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ABSTRACT
Nowadays, GNSS (GNSS) receivers are embedded in a variety of electronics devices, and a growing number of users rely on
them to track their position, velocity, and time. The density of Global Navigation Satellite System (GNSS) receiver has especially
increased in urban areas with the advent of small-scaled IoT devices. Due to the limited GNSS signal power and the variability
of the environment, continuous GNSS signal tracking may represent a demanding task for receivers, which, in addition, have to
perform demodulation of the navigation message to provide the user with meaningful information. Furthremore, when operated
by low-power platforms, such as Internet of Things (IoT) devices, the aforementioned tasks may quickly drain the battery. On the
other hand, the low-power-consumption network connectivity hosted by IoT electronics could represent an ideal environment to
enable new patterns for their state estimation, based on collaborative, multi-agent Position Navigation and Time (PNT) methods
that would not imply continuous operation of the embedded GNSS receiver. This preliminary study aims to understand whether
machine learning techniques could support such paradigms for position estimation in IoT devices. We generated an artificial
environment, where conventional GNSS share their multi-satellite delay-Doppler matrices and their positions. These data are
meant to be used to estimate a ”reference” IoT receiver position. We used two open-source libraries, XGBoost, to implement
a gradient-boosted decision tree, and Keras, to implement a multi-layer perceptron. The estimation error on the IoT receiver
position obtained using machine learning tools is lower (typically, 10 % to 20 %) than the estimation error returned by a simplistic
reference model, based on the arithmetic average of the networked receivers’ positions. The results suggest that rudimentary
ML algorithms can extract fundamental information from collaborative users, thus opening new frontiers to collaborative GNSS
navigation.

I. INTRODUCTION
GNSS technology allows the user to effectively perform receiver state estimation by means of multilateration of radiometric
ranges and Doppler shifts, that are observed upon satellites’ signal detection and tracking, through the estimation of the signals
Time-of-Arrival and the observation of their frequency offsets (Misra and Enge, 2006). Due to the limited signal power and
the satellites and receivers’ dynamics, as well as the variability of the environment, the continuous GNSS signal detection and
tracking may represent a challenging task for receivers. Furthermore, the demodulation of the navigation data is mandatory
for the receiver’s standalone operational capabilities unless aiding information are gathered through network connectivity.
Furthermore, when those tasks are operated by low-power platforms such as Internet of Things (IoT) devices, they may quickly
drain the battery by reducing devices’ operational life (Banville and van Diggelen, 2016). However, IoT electronics host by
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definition low-power-consumption network connectivity (Bembe et al., 2019), and they could enable new patterns for their
state estimation, based on collaborative, multi-agent Position Navigation and Time methods that would not imply a continuous
operations of the embedded Internet of Things receiver or even a dramatic reduction in the number of required tasks.

Several solutions have been indeed considered in literature to reduce the power consumption of embedded GNSS receivers
(Grenier et al., 2023), but network cooperation among the devices is still of interest for sensor networks and their autonomy
(Oliveira et al., 2023). It is naturally of interest to evaluate weather ML algorithms can be designed to replace battery-draining
hardware or software functional blocks in GNSS receiver architecture. Of course, the use of machine learning is not new in the
field of GNSS, as demonstrated by the growing number of scientific contributions on the topic (Caparra et al., 2021; Navarro
et al., 2021; Nardin et al., 2023). This work aims at merging this main trends with the collaborative GNSS PNT previously
addressed by literature (Wen et al., 2020; Minetto et al., 2019, 2022).

With this study, we aim at understanding whether machine learning techniques (Mahesh, 2020) could support collaborative
paradigms for the state estimation in IoT devices, in the attempt to avoid the need of continuous signal tracking, demodulation
of the navigation message, and observables construction and correction, by correlating local observables with the code offset
and Doppler shift observables made available by a set of nearby networked collaborative users. In particular, we assume to
share time-stamped, multi-satellite, multi-frequency delay-Doppler matrices and the associated, anonymized, state estimates
gathered by networked GNSS receivers operating within a pre-existent, accessible communication network. These matrices can
be resembled to as the collections of peaks coordinates of the respective cross-ambiguity functions of each satellite signal, and
they can be characterized by a given uncertainty both at the acquisition and tracking stages of the collaborative receivers.

The pursued approach relies on the correlation domain exploited by well-known Direct Position Estimation (DPE) (Closas et al.,
2007) but it offers a complementary view to the problem by leveraging a networked perspective and ML solutions.

The study aims at demonstrating the effectiveness of baseline machine learning techniques in the interpretation and black-boxing
of the GNSS signals tracking, message demodulation and observables construction stages of a conventional GNSS receiver
architecture. Such an interpretation only relies on the coarse acquisition locally performed by the target IoT receiver and its
relationship with the observations of nearby collaborating receivers.

The remainder of the paper is as follows. Section II recalls the fundamental operational tasks of canonical GNSS receivers
architecture and highlights the data that will be shared in the proposed approach. It also introduce basics aspects of ML
algorithms. Section III describes the proposed approach and describes the simulation environment build for the analysis. In
Section IV validation of the ML processing is presented, and the preliminary results on the position estimation are discussed.

II. BACKGROUND
1. GNSS receiver architecture
From a high-level perspective, the tasks carried out by a conventional GNSS receiver can be associated to four main operational
tasks, namely:

• Antenna and front-end assembly, where the signals received from the satellites are amplified, filtered, down-converted
and then digitalized;

• Acquisition, where the satellite is identified and a coarse estimation of code phase offset and Doppler shift is performed;

• Tracking, through which a refinement of the local code phase offset and Doppler shift is accomplished to ensure accurate
timing information and data demodulation;

• Application processing, where the navigation message demodulation is completed, followed by pseudorange construction
and estimation of the PVT solution.

These tasks are performed according to a conventional receiver architecture as shown in Fig. ??. Each satellite within a GNSS
constellation has a unique Pseudo-Random Noise (PRN) code, that is broadcast as part of the navigation message. This code
allows any receiver to unambiguously discriminate the satellites in view. However, the satellite signal has an extremely low
power at the ground level, in the order of 10−5W , which means, it can be easily masked out by noise. The receiver front-end
stage must be capable, first of all, to amplify and filter the signal to an intermediate frequency, and then convert it to a stream
of numerical signal samples. We may refer to this stage as pre-correlation stage. Baseband processing then include all those
algorithms required to track the radionavigation signals of the visible GNSS. The operations here are identified as acquisition
and tracking and they both rely on the use of correlation functions. The received signal is repeatedly compared with a replica
of what is the expected satellite.

The acquisition stage is in charge of detecting the i-th satellite, based on the correlation of the received signal with several
local replicas of the possible ”expected” signals: when the local replica and the input signal are aligned, the tracking process is
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Figure 1: Block diagram of a GNSS receiver conventional architecture.

initialized. The tracking stage uses narrowband correlation functions as well, to refine the local replica generation. In general,
the receiver tracks each signal using dedicated channels running in parallel, where each channel tracks one signal, providing
pseudorange and phase measurements.

The tracking stage provides a pair of code delay and Doppler shift for each GNSS signal in tracking. Along with the messages’
Handover Words and satellite ephemeris. The code phase is exploited to estimate the overall signal time of flight, that,
accounting for the local clock bias, leads to pseudorange measurement, while the Doppler shift is converted into pseudorange
rates. Pseudoranges and pseudorange rates hence constitute the observables used to estimate the PVT solutions. For static
receivers and by constraining the local geographical area to some extent, each code phase offset - Doppler shift pair allows to
identify a specific satellite without ambiguity. This principle is also exploited in DPE (Closas et al., 2007).

2. Machine Learning
The goal of this study is to assess the effectiveness of Machine Learning (ML) techniques for position estimation in IoT devices.
In particular, we frame the problem as a supervised learning one, in which the ML model is trained on a set of (i, o) pairs,
where i is a vector of input features, and o is the corresponding ground truth output, i.e., the IoT receiver’s position. In our case,
o corresponds to the [x, y] position of the receiver in the Earth Centered Earth Fixed (ECEF) coordinates system, as detailed in
Section III. Therefore, the output is real-valued, requiring the use of regression models. At test time, the ML solution outputs a
predicted position ô = f(i), where f() is the learned relation between the input features i and the output.

Different ML models impose different priors on the form of f(), as well as offering different trade-offs in terms of number
of samples required for training convergence, and time and memory complexity for prediction. To explore these trade-offs, in
this work we considered two significantly different families of models, namely Gradient Boosted Decision Trees (GBTs) and
Multi-Layer Perceptrons (MLPs).

GBTs are shallow, non-parametric ML models, built as ensembles of Decision Trees (DTs). By itself, a single DT, when
used for regression, learns a piece-wise constant approximations of the target variable, applying a set of if-then-else rules to
each sample. Precisely, each DT node compares one feature of the input with a learned threshold, and passes the sample to
its left or right child based on the result. This is repeated recursively until a leaf node is reached, which contains the output
prediction. The features considered in each node, and the corresponding thresholds, are optimized at training time with the goal
of minimizing a loss function that measures the prediction error on training samples (Maimon and Rokach, 2014). While only
requiring a few lightweight branching operations at prediction time, single DTs are extremely prone to over-fitting, thus poorly
generalizing on unseen samples. This limitation is addressed thanks to ensemble learning, that is, by aggregating the predictions
of multiple independent DTs. GBTs, in particular, are DT ensembles trained sequentially with a gradient boosting approach,
in which each new DT learns to produce an output that corrects the aggregated prediction error of all previous ones. A local
linear approximation of the residual error is used, which relies on the gradient of the loss function. A detailed description of
the GBT training algorithm is out of scope of this paper, and we refer readers to (Maimon and Rokach, 2014) for details. In
our work, we implement GBT models using the state-of-the-art open source eXtreme Gradient Boosting (XGBoost) library,
which implements several addtions to the basic training algorithm, such as shrinkage and bagging, as well as computational
optimizations for parallel and distributed execution (Chen et al., 2015).

MLPs are one of the simplest types of Artificial Neural Network (ANN). Namely, they are built as linear sequences of multiple
layers of artificial neurons, each of which implements a nonlinear function of its inputs. The network is feed-forward, i.e.,
each layer is only connected to the following one, without recurrent (backward) connections. Furthermore, MLP layers are
fully-connected, that is, each neuron’s output is a function of all the neurons in the previous layer (and for the first layer, of all



the input features). Mathematically, the l-th layer’s neurons constitute a vector zl = g(Wl · zl−1 + bl) where z0 = i, Wl and bl
are the trainable weights matrix and biases vector of the layer, and g() is a non-linear activation function. Common functional
forms for g() include sigmoid, hyperbolic tangent, and the rectified linear unit (ReLU). For regression problems, the output of
each neuron in the last layer of the MLP corresponds to one predicted value, and usually has an identity activation function. The
MLP is trained by updating the weights and biases of all layers to minimize a differentiable loss function, using some variant
of Stochastic Gradient Descent (SGD). For details on the model and on the training algorithm we refer readers to (Goodfellow
et al., 2016). In this work, we leverage the Keras Python-based framework for training our MLP models (Chollet et al., 2015),
which exposes a simple interface to define the model architecture, the loss function, the optimizer, etc.

Both types of ML model include several hyper-parameters, that is, non trainable configurations that significantly affect their
performance, both on training data and on unseen test data. For GBTs, these include the number of DTs in the ensemble, their
maximum depth, the learning rate, etc, whereas for MLPs, they include the number of layers, the number of neurons in each
internal layer, the type of activation function, etc. As detailed in Section III, the most relevant hyper-parameters for each model
type have been tuned by means of an automated framework, called Optuna (Akiba et al., 2019).

III. METHODOLOGY
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Figure 2: Proposed IoT GNSS receiver architecture: use of machine learning to perform PVT estimation within a network of collaborative
receivers.

With reference to the standard architecture shown in Fig. 1, we propose to replace the full post-processing chain by means of
ML techniques, supported by collaborative users sharing their data, i.e., delay-Doppler data and estimated position. In order
to do so, we included in the diagram a network interface devoted to the exchange of data among the receivers. The concept
architecture is then modified as per Fig. 2. The investigation has been pursued through two different stages. First, we set up
an artificial, experimental environment in Matlab. We assume a scenario in which an IoT target receiver is surrounded by a
set of n networked receivers, randomly located within a radius Rtol. The target IoT receiver is intended having no chance to
autonomously estimate its own state, unless assisted by surrounding receivers. We hence build a dataset of aiding data where
the following information have been shared by each aiding receiver:

• Receivers location in geodetic, local and ECEF coordinates,

• Identifiers of the satellites in view,

• delay-Doppler array (for respect to each satellite in view).

Note that, in the definition of the dataset we worked in a backward direction with respect to the sequence of operations done by
a GNSS receiver: we started by defining the position for the receivers on the Earth, which is thus a known, noiseless datum, and
by simulating a constellation scenario, we computed the receivers-to-satellites ranges (or pseudoranges) and, from these latter,
we simulated the code delay - Doppler shift pairs. The second part of the work has been focused on the data processing via
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ML tools in Python environment, using two different machine learning open-source libraries, XGBoost and Keras. The aim is
to understand whether or not is it possible to estimate the IoT receiver position by exploiting the data shared by the networked
receivers. The workflow of the presented methodology is shown in Fig. 3. Eventually, the estimation error affecting the IoT
state obtained using the two machine learning tools has been compared to an over-simplistic, reference model, where the IoT
receiver’s position is estimated by the arithmetic average of the networked receivers’ positions. A single-scalar metric, defined
as the ratio between the Root Mean Square Error (RMSE) of the position estimated by the machine learning tools and the RMSE
of the position estimated by the reference model has been used to compare the machine learning models’ performance against
the simplified reference model. A comparison against nominal GNSS solution has been considered not practicable in this phase,
since a legacy PVT solution would have returned the reference position used for the observable generation.

1. EXPERIMENTAL ENVIRONMENT
a) Generation of the GNSS constellation
The built-in Matlab function semread function.m retrieves almanac data for all the available GPS satellites for a specific time
and timezone. For each satellite in the constellation, the almanac includes:

1. Coarse orbit information (i.e., orbit ephemeris)

2. Health status

3. Satellite vehicle identifier

4. clock corrections

5. GPS time

Such data are exploited by the receiver to identify a specific satellite and determine its location along its orbit at a given time
instant. Based on these data, the Matlab function gnssconstellation.m returns the satellite positions and velocities at the desired
datetime t. Positions and velocities are specified in the ECEF coordinate system.

b) Generation IoT and networked receivers locations
To build the experimental scenario, we first define the position of the IoT receiver. The position is randomly set within a specified
area, identified by its geodetic coordinates (maximum - minimum latitude and longitude, plus average altitude). The initial area
for training was chosen to correspond to Germany, given the edges in Fig. 4b.

(a) Sample map for user generation. (b) Local area with networked and IoT target receiver locations.

Figure 4: Constraints and output of a generated scenario. The of the area where the scenario is developed (a), and detail of a single set of
locations including the IoT receiver (”IoT”) and the four surrounding networked receivers (b).

A first dataset of 500 points has been created following this approach - see Fig. 4, where a detail of the single row (IoT plus the
four networked receivers) is shown. The attributes that need to be defined for the receivers are listed in Table 1

Normally, due to environmental constrains, such as the presence of tall buildings or trees, a certain receiver might not be able to
see all the satellites available at that specific time. By specifying a random mask angle for each receiver, it is possible to cut out
of the view a certain number of satellites, thus making the scenario more realistic. Once this has been done, we use the Matlab
function lookangles.m to calculate azimut and elevation of the satellites in view and then cut out all the non-relevant data (i.e.,
coming from non-visible satellites).

Note that the position of the IoT receiver is defined with respect to geodetic coordinates (Latitude Longitude Altitude, or LLA),



Table 1: Attributes of the generated GNSS receivers

Attribute Unit Description
Name n.a. Receiver numerical identifier (e.g., 1,2,...,n)

Mask angle [deg] Random elevation mask
Azimut [deg] Azimut angle with respect to satellites in view

Elevation [deg] Elevation angle with respect to satellites in view
Visibility n.a. Number of satellites visible from the receiver

Sat ID n.a. Satellite identification number
SatNum n.a. Number of satellites in view

VisibleSatPos [m,m,m] Position of satellites in view, ECEF coord
VisibleSatVel [m/s,m/s,m/s] Velocities of satellites in view, ECEF coord

Geodetic position [deg,min,sec;deg,min,sec] Receiver location in geodetic coordinates
Position alt [m] Altitude of the receiver
Position lla [deg,deg,m] Position of the receiver in lat,lon,alt
Position enu [m,m,m] Position of the receiver, EastNothUp coord
Position ecef [m,m,m] Position of the receiver, ECEF coord

Posdiff [m,m,m] Difference in position between satellite and receiver
LOS Vector [m,m,m] LOS vector between satellite and receiver
Velocity enu [m/s,m/s,m/s] velocity of the receiver, East-North-Up coord
velocity enu [m/s,m/s,m/s] velocity of the receiver, ECEF coordinates
Velocity ecef [m/s,m/s,m/s] velocity of teh receiver, East-Noth-Up coord
Pseudorange [m] pseudorange between satellite and receiver

Pdot [m/s] pseudorange rate between satellite and receiver
Pseudorange matlab [m] pseudorange computed using Matlab toolbox function
Range rate matlab [m/s] pseudorange rate computed using Matlab toolbox function

Clock Bias [s] receiver clock bias
Integer n.a. number of integer repetitions of codes in pseudorange
Delay [s] delay computed from pseudorange

Doppler [1/s] doppler frequency computed from pseudorange rate
Delay Matlab [s] delay from pseudorange (Matlab toolbox function)

Doppler Matlab [1/s] doppler frequency from pseudorange rate (Matlab toolbox function)

then translated into both East North Up (ENU) and Earth Centered Earth Fixed (ECEF) coordinates. The geodetic coordinates
are preferred when the main need is to locate a point on the Earth’s surface; however, they are less practical when, for instance,
the networked receivers must be generated within a certain radius from the IoT location. Also, the velocity of the receivers
will be likely available in local ENU coordinates, rather than in Geodetic or ECEF coordinates. For all these reasons, once the
IoT receiver coordinates have been defined, they are translated into local coordinates and only afterwords the four networked
receivers’ locations are generated (again, in ENU coordinates).

c) Computation of the pseudoranges and pseudoranges’ rates based on visible satellites
In our environment, the IoT receiver is located at the center of an area of radius Rtol. In the same area, there are 4 networked
receivers, and each of them has a certain number of satellites in view, which means, has all the relevant information required to
compute the pseudorange and the pseudorange rate. The Matlab function pseudoranges.m takes as inputs:

• the receiver position, in geodetic coordinates;

• the visible satellites’ positions, specified as an S × 3 matrix in ECEF coordinates, where S is the number of satellites;

• the receiver velocity, in local coordinate system;

• the visible satellites’ velocities, specified as an S × 3 matrix in ECEF coordinates, where S is the number of satellites.

The clock bias is not taken into account in this formula; for this reason, it is not formally correct to talk about pseudorange. To
get an effective pseudorange, the data returned from the function must be corrected using the information on the clock bias. An
alternative computation, which has been conceived for this work, uses:

• for the calculation of the pseudorange, the difference between receiver and ith satellite positions, both expressed in ECEF
coordinates, plus the clock bias;



• for the calculation of the pseudorange rate, the dot product of the difference between receiver and ith satellite positions
and the LOS (i.e. the unit vector for position difference).

The current investigation assumes all the receiver have null clock bias. For what concerns the velocities of the receivers instead,
it is made the assumption that the IoT receiver is static, while the networked receivers velocities are comparable to those of
walking pedestrians (0.83 to 1.39m/s).

Once the pseudorange and pseudorange rate have been calculated, it is possible to generate the observables based on code delay
τ and Doppler frequency fd:

τ = ρ mod LC (1)
fd = (fL1 · ρ̇)/c (2)

where ρ and ρ rate are the ones previously computed, fL1 is the carrier frequency and LCODE is calculated as:

LCODE = p · Lchip, (3)

where p is the code length and Lchip = c/Rchip, with c equal to the speed of light. As a note, for a receiver that has in view
n satellites, the integer number of code repetitions for all of these satellites is the same. If this condition was not met, the
code delay parameter would lose its meaning and role in the satellite’s identification process. With reference to the simulation
scenario, we must make sure that all of the networked receivers are located within an area that guarantees that the same number
of integer code repetitions is shared amongst the pseudoranges. By means of increasing the tolerance radius Rtol, it has been
verified that the data are always consistent for networked receivers located within a 23km radius from the IoT receiver. This
value is well larger than the 200m radius used for the development of the simulation environment.

d) Processing of the dataset before data processing
Before moving to machine learning tools, the data have been pre-processed by applying some further constraint. In particular:

• for every point of the dataset, all of the receivers (networked and IoT) must have at least 6 satellites in common; where
this condition is not met, the data point is discarded;

• for every point, we want to export the same number of features; it has been chosen to limit the data to 6 common satellites
in view for each receiver.

Based on the assumptions above, whenever the receivers share more than 6 satellites in view, only the data related to the first 6
are part of the data export, while all the others are not taken into account. Considering the number of features to be processed,
a dataset made of 500 points has been created.

Table 2 shows the final set of parameters that will be processed with ML tools. Networked receivers are numbered 1 to 4, while
the IoT receiver is identified as receiver 5.

2. Machine Learning solutions
Once that the data are available, we want to assess if is it possible to estimate the IoT receiver position using the information
shared by the networked receivers. Below is a recap of the assumptions and constraints applied to the input dataset:

• the IoT receiver can be located anywhere in the area delimited by the coordinates specified in Fig. 4b;

• for each IoT receiver, n = 4 networked receivers are randomly generated to lay within a radius Rtol = 200m from the
center IoT location;

• for every receiver, a random mask angle has been defined, ranging from 0 to 20 degrees;

• the clock bias is always set equal to zero;

• the networked receivers are all moving slowly (e.g., a person walking or running);

• the IoT receiver is not moving;

• for every receiver (networked and IoT), there must be at least 6 satellites in view;

• for every point of the dataset, all of the receivers (networked and IoT) must share at least 6 satellites in view; any additional
data is truncated.



Table 2: Data export. Networked receivers are numbered 1 to 4, while IoT target is identified as receiver 5.

Label Unit Description
Lati deg Latitude of the i-th receiver
Loni deg Longitude of the i-th receiver
Alti [m] Altitude of the i-th receiver
xi [m] x-ECEF coordinate of the i-th receiver
yi [m] y-ECEF coordinate of the i-th receiver
zi [m] z-ECEF coordinate of the i-th receiver

biasi [s] Clock bias of the i-th receiver
τi1 [s] Code phase offset of the i-th receiver to satellite 1
τi2 [s] Code phase offset of the i-th receiver to satellite 2
τi3 [s] Code phase offset of the i-th receiver to satellite 3
τi4 [s] Code phase offset of the i-th receiver to satellite 4
τi5 [s] Code phase offset of the i-th receiver to satellite 5
τi6 [s] Code phase offset of the i-th receiver to satellite 6
fd,i1 [1/s] Doppler shift of the i-th receiver to satellite 1
fd,i2 [1/s] Doppler shift of the i-th receiver to satellite 2
fd,i3 [1/s] Doppler shift of the i-th receiver to satellite 3
fd,i4 [1/s] Doppler shift of the i-th receiver to satellite 4
fd,i5 [1/s] Doppler shift of the i-th receiver to satellite 5
fd,i6 [1/s] Doppler shift of the i-th receiver to satellite 6
xavg [m] x-ECEF average coordinate of the 4 networked receivers
yavg [m] y-ECEF average coordinate of the 4 networked receivers
zavg [m] z-ECEF average coordinate of the 4 networked receivers

Since we’re treating a supervised regression problem, it is essential to split the dataset into training set, validation set and test
set. The reason is that, the learning algorithms tends to tailor their learning parameters based on the available information. A
very high accuracy in the prediction over the training set (overfitting) can result in poor results on a different dataset. The ability
to find the best data-fitting is different from the ability to predict, which is instead what is expected from a machine learning
tool.

a) Definition of the target output
With reference to Fig. 4b, for every receiver the location is specified both in geodetic (or Latitude Longitude Altitude (LLA))
and ECEF coordinates. During the first experiments, the choice of the geodetic coordinates as target output has shown extremely
poor results. The error was in fact ranging in the order of 103 m, totally out of span if compared to the radius of 200m. It
must be kept in mind that at the equator 1◦ of latitude corresponds approximately to 111km, which means that a low numerical
error on LLA coordinates will lead to high inaccuracy in the prediction. Moreover, the relation between pseudorange and LLA
coordinates is highly non-linear, due to the local models for altitude estimation (i.e., Geoid WGS84). For the reasons above, all
of the experiments have been conducted setting the ECEF coordinates as target output. The predictions are then translated back
into geodetic coordinates, and finally to the ENU frame, to be compared, also graphically, to the true IoT position.

b) Data Normalization
In the foreseen dataset, the features can be extremely different in magnitude: they’re ranging from the LLA coordinates, in the
order of 102, to the ECEF coordinates, in the order of 107. Such a discrepancy in numeric values for the different features can
greatly affect the performance of the ML algorithms, e.g., by creating numerical problems with the propagation of gradients in
MLPs (Goodfellow et al., 2016). The best practice in this case is to normalize all of the entries before running the code. In our
case, each feature x has been normalized as:

xnormalized =
x− µ(x)

σ(x)
; (4)

where µ is the mean of the feature and σ is its standard deviation.



c) Single Scalar Metric
The most simplistic method to obtain an approximated position of the IoT target receiver based on the collaborative data and
without the need of any machine learning tool is to use an averaged value from the networked receivers’ positions:

xavg =
1
N
·
∑N

i=1 xi , yavg = 1
N
·
∑N

i=1 yi , zavg = 1
N
·
∑N

i=1 zi ,
where N = 4 is the number of the i networked receivers and the coordinates x, y, z are the ones defined in ECEF domain. This
approximation does not exploit any correlation with the target receiver local observations therefore it has too be considered
highly suboptimal. However, it still represents an approximated solution to the positioning problem if we can suppose a uniform
distribution of the collaborative receivers.

To ease the interpretation of the results, a Single-Scalar Metric (SSM) index has been defined, as the ratio between the mean
square error of the position estimated by the machine learning (MSEML) and the mean square error of the position calculated
as the average of the 4 networked receivers’ positions (MSEavg):

SSM =
MSEML

MSEavg
. (5)

If the SSM index is lower than 1, the prediction of the ECEF location done with the machine learning is better than the simple
average of the networked receivers’ positions.

d) XGBoost implementation
XGBoost provides a number of tuning hyperparameters that must be appropriately modulated to optimize the model. Table 3
describes the main hyperparameters that have been leveraged to build the model in XGBoost.

Table 3: XGBoost hyperparameters

Hyperparameter Description Use
Objective Determines the loss function to be used MSE has been chosen as optimizer in the regression
Lambda L2-regularization term Low values could lead to overfitting
Alpha L1-regularization term Low values could lead to overfitting
Colsample bytree Features per tree High values could lead to overfitting
Subsample Percentage of samples per tree Low values could lead to underfitting
Max depth Allowed tree depth High values can result in data overfitting
No. of estimators Amount of desired trees Used to prevent overfitting
Learning rate Step size shrinkage Used to prevent overfitting

Given the number of hyperparameters to be identified (and the ranges to be screened), the tuning has been done using Optuna,
an automatic hyperparameter optimization framework. This decision has led to split the dataset into two portions, as depicted
in Fig. 5:

• a set of 200 samples, to be used by Optuna for the selection of the best fitting parameters (of these, the 80 % will be used
for training and the 20% for validation)

• a set of 300 samples, to be used for training (200 samples) and validation (100 samples) once the hyperparameters have
been selected in Optuna

A common practice in regression problems where data are split into training and validation sets is to divide the overall dataset
into k different sub-sets to perform a k-fold Cross-Validation. At every iteration k:

• one sub-set is selected to be the validation set;

• all the others k − 1 sets are used for the training.

This approach allows a better estimation of the actual accuracy of the model. For our work, we have used a 3-folds cross
validation, plus we have included in the training set the data used for Optuna. Note that, the hyper-parameters optimization in
Optuna has been done separately first for the x, and then for the y output targets.

With XGBoost it is also possible to evaluate how significant each feature (i.e., input parameter) has been in the construction of
the boosted decision trees within the model. In our case, there isn’t a clear relevance of a specific feature for all the receivers, but
a general trend is that higher importance is assigned to code delay information. Doppler frequency instead has been, generally,
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Figure 5: Diagram of the data splitting for XGBoost - use of Optuna library for hyper-parameters optimization.

classified with a lower importance. Based on these considerations, additional trials have been done excluding some features,
like Doppler shift and receiver velocity, but there has been no sensible improvement in the data.

e) Keras implementation
In Keras we’re dealing with two levels of tuning, one related to the structure to assign to the neural network, and the other
referred to the model optimization (for a given network structure). As for the structure, the main parameters to be defined are:

• the number of hidden Layers: the number of hidden layers between input and output;

• the number nodes / neurons for each hidden layer

• the type of activation function. In our case, we fixed this hyper-parameter, using a Rectified Linear Unit function for input
and hidden layers, while an identity function (no activation) is used for the output layer.

Note that the number of neurons for the input and output layer are always fixed. In fact, the former is equal to the number of
input features. For the output layer, instead, there are two possible choices:

• using a single network to predict both x and y coordinates (2-neurons output layer), or

• using two separate models, to do the optimization over x and y coordinates separately (1-neuron output layer).

Given a certain number of input features, an independent network for each parameter is expected to maximize the learning
capabilities of the model. On the other hand, using a single network to predict more than one output (i.e., multi-task learning)
could be a better solution when the number of samples is limited with respect to the number of features. It is difficult to say
a priori which approach could fit better. Both of them have been tested, and a slight improvement was noticed when using a
single network for both outputs.

Similarly to what has been done for XGBoost, the data are normalized and split into training and validation (validation split n
= 20%). The loss function (i.e., the function to be minimized during the training phase) is the mean squared error. The training
phase in Keras can be advantageously managed by using an Early Stopping function, that terminates the training once that the
loss is found to be no longer decreasing. The early stopping requires in input the maximum number of iterations and a patience
index, which corresponds to the number of iterations with no improvement after which the training will be stopped.

IV. RESULTS
a) Validation of the models
To understand if and in what extent the models in XGBoost and Keras can be trusted, a first check can be done by applying those
models to different sets of data. A first validation has been carried out by testing 10 datasets, of 500 samples each, generated
over the same geographic region of the reference dataset (see Fig. 4b).

The results do not differ much from what obtained on the reference dataset; also, the performance in XGBoost and Keras are
comparable - see Fig. 6. The SSM is always lower than 1, meaning that the model estimate works better than the simplistic
model defined as the average of the networked receivers positions. In particular, the estimation error on the IoT receiver position
obtained using machine learning tools is lower (typically, 10 to 20%) than the estimation error showed by the simplified reference
model.

To go further into models’ validation, new datasets have been created for other geographic regions. The aim was to understand
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Figure 6: Comparison of results from XGBoost and Keras over 10 additional validation sets created in the German area.

if we had developed a procedure that could be used everywhere or if it was in somehow tailored on the features belonging to the
original area (Germany). In detail, we have built:

Figure 7: Distribution of the sample points generated over different geographic areas with respect to the experimental scenario: ”Polish” and
”Spanish” areas (left) and ”Russian” and ”Congolese” areas (right).

1. Five datasets of 500 samples each, created in a region shifted in longitude (e.i., further east than the German area),
delimited by the cities of Brno (Czech Republic), Gdansk (Poland), Prague (Poland) and Minsk (Belarus); we refer to this
region as ”Polish area”.

2. Five datasets of 500 samples each, created in a region shifted in longitude and latitude (i.e., further west and south than
the German area), delimited by the cities of Seville (Spain), Bilbao (Spain), Porto (Portugal) and Zaragoza (Spain); we
refer to this region as ”Spanish area”.

3. A datasets of 500 samples, created in a region delimited by the cities of Lusaka (Zambia) and Kinshasa (Congo Democratic
Republic); we refer to this region as ”Congolese area”.

4. A datasets of 500 samples, created in a region delimited by the cities of Chelyabinsk (Russian Federation) and Astana
(Kazakhstan); we refer to this region as ”Russian area”.

The general idea is to perform, first of all, a validation of the models obtained over the reference dataset on all the other four
regions. The results are shown in Fig. 8. The prediction looks like degrading moving further east in longitude with respect to
the reference area. For the Congolese region, where we’ve moved below the equator, the prediction look sensibly improved.
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Figure 8: Keras model validation on the different validation dataset.

b) Position Estimation
. A first evaluation of the receiver’s position estimate obtained through the ML models can be done by looking at the distribution
of their distance from the ”true” IoT position. Fig. 9 shows the values of distance from the true IoT position returned by both
the reference model (”AVG”, in red in the plot) and the ML model (”ML”, in blue in the plot - in this case, XGBoost), while the
true position of the IoT receiver coincides with the horizontal axis.

Figure 9: Distance from true IoT position based on simplified average model (red) and ML model (blue).

Keeping in mind the definition of SSM index (see 5), the values returned by ML model are, in general, closer to the true position:
the SSM over the tested samples is 0.83. However, by looking at the detail of a single sample, it is clear that the ML models do
not always perform better than the simplified reference model. There are cases, in fact, where the simplified reference model
seems to give a better estimate, or where the two models are basically returning the same estimate (and hence there would be no
advantages in using ML). A simple check can be done defining a percentage of Machine Learning Asset (MLA):

MLA = 100 ·
∑N

i=1 nMLi

Ntot
(6)

where Ntot is the total number of samples, and nML is equal to 1 if the ML model estimates better than the simplified model,



and equal to 0 otherwise:

For the samples shown in Fig. 9, the MLA is around 70%, which is an information to be considered together with the one
coming from the SSM.

The values shown in Fig. 9 are computed using local ENU coordinates; it is sufficient to translate them into LLA to get a plot
in geodetic coordinates. Fig. 10 and Fig. 11 show two samples randomly chosen within the dataset.

47.7 m
25.1 m

Figure 10: Sample #25: distance from the true position is 47.65m when using reference simplified model and 25.08m when using
XGBoost model

105.5 m

58.6 m

Figure 11: Sample #150: Estimation error (w.r.t. true position) 105.46m when using reference simplified model and 68.58m when using
XGBoost model

With reference to SSM, the estimation error on the IoT receiver position obtained using machine learning tools is lower, i.e.,
10 to 20% than the estimation error showed by the adopted reference model. This observation is further assessed through a
validation of the models, over geographic regions different from the one used to generate the training dataset. Concerning,
instead, the magnitude of the target estimation error, the position estimates show on average a RMSE of about 50m with respect
to the true location of the target IoT receiver. Although such a distance is not negligible, and considering also that the study has
been conducted in an experimental environment (with all the limitations that this entails), this preliminary study suggests that
the collaborative state estimation based on the post-processing of collaborative GNSS data via machine learning could work
and its use to support low-power GNSS usage in IoT devices is worth of further investigation.



V. CONCLUSIONS
The results presented in this work can pave the way for alternative GNSS receivers architectures where base-band or IF signal
post-processing stages are heavily duty-cycled or switched-off, and machine learning engines are embedded to complement or
replace them at a certain extent. The fact that both the ML algorithms provide results that are better than the average location
of the networked receivers means that they can extract a certain extent of information.
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