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Abstract
Despite themany advantages and increasing adoption of Electron BeamPowder Bed Fusion (PBF-EB) additivemanufacturing
by industry, current PBF-EB systems remain largely unstable and prone to unpredictable anomalous behaviours. Additionally,
although featuring in-situ process monitoring, PBF-EB systems show limited capabilities in terms of timely identification of
process failures, which may result into considerable wastage of production time and materials. These aspects are commonly
recognized as barriers for the industrial breakthrough of PBF-EB technologies. On top of these considerations, in our research
we aim at introducing real-time anomaly detection capabilities into the PBF-EB process. To do so, we build our case-study
on top of a Arcam EBM A2X system, one of the most diffused PBF-EB machines in industry, and make access to the most
relevant variables made available by this machine during the layering process. Thus, seeking a proficient interpretation of such
data, we introduce a deep learning autoencoder-based anomaly detection framework. We demonstrate that this framework is
able not only to early identify anomalous patterns from such data in real-time during the process with a F1 score around 90%,
but also to anticipate the failure of the current job by 6h, on average, and in one case by almost 20h. This avoids waste of
production time and opens the way to a more controllable PBF-EB process.
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Introduction

Additive manufacturing (AM) refers to a large family of
technologies able to grow a part starting from a 3D model,
by joining materials layer upon layer. AM implements a
completely digitalized production flow, from design to final
object, without intermediate steps like the creation of molds
or dies. This process was demonstrated to have reduced
development time andmaterial waste, as well as much higher
flexibility than traditional subtractive technologies. Thanks
to these characteristics, AM plays a fundamental role in the
current digital industrial revolution era, as it enables the rapid
production of customized components at a reduced cost (Fu
& Körner, 2022).

Among AM technologies for metallic components, Pow-
der Bed Fusion technologies hold a dominant role in the
market, being able to produce high-performance materi-
als with almost unlimited geometrical freedom (Carolos &
Cooper, 2022). As the name suggests, it involves a high-
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power beam melting together each layer of material in the
form of powder.

Even though the most common beam source is currently
laser (PBF-LB), Electron Beam Powder Bed Fusion (PBF-
EB) is recently receiving a growing attention (Fu & Körner,
2022). PBF-EB exploits a high-power electron beam instead
of a laser as heat source to fuse together layers of conductive
metal powders, such as titanium and titanium alloy, cobalt,
chrome, copper, etc. The resulting parts, highly dense and
mechanically strong, are largely adopted in diverse applica-
tions, ranging from turbine blades to hip implants (Ladani &
Sadeghilaridjani, 2021).

Compared to laser, Electron beam produces amuch higher
power, coupled with a faster beam speed, both resulting in
a significantly shorter build time. Additionally, the presence
of a high vacuum level during the process and the preheating
step before melting results in high and homogeneous tem-
perature on each layer, generating superior micro-structures
under a mechanical point of view. As a result, components
fabricated through PBF-EB showmore homogeneousmicro-
structures with less geometrical distortion and less residual
stresses. This is which makes them less prone to the for-
mation of crack (Klassen, 2018). All these aspects make
PBF-EB one of the most promising technology for the addi-
tive manufacturing of fully dense metallic objects with high
productivity (Fu &Körner, 2022). Driven by these promises,
decade-old industries in medical field such as Lima Corpo-
rate SPA,AlaOrtho srl and Smith&Nephewmoved the entire
production from conventional to PBF-EB based processes
for the serial production of acetabular cups and other types
of prostheses (Sing et al., 2016; Mumith et al., 2018). In
addition, PBF-EB opens the possibility to work with unique
materials and is the only successful solution to process some
families of materials, as intermetallics. For this reason, Avio
Aero, a General Electric (GE) company, deploys the PBF-
EB process to produce serially TiAl low pressure turbine
blades, which are part of the GE9X engine. Due to the intrin-
sic properties of this material, the blades produced with this
material weighted 50% less compared to the traditional Ni-
based alloy blades (Dzogbewu & du Preez, 2021). Recently,
the Swedish company VBN Components has developed a
new class of materials family processable only with PBF-
EB, called Vibenite, which include the world’s hardest steel
for AM (VBN Components, 2023).

As the possible industrial applications of PBF-EB are
rapidly growing, the demand for high process stability and
control is becoming foremost (Xames et al., 2023; Wang et
al., 2022; Herzog et al., 2023). Indeed, all AM processes are
known for their inherent complexity. The success of a job,
as well as the mechanical properties of the obtained com-
ponents, may depend on a huge number of heterogeneous
variables,whose inter-dependency is not fully knownanddif-
ficult to model (Sing & Yeong, 2020). As a consequence, the

low robustness, stability and repeatability of the AM process
becomes a major issue when compared to more traditional
and consolidated manufacturing processes. Currently, this is
seen as a barrier to a more widespread diffusion of AM tech-
nologies, including PBF-EB (Everton et al., 2016; Houser et
al., 2023).

A commonly recognized solution to this problem is the
continuous in-situ monitoring of the industrial processes.
This enables early identification of irregular behaviours, and
avoids instability and failure (Ladani & Sadeghilaridjani,
2021). To make this possible, the manufacturers are improv-
ing the PBF-EB machines put into market in a two-folds
way. On the one hand, by equipping them with a large num-
ber of heterogeneous sensors, that constantly monitor all the
stages of the layering process. On the other hand, by storing
the temporal evolution of the sensed variables, as well as of
many process parameters (among the others, electron beam
currents, power, intensity, etc.).

While the availability of in-situ monitoring is a first step
towards a more controllable process, the interpretation of the
collected data is very challenging. To this date, the PBF-EB
industrial machines in the market only feature very basic
anomaly detection methods, implementing a set of indepen-
dent thresholds on a number of critical variables. When one
of such variables exceeds the safety threshold, which is typi-
cally undocumented and empirically set by themanufacturers
during calibrations, this triggers an alarm, eventually causing
the job to shutdown. Such basic methods are unsatisfactory
mainly because they are limited in their scope. By setting
independent thresholds on the “relevant” parameters, they
overlook the complexity of the process, which is known to
be affected by the interaction of many variables (Houser et
al., 2023). By doing so, they do not allow the implementation
of effective process control methods.

To address this issue, in this work we seek the applica-
tion of a more sophisticated anomaly detection methodology
to the PBF-EB process, taking advantage of all the infor-
mation made available by an advanced machine by means
of Machine Learning (ML). We start from the considera-
tion that the PBF-EB data consist of multiple interdependent
variables, hence falling under the definition of multivariate
time series (MTS). Then, we take inspiration from the latest
developments of MTS anomaly detection (MTSAD) to solve
our problem (Belay et al., 2023; Tercan & Meisen, 2022).
More specifically, we put into effect a class of so-called
reconstruction-based anomaly detection, where a generative
deep learning model (typically, an autoencoder) is trained
so as to be able to reconstruct the data of a successful job,
by considering all the available variables all at once. Then,
the reconstruction error of the autoencoder is exploited as an
anomaly score, to early identify any deviation from the “nor-
mal” distribution of the data. This approach, which proved
effective in many other applications requiring MTS anomaly
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detection (Tziolas et al., 2022; Zhou et al., 2022; Li & Jung,
2023; Hong et al., 2022; Xiong et al., 2022), is promising in
the case of PBF-EB for two main reasons. First, the autoen-
coder does not require any supervision on the anomalies that
should be targeted, which is difficult to obtain. Second, it
can detect any deviations from the “normal” data distribu-
tion much before of a possible system failure. Differently
from the traditional threshold-based techniques, this leaves
ground for the implementation of real-time process control
procedures.

Up to our knowledge, our study is the first attempt to
apply time-series anomaly detection to PBF-EB, leverag-
ing a reconstruction based anomaly detector. As previously
mentioned, our solution does not require specific external
supervision on the anomalies that should be targeted, as it
only leverages the data that is provided by the industrial
machine. Furthermore, our method is real-time in principle,
as it is able to identify anomalies while they occur during a
process.

Specifically, in our researchweuse as a test-bed theArcam
EBM A2X, which is currently one of the PBF-EB machines
most diffused in industry. Then, we put into effect the two
following major contributions:

(i) Starting from a description of the PBF-EB process and of
its associated variables, we characterize themost relevant
data made available by the machine. We use such data to
build a ML-ready dataset, without any additional expert
annotations.

(ii) Starting from the data of (i), we design and validate
a reconstruction-based MTSAD framework, using an
autoencoder as the backbone. Our experiments prove
that, by identifying anomalies while they occur during
a process, our system is capable of predicting its failure
at an early stage.

The remaining part of the paper proceeds as follows:
“Machine learning for the in-situ monitoring of PBF pro-
cesses” section draws an outline of machine learning tech-
niques in in-situ monitoring of PBF processes, providing the
necessary background for our work; “PBF-EB technology”
section presents a detailed overview about the PBF-EB pro-
cess and the corresponding hardware employed in our study;
“Dataset collection and characterisation” section describes
and characterizes the data that can be collected from the
industrial machine used as the test-bed, and how these data
were processed to be input to aMTSADmodel; “Methodolo-
gies” section provides the background and methodological
details of our MTSAD solution, and “Experimental results”
section presents its experimental validation. Lastly, “Con-
clusions and future developments” section provides a final
overview of our findings and contributions and highlights
possible future developments.

Background

Machine learning for the in-situ monitoring of PBF
processes

AM is a promising technology for the current industrial
panorama, providing the benefits of printing complex shapes,
lower production cycle time, minimum waste, and cost effi-
ciency over traditional manufacturing processes (Xames et
al., 2023).

Nonetheless, diverse issues still hamper a wide adoption
of AM technologies in industry (Xames et al., 2023; Wang
et al., 2022). One factor is the inherent complexity of the
fundamental process dynamics of AM, as, for instance, the
thermal behavior behind the PBF processes, which involves
multi-physics mechanisms including heat absorption, high
thermal gradients, local melting and solidification of parti-
cles (Wang et al., 2022). This complex phenomenon, highly
sensitive to the selection and optimization of the involved
process parameters (i.e, as beampower, scan speed, and beam
shape), claims for synergies between designers,materials sci-
entists, and manufacturers which are not easy to be gathered
in real-life industrial scenarios.

A second factor, is the interaction of the various phase
and sub-phases involved in the typical AM workflow, which
involves a large number of heterogeneous variables interact-
ing each other.

As a solution, manufacturers are equipping AMmachines
with a large number of heterogeneous sensors, that constantly
monitor all the stages of the layering process to ensure a better
quality of the final product, as well as a safe process.

The result is a data intensivemanufacturingdomain,which
recently opened the way to the ML, a sub-field of artifi-
cial intelligence, nowadays largely adopted to solve complex
problems associated with data (Xames et al., 2023).

De facto, over half of the literature of ML applied to AM,
takes as its focus the PBF processes (Xames et al., 2023).
This is mainly due to a two-fold reason. On the one hand,
PBF technologies, being able to produce high-performance
materials with almost unlimited geometrical freedom, are
promising in a wide range of application domains (Wang et
al., 2022). On the other hand, an extensive adoption of such
technologies is in part still hampered by several sources of
process instability,whichmay lead to various kinds of defects
or even failure (Grasso et al., 2018). Hence, the potential of
these technique have not yet been fully revealed.

On top of these considerations, research efforts are spent in
diverse areas of possible ML applications for AM processes,
recently categorized in the longitudinal review by Xames et
al. (2023): AM design, process parameters, in-situ process
monitoring and control, parts properties and performance,
inspection, testing and validation, and cybermanufacturing.
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Since detecting any irregular behaviour of the PBF pro-
duction line is an essential feature to develop an adaptive
system, able to ensures a better quality of final products,
process monitoring and control are gaining a growing con-
sideration with respect to other possible ML application in
AM (Xames et al., 2023).

In this regard, the most used sensors and in-situ data col-
lection devices for PBF-LB processes may be grouped into
three main categories: (i) non-contact temperature measure-
ments (i.e., infrared imaging), (ii) imaging in the visible
range, (iii) low-coherence interferometric imaging.

Additionally, other employed sensors include: 2D laser
displacement sensors, optical coherence tomographydevices,
accelerometers, ultra sound detectors, strain-gauges, thermo-
couples and x-ray detectors (Everton et al., 2016).

Specifically concerning the process monitoring of PBF-
LB jobs, a plethora of different studies concentrate on defect
detection thorough imaging or time-series based ML solu-
tions. This mainly includes support vector machines (Gobert
et al., 2018; Scime & Beuth, 2019), decision trees and ran-
dom forest (Khanzadeh et al., 2018; Mahmoudi et al., 2019),
and convolutional neural network, which definitely repre-
sents the most used solution (Liu et al., 2020; Yazdi et al.,
2020; Caggiano et al., 2019; Shevchik et al., 2019).

As regards of the PBF-EB process, industrial systems
are typically equipped with many embedded sensors, for
instance to monitor the vacuum chamber environment, the
energy source and the different subsystems. On the other
hand, monitoring of the powder bed in PBF-EB is more
challenging due to the high temperature involved in the pro-
cess. For this reason, techniques and sensors deployed for
PBF-LB are not feasible in most of the cases. Research
efforts were focused on monitoring the powder bed using
cameras (Grasso, 2021), infrared cameras (Dinwiddie et al.,
2013) and pyrometers (Cordero et al., 2017). However, these
instruments lack in temperature and X-ray resistance and
their performances are affected by metal vapours conden-
sation (Fu & Körner, 2022). A new monitoring technique
and most promising, called Electron Optical (ELO) imag-
ing, exploits the back-scattered electrons created during the
EB-PBF process allow the acquisition of detailed 2D and 3D
images of the processes layer (Arnold et al., 2020; Bäreis et
al., 2023).

However, the information about the data-driven potential
for anomaly detection are little, especially if compared with
existing research on PBF-LB fusion (Houser et al., 2023).
Up to our knowledge, just two previously published studies
investigated the potential of data-driven time-series anomaly
detection applied to PBF-EB processes (Grasso et al., 2018;
Houser et al., 2023). Although the authors of these works
provide the first systematic studies that prove the feasibil-
ity of applying ML to predict defects generated during the
PBF-EB process, these studies have some recognized lim-

itations. First, they are built on top of supervised learning
algorithms, which require expert annotations to learn how to
recognize defects. These annotations represent a significant
challenge in a real industrial scenario. Second, the real-time
exploitation is not explored.

PBF-EB technology

This sections shortly introduces the PBF-EB technology, out-
lying the main phases of a typical PBF-EB process.

PBF-EB leverages electrons at high speed to selectively
melt a bed of metallic powder, exploiting the heat gener-
ated when the beam impacts the powder bed (Galati, 2021;
Dev Singh et al., 2021). The interaction between the elec-
tron beam and the powder bed is the most critical phase
of the process (Galati, 2021). During the impact, the par-
ticles charge negatively, and thus rapidly diffuse all over the
chamber owing to the generated repulsion forces between
them (Cordero et al., 2017). This is the so-called “smoke”
phenomenon (Milberg & Sigl, 2008; Sigl et al., 2006). Typi-
cally, to avoid, or at least to limit this issue, the powder bed is
heated up with a preheating step before the component melt-
ing phase (Galati, 2021; Milberg & Sigl, 2008). This tends
to increase the cohesion of the particles, enhancing the ther-
mal and electrical conductivity (Weiwei et al., 2011) and the
charge dispersion.

In our research, we employed the Arcam EBM A2X
device, outlined in Fig. 1, being one of the PBF-EB systems
most popular in industry. As most of the available device on
the market, such system may be divided into two parts: the
top column and the build chamber (see Fig. 1a and b respec-
tively).

As it can be gathered fromFig. 1a, the top column includes
the electron gun and the magnetic lenses. The electron gun
accommodates the cathode: a LaB crystal or a Tungsten fil-
ament working at 60 kV and emitting electrons. The emitted
electrons are accelerated up to 40% of the speed of the light
by an anodic potential and then collimated by the magnetic
lenses, which are responsible for the beam focusing and
deflection (Körner, 2016).

Another central component of the electron beamgun is the
grid cup (see Fig. 1a roughly in the middle). This element,
located between the cathode and the anode, controls the cur-
rent flow of the electrons reaching the anode. The voltage
applied on the grid works as a gate: a negative voltage will
push the electrons back toward the cathode and vice-versa.
Hence, the grid cup acts as a filter, avoiding electron flow
when not required.

The build chamber includes the build steel tank, the pow-
der storing (a.k.a hopper), and the powder distribution system
(a.k.a rake). See Fig. 1b for a schematic overview of such
components. The steel build tank contains the build platform
(Fig. 1b bottom), which moves along the build direction by
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Fig. 1 Outline of the Arcam A2X device hardware employed in our study, highlighting the top column (a) and the build chamber (b) with all the
corresponding sub-parts

means of an electric motor. In the Arcam A2X machine, we
have two hoppers, one for each side of the build chamber. The
powder is fed on the build platform by gravity, while the rake
system,made up of a series of thin and flexible stainless-steel
teethes (Galati, 2021), collects anddistributes it (the so-called
fetch phase). The amount of distributed powder is monitored
by two magnetic sensors, leveraging a closed-loop control:
if the amount of powder differs from the calibrated one, the
positions of fetch are adjusted accordingly (Chandrasekar et

al., 2020; Arcam, 2011) (see red circle in Fig. 1b and the
corresponding inset).

A high vacuum level, ensured by four vacuum pumps, is
maintained both in the beam column and in the build chamber
where the pressure is kept respectively at around 10−5 Pa and
around 10−3 Pa (Arcam, 2011). In addition, inert gas (typi-
cally Helium at a pressure of 10−1 Pa) is insufflated during
the process to avoid charge accumulation, guaranteeing high
thermal stability, and accelerating the cooling phase (Gaytan
et al., 2009).
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Due to the high temperatures generated during the pro-
cess, several thermocouples are installed in different areas of
the machines to monitor the temperature evolution of some
fundamental elements. To measure the temperature during
the building job, a thermocouple is positioned under the start
plate, while another monitors the temperature of the top col-
umn. If the top column thermocouple detects a value over a
given threshold, the process is stopped to avoid damage in
the electron gun.

In the following, a brief description of the main steps of a
typical PBF-EB process is provided. Firstly, the start plate is
heated, by means of the electron beam, up to a target temper-
ature, depending on the given processed material (Mahale,
2009). After this step, the following sequence is repeated
until the build job is completed (Körner, 2016):

1. Table lowering: the start plate is lowered to a quantity
equal to layer thickness.

2. Powder spreading: the rake fetches the powder from one
side and spreads the (new) powder bed.

3. Preheating 1: a defocused electron beam heats a portion
of the new powder layer equal to the maximum area that
contains all the components (Rizza et al., 2022). As men-
tioned above, this step produces sintering of the particles.

4. Preheating 2: the electron beam further heats only the
portions of powder containing the parts to be built for an
area corresponding to an offset of the section that must
be melted (Rizza et al., 2022).

5. Melting: the electron beam selectively melts the section
of the componentwith the selected strategy (hatching and
contouring (Galati et al., 2019b; Tammas-Williams et al.,
2015)) and process parameters.

6. Post-heating: based on the amount of energy provided in
the two preheating and melting phases, it is possible to
use the electron beam to further heat the section or let it
cool down through Helium flow. This accomplishes the
energy equilibrium and the average beam current to be
achieved over the layer (Galati et al., 2019c).

Once the build has been completed, the build chamber is filled
with Helium, and the job is cooled down until room temper-
ature. Then, the build part is removed from the chamber, and
cleaned from the sintered powder with a blasting operation.
Lastly, the unmelted powder is collected and reused for the
next jobs.

Dataset collection and characterisation

As already mentioned, our test-bed is an Arcam EBM A2X
machine, monitored with different types of sensors observ-
ing the components and sub-processes during the activity of
the machine. The system is also equipped with a set of inter-

nal alarms able to automatically stop the process in critical
situations, in order to prevent severe damage to the machine.
Most of these alarms do not provide early anomaly detection,
as they are safety mechanisms that intervene only when the
monitored variables have reached a severely critical value.

For each printing job, the system stores all the available
collected data into a log file that is constantly updated. To
ease the data analysis, the machine manufacturer provides
an internal closed software to extract and export in a .plg log
file all the gathered information. Such file reports different
types of data in the form of values and absolute timestamps,
organized into a number of categories:

(i) Settings for the main process parameters;
(ii) Internal software thresholds andmachine-specificparam-

eters;
(iii) Signals from sensors placed on different hardware com-

ponents;
(iv) Control signals sent to the hardware components;
(v) Status of machine-generated alarms and warnings
(vi) Outcome of internal calculations and machine elabora-

tions.

All the data are reported in the log not at fixed sampling rates,
but only in the case there is a sensible change with respect to
the previous timestamp.

To obtain a dataset which is suitable to train and validate a
generative model, the available data needs to be reorganized
in the form of time-series of variables, that should ideally
provide a complete and unbiased description of the evolution
of a process. To achieve this purpose, we constructed the
input time-series for the generative model starting from the
machine generated log file, as follows:

(i) We dropped all the static settings and machine-specific
parameters that do not show any change during the pro-
cess;

(ii) Wedroppedoutputs of internal elaborations andmachine-
generated alarm or warning signals.

The so-obtained data consist of a time-series of 16 differ-
ent variables, that are reported in Table 1 together with their
characterization, as provided by the manufacturer’s docu-
mentation. All the values corresponding to these variables
were resampled at a common sampling time of 133 ms, to
serve as the input to our generative model.

Besides the input signals to be reconstructed, our anomaly
detector would benefit a lot from a ground-truth annotation,
provided for each data point, or at least for each new layer,
based onwhich learn a representation of anomaly. As already
anticipated in “Introduction” section, besides requiring a very
in-depth understanding of the ongoing process, this annota-

123



Journal of Intelligent Manufacturing

Table 1 List of the signals used
as input to the proposed
anomaly detector

Category Signal Description

Builds State.CurrentBuild.CurrentHeight Height of the platform during the
printing process

OPC PowerSupply.BeamCurrent Current powering the electron beam

PowerSupply.Filament.CurrentFB Current flowing in the tungsten fil-
ament

PowerSupply.Focus.FocusFB Values of the magnetic lenses to
focus or defocus the electron beam

PowerSupply.Rake.CurrentFeedback Feedback current of the rake in the
machine

Temperature.BottomTemperature Temperature of the thermocouple
located under the platform

Temperature.ColumnTemperature Temperature of the beam column
thermocouple

Vacuum.BackingVacuumGaugeFB Vacuum level of the backing pump

Vacuum.ChamberVacuumGaugeFB Vacuum level inside the build cham-
ber

Vacuum.ColumnVacuumGaugeFB Vacuum level inside the beam col-
umn

Vacuum.TurboPump[0].Current Demanded current from the cham-
ber turbo pump

Vacuum.TurboPump[1].Current Demanded current from the column
turbo pump

Process LeftRegulator.NextPosition Value of the next left fetch position
of the rake

LeftRegulator.PulseLenght Amount of powder spread into the
build area from the left fetch posi-
tion in terms of pulse length

RightRegulator.NextPosition Next right fetch position of the rake

RightRegulator.PulseLenght Amount of powder spread into the
build area from the right fetch posi-
tion in terms of pulse length

Table 2 List of the signals used as ground truth to the proposed anomaly detector

Category Signal Description

Alarms BuildDone Set when the printing job is completed. Used as ground truth

BuildFailed Set in case a critical error occurs and the job fails. Used as ground truth

Process TimeApproximation.BuildDoneTime Expected time when the printing process will end

tion is cumbersome to collect and hardly possible to obtain
in a real industrial setting.

To circumvent this problem, in our study we stick to
the only information provided by the logs of the indus-
trial machine, without any external manual annotations from
experts of the process. To obtain an indirect ground-truth of
the presence of anomalies in a given job, we leverage two
machine-generated alarms, which flag the success or failure
of a job: the Alarms.BuildDone and the Alarms.BuildFailed
variables, shown and characterized in Table 2. In the logs,
these two variables are set respectively to the tuple (1, 0)
when the job is successful, or vice-versa when the job is

failed, which triggers an anticipated stop of the building pro-
cess. In our dataset, the tuple is translated into a binary label,
where 0 represents a successful job and 1 represents a failed
job.

In this regard, the so-obtained ground-truth label refers
to the final outcome of the whole given PBF-EB pro-
cess, without providing any information at the sample level.
Nonetheless, we can reasonably assume that a job with sig-
nificant anomalieswill have a failed outcome, and vice-versa,
and use this indirect information to train and test our anomaly
detector.
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Besides the final outcome of each collected job, we
exploited the variable
Process.TimeApproximation.BuildDoneTime as additional
ground truth for the end-time of the process (see Table 2). For
successful jobs, this end-time coincides with the timestamp
of the actual end of the process. For failed jobs, it coin-
cideswith the time the jobwas interrupted, or time-of-failure.
Hence, it can be used as a baseline to assess the earliness of
our predictions.

All the jobs collected in our dataset, were produced using
the Arcam A2X system available at the Integrated Additive
Manufacturing Center at Politecnico di Torino. To obtain a
sizeable dataset to train and test our framework, we collected
data from 80 different jobs. Such jobs are representative of all
the stages of product development, from the process design
(process parameters optimization) to the job design for the
production (manufacturing of the first technical prototypes
or series).

The use of jobs consisting of simple geometries with
squared sections was aimed to obtain data from jobs with
constant process parameters during the part melting (Galati
et al., 2022b). For the characterization of the material prop-
erties, the geometries are more complex from the point of
view of the process (e.g., circular section), and therefore, the
ArcamA2X control was used to automatically adapt the pro-
cess parameters according to the length to be melted (Galati
et al., 2022b; Lunetto et al., 2020).

The production of real components was used to emu-
late the real manufacturing conditions. These jobs included
the geometrical features characterizing the EB-PBF process:
bulky components and lattice structures, and the parameters
were adapted accordingly (Galati et al., 2023). The jobs were
also characterized by two kinds of nesting in the 3D volume:
arrangement of multiple parts with the same geometry or
arrangement of multiple parts with different geometries. The
first condition is representative of a large series production,
while the second condition is more representative of a fac-
tory working on demand or producing small batches. This
heterogeneity results in an average time per layer among the
jobs spanning 300s to 23s. The higher time represents jobs
designed for process development, while the shorter ones
are optimized for production. For jobs designed to produce
real parts, the application sectors were aerospace, biomedical
and automotive. Notably, the jobs show significant variabil-
ity also for a diversity of materials (mostly titanium alloys,
such as Ti6Al4V, Ti6242 and intermetallic TiAl).

For the sake of completeness, we report in Table 3 the
range of the main process parameters used to fabricate
samples and components included in the collected jobs.
Examples of geometries, their arrangement in the build vol-
ume and process parameters of fabricated jobs that were
included in the dataset can be found in published works

Table 3 Process parameters range

Parameter Values

Line offset (mm) 0.2–1.2

Speed function index 10–75

Beam current (mA) 2–20

Focus offset (mA) 15–25

Layer thickness (mm) 0.050–0.090

Acceleration voltage (kV) 60

as Galati et al. (2019a, 2021) and Lunetto et al. (2020) for
Ti6Al4V or in Galati et al. (2022a) for an intermetallic TiAl.

Lastly, Fig. 2 shows a representative example of the whole
time-series data associated with a manufacturing PBF-EB
job extracted from the collected dataset. From such figure,
a transient behavior during the beginning and the end of the
printing process can be easily recognized (see the red overly
in Fig. 2). This ismainly due to thewarm up and cool down of
the system, respectively before and after the print of the given
part. Since heating typically last between one and two hours,
and the system cooling up to ten, a considerable amount of
data is collected during such transient periods. To avoid train-
ing bias of the proposed solution due to the transient response
of the system,weopted to train our solutiononly on the steady
state of the system (see green overlap in Fig. 2).

Methodologies

In this section, we describe all the methodological details
of our proposed anomaly detection framework. As before
mentioned, the proposed solution belongs to the class of the
reconstruction-based anomaly detectors, where the anomaly
detection is built upon a generative deep learning model, in
our case an autoencoder, trained on how to reconstruct the
data distribution of the successful jobs (Li & Jung, 2023).

As the name suggests, the autoencoder is a generative
model with an encoder-decoder structure, where the encoder
is devoted to compress the original input, obtaining a corre-
sponding latent representation, while the decoder uses such
latent representation to produce an output that mimics the
given original input. Notably, training an autoencoder neu-
ral network does not require any explicit annotation in the
learning process, because it only leverages the reconstruc-
tion error between the generated output and the given input.
This makes it ideal for our case, where the input data is in the
form of a 16-dimensional multivariate time-series, without
any annotation at the level of a single time point or interval.
On the other hand, as already anticipated in “Dataset col-
lection and characterisation” section, our dataset provides
annotations only at the job level.
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Fig. 2 Overview of the complete set of signals input of our time-series anomaly detection framework for a representative job. Steady state and
transient are highlighted by transparent coloured areas of the graph (respectively green and red) (Color figure online)

Hence, we proceed in the following way:

(i) We train the autoencoder on a training set of successful
jobs. By doing so, the autoencoder should be able to learn
the inherent data distribution of such jobs.

(ii) Then, at inference time we exploit the reconstruction
error of this autoencoder on new data as an anomaly
score, to early identify any deviation from the “canon-
ical” distribution. As a matter of fact, since the backbone
autoencoder is trained only on the data collected dur-
ing successful processes, it is reasonable to expect that
large reconstruction errors will correspond to anomalous
events, which are not included in the training set.

iii) Based on the cumulative number of anomalous events
detected during a process, we provide a continuous pre-
diction of the outcome of the job. By doing so, we are
able to identify a time-step after which the job is prone
to failure.

To handle the multivariate time-series nature of our data,
we put into effect both the encoder and the decoder via
Long-Short-Term Memory (LSTM) neural network, which
is known for its capability of capturing the complex temporal
dynamics of multidimensional data by exploiting historical
values (Su et al., 2019). By doing so, ourmethodology is able
to model the latent interaction among all the 16 variables that
constitute the input, instead of considering the single data
streams independently.

Figure 3 shows an overview of the main steps of the
proposed anomaly detection framework. In the rest of this
section, we provide a detailed description of each single step.

First, as illustrated in Fig. 3b, given a PBF-EB job p∗
of length T , we can denote the associated multivariate

time-series, made up of M = 16 signals, as X p∗ =
{x1,p∗ , . . . , xT ,p∗} with xt,p∗ ∈ R

M , and t ≤ T . For sim-
plicity, and with abuse of notation, we hereafter omit the
explicit reference to the process p∗.

During the pre-processing phase, X is cropped into a set
of non-overlapping sub-sequences through a sliding window
approach, with window size τ equal to 64, empirically set.
Thus, as shown in Fig. 3c, we can now represent our job p∗
as a sequence of non overlapping observations of length τ :
W = {w1, . . . ,wT−τ+1}, where w j = {xt , . . . , xt+τ−1} ∈
R

M×τ is the generic j − th window. Then, each w j is fed
into the LSTM-based autoencoder (see Fig. 3d). As already
mentioned, the output of the autoencoder is a reconstructed
version of the signal, ŵ j . Finally, as shown in Fig. 3e, we
leverage the magnitude of the reconstruction error between
the original windowed signal w j , and the reconstructed one
ŵ j as an anomaly score to identify anomalous events, as
follows:

ŷt =
{
1 if �wt ≥ α

0 otherwise
(1)

Where ŷt is the predicted anomaly label for the given time-
interval t (with 0meaningnormal and1meaning anomalous),
�wt = ∥∥w j − ŵ j

∥∥ is the the anomaly score for the j − th
window, α is a predefined threshold, later detailed.

As before mentioned, our LSTM-based autoencoder is
trained over a windowed multivariate time-series. This is
typically done in time-series analysis to reduce the back-
propagating effort, as well as to address the weights update
to themost recent time-steps, assumed to bemore relevant for
the prediction (Li & Jung, 2023). Nonetheless, the absolute
error �wt is continuous over time by definition. A represen-
tative example of the evolution of �wt over time-intervals
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Fig. 3 Architecture overview depicting the most salient modules of the
proposed anomaly detection framework: a the available Arcam EBM
A2X machine; b the gathered multivariate time-series data cohort; c
the windowing phase; d the backbone autoencoder devoted to learn a
plausible input reconstruction; e the computing of the reconstruction

error as anomaly score; f the anomalous event identification step: the
given time-series window is tagged as anomalous if it determines an
anomaly score above the threshold α; g the total count of anomalous
events with the downstream classification of the given input PBF-EB
job

Fig. 4 Representative example
of the evolution of the
reconstruction error �wt over
time. The inset highlights those
time-points detected as
anomalous which, all together,
cause the entire time-series to be
classified as a failing job

is shown in Fig. 4, where the anomalous time-points are also
highlighted in yellow.

To proficiently set the threshold α (see Eq.1), we exploit
the mean and standard deviation of the distribution of �wt ,
as it is commonly done in statistics to detect outliers. That is:
when the reconstruction error deviates away from its mean
by 3 times the standard deviations, the given event is tagged
as anomalous (Li & Jung, 2023; Hong et al., 2022).

After defining the anomaly score, we proceed in the fol-
lowing way to predict the final outcome of a the job p∗:

(i) For each sub-sequence w j ∈ p∗, we compute the
anomaly score �wt . Based on this, we can establish
whether the given sub-sequence is anomalous.

(ii) Every time a new anomalous sub-sequence is encoun-
tered, we update the cumulative count of the anomalies.
In the case this count crosses a given threshold δ, the job
is predicted as prone-to-failure. Hence, the final label of
the job ŷp∗ is obtained as follows:

ŷp∗ =
{
1 if (

∑t
0 ŷt ) ≥ δ,with ŷt ∈ {0, 1}

0 otherwise
(2)

Where
∑t

0 ŷt is the count of the anomalies up-to time t .

To set the parameter δ, we exploit an independent vali-
dation dataset containing examples of successful and failed
jobs, and then choose the value that obtains the best compro-
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Table 4 Jobs partitioning among train, validation and test folds

Train Validation Test

Failed – 12 6

Success 44 12 6

mise between false positive rate and sensitivity in the receiver
operating characteristics (ROC) curve (Bradley, 1997).

Experimental results

In this section we present the experimental validation of the
proposed anomaly detection framework.

While our proposed framework is able to identify sin-
gle anomalous events occurring in a small window of time
during a process, the accuracy of this identification cannot
be directly quantified, because there is no corresponding
ground-truth to compare with. Conversely, each process is
annotated at the job-level, in terms of final outcome (success
or fail) and time of failure. Then, our performance assess-
ment is done indirectly, by exploiting such annotations at the
job level. More specifically, we assess the goodness of our
system based on:

(i) The accuracy in the prediction of the final outcome;
(ii) The earliness of the prediction of a failed outcome, in

relation to the given time-of-failure.

Experimental setup

The available cohort of collected PBF-EB jobswas randomly
divided in three non-overlapping folds for training, validation
and testing purpose, as reported in Table 4.

As already anticipated, the training set does not contain
any failed jobs, as it is used to learn amodel ofwhat delineates
a successful job. Conversely, the validation and the test sets
present an equal number of successful and failed jobs. The
validation fold contains jobs that are solely used to tune all
the hyper-parameters of the framework. This includes all the
network hyper-parameters, but also the threshold δ based on
which the prediction of failure is built upon. Finally, the jobs
in the test set are solely used to compute the performance
metrics.

As already described in “Methodologies” section, the
backbone of the proposed solution is anLSTM-based autoen-
coder. Its specific structure and architectural parameters are
detailed in Table 5, for the sake of repeatability. The autoen-
coder was randomly initialized and then trained for 100
epochs using Adam optimizer with a learning rate equal to
0.001, β1 and β2 parameters respectively set to 0.9 and 0.999,

Table 5 Summary of the autoencoder architecture

Layer Ouput shape # of parameters

Encoder 1 (32, 64, 256) 279, 552

Encoder 2 (32, 128) 197, 120

Repeated vector (32, 64, 128) 0

Decoder 1 (32, 64, 128) 131, 584

Decoder 2 (32, 64, 256) 394, 240

Time distributed (32, 64, 16) 4112

Total parameters 1, 006, 608

Each line, corresponding to a specific layer, reports the name, the shape
(where the first element is the batch size) and the number of parameters

Fig. 5 ROC curve obtained from the validation fold. We set the thresh-
old δ equal to 10, being the best trade-off between sensitivity and false
positive rate

batch-size to 32, and leveraging the mean squared error as
loss function. We exploited the early stopping strategy (i.e.,
loss no longer decreasing for more than 10 epochs stops the
training) to prevent model over-fitting.

We optimized the autoencoder on the training set, leverag-
ing a grid search on the the following parameters: shape of the
layers (refer to the optimal values reported in Table 5), batch
size, and learning rate (set to 32 and 0.001, respectively).

Once the backbone autoencoder was trained, we exploited
the ROC curve obtained on the validation subset to decide the
value of the threshold δ. As it can be seen from Fig. 5, δ = 10
is the value that identifies the best operating point in terms
of sensitivity and false positive rate (see “Methodologies”
section for the methodological details).

No part of the test set was used in the threshold optimiza-
tion, nor in the autoencoder training.

Performance assessment

To fully characterize the effectiveness of the proposed frame-
work in predicting the final status of an PBF-EB job, we
exploit a confusion matrix, where each row represents the
instances in an actual class while each column represents the
instances in a predicted class. We opted for such figure of
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Table 6 Performance metrics for the prediction of the outcome of a job

Class (%) Precision (%) Recall (%) F1-score (%)

Failed 100 83 91

Success 86 100 92

merit since it makes it easy to see whether the system is con-
fusing the two classes of interest. As further performance
metrics, we leverage in a percentage form, the precision,
the recall, and the F1-score for the two separate classes,
in Table 6. Specifically, precision is the fraction of relevant
instances among the retrieved instances, recall is the fraction
of relevant instances that were retrieved, and F1 is the har-
monicmean of the precision and recall. It thus symmetrically
represents both precision and recall in one metric.

From the reported figures of merit, we can draw a number
of interesting observations. First of all, our framework was
able to correctly identify all the successful jobs. Furthermore,
it had a 100% precision in detecting failed processes. This
means that the anomaly detector is not over-pessimistic, and
the risk of having to unnecessarily stop an healthy process is
low. On the other hand, only one failed job was misclassified
as successful (see the first row and second column in the
confusion matrix of Fig. 6). Hence, the given framework is
able to anticipate the failure of a job in most of the cases.
Overall, the good balance of precision and recall in the two
classes is reflected by the F1-score, that was higher than 90%
in both cases.

Besides the performance on predicting the success-
ful/failed outcome of a job, for all the jobs of the test set that
were correctly predicted as prone to failure, we also assessed
the time of the prediction, in relation to the ground-truth
time-of-failure. More specifically, in Table 7 we report the
difference between the given time-of-failure and the times-
tamp starting from which our system predicts the failure of
the job. The ratio is: the larger this difference, the earlier the
prediction that we are able to provide.

As it can be seen from the table, on average, our solution is
able to predict a failure with a significant advance compared
to the very moment in which the system detects a fatal error
and stops the process. In one case, this advance was of almost
20h. This is a very important outcome, as it opens the way
to a significant improvement of the current work-flows, in
terms of reduced wastage of production time, materials and

Fig. 6 Confusion matrix for the
prediction of the outcome of a
job

Table 7 Time-to-failure predictions

Process id Time-of-failure (hh:mm:ss)

Failed-1 05:50:49

Failed-3 01:27:40

Failed-4 03:21:30

Failed-5 0:0:50

Failed-6 19:22:53

Fig. 7 F1 score, precision and recall of the proposed solution
with different deep learning generative models as the backbone: a
transformer-based autoencoder (T-AE), a variational autoencoder (V-
AE), a convolutional autoencoder (C-AE), recurrent neural network
autoencoder (RNN-AE) and a long short-termmemory (LSTM) autoen-
coder

energy resources. On top of that, it leaves ample room for the
integration with finer process control strategies.

Ablation studies

For the sake of completeness, we investigated different ver-
sions of the proposed methodology, by implementing an
ablation studies focused on the bakbone generative model
of our solution.

Specifically, we replaced the LSTM-based autoencoder
with other four state-of-the-art deep learning-based gener-
ative options: a transformer-based autoencoder (T-AE), a
variational autoencoder (V-AE), a convolutional autoencoder
(C-AE), a recurrent neural network autoencoder (RNN-AE).
For the implementation details of each backbone, please refer
to the corresponding table showed in the Online Resource 1.
Each backbone model was trained and validated on the same
identical folds as reported in Table 4. Figure7 shows the rel-
ative comparison among the different backbones by means
of the F1 score, the precision and the recall obtained over the
test set. As it can be gathered, the LSTM-based versions is
the most performing setup.
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Conclusions and future developments

In this study, we exploited the data collected from an
Arcam EBM A2X industrial PBF-EB machine, to train and
test a reconstruction-based time-series anomaly detection
framework. This framework, which is built on top of an
autoencoder generativemodel, is able to indicate,with a good
accuracy, whether a given job will fail.We also demonstrated
that the tool is able to anticipate the failures by a significant
margin, and it is real-time in principle, in the sense that it is
able to run in parallel with the production cycle, analyze the
log as quickly as it is produced by the machine, and provide
predictions within the time of production of a new layer.
The important practical implication of this achievement is
twofold: (i) a job that is identified as prone to failure can be
stopped much in advance (by 6h, on average, and in one case
by almost 20h), thus saving considerable working time and
material; (ii) opportune corrective strategies can be adopted,
so as to avoid the failure altogether.

While the first point is already easily implementable, as it
is a direct consequence of detecting the anomaly, the second
one requires further studies, in the direction of understand-
ingwhich specific process parameters/conditions determined
the anomaly. This can be obtained by integrating our model,
which currently works as a black-box, with explainabil-
ity/interpretability strategies (Gunning et al., 2019; Naqvi
et al., 2024).

Besides the above-mentioned points, future efforts should
be devoted to: (i) considerably enlarge the dataset on which
the model is trained, optimized and tested, so as to establish
the robustness of the proposed solution and extend the case
study to other types of machines, in order to prove its gen-
eralization capabilities; (ii) work on the optimization of the
solution in terms of latency, inference time, power consump-
tion etc, in order to enable execution on the edge, and achieve
a complete integration with the AM machine. This integra-
tion is not currently implemented in our study, because our
experimentation involved a commercial PBF-EB machine
with a completely closed system.
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