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A Multi-Resolution Preconditioner for
Non-Conformal Meshes in the MoM Solution of

Large Multi-Scale Structures
V. F. Martin Member, IEEE, J. M. Taboada Senior Member, IEEE and F. Vipiana Senior Member, IEEE

Abstract— The paper presents a multi-resolution precondi-
tioner able to improve the solution convergence, via the method
of moments and the multilevel fast multipole algorithm, in
the case of non-conformal meshes applying the multi-branch
Rao-Wilton-Glisson basis functions. The proposed preconditioner
enables, for the first time, an automatic multi-level quasi-
Helmholtz decomposition on non-conforming meshes, including
also the generation of the topological (global) loop functions.
Moreover, the generation of the proposed preconditioning scheme
is fully parallelized in a multicore shared-memory enviroment.
Numerical results show the great flexibility of this approach for
the solution of electrically-large multi-scale objects including h-
refinement discretizations.

Index Terms— Multi-resolution preconditioner, multi-branch
Rao-Wilton-Glisson basis functions, quasi-Helmholtz decompo-
sition, method of moments, multilevel fast multipole algorithm,
fast solvers.

I. INTRODUCTION

The extension of the surface integral equations (SIEs) [1]–
[10] to non-conforming meshes has ignited intense research in
the last years, with the goal of finding versatile and accurate
methodologies to address large and multi-scale complex prob-
lems, while simplifying the otherwise necessary computer-
aided-design (CAD) generation and meshing processes.

Moreover, the extremely different levels of details depend-
ing on the working frequencies and the proper addressing of
the geometrical issues tends to greatly increase the number
of unknowns when leading with real life problems. In this
context, h-refinement techniques work to develop methods ca-
pable of incresing the accuracy of the SIE solution for coarse-
meshed multiscale problems through local mesh refinement
[11].

Discontinuous Galerkin (DG) implementations of the SIEs
[12]–[17], based on the combination of the half-Rao-Wilton-
Glisson (h-RWG) basis functions with an interior penalty
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(IP) term, are one of the most popular approaches to deal
with this kind of problems. The key to these methods lies
in the careful treatment of charge accumulation at the (non-
conforming) boundaries between the h-RWG basis functions.
These implementations are made through the incorporation
of an IP and the appropriate selection of a stabilization
parameter, closely related to the triangular mesh size. Other
non-conforming SIE schemes alternative to DG that avoid the
inclusion of an IP term (and the involved singular integrals) are
the monopolar-RWG basis functions [18]–[23], based on the
addition of artificial testing surfaces or the use of volumetric
testing integrals.

More recently, a different approach has been introduced
that is based on the use of the so-called multi-branch RWG
(MB-RWG) basis functions [24]. These functions are defined
over non-conforming triangles sharing a common tearing line,
with the only restriction that the nodes of the coarser mesh
at the tearing line are consistent with part of the nodes of the
finer mesh (i.e, the mesh must be partially node-conforming).
This type of meshing is the one emerging after h-refinements,
so the MB-RWG basis functions are especially suited to
this problem. Moreover, they also bring other advantages. In
particular, they can be easily integrated into existing RWG-
based SIE codes without the need of including penalty terms,
additional volumetric integrals or artificial surfaces, while still
simplifying the CAD and mesh generation. Additionally, MB-
RWG are div-conforming functions, which has allowed the
derivation of loop (solenoidal) bases as linear combination of
them [25].

Regardless of the meshing and basis functions applied, it
is well-known that SIE methods suffer from ill-conditioning
when applied to realistic high-fidelity models that include
multi-scale features, making their resolution challenging. The
use of physics-based preconditioners allows to significantly
improve the convergence and iteration count in these problems,
taking advantage of their physical properties. Some examples
of dense-discretization stable physics-based preconditioners
are the Calderón preconditioner [6], [26]–[31] or the multi-
resolution (MR) preconditioner [8], [32]–[37]. In the latter, a
set of multi-level basis functions is introduced to discretize
the problem while keeping the different scales of variation
of the solution [38], [39]. This preconditioner improves the
spectral properties and conditioning of the original method
of moments (MoM) system matrix [40], especially in the
case of multi-scale structures, by virtue of a quasi-Helmholtz
decomposition in which the unknown current is separated into
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its solenoidal and non-solenoid parts. However, despite recent
efforts to improve the capabilities of DG-SIE methods, to date
the application of physics-based preconditioners is limited to
conforming schemes such as those relying on the use of RWG
basis functions. This is, in part, due to the non div-conforming
properties of the h-RWG functions.

In this context, the use of a set of div-conforming func-
tions defined over (possibly) non-conforming meshes and
combined with physics-based preconditioners would bring a
very appealing advantage, posing a good compromise between
performance and versatility in electromagnetic modelling of
complex geometries with multi-scale features.

In this paper, we focus on the application of a multilevel
quasi-Helmholtz decomposition for non-conformal meshes.
To address it, the MR preconditioner is developed over the
multi-branch RWG basis functions and applied to the MoM
solution of complex multi-scale problems discretized with
non-conformal meshes and accelerated via the multilevel
fast multipole algorithm (MLFMA). The resulting formula-
tion provides an alternative to automatically build a multi-
level quasi-Helmholtz decomposition into solenoidal and non-
solenoidal functions on this kind of non-conformal meshes,
and completely avoids the awkward topological (global) loop
functions searching, because they are automatically obtained.
The proposed MR-MB scheme is actually a multiplicative
preconditioner that can be easily inserted into any fast MoM-
based code. In this work, the proposed preconditioner is
applied to the Combined Field Integral Equation (CFIE) for
closed surfaces and to the Electric Field Integral Equation
(EFIE) for open surfaces for the solution of scattering and
radiation problems. Numerical examples demonstrate the ver-
satility and performance of this scheme. To the authors’ knowl-
edge, this is the first work where a multi-level quasi-Helmholtz
decomposition is applied to non-conforming meshes in SIE.
Preliminary results were recently presented in [41], [42]

The rest of the paper is organized as follows. The for-
mulation background is presented in Sect. II. Section III
illustrates the MR generation scheme for MB-RWG functions.
The numerical results are in Sect. IV to validate and illustrate
the flexibility of the proposed method with different challeng-
ing realistic structures. Finally, some concluding remarks are
drawn in Sect. V.

II. BACKGROUND

In this section the definition of the multi-branch RWG basis
functions is summarized and the proposed SIE formulation is
described in order to set up the notation.

A. Multi-Branch RWG Basis Functions

The RWG basis functions [43] are the basis functions
par excellence for solving SIEs problems defined in terms
of triangular meshes. They are defined over two domains
(namely, the positive and negative triangles) and have well-
known properties that make them especially suitable for
solving integral equation problems. Analogous to the RWG
functions, the MB-RWG functions [24] are defined over a
positive and a negative domain, but, in this case, one of the two
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Fig. 1. Example of an MB-RWG basis function with three branches.

domains (which without loss of generality we will consider
here to be the negative one) can be made up of several adjacent
triangles (as shown in Fig. 1), instead of a single one, as:

fMB
n (r) =


ρ+
n

h+
n
, with r ∈ T+

n

−ρ−
n,i

h−
n,i

, with r ∈ T−
n,i, i = 1, . . . ,Mn

0, otherwise

(1)

where T+
n is the positive triangle, and T−

n,i are the Mn triangles
in the negative domain of the n-th MB-RWG basis function;
ρn and hn are the position vector relative to the free vertex
and the height relative to the common edge of each triangle,
respectively. The MB-RWG functions thus defined keep all the
desirable properties of RWG functions, namely, null normal
component around the outer edges, unit normal component
at the common edge lines, and a divergence that can be
analytically evaluated as

∇ · fMB
n (r) =


2
h+
n
, with r ∈ T+

n

− 2
h−
n,i

, with r ∈ T−
n,i, i = 1, . . . ,Mn

0, otherwise
(2)

B. CFIE-MoM Formulation

We consider a perfect electric conductor (PEC) body in
a homogeneous background with equivalent electric current
densities J(r′) defined on its surface S. Applying the equiva-
lence principle to the total electric and magnetic fields, the
tangential electric field integral equation (T-EFIE) and the
normal magnetic field integral equation (N-MFIE) can be
obtained as follows:

T-EFIE: ηL{J}tan = Einc
tan (3)

N-MFIE: n̂×K{J}+ 1

2
J = n̂×Hinc (4)

where η is the intrinsic impedance of the background, n̂ is
the unit vector normal to the body surface and pointing to the
background, and Einc and Hinc are the incident electric and
magnetic fields, respectively. The integro-differential operators
L and K are defined as

L{J} = jk

∫∫
S

J(r′)g(r, r′)dS′ +
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− 1

jk
∇
∫∫

S

J(r′)∇′g(r, r′) dS′ (5)

K{J} = PV

∫∫
S

J(r′)×∇′g(r, r′) dS′. (6)

where k is the wavenumber, and r and r′ are the observation
and source point, respectively; ∇′ denotes the divergence in
the primed (source) coordinates, and PV the principal value of
the integral in (6). The homogeneous Green’s function g(r, r′)
is defined as

g(r, r′) =
e−jk|r−r′|

4π|r− r′|
. (7)

The combined field integral equation (CFIE) can be derived
from the above integral equations as:

CFIE = α
T-EFIE

η
+ (1− α) N-MFIE (8)

where 0 < α < 1 is the weight controlling the contribution of
the EFIE and MFIE equations, which is selected to 0.5 in this
work.

To obtain the equivalent electric current densities J on
the PEC object surface, the conventional MoM procedure is
applied to (8). The current densities on the whole body are
expanded into a sum of N known vector basis functions fn in
the form

J =

N∑
n=1

Infn (9)

with In being the unknown expansion complex coefficients.
Substituting (9) into (8) and applying the Galerkin testing
procedure, a system of linear equations is derived from the
integral equations and can be expressed as a dense matrix
system as follows:

[Z] [I] = [V ] (10)

with

[Z] =
(
α
[
ZEFIE]+ (1− α)

[
ZMFIE]) (11)

where
[
ZEFIE

]
and

[
ZMFIE

]
are a N ×N matrices, containing

the coupling between all the basis and testing functions, [I]
is an N -column vector collecting the unknown coefficients In
of the current expansion, and [V ] is the N -column excitation
vector, closely related to the incident fields originated by
the sources. Each m,n element of the

[
ZEFIE

]
and

[
ZMFIE

]
matrices, with m and n = 1, . . . , N , can be expanded as
follows:

ZEFIE
mn =

∫∫
∆m

fm · L {fn} dS

=

∫∫
∆m

fm ·
∫∫

∆n

fn g(r, r
′)dS′dS +

+
1

jk

∫∫
∆m

fm · ∇
∫∫

∆n

fn · ∇′g(r, r′)dS′dS (12)

ZMFIE
mn =

∫∫
∆m

fm · n̂×K{fn} dS +
1

2

∫∫
∆m

fm · fndS

=

∫∫
∆m

fm × n̂ ·
∫∫

∆n

fn ×∇g(r, r′)dS′dS +

+
1

2

∫∫
∆m

fm · fndS (13)

where ∆m and ∆n denote the subdomain where the functions
fm and fn are defined, respectively. Equation (12) involves
hyper-singular integrals, whose singularity order can be re-
duced in terms of the product rule for divergence and the
divergence Gauss theorem, by transferring the gradient opera-
tors from the Green’s function and the source (inner) integral
to the divergence of the basis and testing functions.

III. MULTI-RESOLUTION MULTI-BRANCH (MR-MB)
PRECONDITIONER

The multi-resolution (MR) preconditioner improves the
spectral properties and condition number of the original MoM
system matrix thanks to a multi-level quasi-Helmholtz de-
composition of the induced currents, splitting them into their
solenoidal and non-solenoidal parts [44].

The standard MR generation procedure is summarized here.
First, the input triangular mesh, supporting the discretization of
the problem in terms of standard basis functions (i.e., RWG
basis functions), is rearranged until getting a set of meshes
with different mesh-element (namely, cell) sizes. This is done
via a multi-level algorithm in which the adjacent cells of the
previous level, starting from level-0 triangular input facets,
are aggregated, giving rise to macro-cells. Then, generalized
basis functions (i.e., generalized RWG basis functions) are
defined on each pair of adjacent macro-cells, and, from them
via a local singular value decomposition (SVD) procedure,
the solenoidal and non-solenoidal MR basis functions are
obtained. The above scheme is applied recursively up to
the quasi-Nyquist (coarsest) cell-size level, where generalized
RWGs are defined completing the set of multi-level basis
functions [8], or up to when one last-level macro-cell com-
pletely includes all the analyzed structure [32]. It is important
to remark that generated MR and generalized RWG basis
functions at any level can be described as linear combinations
of the initial underlying functions (i.e., the standard RWG
basis functions), and hence the MR preconditioner can be
applied to the MoM system matrix via a simple matrix
multiplication as any algebraic preconditioner.

In the following sections the MR generation scheme will be
detailed in the case of non-conformal meshes where MB-RWG
basis functions are defined.

A. Multilevel mesh grouping algorithm

One of the critical points regarding the computational ef-
ficiency of the MR preconditioner is the development of a
cell grouping algorithm that allows to keep a low complexity
in applying the local SVDs needed to split the underlying
currents into their solenoidal and non-solenoidal parts. The
grouping strategy described here extends the scheme proposed
in [45] to non-conformal triangular meshes.

The procedure is approached through an iterative scheme
repeated level by level, in which central cells are selected and
merged together with their neighbors (connected or adjacent
cells), leading to the macro-cells of the next level. It is
designed to optimize some qualitative aspects of the cells
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formed, in order to guarantee a good overall performance in
the application of the MR preconditioner. These objectives are
mainly to maximize aggregation in macro-cells and prevent
the formation of holes (multiply-connected cells, e.g. ring-
like cells that enclose another cell). They can be achieved by
addressing the central cell selection criteria in terms of specific
metrics defining different distances between cells. It is worth
mentioning that such scheme provides improved performance
compared to other grouping strategies (such as octree-based
clustering schemes), posing a good balance in the number of
child cells throughout the multilevel cluster regardless of the
density of the underlying mesh, while keeping the number
of elements of the local SVDs independent of the number of
unknowns. This results in a complexity of O(N logN) for the
generation of MR basis functions, with N equal to the total
number of unknowns, as shown in Sect. III-D.

Nevertheless, in the case of non-conformal or partially
non-conformal meshes supporting MB-RWG basis functions,
some additional constraints are required to ensure charge
conservation in emerging macro-cells. Such constraints are
addressed here through the specific treatment of the non-
conformal input mesh (at initial, level-0), where both RWGs
and MB-RWGs are defined, posing a proper definition of the
level-1 generalized basis functions. In particular, during the
aggregation procedure at level-0, if a triangle belonging to
the negative domain of an MB-RWG function (see Fig. 1)
is aggregated, then all negative triangles of that domain must
also be merged into the same level-1 macro-cell, which ensures
that each level-1 generalized basis function can be described
as a linear combination of complete level-0 RWG and/or
MB-RWG functions. Additionally, all triangles with a vertex
belonging to the internal nodes of this MB-RWG must also
be aggregated in the same macro-cell. The above constraints
guarantee conservation of charge at each level.

To better illustrate the described procedure, Fig. 2 gathers all
the possible (five) different grouping alternatives when MB-
RWG functions come into play, depending on the position
of the central triangle picked to make the grouping. The five
cases are described as consecutive iterations of the proposed
algorithm. Let us first consider a central triangle belonging to
the positive domain of an MB-RWG function, in this case
C0

1 in Fig. 2(a), which belongs to the positive domain of
f0
1 . A level-1 macro-cell is created by merging this central

triangle together with its neighbours (connected triangles),
two corresponding to RWG domains (C0

9 and C0
10) and four

corresponding to the negative part of MB-RWG f0
1 (C0

2−C0
5 ).

Taking into account the constraints appointed above, since the
negative part of an MB-RWG is being aggregated to a macro-
cell, all triangles with a vertex belonging to the internal nodes
of f0

1 (C0
6 − C0

8 ) should also be merged into the new macro-
cell, labeled C1

1 in Fig. 2(b).
Let us now consider the case of a central triangle belonging

to the negative domain of an MB-RWG, in this case C0
13,

which belongs to the negative domain of f0
2 . A level-1

macro-cell is formed by merging this central triangle with its
neighbours (C0

11, C0
16 and C0

17). Considering now that C0
13

belongs to the negative part of an MB-RWG, all negative
triangles (C0

12 −C0
15) and all those triangles connected to the

𝐂𝟏
𝟎

𝐂𝟐𝟕
𝟎

𝐂𝟑𝟗
𝟎
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1
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1
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1

(b)

𝑓1
1

Fig. 2. Example of cell grouping. (a): level-0 mesh including three MB-
RWGs; (b): level-1 mesh (each macro-cell corresponds to a group of adjacent
triangles with the same color) with an example of a generalized MB-RWG
defined on level-1 cells labelled with “C1

1” and “C1
2”

internal nodes of f0
2 (C0

16−C0
18) must also be merged, resulting

in the new macro-cell labeled C1
2 in Fig. 2(b).

We next consider the triangle C0
30, which does not belong

to an MB-RWG, as the central triangle. The adjacent triangles
C0

19 and C0
31, belonging to respective positive domains of

the MB-RWG basis functions f0
3 and f0

4 , as well as triangle
C0

29, belonging to a conventional RWG, are aggregated to the
macro-cell labeled C1

3 in Fig 2(b). In this case, the negative
triangles of the MB-RWG functions f0

3 and f0
4 remain free

and will be added in subsequent iterations of the algorithm.
A different case of central triangle not belonging to an MB-

RWG function is that of triangle C0
27. Similarly to previous

cases, a new macro-cell is created by merging this triangle
with its neighbours (C0

20 and C0
28). Note that C0

15 cannot be
included here as this triangle has been merged in a previous
iteration of the algorithm and already belongs to a level-1
macro-cell. As C0

20 belongs to the negative domain of an MB-
RWG (function f0

3 ), triangles C0
21 − C0

23, as well as those
connected to the internal nodes of f0

3 , C0
24 − C0

26, must be
assigned to the same macro-cell, namely macro-cell C1

4 in Fig
2(b).

As a final case, let us consider the selected central triangle
C0

39, which does not belong to an MB-RWG. A new macro-
cell is created by merging this triangle with its neighbours
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(C0
38 and C0

40). Since triangle C0
38 is connected to an internal

node of MB-RWG function f0
4 , all triangles connected to the

internal nodes of f0
4 (C0

36 − C0
38), together with all negative

triangles of f0
4 (C0

32 − C0
35), must be included in the same

macro-cell, thus leading to macro-cell C1
5 .

As verified in the Sects. III-D and IV, despite the additional
constrains needed to consider non-conformal meshes, the al-
gorithm described above maintains the original complexity of
the multi-resolution generation procedure applied to realistic
non-conformal problems.

The algorithm described above is then applied to the rest of
the levels, but without the need to consider non-conforming
constraints at higher levels. Depending on the electrical-size of
the discretized structure, the scheme is applied until the quasi-
Nyquist (coarsest) cell-size level, or up to when all level-(L−1)
cells are completely included in one level-L cell only, allowing
an automatic multilevel quasi-Helmholtz decomposition for
the first time applied to non-conforming meshes.

B. Generalized MB-RWG Basis Functions

A set of generalized basis functions (gf) f li is defined
on each pair of adjacent level-l generalized cells Cl,+

i and
Cl,−

i and described as linear combination of the level-(l − 1)
functions as follows:

f li (r) =

N l−1
i∑

n=1

f l
i,nf

l−1
µi(n)

(r),

[µi] =
[
j = j1, . . . , jN l−1

i
/f l−1

j (r) ∈ Cl,+
i ∪ Cl,−

i

]
(14)

where N l−1
i is the number of level-(l − 1) functions defined

strictly within the f li (r) domain. An example of generalized
MB-RWG function is shown in Fig. 2(b) defined on two level-
1 cells.

This set of generalized bases reproduces the behavior of the
initial MB-RWG and RWG basis functions at each level. In
order to find the coefficients f l

n,i of the above expansion, the
surface divergence operator ∇s· is applied to both sides of
(14), and the resulting equation is projected onto the cells of
level-(l − 1), posing the following linear system:[

Ql
i

] [
f l
i

]
=

[
qli
]

(15)

where
[
Ql

i

]
is a M l−1

i × N l−1
i matrix, called charge matrix,

whose each m,n element is defined as

Ql
im,n = ⟨ pl−1

m ,∇s · f l−1
µin (r)⟩ (16)

with M l−1
i equal to the number of level-(l − 1) cells that

uniquely define the domain of each f li function, and pl−1
m

corresponding to a pulse function, equal to unity inside the
corresponding level-(l − 1) cell, Cl−1

m , and zero elsewhere.[
f l
i

]
is a N l−1

i column vector that collects the coefficients
f l
i,n with n = 1, . . . , N l−1

i , and
[
qli
]

is a M l−1
i column vector

whose elements elements are defined as

qlim = ⟨ pl−1
m ,∇s · f li (r)⟩. (17)

To facilitate the generation of the above set of generalized
functions, in the original MR generation scheme [32] the

standard RWG functions defined on the input triangular mesh
are normalized by the corresponding length of the common
edge, as

f0i,RWG(r) =


ρ+
i

2A+
i

, with r ∈ T+
i

− ρ−
i

2A−
i

, with r ∈ T−
i

0, otherwise

(18)

with its correspond divergence as

∇s · f0i,RWG(r) =


1

A+
i

, with r ∈ T+
i

− 1
A−

i

, with r ∈ T−
i

0, otherwise

(19)

where A+
i and A−

i are the areas of the positive and negative
domain triangle, T+

i and T−
i . Substituting (19) into (16) and

(17), we obtain

Ql
im,n =

{
±1, if Cl−1

m ≡ Cl−1,±
n

0, otherwise
(20)

qlim = ±Al−1
m

Al,±
i

(21)

The above normalization allows easy definition of the charge
system. The new elements of the charge matrix only contain
“±1 ”or “0 ”values, depending on the cells where each
generalized function is defined. It also allows to calculate the
divergence of a generalized function without worrying about
the length of the common edge, which is often difficult to
obtain for higher levels.

In the case of MB-RWG functions defined on non-
conformal meshes, the standard functions defined on the input
triangular mesh can be normalized by the corresponding length
of the common edge of the positive triangle li,+, as

f0i,MB(r) =


ρ+
i

2A+
i

, with r ∈ T+
i

− li,j

l+
i

ρ−
i,j

2A−
i,j

, with r ∈ T−
i,j , j = 1, . . . ,Mi

0, otherwise
(22)

where A−
i,j are the areas of the negative triangles T−

i,j , li,j are
the edges of the negative triangles in common with T+

i , and
Mi is the number of negative triangles in the f0i,MB domain.
Then, the divergence of (22) can be written as

∇s·f0i,MB(r) =


1

A+
i

, with r ∈ T+
i

− li,j
l+
i

1
A−

i,j

, with r ∈ T−
i,j , j = 1, . . . ,Mi

0, otherwise
(23)

In these cases, the elements of the charge matrix
[
Ql

i

]
relative

to negative triangles of an MB-RWG contain the relationship
between the length of the negative and positive triangles.
It is important to note that this fact is only present in the
generation of the generalized functions defined on level-1, thus
edges length only come into play in level-0 charge systems
describing charge conservation in MB-RWG basis functions.
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Once the charge matrices are properly defined, the coef-
ficients of the generalized functions can be easily obtained
at each level by solving the matrix system (15). But taking
into account that the matrix system (15) is indeterminate [32],
a new matrix system can be defined by reducing a random
row and adding the condition that solenoidal currents do not
contribute to the generalized function considered:[ [̃

Ql
i

][
U l
i

] ] [
f l
i

]
=

[[̃
qli
]

[0]

]
(24)

where
[̃
Ql

i

]
and

[̃
qli
]

correspond to
[
Ql

i

]
and

[
qli
]

with one row
removed, respectively,

[
U l
i

]
is the set of right singular vectors

in the null space of
[
Ql

i

]
(which corresponds to the solenoidal

null space functions) that can be obtained through the SVD
decomposition of

[
Ql

i

]
, and [0] is a null vector of dimension

(N l−1
i −M l−1

i +1). Solving the system (24), the coefficients
f l
i,n of (14) are found. Then, applying (14) recursively, any

level-l generalized function f l
i (r) can be expressed as a linear

combination of basis functions at level-0 as follows:

f li (r) =

N∑
k=1

f l,0
i,k f

0
k (r) (25)

where each coefficient f l,0
i,k represents the weighting coefficient

for the input level-0 functions.

C. Multi-Resolution MB-RWG Functions

The procedure for generating multi-resolution MB-RWG
functions is described below. The MR functions provide a
set of bases capable of improving the spectral properties of
the SIE system by separating the current into solenoidal and
non-solenoidal parts in a hierarchical scheme. The properties
and multilevel nature of these functions transform the matrix
system into a robust and well-conditioned system capable of
accurately handling multiscale features and very small details,
in contrast to a generic quasi-Helmholtz decomposition.

A collection of functions can be defined at each level of
the hierarchical mesh decomposition as a linear combination
of generalized functions at this given level as

wl
i(r) =

Kl
i∑

k=1

T l
i,k f

l
δi(k)

(r) (26)

where Kl
i is the number of f lδi(k)(r) functions defined inside

the domain of wl
i, δi is the vector containing the global index

of the level-l functions where wl
i(r) is defined and T l

i,k are
the weighting coefficients of each f lδi(k)(r) function.

The first step to build the MR functions is the generation
of the charge matrices in (16) for each group of children
level-l cells belonging to a given level-(l + 1) cell. Then, the
coefficients T l

i,k for non-solenoidal functions are determined
by the non-zero singular vectors of the charge matrix, while
the null singular vectors correspond to the coefficients of
the solenoidal functions. To complete the solenoidal part, the
divergence-free functions defined across each pair of adjacent
level-(l+1) cells must be added [44]. This set can be extracted
from the null space functions of the joint charge matrix for

the cells defining each generalized MB-RWG function on the
level-(l+1) mesh and subtracting the function space generated
at the previous step by the Gram-Schmidt orthogonalization
process.

A generic MR function wl
i of level-l is expressed in (26)

as linear combination of the generalized basis functions of
the same level. Importantly, considering that all generalized
functions at any level can be expressed as linear combinations
of the original input MB-RWG and RWG functions (level-0),
any generic level-l MR function can also be described as a
linear combination of the input basis functions. So (26) can
be express as follows:

wl
i(r) =

N∑
k=1

T l,0
i,k f0k (r) (27)

where each coefficient T l,0
i,k represents the weighting coeffi-

cient for the input level-0 functions, which can be collected
for each level as

[
T l

]
=


T l,0
1,1 T l,0

1,2 . . . T l,0
1,N

T l,0
2,1 T l,0

2,2 . . . T l,0
2,N

...
...

. . .
...

T l,0

N l
MR,1

T l,0

N l
MR,2

. . . T l,0

N l
MR,N

 (28)

being N l
MR the number of MR basis defined on level-l.

The above
[
T l

]
matrices for each level can be put together

to obtain a square MR change-of-basis matrix [TMR], since
N0

MR +N1
MR + . . . , NL−1

MR = N , as

[TMR] =


[
T 0

][
T 1

]
...[

TL−1
]

 (29)

paving the way for the application of the multilevel MR basis
functions set as left and right multiplicative preconditioner of
the original system, which can be easily combined with any
fast SIE method [46].

As detailed in Sect. III-A, the above change-of-basis matrix
(29) is applied when all level-(L− 1) cells are completely
included in one level-L cell only. Notwithstanding, when
structures with large electrical size come into play, the MR
grouping procedure is stopped at the quasi-Nyquist cell-size
level. The MR generation scheme is then applied for the first
(L − 1) levels, while the generalized MB-RWG functions
(Sect. III-B) defined at the last (coarsest) level-L (25) are
included to complete the new set of functions, defining the
corresponding change-of-basis matrix [Tgf] as:

[Tgf] =


fL,0
1,1 fL,0

1,2 . . . fL,0
1,N

fL,0
2,1 fL,0

2,2 . . . fL,0
2,N

...
...

. . .
...

fL,0

NL
gf ,1

fL,0

NL
gf ,2

. . . fL,0

NL
gf ,N

 (30)

being NL
gf the number of generalized basis functions defined

on level-L. Note that N0
MR + N1

MR + . . . , NL−1
MR + NL

gf = N .
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The complete change-of-basis matrix [T ] can be then defined
in terms of (29) and (30) as

[T ] =

[
[TMR]

[Tgf]

]
. (31)

with dimension N×N . Note that if all the structure is included
in one level-L cell only, Ngf = 0 and [T ] = [TMR].

D. Complexity

As mentioned in previous sections, the most expensive
operation in the generation of the proposed preconditioner
is the SVD decomposition needed to find the coefficients
of the solenoidal and non solenoidal bases. Applying the
hierarchical decomposition of the input mesh, the dimension
of the charge matrices is independent of the total number
of unkowns (N ), reducing the complexity of the algorithm
up to O(N logN), where logN corresponds to the number
of levels. The hierarchical nature of the MR basis functions
limits the number of original basis that an MR depends to
those defined on triangles belonging to the level-l + 1 parent
cells. Then, the change-of-basis matrix is sparse, allowing an
efficient application of the MR preconditioner to the original
system through parallel algorithms for sparse computation.
The complexity of the generation algorithm is shown in Fig. 3
for the case of a sphere subdivided into eight symmetrical
parts, with non-conformal meshes in the contours between
them.

Fig. 3. Time to generate the multi-resolution basis versus the number of
unknowns N . Case of a sphere subdivided into eight symmetrical parts, with
non-conformal meshes, as shown in the inset.

E. Parallel implementation

A novel aspect of this work is also the introduction of a
parallel implementation to take advantage of the availability
of large multicore shared-memory computers in the generation
of the MR basis functions. The proposed implementation
relies on the use of the OpenMP standard under the C++
programming language. It aims to optimize parallel efficiency
by adopting a two-step strategy. In a first step, the macro-
cells of each level are calculated following the procedures
of Sect. III-A, as described below highlighting the parallel
implementation parts.

• The iterative grouping algorithm is applied sequentially
to derive the cells and domains of the generalized basis

functions of level-(l + 1) from the cells and domains of
the generalized basis functions of level-l. The metrics and
sets of possible next central cells are properly updated in
each iteration, minimizing the number of dependencies
between consecutive levels while keeping data locality
and computational cost under control.

• Load balancing between parallel processes is a major con-
cern for parallel efficiency. A load balancing algorithm
is applied here to avoid large disparity in the number
of children cells. Those macro-cells with a very small
number of children compared to the neighboring cells
are eliminated, and their children are relocated to the
neighboring macro-cells with fewer number of children.

• A parallel loop by cells and domains of generalized
functions is included next to precompute all the data
needed for the generation of basis functions during the
next step: topological relationships between cells and
domains across the different levels, global and local
indexing lists, sizes, lengths, etc.

Then, the procedures described in Sects. III-B and III-C are
applied to derive the coefficients of the generalized and MR
basis functions and the set of solenoidal and non-solenoidal
functions. This is a complex part of the algorithm, and the one
that benefits the most from the parallel implementation. This
implementation is described below:

• A first parallel loop per macro-cells is included for the
generation of the MR basis functions. The required charge
matrices and SVD decomposition at level-(l + 1) are
constructed from their children cells at level-l and solved
to derive solenoidal and non-solenoidal basis functions.
The load balancing scheme previously described in the
generation of macro-cells is key to limit the size of these
matrices, which can be directly calculated and factorized,
while optimizing the parallel efficiency of the procedure.
Note that this step does not include the calculation of
solenoidal functions defined across pairs of adjacent cells,
which are otherwise needed as indicated in Sect. III-C.
Such divergence-free functions, defined on pairs of adja-
cent cells, will be calculated together with the generalized
functions in the next parallel loop.

• The coefficients of the generalized basis functions and
the set of divergence-free MR basis functions required to
complete the solenoidal part, both defined on pairs of ad-
jacent cells, are calculated in a second parallel loop. The
required joint charge matrices and SVD decomposition
at level-(l + 1) are constructed from their children cells
at level-l, solved and orthogonalized through the Gram-
Schmidt procedure, yielding the complete set of general-
ized, solenoidal, and non-solenoidal basis functions.

The above scheme provides a good scalability, which facili-
tates the parallel generation of the charge matrices and the MR
functions, enabling the application of this method to real-life
large-scale complex problems.

F. MoM solver

Once the construction of the MR change-of-basis matrix
(31) is completed, the MoM system matrix (10) can be
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transformed into a new system, expressed in the new function
space, by applying the proposed approach as a multiplicative
preconditioner, as follows:[

Ẑ
]
= [T ] · [Z] · [T ]T (32)

Next, two additional preconditioners are included to im-
prove conditioning of the new system. First, a Jacobi diagonal
preconditioner [47] [D] is applied (both left and right) to the
complete set of basis, where the non-zero elements (diagonal)
of [D] are given by

Dii =
1√
Ẑii

(33)

with i = 1, . . . , N . Second, an incomplete LU preconditioner
is applied to the impedance matrix block corresponding to
the generalized functions (after the Jacobi diagonal precondi-
tioner), where [L] · [U ] ≈ [Dgf] ·

[
Ẑgf

]
· [Dgf], being

[
Ẑgf

]
and

[Dgf] the submatrices in (32) and (33) corresponding to the
generalized functions [46].

The solution of the proposed SIE matrix system is acceler-
ated considering an iterative parallel solver and a geometrical
octree decomposition in space via the multilevel fast mul-
tipole algorithm with fast fourier transform (MLFMA-FFT)
[3], [48]–[52]. As previously mentioned, the proposed MR
approach is then embedded in the matrix system solution as
a multiplicative preconditioner. Taking advantage of the local
dependencies of the MR functions, a sparse change-of-basis
matrix is defined to efficiently compute the preconditioning
step through two sparse matrix vector products (SpMVP)
before and after the MLFMA-FFT main matrix vector product
(MVP). The interested reader is referred to [46] for more
details on the implementation.

IV. NUMERICAL RESULTS

In this section, we illustrate the correctness and effectiveness
of the proposed multi-resolution preconditioner in solving
large-scale non-conforming meshed problems with real-life
interest.

A. Validation example

Fig. 4. Conformal (left) vs non-conformal (right) meshes of the Möbius
strip.

A first numerical example is introduced to validate the pro-
posed approach for the automatic generation of all solenoidal
and non-solenoidal functions in the solution of a small object

Fig. 5. Multi-level cell grouping algorithm for the Möbius strip.

containing global loops. A Möbius volumetric belt is consid-
ered, formed by three Möbius strips connected to each other
by three small curved bands, forming a smooth curvature
in the wedges (with a diameter of curvature of λ/15 and
strip width of λ/75), as shown in Fig. 4. The surfaces that
form this structure can be meshed independently, yielding
non-conformal meshes at the junctions between them (see
Fig. 4, on the right). The smooth strips are meshed with λ/300
triangular elements, while the three curved bands placed on the
wedges are meshed with λ/1500 triangular size to minimize
the geometrical discretization error on the curved wedges. The
use of non-conformal meshes allows a drastic reduction in the
number of unknowns, by removing the transition regions that
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would be required in the case of the equivalent conformed
mesh, as illustrated in Fig. 4 on the left. Consequently, the
total number of unknowns reduces from 84,180 RWGs, in the
conformal mesh case, to 33,033 RWGs plus 720 MB-RWGs.

We first examine the generation of the quasi-Helmholtz de-
composition. The input mesh has 23,702 triangles (M ), 10,051
inner nodes, Vint, (excluding MB-RWG internal nodes), and
one structural handle (H). Figure 5 shows the cell grouping
generated by the algorithm described in Sect. III-A, from
level-1, where the input triangles are rearranged to provide
the first generalized cells, to the last level, where all the
input triangles are included in a single generalized cell. A
detailed view of the level-1 grouping in the vicinity of the
non-conformal meshes is shown in the upper right corner of
Fig. 5.

The proposed multi-resolution generation scheme is then
applied to each level-l mesh, automatically posing 10.052
solenoidal functions (Ns), and 23.701 non-solenoidal func-
tions (Nns), spread across the 7 levels of the grouping. These
numbers match the required relationship between the number
of non-solenoidal functions (Nns = M − 1), and solenoidal
functions (Ns = Vint − 1 + 2H), including the topological
(global) loops corresponding to the handle, automatically
generated via the proposed multi-level scheme.

Fig. 6. Bistatic radar cross section and equivalent electric current density of
the mobius strip (dBµA/m) at 300 MHz.

The bistatic radar cross section (RCS) is evaluated at 300
MHz for this example using the proposed MR preconditioner,
grown from the RWG and MB-RWG basis functions. The
result is depicted in Fig. 6, compared to the reference MoM
solution using the conformally meshed structure of Fig. 4 on
the left. A perfect agreement is observed between the MR-MB
approach and the reference solution. The equivalent electric
currents on the Möbius surfaces are shown in the inset of
Fig. 6.

Figure 7 shows the convergence of the proposed approach
in terms of the iteration number under an iterative Krylov
resolution of the matrix system (we are using GMRES [53]).
We can be observe that the MR preconditioner applied to non-
conformal meshes outperforms the MB-RWG solution alone,
without preconditioner, despite the small electrical size of the
object. This reveals the effectiveness of the MR preconditioner
applied to non-conformal meshes thought multi-branch basis
functions.

Fig. 7. Iteration count for the mobius strip considering a plane wave
excitation.

B. Realistic multi-scale radiation example

Fig. 8. Realistic vessel model.

A second numerical example is introduced to highlight the
ability and versatility of the proposed approach to solve chal-
lenging multi-scale problems using non-conformal meshes.
The evaluation of the isolation between the antennas of a
ship-to-air communication system onboard a realistic vessel
(shown in Fig. 8) is considered. The dimensions of the vessel
are approximately 140 m length, 20 m beam and 40 m height
(257λ × 36λ × 74λ at the highest frequency, 550 MHz). The
system consists of one or more transceivers connected to
four patch antennas, which are built into the mid level of
the main mast. The antennas are meshed separately, with a
mesh size tailored to the fine detail features of their respective
structures, and placed on the platform mesh resulting in non-
conforming triangles on either side of the tear (connection)
lines. Some details of the resulting mesh are illustrated in
Fig. 9. The non-conformal mesh procedure leads to a total of
13,782,364 RWGs on the conformal-mesh surfaces, and 3,468
MB-RWGs in the tear lines connecting different parts of the
structure. Regarding the MR functions, in this example, the
multi-level mesh grouping algorithm is stopped at the quasi-
Nyquist level (macro-cell size equal to around λ/4), providing
a total of 3,514,716 solenoidal, 8,571,690 non-solenoidal, and
1,699,426 generalized RWG basis functions that complete the
set of required basis functions. It is worth mentioning that this
process keeps the same number of degrees of freedom as the
original MB-RWG discretization, despite the levels truncated
from the MR generation process. The problem is solved via
the MLFMA applying the proposed MR-MB preconditioner
together with the diagonal preconditioner.
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Fig. 9. Non-conformal mesh details of the feeding point and the connections
of antennas with the structure.

Delta-gap voltage sources at the feed terminals are defined
along the perimeter of the feed wires to simulate the radiation
of the antenna system at a frequency of 550 MHz. This is
illustrated on the left side of Fig. 9, depicting the positive (red)
and negative (black) triangles of each excited basis function
around the gap. Remarkably, MB-RWG basis functions are
being considered as feeder terminals, for which the voltage
value must be weighted by the length of the common edge of
the positive triangle at each basis.

Fig. 10. Iteration count for the vessel considering a delta-gap excitation at
550 MHz.

Fig. 11. Total time to solve the vessel considering a delta-gap excitation at
550 MHz.

Figure 10 compares the number of iterations in the solution
process using the MR preconditioner and the original MB-
RWG system with a left Jacobi diagonal preconditioner (33).
It is evident the converge acceleration due to the applied
MR-MB preconditioner, which takes less than 500 iterations
to converge to a residual error of 9.8 · 10−7, in contrast
to the more than 10000 iterations spent by MB-RWG to

reach a residual error of 3.6 · 10−6. Regarding the wall-clock
per iteration 11, the MR preconditioner can be included as
a multiplicative preconditioner that only need the inclusion
of two additional sparse matrix vector product (MVP) [46]
without a significant reduction of performance in comparison
with the original MVP in the case of large-scale problems,
achieving the expected accuracy in 1.5 hours in contrast to
the more than 60 hours spent by the Jacobi preconditioner.

Fig. 12. Equivalent electric current density (dBµA/m) induced on the vessel
surfaces at 550 MHz.

Fig. 13. Equivalent electric current density (dBµA/m) induced on the vessel
surfaces, close to the radiating antenna, at 550 MHz.

Figure 12 reports the obtained equivalent electric current
densities induced on the ship surfaces at 550 MHz. The
noiseless distribution of current and the absence of artefacts
on the tearing lines between non-conformal discretizations are
shown in the detailed view of one antenna (see Fig. 13).

To end this example, the mutual coupling study of the HF
system antennas is obtained by a frequency sweep simulation
from 100 MHz to 550 MHz. Figure 14(a) shows the amplitude
of the Si3 parameters, for i = 1, 2 and 4, accounting for the
mutual coupling between the antenna no. 3 and the rest of
the onboard antennas conforming the communication system.
Furthermore, Fig. 14(b) shows the self coupling (|S33|) pa-
rameter. Figure 14 also compares the Si3 parameters obtained
with the reference MLFMA problem applied to the equivalent
conformal meshed problem, where mesh transition regions
are needed to adapt the different mesh densities. A good
agreement between the proposed MR-MB results and the
reference can be observed.

C. H-refinement multi-scale scattering example

A different example is shown next. Up to now the focus of
using MB has been in transitions between different sections
of a complex geometry. In this example, the usefulness of the
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Fig. 14. Mutual (a) and self (b) coupling (|Si3|) for the transmitting patch
antenna no. 3 in the frequency range from 100 to 550 MHz.

proposed approach is demonstrated in the application of h-
refinement techniques, which allow increasing the degrees of
freedom in those regions where there are fine geometric details
or where higher precision is required. This naturally gives rise
to non-conforming multi-scale problems with localized mesh
refinement.

The scattering of a morphed version of a Rafale aircraft is
considered. An automatic h-refinement method [11] is applied
to the input mesh, with two steps of refinement, rendering a lo-
cally refined version that improves accuracy without burdening
the computational cost. The final mesh obtained and the first
MR grouping level are shown in Figs. 15 and 16, respectively.
The maximum length of the aircraft is 7λ at the working
frequency, 137 MHz, and the problem is modeled using 55,267
RWG basis functions in the conformal-mesh regions and 4,543
MB-RWG basis functions in the non-conformal mesh parts of
the geometry.

Fig. 15. H-refinement non-conformal mesh of the Rafale aircraft .

Figures 17 and 18 compares the GMRES residual error of
the proposed MR-MB basis with respect to the initial MB and
RWG basis using the MLFMA for the solution of the problem

Fig. 16. MR grouping in the first mesh level of the Rafale aircraft.

with a plane wave excitation. It can be observed looking at
these figures that the combination of the MR preconditioner
with the MB-RWG basis functions drastically reduces both
the global number of iterations and the total simulation time,
achieving a Krylov residual error below 10−6 in just 140
iterations and 10 seconds.

Fig. 17. Iteration count for the aircraft considering a plane wave excitation.

Fig. 18. Total time to solve the aircraft considering a plane wave excitation.

Finally, the equivalent currents distribution in the aircraft
structure at 137 MHz are shown in Fig. 19.

V. CONCLUSION AND PERSPECTIVES

In this work, the multi-resolution preconditioner was com-
bined with the multi-branch RWG functions, enabling the
application of an automatic multilevel quasi-Helmholtz de-
composition for the first time to the electromagnetic analysis of
non-conformal meshed objects including multi-scale features.
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Fig. 19. Equivalent electric current density (dBµA/m) induced on the
aircraft surfaces.

The div-conforming property of multi-branch RWG basis
functions allows the quasi-Helmholtz decomposition applied
to non-conformal meshes. This provides an efficient, accurate
and versatile solver for dealing with very large-scale and
extremely complex geometries due to the multilevel nature
of the proposed method. The efficiency and versatility of the
proposed approach has been demonstrated for the solution of
very small scattering problems and really large-scale radiation
and problems including multi-scale details. The proposed
method has also been demonstrated as a powerful solver for the
application of h-refinement techniques in the case of problems
including deep multi-scale features.

In addition, it is important to note that the MR-MB method
is presented as a strong candidate to be integrated into a do-
main decomposition scheme in order to speed up the solution
of the mutual coupling between subdomains in the case of
extremely complex subdomains with multi-scale features.
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