Tp(v))

μα(Tv)
= q−α(|v|−1)(1 − q1−α)−1

q−α|v|(1 − q1−α)−1 = qα. (28)

If |v| = 1, then
μα(X)

μα(Tv)
= (1 + q−α)(1 − q1−α)−1

q−α(1 − q1−α)−1 = qα + 1. (29)

Finally, we consider the case v = o. In this case, it is sufficient to check that, by Eq. 7

μα(X)

μα({o}) = 1 + q−α

1 − q1−α
= qα + 1

qα − q
.

Hence (X , ρ, μα) is doubling with constant Dα = max{qα + 1, (qα + 1)/(qα − q)}. ��
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As a consequence of Proposition 28 in this setting one can develop a classical Calderón-
Zygmund theory using the balls of the Gromov metric, i.e. using sectors (see [12, 21]). Our
argument is inspired by [15, Theorem 1.1], where a similar construction is developed in
the setting of the hyperbolic disk (see also the Whitney decomposition in [1]). Since it is
not difficult to construct an explicit decomposition algorithm for sectors and then describe
the associated Calderón-Zygmund decomposition of integrable functions, we think that it is
worthwhile discussing this construction in detail, as we do next.

We start with a preliminary geometrical result that allows us to obtain an infinite family
of partitions of a sector. In particular, the partition at a given scale is a refinement of the
partition at the previous scale, and the measure of a partitioning set is comparable with the
measure of the set which contains it in the previous partition.

Lemma 29 Let v ∈ X \ {o}. For every m ∈ N, there exists Im ∈ N and sets Qk,m ⊆ Tv for
every k ∈ Im := {0, . . . , Im} such that
(i) Qk,m ∩ Qk′,m = ∅ for every k = k′;
(ii) the sector Tv is the disjoint union of the sets Qk,m, k ∈ Im;
(iii) the partition at scale m > 0 is a refinement of the partition at scale m − 1, that is, for

every k′ ∈ Im−1 there exists Im,k′ ⊆ Im such that

Qk′,m−1 =
⊔

k∈Im,k′
Qk,m;

(iv) for every k ∈ Im and k′ ∈ Im−1 for which Qk,m ⊆ Qk′,m−1, we have

μα(Qk,m) ≤ μα(Qk′,m−1) ≤ Dαμα(Qk,m).

Observe that in (iv) the constant Dα can be replaced by max{qα, (1− q1−α)−1}, because
we focus only on Tv .

Proof For every m ∈ N we set

Im = qm+1 − q

q − 1
.

We label the vertices of Tv in such a way that v0 = v and s(vk) = {vqk+� : � ∈ {1, . . . , q}}
for every k ∈ N. Since I0 = {0} it is sufficient to set Q0,0 = Tv . Then for every m ∈ N \ {0}
we set

Qk,m := {vk}, if k ∈ Im−1,

Qk,m := Tvk , if k ∈ Im \ Im−1.

In this way, (i), (ii), and (iii) easily follow by construction. Finally, (iv) follows from Eqs.
rapportosettorevertice, rapportosettori, and rapportosettoretutto, and the fact that

Qk′,m−1 ∈
{

{Tv, Tp(v)}, if Qk,m = Tv;
{{v}, Tv}, if Qk,m = {v}.

��
The previous result leads to a Calderón-Zygmund decomposition for integrable functions

on the tree at a level t ∈ R
+ sufficiently large w.r.t the L1

α-norm of the function.

Proposition 30 Let f ∈ L1
α and t > ‖ f ‖L1

α
/μα(X). There exist two families Q and F of

disjoint sets of the form Qk,m such that, if we denote by � and F the disjoint union of all the
sets in Q and F , respectively, the following properties hold:
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(i) X = � � F;
(ii) | f (z)| ≤ t for every z ∈ F;
(iii) there exist g, b : X → C and C > 0 such that f = g + b, supp b ⊆ �, and ‖g‖2

L2
α

�
t‖ f ‖L1

α
. Moreover, if we set bQ = b1Q for every Q ∈ Q, then∑

z∈Q
bQ(z)q−α|z| = 0,

∑
Q∈Q

‖bQ‖L1
α

≤ C‖ f ‖L1
α
, Q ∈ Q.

Proof For every v ∈ S(o, 1) we consider the decomposition of the sector Tv given by
Lemma 29. We define two families of subsetsQv and Fv following the steps below. Starting
from Qk,m = Q0,0 = Tv :

1) if
1

μα(Qk,m)

∑
z∈Qk,m

| f (z)|q−α|z| > t,

then we put Qk,m ∈ Qv and we stop. Otherwise,
2a) if #Qk,m = 1 then Qk,m ∈ Fv and we stop;
2b) if #Qk,m > 1 then for each set in the family

Qk,m+1 ∪ {Qkq+ j,m+1 : j ∈ 1, . . . q}
we repeat the procedure, starting from 1).

We define

Q :=

⎧⎪⎨
⎪⎩
⊔

v∈S(o,1)
Qv, if | f (o)| ≤ t;

{o} ∪ ⊔
v∈S(o,1)

Qv, otherwise,
F :=

⎧⎪⎨
⎪⎩

{o} ∪ ⊔
v∈S(o,1)

Fv, if | f (o)| ≤ t;⊔
v∈S(o,1)

Fv, otherwise.

We denote by � and F the (disjoint) union of all the subsets in Q and F , respectively. The
sets � and F clearly satisfy (i) and (ii). We prove that, for every Q ∈ Q,

t <
1

μα(Q)

∑
z∈Q

| f (z)|q−α|z| ≤ Cαt, Q ∈ Q. (30)

For every Q ∈ Q we put

Q̃ =
{
X , if Q = {o} or Q = Q0,0 ∈ Qv, v ∈ S(o, 1)

Qk′,m−1 if Q = Qk,m ∈ Qv,m > 0, v ∈ S(o, 1),

where k′ is defined in (iv) of Lemma 29. Observe that Q̃ /∈ Q and that, by Proposition 28,
μα(Q̃) ≤ Cαμα(Q). Then we have that

1

μα(Q)

∑
z∈Q

| f (z)|q−α|z| ≤ μα(Q̃)

μα(Q)

1

μα(Q̃)

∑
z∈Q̃

| f (z)|q−α|z| ≤ Cαt,

which gives Eq. 30. It is easy to see that

μα(�) ≤ 1

t

∑
Q∈Q

∑
x∈Q

1

μα(Q)

⎛
⎝∑

z∈Q
| f (z)|q−α|z|

⎞
⎠ q−α|x | ≤ ‖ f ‖L1

α

t
. (31)
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We now define b = f − g, where

g(z) =
{
f (z), z ∈ F;

1
μα(Q)

∑
x∈Q f (x)q−α|x |, z ∈ Q.

It is obvious that supp b ⊆ �. We show next that ‖g‖2
L2

α
≤ (1+ C2

α)t‖ f ‖L1
α
. Indeed, by Eq.

30,

‖g‖2L2
α

=
∑
z∈F

|g(z)|2q−α|z| +
∑
z∈�

|g(z)|2q−α|z|

=
∑
z∈F

| f (z)|2q−α|z| +
∑
Q∈Q

∑
z∈Q

∣∣∣∣∣∣
1

μα(Q)

∑
x∈Q

f (x)q−α|x |
∣∣∣∣∣∣
2

q−α|z|

≤
∑
z∈F

t | f (z)|q−α|z| + μα(�)C2
αt

2 ≤ (1 + C2
α)t‖ f ‖L1

α
< +∞,

where we used Eq. 31. The fact that bQ = b1Q , Q ∈ Q, has vanishing mean on Q follows
by construction. Furthermore, since |b(z)| ≤ | f (z)| + |g(z)| we have∑

Q∈Q

∑
z∈Q

|bQ(z)|q−α|z| ≤
∑
z∈�

| f (z)|q−α|z| +
∑
Q∈Q

∑
z∈Q

|g(z)|q−α|z|

≤ ‖ f ‖L1
α

+ μα(�)Cαt � ‖ f ‖L1
α
,

by Eq. 31. ��
In the doubling measure metric space (X , ρ, μα), the standard integral Hörmander’s con-

dition (see [19] and formula (10) Ch.I in [21]) for a kernel K : X × X → C is

sup
v∈X ,r>0

sup
x,y∈Bρ(v,r)

∫
X\Bρ(v,2r)

|K (z, x) − K (z, y)|μα(z) < +∞.

Thanks to the shape of the balls, see Eq. 26, it is equivalent to

sup
v∈X\{o}

sup
x,y∈Tv

∑
z∈X\Tv

|K (z, x) − K (z, y)|q−α|z| < +∞. (32)

Notice that this is precisely what is proved to hold in Proposition 13 for the Bergman kernel
Kα . We then have the following boundedness result for integral operators (see Theorem 3
Ch.I [21]).

Theorem 31 Fix α > 1 and let K : X × X → C be a kernel satisfying the Hörmander’s
condition Eq. 32 with respect to μα . If the integral operator defined on functions f ∈ L2

α by

K f (z) =
∑
x∈X

K (z, x) f (x)q−α|x |

is bounded on L2
α , then K is of weak type (1,1). Furthermore, K admits a bounded extension

K on L p
α , for every 1 < p < 2.

The following result is obtained as byproduct of Proposition 13 and Theorem 31. It is a
discrete counterpart of the result for (unweighted and holomorphic) Bergman spaces on the
hyperbolic disk obtained in [15].

Corollary 32 The Bergman projector Pα is of weak type (1, 1), for every α > 1.
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