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Abstract—Quantization of deep neural networks (DNNs) re-
duces their memory footprint and simplifies their hardware arith-
metic logic, enabling efficient inference on edge devices. Different
hardware targets can support different forms of quantization,
e.g. full 8-bit, or 8/4/2-bit mixed-precision combinations, or fully-
flexible bit-serial solutions. This makes standard quantization-
aware training (QAT) of a DNN for different targets challenging,
as there needs to be careful consideration of the supported
quantization-levels of each target at training time. In this paper, we
propose a generalized QAT solution that results in a DNN which
can be retargeted to different hardware, without any retraining or
prior knowledge of the hardware’s supported quantization policy.
First, we present the novel training scheme which makes the model
aware of multiple quantization strategies. Then we demonstrate
the retargeting capabilities of the resulting DNN by using a genetic
algorithm to search for layer-wise, mixed-precision solutions
that maximize performance and/or accuracy on the hardware
target, without the need of fine-tuning. By making the DNN
agnostic of the final hardware target, our method allows DNNs
to be distributed to many users on different hardware platforms,
without the need for sharing the training loop or dataset of the
DNN developers, nor detailing the hardware capabilities ahead of
time by the end-users of the efficient quantized solution. Models
trained with our approach can generalize on multiple quantization
policies with minimal accuracy degradation compared to target-
specific quantization counterparts.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are widely used to

solve various computer vision tasks. The remarkable accuracy

achieved by state-of-the-art models usually comes at the cost of

a large number of parameters and multiply-accumulate (MAC)

operations that make deploying such models on resource-

constraint edge hardware challenging. Resources on embedded

platforms are often insufficient for such tasks, particularly when

considering latency constraints in edge application scenarios

such as autonomous driving. Therefore, in order to reduce their

computational and memory footprint, quantization became a

standard technique to compress the models before the deploy-

ment on edge hardware. Quantizing a CNN implies reducing

the bit-width adopted to represent the weights and activations,

at the cost of introducing quantization error that can lead to pre-

diction quality degradation. Quantization-aware training (QAT)

techniques are typically used to make the model aware of the

quantization error at training-time to minimize such degradation

[1], [2]. Standard QAT provides quantized models with high

prediction quality. However, such models have predetermined

quantization bit-widths, and their accuracy is guaranteed only

for the quantization strategy adopted at training time. Modern

CNN hardware accelerators have different architectures that

can take advantage of different quantization strategies (e.g.

low-bit uniform quantization, mixed-precision, or bit-serial).

Therefore, each architecture requires a dedicated QAT solution

in order to retrieve a model that can maximize the resource

utilization and, thereby, the efficiency of the hardware platform

adopted for inference. Thus, training a single model to be

easily deployed on various hardware platforms, which benefit

from different quantization strategies, with minimal prediction

quality degradation, would enable the distribution of CNN

models to many users without the need to share the training

loop or dataset. In existing works ( [3]–[5]), the trained models

work only for the quantization bit-widths adopted at training

time and cannot generalize on unseen quantization policy or on

mixed-precision solutions.

In this work, we present multi-quantization-aware training

for accurate and fast hardware retargeting (MATAR), a new

unified training scheme that can be used to train models

considering multiple quantization bit-widths at training time,

enabling the model to be quantized after training also on

quantization bit-widths that were not considered during the

training. MATAR provides a possible solution to train CNN

models that can be deployed efficiently on different devices

with different architectures and different quantization bit-widths

without the need for retraining or fine-tuning.

The main contributions of this work can be summarized as

follows:

• We present a novel training scheme that considers multiple

quantization bit-widths at training time (MATAR). We

show how sharing clipping factors and batch-norm param-

eters enables models trained with MATAR to generalize

on quantization bit-widths not seen during the training.

• We explore the quantization retargeting capabilities of

the models trained with MATAR on uniform and mixed-

precision use-cases. Furthermore, we implement a genetic

algorithm (GA) to search for mixed-precision configura-

tions of MATAR-trained networks that optimize the hard-

ware execution metrics, while minimizing the prediction

quality degradation.

• MATAR enables the GA to evaluate solutions without the

need for fine-tuning, making the GA fast and accurate

in its navigation of the search space. This generates



ready-for-deployment Pareto-optimal solutions for a given

hardware target, without the need for fine-tuning.

II. RELATED WORK

A. Quantization-Aware Training

QAT has been widely adopted to model the quantization error

during training to reap the benefits of quantization without

degrading the task accuracy. DoReFa-Net [1] was an early

QAT work, adopting the straight-through estimator (STE) to

approximate the gradient of discrete, quantized weights and

activations that are clipped between (0,1). The work in PACT

[2] improved the training procedure by introducing a layer-

wise learnable clipping factor (c) to saturate the distribution

of activations between [−c,+c]. Furthermore, AdaBits [5] first

focused on adaptive deployment capabilities. The authors em-

ployed bit-width-specific clipping factors in a joint QAT frame-

work to obtain models trained for different quantization bit-

widths. Although the aforementioned works produced accurate

quantized models, such quantized networks cannot generalize

on quantization bit-widths different from those considered at

training time.

In our work, we present a training scheme that allows the

retrieval of accurate models quantized on unseen bit-widths.

Shared clipping factors and batch normalization parameters

allow to regularize activation distributions, paving the way

to fine-tuning-free mixed-precision search and retargeting to

different hardware platforms.

B. Supernets

In [3], the authors proposed Once-for-All networks, an

approach that trains a very large supernet that can be dissected

later to provide lighter models for different hardware deploy-

ment targets. The work in [4] presented once-quantization-

aware training (OQAT) as an extension of the supernet concept

to quantization. In OQAT models, multiple quantization bit-

widths are considered at training time, resulting in a massive

network, where each quantized layer can update its latent

weights according to the assigned bit-width. Once trained, such

supermodels are dissected to get the quantized model that

best fits the target hardware platform. Despite the remarkable

prediction quality of such approaches and their generalizability

on different devices, the time and resources required to train

supernets is often prohibitive, limiting their democratization to

most developers without access to extensive compute clusters.

In this work, we embrace the single-training multi-quantization

cause by introducing MATAR. However, different from the

supernet approaches, we consider multiple quantized versions

of the same model during training and limit the training time

by sharing weights, clipping factors, and batch normalization

parameters across the quantized layers.

C. Hardware-CNN Co-design

Works such as [6], [7] consider hardware metrics to guide

the search for efficient models. In HAQ [6], the authors resort

to reinforcement-learning exploration to determine the optimal

layer-wise quantization bit-widths. The RL-agent automates the

search, evaluating the the quantized solutions on real hardware.

In [7], the authors introduce APQ, an approach to jointly

perform neural architecture search, pruning, and quantization.

A quantization-aware accuracy predictor and a lookup table

containing the hardware metrics for each layer are used to

estimate accuracy and latency, respectively. The work in [8]

leverages the multi-objective non-dominated sorting genetic

algorithm (NSGA-II) to determine suitable layer-wise pruning

ratios and evaluates the compressed networks on a model of

the target hardware, speeding up the search. In AnaConGA [9],

the authors propose a nested GA that jointly maximizes Pareto-

dominant solutions for quantization strategies while exploring

different sizes of the hardware accelerator.

Inspired by these works, in MATAR, we rely on a meta-

heuristic approach, namely NSGA-II, to search for layer-wise

quantization solutions that optimize the hardware metrics (com-

pute cycles, DRAM accesses), and minimize the prediction

quality degradation. Moreover, different from other works [6]–

[9], the mixed-precision quantized solutions provided by our

approach do not need fine-tuning, speeding-up the design

space exploration. Table I summarizes a categorical comparison

against the mentioned related works.

TABLE I: Comparison to existing works for adaptive deploy-

ment scenarios.

Work Search Cost HW Retarget Mixed-Precision

HAQ [6] High ✗ ✓

APQ [7] High ✗ ✓

OQAT [4] High ✓ ✗

AdaBits [5] Low ✓ ✗

MATAR Low ✓ ✓

III. METHODOLOGY

A. Fundamentals of Quantization-Aware Training (QAT)

Without loss of generality, consider a convolutional layer

l ∈ [1, ..., L] in an L-layer deep CNN with weights W l ∈
R

kx×ky×Ci×Co , represented by Wbits bits, computed against

an input feature map Al−1 ∈ R
Hi×Wi×Ci represented by Abits

bits. Here, Hi, Wi and Ci represent the feature map’s spatial

and channel dimensions. kx, ky and Co are the kernel window

and output channel dimensions. The convolution of W l and

Al−1 with stride s produces Al ∈ R
Ho×Wo×Co , where Ho,

Wo, and Co are output spatial and channel dimensions.

The complexity of a convolutional layer can be expressed as

the number of bit-wise binary operations BOPs that must be

performed (Eq. 1).

BOPs = Ho ×Wo ×Co × kx × ky ×Ci ×Wbits ×Abits (1)

Eq. 1 captures how reducing the number of bits allotted

for weights and activations representation can relax the arith-

metic complexity of the convolution operation. Quantization

of the operands allows then to optimize memory movement

and achieve high-throughput parallel computation on simpler

integer arithmetic hardware. However, reducing the precision
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Fig. 1: Overview of MATAR. 1: the multi-branch model is

trained first. 2: The GA looks for solutions to maximize

accuracy and HW metrics. 3: Pareto-optimal solutions are

evaluated on HW.

of the operands involved in the convolution operation causes a

numerical error (quantization error) that results in a prediction

quality degradation, especially for low-bit quantization policies

(4-bit and below). In such scenarios, it is necessary to consider

quantization effects at training time, making the model aware

of the quantization error. The quantization function Qn(x)
applied to an arbitrary element x (i.e. weight or activation

pixel) to reduce its bit-width to n-bits is shown in Eq. 2. x
is clipped between [−c,+c], where the clipping threshold c is

a trainable variable for every layer and is determined by the

task-specific loss function of the CNN model’s training [2].

Based on the determined c for a given datatype, a scaling factor

v = c/(2n − 1) is defined. For activations, we clip the values

between the range of [0, c] instead of [−c, c], due to the ReLU

activation function.

Qn(x) = Round(Clip(x,−c,+c)/v)× v (2)

In order to deal with the discreteness of Eq. 2 which blocks

the gradient flow during training, the straight-through estimator

(STE) [10] is applied. This enables updating floating-point (la-

tent) weights during backpropagation and using the quantized

values during inference.

B. Multi-branch Quantization-Aware Training

Our goal is to train a model such that it is aware of

different quantization bit-widths, in order to easily retarget it

and quantize it post-training to different quantization policies

supported by different hardware platforms at deployment.

1) Multi-branch Convolution: We define a new 2D convolu-

tional layer, characterized by (M +1) inputs, the floating point

one and M quantized branches, where M equals the number of

quantization levels we want to make the model aware of. Each

quantized branch is responsible for quantizing the weight and

the input distributions according to Eq. 3, where m defines the

branch-specific quantization policy with m ∈ M = [N, ..., 2],
and N defining the widest quantization level (e.g. 8-bit).

Qm(x) = Round(Clip(x,−c,+c)/vm)×v; ∀ m ∈ M (3)

vm = c/(2m − 1) (4)

-c4 -c3-c2 c2 c3 c4−
2m

−
1

+
2m

−
1

4-bit 3-bit 2-bit

−c +c−
2m

−
1

+
2m

−
1

Fig. 2: On the left, other clipping approaches use different

clipping factors to optimize the bit utilization. On the right,

MATAR shares the clipping factor across multiple quantization

bit-widths pushing the weights to better utilize the clipped

range for different quantization-levels. Low-precision quantized

values are determined by simply downsampling the higher-

precision values.

vm represents the scaling factor computed to map the discrete

float range to the mth integer range ([-2m-1, 2m-1-1]). For

weights, we adopted [1], resulting in a clipping factor c equals

to 1, where the weights used in each quantized branch are

the quantized version of the float weights of the floating

branch on m bits. Thus, we train only one weight tensor

per layer. For activations, different from other works like

[5], the clipping factor c is a trainable parameter, and it is

shared across all the branches. This strategy brings two main

benefits: (1) Sharing the clipping factor allows the retrieval of

the lower-bit quantization levels by simply downsampling the

higher bit-width branches, without the need for re-quantizing

the floating-point values. In Fig. 2, a visual comparison is

made between other approaches that use quantization-specific

clipping factors ( [2], [5]) and our approach that forces different

bit-widths to share the same clipping factor. Low bit-width

values can be easily computed by simply right-shifting higher

bit-width data. (2) Moreover, sharing the clipping factor c
helps regularize the activation distributions across all the quan-

tized branches, resulting in similar distributions. Consequently,

layer-wise batch normalization across the branches can share

the trainable parameters, and simply need to tune mean and

variance according to the branch statistics.

In summary, each layer in the CNN model is replicated in

M + 1 branches. The float weight tensor (the only trainable

one), is quantized on M different bit-widths, one for each

branch. Then, each branch performs the convolution among the

m-bit quantized input tensor and the m-bit weight tensor. The

resulting output is finally quantized according to the bit-width

adopted in the branch. This is depicted in block 1 of Fig. 1.

2) Backpropagation Loss computation: The M+1 branches

make M + 1 corresponding predictions, resulting in M + 1
losses that are then accumulated, providing the overall model

loss. We explore the opportunity to weight this loss sum (Eq. 5),

by scaling the individual losses by αm, in order to increase the

importance of the losses related to more challenging branches



(e.g. lower bit quantization).

Ltotal =

M+1∑

m=0

αmLm (5)

During backpropagation, the only weights that are updated

are the ones belonging to the float branch, taking into account

the contributions of the quantized branches. The gradient of

the float weights of each layer l, can then be expressed as a

weighted sum of the gradients flowing from the m quantized

branches (Eq. 6). Thus, the float weights are updated to reduce

the loss from all the quantized branches, making the float

weights aware of multiple quantization bit-widths.

δLtotal

δwl

=

M+1∑

m=0

αm

δLm

δwlm

(6)

Similarly, the overall gradient for the layer-specific clipping

factor cl for layer l is computed by weighting the gradients of

the m quantized activations (ym), as shown in Eq. 7.

δy

δcl
=

M+1∑

m=0

αm

δym
δcl

(7)

C. Fast and Accurate Quantization for Hardware Retargeting

Once the MATAR model is trained as described in the

previous sections, it is ready for deployment on several hard-

ware platforms. According to the hardware’s capabilities we

can determine two classes of solutions: uniform and mixed-

precision.

1) Uniform Solutions: Some hardware architectures are

characterized by a processing element (PE) array optimized for

a specific quantization bit-width (e.g. uniform 2,4, or 8-bit). In

such scenario, our multi-branch model can be easily quantized

uniformly without the need for fine-tuning. The shared trainable

clipping factor (c) and batch normalization parameters across

the branches allow the retrieval of quantized solutions that

the model was not specifically trained for (e.g. in case of

M = [2, 4, 8], solutions for 3, 5, 6, and 7 bits can be determined

without retraining).

2) Mixed-Precision Solutions: Other PEs can take advantage

of the variable bit-widths (e.g. 4/8 bit: NVIDIA Orin, Qual-

comm Snapdragon 8 Gen2, bit-serial: BISMO [11]) to speed-up

the computation (lower bit-widths) or to reduce the quantization

error (higher bit-widths). In this case, weights and/or activations

of each layer l can be quantized differently according to the

number of supported quantization strategies (S). Therefore, it

is crucial for such devices to properly select the optimal layer-

wise quantization bit-widths according to the target constraints.

The discrete, non-differentiable space of the possible quantized

solutions for a CNN model composed of L layers has a massive

size of S2L.

3) Genetic Algorithm-based Mixed-Precision Quantization:

We formulate the quantization of weights and activations as

a search problem, relying on a genetic algorithm (GA) to

efficiently explore the massive search space of mixed-precision

solutions. A single genome represents a potential quantization

strategy with as many genes as layers in the CNN. Each gene

embeds a quantization strategy for the layer, setting the bit-

widths for the weights (Wbits) and the activations (Abits).

We use a multi-objective Pareto-optimal selection approach

(NSGA-II) that considers multiple HW/SW criteria for in-

dividual selection (e.g. task accuracy, number of execution

cycles, DRAM accesses, etc.). Finally, single-point crossover

and mutation operators are used to create more diverse offspring

from fit parent genomes in the population. The GA search

starts with an initial population size |P|. Each individual in the

population P is a CNN with randomly selected bit-widths for

weights and activations (Wbits, Abits, with Wbits ̸≡ Abits).

Then, these CNN models are evaluated and selected accord-

ing to prediction quality and hardware metrics. The selected

individuals go through single-point crossover and mutation to

better explore the search space. This process is repeated for

g generations. The multi-branch quantized training of MATAR

makes the pareto-optimal models selected by the GA ready-for-

deployment without the need for retraining, thereby increasing

the speed and fidelity of the search. This loop can be seen in

box 2 and 3 of Fig. 1.

Algorithm 1: Genetic Algorithm for Mixed Precision

Search.
Initialize : Genome encoding, Population size |P|, crossover

probability pc, mutation probability pm, random set of
weights (Wbits) and activations (Abits) bit-widths
(Abits ̸≡ Wbits), and maximum generation number g.

Input : Random initial population P , CNN pretrained with
MATAR.

Output : Pareto-optimal mixed-precision quantized solutions
Popt, balancing accuracy and hardware metrics.

for gen in range(1, g) do
Evaluation: Evaluate the fitness of each individual in P

according to Accuracy and HW metrics.
Selection : Non-dominated sorting and crowding distance

selection.
Crossover : Select two individuals and perform single-point

crossover with probability pc.
Mutation : Perform replace mutation on each offspring with

probability pm. Update population P .
end

IV. EXPERIMENTS

We evaluate MATAR with ResNet-20, ResNet-56, and

ResNet-18 on CIFAR-10, CIFAR-100 and ImageNet datasets.

We train the models using a NVIDIA A100 GPU and, if

not otherwise mentioned, all the training hyperparameters are

adopted from the base implementation. We use the Xilinx

Z7020 SoC on the PYNQ-Z1 board to evaluate the quantized

solutions found by the genetic algorithm.

A. Multi-branch Quantization Aware Training

We first run an ablation study to analyze different configu-

rations in terms of number of quantized branches (M), the loss

scaling (α) for each quantized branch, and training time (Table

II). For each set of branches and loss scaling, we evaluate the

accuracy of the float model and of all the uniform quantized

solutions (from 2 to 8 bit). Considering all the possible branches

(|M |=7) makes the training more challenging, leading to high

accuracy solutions for higher bit-widths but degrading the



prediction quality for the 2-bit branch. On the other side,

training the model with only the upper and lower-bound bit-

widths (8 and 2), results in the shortest training time but causes

an accuracy degradation for intermediate quantization levels.

Moreover, as introduced in section III-B, we weight the loss

so that the more challenging branches (lower bit-width) have

a higher impact on the overall loss. In this way, during the

training, the optimizer updates the float weights giving more

importance to the effect of the low bit-widths. In the end, we

identified the setup with M = [8, 4, 2] branches and a weighted

loss α = [0.4, 0.1, 0.2, 0.3] (where the first element in the set

represents the loss scaling for the float branch), as the best

trade-off in terms of accuracy among the different branches

and training time.

TABLE II: Ablation study ResNet20 on CIFAR-10 Dataset.

Branches Loss Weight Accuracy Evaluation(%) Training

(M) (α) Float Q8 Q7 Q6 Q5 Q4 Q3 Q2 Time (h)

[8, 7, 6, 5, 4, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] 90.59 90.88 90.89 90.81 90.52 90.11 88.2 82.68 5.70
[8, 2] [1, 1, 1] 90.51 90.14 90.14 90.18 78.68 79.68 82.57 84.03 3.60

[8, 4, 2] [1, 1, 1, 1] 91.00 90.80 90.78 90.58 90.13 90.47 86.85 86.56 4.10
[8, 4, 2] [0.4, 0.1, 0.2, 0.3] 91.39 90.78 90.77 90.47 90.64 90.49 87.800 86.99 4.10

[8, 6, 4, 2] [0.3, 0.1, 0.1, 0.2, 0.3] 91.28 90.62 90.62 90.54 90.60 90.25 85.95 84.21 4.88

Following the depiction earlier in Fig. 2, we demonstrate

in Fig. 3 the impact of multi-quantization awareness on the

latent floating-point weight distribution of the MATAR-trained

CNN. The histograms show the distribution of weights for the

last convolutional layer of the considered ResNet20-CIFAR-10

example from Table II after 200 epochs of training, as well as an

8-bit QAT trained version for reference. The peaks emerging in

the MATAR-trained distribution indicate that it can be sampled

for different bit-widths without retraining, where the weight

values that can be sampled for all quantization levels (the two

peaks on the edges of the distribution) have the most frequently

occurring values, and the middle peaks reflect other areas of the

distribution which may be sampled for different quantization

strategies.

(a) 8-bit weight distribution (b) MATAR weight distribution

Fig. 3: MATAR influences the weight distribution to accom-

modate future unseen quantization levels. The above example

shows the latent floating-point weights of the last convolu-

tion layer of ResNet20-CIFAR10. The peaks in distribution

emerging in the MATAR-trained network after 200 epochs

differentiate it from simple 8-bit QAT.

B. Uniform Quantization and Hardware Retargeting

The ablation study in Table II showed how 3 branches

(M=[8,4,2]) are able to preserve the accuracy for quantization

bit-widths that have never been seen during the training (i.e.

7, 6, 5, 3-bits), enabling to model to easily be retargeted

to different quantization requirements of unseen hardware. In

Table III, we further investigate this aspect on ResNet56 and

ResNet18 models on CIFAR-100 and ImageNet datasets.

Additionally, to show that this property is only achievable

with MATAR training, we also train each model using standard

QAT [2] for a specific bit-width (8, 4, and 2-bits) along with

one version using our MATAR approach. Then, we evaluate

each version of the model (QAT 8-bit, 4-bit, 2-bit, and MATAR)

retargeted on different uniform quantization bit-widths (8 down

to 2-bit). In all the examples proposed, MATAR exhibits an

interpolation capability to flexibly retarget to different quanti-

zation policies, without the need for retraining, while standard

QAT models perform best on the bit-widths they were trained

for and suffer when retargeted to other bit-widths (highlight in

red for results degrading below MATAR). This characteristic

is enabled by the decision to adopt the same trainable layer-wise

scalar clipping factor (c) for all the MATAR branches, regular-

izing the activation distributions of the multiple branches. This

feature allows for training the model only once, and deploying

it on multiple hardware platforms, without the need of fine-

tuning, sharing the dataset, or knowing the target hardware

quantization policy ahead of time.

TABLE III: Uniform interpolation and hardware retargeting ca-

pabilities of models trained with MATAR compared to standard

quantization specific solutions [2].

Model/
Approach

Training Retargeted Accuracy (%)

Dataset Q8 Q4 Q2 Float Acc Q8 Q7 Q6 Q5 Q4 Q3 Q2

R
es

N
et

2
0

C
IF

A
R

-1
0 Quant8 ✓ 92.08 92.08 92.03 91.36 88.05 64.53 20.29 9.93

Quant4 ✓ 91.86 91.85 91.76 91.82 91.77 92.12 87.56 16.82
Quant2 ✓ 87.68 67.68 67.64 68.42 69.45 68.08 71.79 87.7

MATAR ✓ ✓ ✓ 91.39 90.78 90.77 90.47 90.64 90.49 87.80 86.99

R
es

N
et

1
8

C
IF

A
R

-1
0

0 Quant8 ✓ 76.92 76.87 76.62 74.99 68.48 11.93 1.06 1.13
Quant4 ✓ 76.85 76.80 76.80 76.84 76.79 76.99 74.76 35.98
Quant2 ✓ 74.40 62.01 62.23 62.05 62.41 63.4 63.95 74.55

MATAR ✓ ✓ ✓ 75.95 75.70 75.73 75.76 75.50 75.48 74.65 73.74

R
es

N
et

5
6

C
IF

A
R

-1
0

0 Quant8 ✓ 69.95 69.86 69.68 68.08 61.47 29.50 3.32 1.04
Quant4 ✓ 69.70 69.22 69.20 69.22 68.78 70.41 60.83 14.52
Quant2 ✓ 62.00 30.75 30.53 31.96 33.66 34.83 61.89 62.00

MATAR ✓ ✓ ✓ 69.85 68.39 68.47 68.41 67.45 67.57 60.57 53.81

R
es

N
et

1
8

Im
ag

eN
et Quant8 ✓ 67.48 67.42 67.21 65.72 54.67 16.89 0.14 0.11

Quant4 ✓ 66.87 65.08 65.20 64.85 64.77 66.61 51.92 0.17
Quant2 ✓ 64.35 31.24 31.24 31.66 31.2 35.96 38.46 63.12

MATAR ✓ ✓ ✓ 66.80 65.74 65.84 65.78 65.42 65.74 61.05 62.77

C. Mixed-Precision Solution Search

We push the interpolation and retargeting capabilities of

MATAR further by exploring mixed-precision quantization. The

shared clipping factor c and the shared batch normalization

parameters regularize the activation distributions across the

branches, enabling the possibility to derive new CNN models

by fetching layers from different branches. Given a hardware

accelerator that can take advantage of mixed-precision quanti-

zation (e.g. BISMO [11]), we look for weights and activation

bit-widths that can maximize the hardware efficiency (compute

cycles, DRAM accesses), without sacrificing the prediction

quality of the pre-trained model. For such a massive space,

we rely on the genetic algorithm search introduced in section

III-C. For all the experiments, we run the GA with a population

size |P| = 50 and a number of generations g = 50. We set

mutation (pm) and crossover (pc) probabilities to 0.9. We first

synthesized the BISMO accelerator defined as HW3 in [6], [9],

with BISMO hardware parameters Dm=Dn=8 and Dk=256.

We adopt the equations defined by [9] to model the number

of cycles and DRAM accesses. We then start the GA search,
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Fig. 4: 2D facets of a 3D Pareto-front for optimal mixed-

precision quantized solutions with respect to accuracy, compute

cycles, and DRAM accesses. Red dots identify the Pareto-

optimal solutions; green squares represent the accuracy-HW-

metrics for uniform 8,4,2 bit-widths models.

looking for solutions that minimize the number of compute

cycles and the number of DRAM accesses, while preserving

the prediction quality of the models trained with our approach.

We evaluated the final solutions on real hardware synthesized

on the PYNQ-Z1. In Fig. 4, the Pareto-optimal solutions (red

dots) found by the GA are presented for ResNet20 (Fig. 4a)

and ResNet18 (Fig. 4b) models on CIFAR-10 and CIFAR-100

datasets, respectively. Green squares ( ) indicate the baseline

accuracy and hardware metrics for uniform 8, 4, 2 bit-widths

models. In both cases, the GA provides a range of possible

mixed-precision solutions retargeted with minimal accuracy

degradation compared to 8-bit solution and lower compute

cycles and DRAM accesses, that can be selected according

to the deployment constraints. We further evaluate the pro-

posed approach on ResNet18, ResNet20, and ResNet56 models

trained with MATAR on CIFAR-10, CIFAR-100, and ImageNet

datasets in Table IV. For each model, we run the genetic

algorithm mixed-precision search and select solutions from the

Pareto-front that maximize the accuracy (accuracy leader), the

hardware metrics (HW leader), and the dominated hypervolume

(HV leader). Moreover, we evaluated the solutions on real

hardware and compared the estimated and measured cycles and

DRAM accesses (Table IV). Finally, we reported the search

time needed by the GA to finalize the search. Our approach

requires 72 hours of training plus 21.4 hours for the mixed-

precision search for ImageNet training, resulting in 12.84×
speed-up compared to [4] and 25.8× compared to [7].

TABLE IV: Evaluation of HW, accuracy and hypervolume

leader solutions on synthesized HW.

Dataset Model
Search Selection

Accuracy
HW Estimates HW Measured

Time (h) Strategy Cycles (k) DRAM (MB) Cycles (k) DRAM (MB)

CIFAR-10 ResNet20 0.89
Accuracy Lead 90.92 1.78e3 9.8 1.81e3 9.8

HW Lead 86.99 153 3.2 156 3.3
HV Lead 90.13 345 4.4 345 4.5

CIFAR-100

ResNet56 4.10
Accuracy Lead 68.49 2.08e3 17.6 2.08e3 18.1

HW Lead 54.86 405 8.55 406 8.52
HV Lead 66.3 960 12.6 960 12.8

ResNet18 4.25
Accuracy Lead 75.89 1.73e3 38.2 1.75e3 38.8

HW Lead 74.34 572 23.2 581 23.6
HV Lead 75.51 1.09e3 30.15 1.09e3 31.2

ImageNet ResNet18 21.42
Accuracy Lead 65.99 12.9e3 204 13.3e3 206

HW Lead 63.02 2.28e3 80.7 2.30e3 81
HV Lead 65.18 10.3e3 187 10.5e3 188

V. CONCLUSION

In this paper, we presented MATAR, a new training scheme

that makes the floating-point model aware of multiple quantiza-

tion bit-widths, enabling fast and accurate post-train retargeting

for quantized hardware execution. Unlike standard QAT, we

show how models trained with MATAR can be retargeted on

uniform quantization bit-widths not seen during the training.

Furthermore, we adopted a genetic algorithm to explore the

large solution space of mixed-precision models that can im-

prove the efficiency of the hardware adopted. MATAR heavily

reduces the search time since the mixed-precision solutions

provided do not need retraining and are ready to be deployed

on the desired hardware. MATAR represents a novel training

scheme which sits between inflexible standard QAT approaches

and quantized supernet training schemes in terms of search time

and prediction quality.
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