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Abstract— Autonomous Driving (AD) related features
represent important elements for the next generation of
mobile robots and autonomous vehicles focused on increasingly
intelligent, autonomous, and interconnected systems. The
applications involving the use of these features must provide,
by definition, real-time decisions, and this property is key
to avoid catastrophic accidents. Moreover, all the decision
processes must require low power consumption, to increase
the lifetime and autonomy of battery-driven systems. These
challenges can be addressed through efficient implementations
of Spiking Neural Networks (SNNs) on Neuromorphic Chips
and the use of event-based cameras instead of traditional frame-
based cameras.

In this paper, we present a new SNN-based approach, called
LaneSNN, for detecting the lanes marked on the streets using
the event-based camera input. We develop four novel SNN
models characterized by low complexity and fast response, and
train them using an offline supervised learning rule. Afterward,
we implement and map the learned SNNs models onto the Intel
Loihi Neuromorphic Research Chip. For the loss function, we
develop a novel method based on the linear composition of
Weighted binary Cross Entropy (WCE) and Mean Squared
Error (MSE) measures. Our experimental results show a
maximum Intersection over Union (IoU) measure of about 0.62
and very low power consumption of about 1 W. The best IoU
is achieved with an SNN implementation that occupies only 36
neurocores on the Loihi processor while providing a low latency
of less than 8 ms to recognize an image, thereby enabling real-
time performance. The IoU measures provided by our networks
are comparable with the state-of-the-art, but at a much low
power consumption of 1 W.

I. INTRODUCTION

In recent years, the design of reliable and efficient
Autonomous Driving (AD) systems has become one of the
key research directions of the incoming Smart mobility [1].
Therefore, it leads to the development of increasingly
advanced algorithms and solutions. This paper proposes a
class of Spiking Neural Networks (SNNs) that are directly
implementable on one of the most advanced neuromorphic
hardware for energy-efficient real-time deployment of
advanced AD systems. Furthermore, we leverage the
event-based cameras as the vision sensor, due to their
appealing properties, such as energy-efficiency, biological
plausibility, high dynamic range, and good compatibility with
neuromorphic systems.

A. Target Research Problem and Research Challenges

To be able to drive safely, mobile robots and autonomous
vehicles must continuously analyze the surrounding
environment and must take into account any slightest

*These authors contributed equally to this work.

variation to make the best decision and to prevent
catastrophic accidents. Hence, it is essential that the
decision process takes place in real time. Moreover, it is
desirable that the developed AD system maintains low
energy consumption1, especially with its placement into
battery-driven electric means of transport.

To better analyze a general AD problem, we can divide
the decision process into two parts, which must follow the
low-latency and low-power constraints:
1) Vision: the external environment is evaluated and

captured by one or more sensors;
2) Computation: the sensed data is analyzed and the

essential information to predict the reaction of the system
is provided.

The vision system can be represented by cameras
collecting images of the environment. The advanced dynamic
vision sensors (DVS) enable event-based cameras that are
specialized for detecting illumination changes, which mimic
the behavior of the retina. They are very reactive, robust, and
low-power devices [2]. Therefore, they represent an efficient
choice for advanced AD applications [3].

A modern trend to address the complex AD problems
is to deploy Deep Neural Networks (DNNs) that achieve
high performance, but they are very expensive in terms of
power consumption [4]. An alternate trend is to leverage the
emerging Spiking Neural Networks (SNNs) [5]. Compared to
DNNs, these SNNs have higher biological plausibility and
exhibit event-based processing, thereby rendering them as
a low-latency and energy-efficient choice for AD tasks. To
further achieve low power consumption and low latency, the
Neuromorphic Chips provide excellent hardware platform
options [6], [7]. In this paper, we focus on the “Lane
detection” problem.

Following these research targets, we design, optimize,
and implement SNNs on the Intel Loihi Neuromorphic
Research Chip [8], and evaluate them on the DET dataset [9].
Moreover, the vision system is based on a DVS event-based
camera [10], [11].

B. Our Novel Contributions

We introduce LaneSNNs to detect pixels that represent the
lanes on general images collected by an event-based camera.
An overview of our novel contributions is shown in Fig. 1.
In particular, our key contributions are:

1Note that high-performance GPUs, generally used to face Artificial
Intelligence problems, take high power and area, and generate heat
(requiring big coolants and package) which makes them infeasible to be
placed in the electronic control units (ECUs).
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• we follow the Semantic Segmentation approach to
implement the algorithms (Sec. II-A);

• we adopt a dataset pre-processing unit to reduce the
resolution of input and output images and to guarantee
low complexity (Sec. II-B);

• we introduce a novel loss function that provides a trade-off
between the Weighted Binary Cross Entropy and the Mean
Squared Error measures (Sec. II-C);

• we implement the SNNs on the Intel Loihi Neuromorphic
Research Chip [8] (Sec. IV-C);
As evaluation, we analyze results in form of different

Pareto Curves [12] (Sec. IV-D) and we compare our results
with the state-of-the-art (Sec. IV-F).

Event-Based
Lane Detection

Dataset

Dataset Pre-Processing

Loss Function: Combination of 
WCE and MSE

SNN Design and Implementation

Result Analysis with 
Pareto Curves

Comparison with 
State-of-the-Art

Design (Secs. II and III) Evaluation (Sec. IV)

Neuromorphic
Hardware

Fig. 1: Overview of our novel contributions.

Paper Organization: Sec. II presents our target research
problem and the general design decisions. Sec. III discusses
the LaneSNNs design and the anti-overfitting strategies.
Sec. IV evaluates the experimental results, and the
implementations of our LaneSNNs onto the Loihi chip.
Sec. V concludes the paper.

II. PROBLEM ANALYSIS AND GENERAL DECISIONS

A. Lane Detection Methods

The lane detection problem is one of the key tasks in the
AD field. Our goal is to design and develop a device that
automatically recognizes which parts of an image collected
by a camera represent the lanes marked on the street. In the
literature there exist three general classes of methods used
to detect and recognize sub-parts of an image [13]:
1) Object detection (Fig. 2 (a)): the device recognizes

the coordinates of some points which constitute the
lanes [14]. After that, to have an output image, these
results must be post-processed to obtain the labeled
image, thus increasing latency and power consumption.

2) Semantic segmentation (Fig. 2 (b)): the device
distinguishes only two classes and finds the class of
each pixel coming from the input image by looking at
it individually. At the output, we can collect an image in
which the pixel intensities define its class [15] [16].

3) Instance segmentation (Fig. 2 (c)): it is based on
the similar concepts as the semantic segmentation,
but various lanes can be grouped into different
classes [15] [16].

Since we need a real-time response from the detection
device to leave more time for the decision-making part of the
AD vehicle and we are only interested in the position of the
detected lanes, we choose to use the semantic segmentation
approach, which can achieve good performance with reduced
latency and power consumption.

(a) (b) (c) 

Fig. 2: Example of the (a) Object Detection [14], (b) Semantic
Segmentation [17] and (c) Instance Segmentation [18] approaches for the
lane detection problem.

B. Dataset Pre-Processing

1) Coding of Input Information into Spikes: The DET
dataset is made of labeled grey-scale raw images obtained
through the DVS camera. To extract spiking information and
directly feed the networks with them, we use the rate coding
technique. Hence, we compare pixels intensities to random
values for converting them into spike trains with Poisson
distribution.

2) Reducing the Spatial Resolution: The DET Dataset
is recorded by the CeleX V DVS camera [11], and it is
made by input and label images with high resolution in
space (1280 × 800 pixels per image for both inputs and
labels). This property can be very useful during the training
of AI models. In fact, it contains sufficient input information
to understand how to better generalize the task. On the
contrary, the labels with very high resolution induce a
considerable imbalance between lane and background classes
thus resulting in decreased accuracy when we use a semantic
segmentation approach [14].

Moreover, we design SNNs that can be directly
implemented on the Intel Loihi Neuromorphic Chip [8].
The used Neuromorphic hardware has some limitations for
the collecting of output spike counters related to the output
neurons. The maximum number of counters depends on the
map of the SNNs and the probes implemented to analyze
the performance. Our preliminary analysis indicates that
a maximum of 400 spike counters can be implemented.
Therefore, we reduce the size of label images to have only
400 pixels. We also limit the resolution of the input image
size to 1600 pixels to be more coherent with the resized
dimension of the output images.

To prevent the SNNs from a possible overfitting
problem, before reducing the image size, we perform data
augmentation. In this particular case, we use 271 random
training images and related labels, and perform on them
random vertical translation (between −100 and 100 pixels)
and rotation (between −30◦ and 30◦).

To reduce the size of the dataset images, we use two
subsequent steps:
1) Vertical cropping: we crop the top 300 pixels rows and

the bottom 200 pixels rows for each image, which do not
contain relevant information.

2) Average resizing: we resize the images from size 1280×
300 to 80 × 20 for the inputs and 40 × 10 for the
labels. This operation is made by the mechanism of area
interpolation implemented through the OpenCV Python
library [19].

For the label images, before the average resizing step,



we give the intensity value of 400 to all the lane
pixels (denormalization step) and then, after performing the
resizing operation, each pixel with intensity greater than 0
is labeled as lane, and its value is normalized to 1. This
mechanism is necessary because we operate resizing with a
large scale, and without the denormalization/normalization
step we could lose the thinnest lanes.

The steps to reduce the size of the dataset images are
summarized in Fig. 3.

200 200 

300 

271 

Original   

Data  
augmentation   

Cropping  

Denormalization  

Avg. resizing  

Normalization  

Result  

800 
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Fig. 3: Steps followed to resize the images of the train set of the DET
dataset. On the right, there are the input images. On the left, there are the
label images. For the test set, we do not perform data augmentation, while
all the other steps remain unchanged.

C. Learning Rule and Loss Function

1) Learning Rule: The DET dataset is composed of
three labeled parts, namely training, validation, and testing.
Therefore, it is convenient to implement a supervised
learning rule for the SNNs to achieve higher performance
with limited training time, rather than employing an
unsupervised learning rule. In particular, we decide to use
a direct supervised learning rule to reduce the latency of
the system. Due to the choice of obtaining the input spike
trains through the rate coding strategy (Sec. II-B), the spikes
are correlated in time and space, since they are based on
the same image. Therefore, to achieve high performance,
we use the Spatio-Temporal Back-Propagation (STBP) [20]
learning rule that takes into account both temporal and spatial
domains. The core of this learning rule is represented by
Eqs. (1) and (2). More details are discussed in [20].

∂L

∂bn
=

T∑
t=1

∂L

∂ut,n
· ∂u

t,n

∂Lbn
=

T∑
t=1

∂L

∂ut,n
(1)

∂L

∂W n =

T∑
t=1

∂L

∂ut,n
·∂u

t,n

∂xt,n
·∂x

t,n

∂Wn
=

T∑
t=1

∂L

∂ut,n
·ot,n−1 (2)

They are used to perform the Gradient Descendent
Optimization Algorithm. With the implementation of the
STBP learning rule, the derivative of the spiking nonlinearity
is replaced by the derivative of a smooth function, following
the Surrogate Gradient [21] strategy.

2) Loss Function: In the DET dataset, the lane and
background classes are imbalanced also after the dataset
pre-processing step, as described in Sec. II-B. Therefore,
we employ the Weighted Binary Cross-Entropy (WCE) loss
function [22] (Eq. (3)) that is a variant of the more common
Binary Cross-Entropy (BCE) loss function.

LWCE(y, ŷ) = −(β · y · log(ŷ) + (1− y) · log(1− ŷ)), (3)

where ŷ is the predicted probability to have a lane in a
determined pixel, and y represents the class value that can
be positive (y = 1) or negative (y = 0).

The WCE function introduces a little improvement for the
unbalanced labels, since the positive class (i.e., the presence
of the lane) gets weighted by the coefficient β that balances
the positive and negative prediction.

However, the STBP learning rule [20] is always studied
with the implementation of the Mean Squared Error (MSE)
loss function (Eq. (4)), which is not widely used for
segmentation problems [23].

LMSE =

∑n
i=1(yi − ŷi)2

n
(4)

Therefore, for the lane detection task, we develop a novel
loss function that can combine the benefits of both MSE and
WCE. Such a joint weighted loss function can be formalized
by the Eq. (5).

LMSE & WCE = (1− p) · LMSE + p · LWCE , (5)

where p denotes the parameter to weight the contribution
of WCE and (1− p) denotes the contribution of MSE, such
that 0 ≥ p ≥ 1.

III. LANESNNS DESIGN AND STRATEGIES TO AVOID
OVERFITTING

Based on the above discussion, we present the design of
our LaneSNN networks in the following along with specific
design decisions. To better summarize the most important
steps of our design, we present our design methodology in
Fig. 4.

A. Input and Output

To be coherent with the decisions made on the DET dataset
discussed in Sec. II-B, since we generate only one spike-train
per pixel from each raw gray-scale image, we develop our
networks with only one input channel.

The output size must be consistent with the size of the
label images of the modified DET dataset. Therefore, the last
layer should have 400 output neurons, one for each pixel.
Their firing rates represent the probability for the related
pixel to be a lane in the resulting image.

B. Network Architecture

In literature, there are many examples of algorithms based
on NNs for facing general semantic segmentation problems.
They can be classified into two different classes according
to their implementation:
• End-to-End: these algorithms use only the NN without any

pre and post-processing steps to face the lane detection
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Fig. 4: Design methodology of LaneSNNs models. On the top, there are the
main three desired properties (orange boxes). In the middle, the different
design steps and decisions (green boxes) are made to follow the properties
and overcome the research challenges (red boxes). The result is the design
of four LaneSNN models at the bottom.

problem. Usually, in these cases the network is divided
into two subsequent parts, i.e., reducing (downsampling)
and increasing (upsampling) the image size during the
elaboration [24] [25].

• More than one step: the NN represents only a part of the
entire detection algorithm, and it helps other more complex
conventional algorithms [26] [17] when these standalone
NNs achieve low performance [27].

To reduce the latency and power consumption of the entire
system, we choose to implement End-to-End algorithms.
For the Loihi implementation, we choose to design the
networks through the NxTF library [28]. It can describe only
convolutional, fully-connected and average pooling layers.

We develop a spiking CNN inspired from the analysis
made by the works in [27] [29]. In the first work [27] a small
fully-connected network is introduced at the end of the NN
as the upsampling part. The second work [29] emphasizes
the importance of convolutional layers over others types for
the downsampling structure.

Therefore, we design our first network, called CNN
LaneSNN (see Tab. I), with five convolutional layers by
which the input sample image size (80 × 20) is reduced to
20 × 5 pixels for each of the 16 channels. Then, the image
enters into the upsampling part made of 400 output neurons
connected to the following convolutional layer. We adopt a
dropout layer, as discussed later in Sec. III.

TABLE I: Structure of CNN LaneSNN.

Layer type In ch. Out ch. Kernel size Padding Stride % Dropout
Convolution 1 4 3 1 1 −
Convolution 4 4 3 1 1 −
Convolution 4 8 3 1 2 −
Convolution 8 8 3 1 1 −
Convolution 8 16 3 1 2 −

Dropout 16 16 − − − 10
Dense 1600 400 − − − −

To further decrease the power consumption, we develop
simpler structures that use only one or two hidden fully-
connected layers. Moreover, low-complexity fully-connected
networks are likely to consume low power and are easily
implementable onto different Neuromorphic Chips.

Therefore, we develop two fully connected networks with
800 and 600 neurons for the hidden layer (Fully-C800
LaneSNN, Tab. II, and Fully-C600 LaneSNN, Tab. III,
respectively), and a structure with two fully connected hidden
layers called Fully-C800600 LaneSNN. (Tab. IV).

TABLE II: Structure of Fully-C800 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80× 20)

Hidden 800
Output 400 (image of size 40× 10)

TABLE III: Structure of Fully-C600 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80× 20)

Hidden 600
Output 400 (image of size 40× 10)

TABLE IV: Structure of Fully-C800600 LaneSNN.

Layer Number of neurons
Input 1600 (image of size 80× 20)

Hidden 800
Hidden 600
Output 400 (image of size 40× 10)

C. Anti-Overfitting Strategies
Due to the label imbalance of the DET dataset [9]

discussed in Sec. II-B, the networks hardly generalize the
task, since they are affected by overfitting problems. This
problem is mostly noticed in the layers of the networks
that present many connections. For this reason, in the
CNN LaneSNN we insert a dropout layer between the last
convolutional layer and the fully-connected layer. Since the
percentage of dropout is not so high, it does not hamper the
training of the structure. Its value of 10% is chosen after
some preliminary experiments.

On the other developed networks we do not apply dropout
strategies, because, due to the small complexity of the
networks, this kind of operation can drastically reduce the
achieved results.

We use the Gaussian noise insertion technique before all
the layers of all the four networks. We define its entity with
the relative standard deviation σr. All the inserted Gaussian
noise have σr equal to 0.1 for each layer of each developed
network.

Finally, we apply the decoupled weight decay
regularization on every layer of every network (Eq. (6) [30]).

wt+1 = (1− λ) · wt − lr · ∇ft (wt) , (6)

where:
• wt+1 and wt are respectively the new and the old synaptic

weights on which we apply the optimizer;
• λ defines the rate of the weight decay per step;
• ∇ft (wt) is the tth batch gradient;
• lr is the learning rate.

Tab. V summarizes all the implemented strategies.



TABLE V: Implemented anti-overfitting strategies.

Anti-overfitting strategy Networks Where/when Entity
Data augmentation All Train dataset +271 images

Dropout CNN Before output layer 10%
Gaussian noise All Input of all layers σr = 0.1
Weight decay All Optimization step different values of λ

IV. EVALUATION OF LANESNNS

As discussed in Sec. II, we perform the training of the
network with the STBP learning rule. It uses Eqs. (1)
and (2) [20] to evaluate the gradients. These computations
are too complex to be executed onto the on-chip learning
engine of the Intel Loihi Neuromorphic Chip. Therefore,
our LaneSNNs are trained offline and then we implement
the networks achieving best results onto the neuromorphic
hardware (Sec. IV-C).

A. Accuracy Definition

As discussed in Sec. III-A, the output of our LaneSNNs
represents the probability for each pixel to be a lane.

Compared to having a direct prediction of the class value,
the probability prediction is a more flexible method, which
allows to tune and even calibrate the threshold for how to
interpret the predicted probabilities.

To derive the best threshold value for the predicted
probabilities, we study the graphs that correlate the Precision
and Recall values (PR curves [31]) evaluated by Eq. (7).

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(7)

• Precision is the number of lane pixel predictions matched
with the label (True Positive or TP), divided by the number
of pixels predicted as lane (True Positive and False Positive
or FP).

• Recall is the number of lane pixel predictions matched
with the label (TP), divided by the number of lane pixels
in the label (TP and False Negative or FN).
Then we define the F-measure (Eq. (8)) to find the best

threshold to balance the two parameters.

F-measure = 2 · Precision · Recall
Precision + Recall

(8)

To distinguish between lanes and background classes,
this parameter is computed for all the possible thresholds
applied to the output probabilities, and the maximum F-
measure, which corresponds to the best threshold, is selected.
Moreover, to objectively compare the performance of our
networks, we use the Intersection over Union (IoU) value
(Eq. (9) [32]).

IoU =
|Predicted lanes ∩ True lanes|
|Predicted lanes ∪ True lanes|

(9)

We calculate the best thresholds for every N predicted
images and we define the overall best threshold as the
numerical mean of them (Eq. (10)).

best th =

N∑
i=1

best thi

N
(10)

Afterwards, we apply the best th on the results and
compute the IoU value distinctly for each image (Eq. (11)).

IoU =

N∑
i=1

IoUi(best th)

N
(11)

B. LaneSNNs Experimental Setup

Our LaneSNNs, described using the PyTorch library [33],
are trained on the DET dataset [9], after performing the pre-
processing operations discussed in Sec. II-B. We run the
experiments on a workstation having CentOS Linux release
7.9.2009 as the operating system and equipped with an
Intel Core i9-9900X CPU and multiple Nvidia RTX 2080-
Ti GPUs. An overview of the tool flow for conducting the
experiments is shown in Fig. 5.

SNN 
Training 
Methods 

Dataset SNN Training 
on Nvidia RTX 
2080-Ti GPUs 

SNN Training IoU 

Trained SNN 
Model & Weights 

Loihi 

DVS Camera 

Prediction 
Probability 

Learning 
parameters 

Rate 
Coding 

SNN Model 
parameters 

Th. 

Fig. 5: Setup and tool-flow for conducting our experiments.

As discussed in Sec. II-C, we use the STBP [20] learning
rule and the loss function summarized by Eq. (5) for
computing the distance between prediction and labels during
training. With these modifications, the complete training set
has 241837 and 951763 pixels representing the lane and
the background classes, respectively. This corresponds to
a negative (background) over positive (lanes) ratio equal
to 3.93. Therefore, to contrast the imbalance, we set the
coefficient β of Eq. (5) to 4.0 for every experiments. On
the other hand, the value p, presented in the same Eq. (5)
and used to set the percentage of loss derived by the WCE
over the MSE loss functions, varies from 0.0 to 0.5 for
each experiment. This is because, after some experiments,
we notice that the insertion of a contribution of the MSE
loss function makes the SNNs converge faster. Focusing on
other specific learning rule hyper-parameters we set:
• Optimizer: we use Adam [34], since it is efficient when

coupled with the STBP. On that, we apply the decoupled
weight decay strategy [30] as discussed in Sec. III-C. We
vary λ of Eq. (6) from 0.0 to 5e−4 with steps of 1e−4.

• Learning rate (lr): we use the fixed learning rate approach
varying in the range from 1e−5 to 1e−3. These values
are found after preliminary analyses and guarantee the
convergence of the method in a few epochs.
The adopted learning rule is directly based on the SNNs

with LIF neuron models. The formalization of the membrane
potential update (uti + 1, n) is defined in Eq. (12), where:
• ut,ni is the membrane potential before the update;
• ot,ni represents the presence (1) or the absence (0) of a

spike generated on the output axon;



•
∑l(n−1)

j=1 wn
ijo

t+1,n−1
j represents the incoming synaptic

weighted spikes;
• bni is a bias term.

ut+1,n
i = ut,ni τ(1− ot,ni ) +

l(n−1)∑
j=1

wn
ijo

t+1,n−1
j + bni (12)

The main tunable parameters of a LIF neuron are:
• membrane threshold (Vth): it is the same for all neurons,

and its value changes from 0.2 to 1.0;
• membrane reset potential (Vreset): for all the

experiments, it is the same for each neuron and it
is always set to 0 V ;

• membrane time constant (τ ): for all the experiments, it
is set to 0.2 ms.
Moreover, the STBP learning rule uses the surrogate

gradient approach to approximate the derivative of the
spiking nonlinearity with simple functions. For this purpose,
we adopt the rectangular pulse function (Eq. (13)).

h1(u) =
1

a1
sign

(
|u− Vth| <

a1
2

)
(13)

This assumption is coherent with the work in [20], since
different types of approximations do not involve a great
variation of the accuracy, and the rectangular pulse function
represents an efficient formula developed for this purpose.

Therefore, according to Eq. (13), we can adjust the
parameter a1

2 representing the pulse width. It is set to the
same value of the Vth, as made in [20].

All the experiments run for 200 epochs with batch size
equal to 4. The batch size value is set based on a preliminary
analysis and it represents a trade-off between the achieved
accuracy and the training time.

Based on the discussions of Sec. III-A, for each pixel
of a gray-scale input image, we create a single spike-train.
Moreover, since every single spike train is made of 30
time steps, it can contain up to 30 spikes. The spike trains
per image are not calculated offline before training but are
generated at run-time. Hence, they are different for each
training epoch, to increase the robustness of the training
process. Since this information is given as input without
applying any accumulation strategy, the LaneSNNs analyze
each input image for 30 time steps.

C. LaneSNNs Implemented on Loihi

To implement our trained LaneSNNs onto the Intel Loihi
Neuromorphic Chip, we have to set its model parameters
such as Compartment Voltage threshold (Vth mant),
Compartment Current Decay (δi), Compartment Voltage
Decay (δv), Compartment Bias (bias), Synaptic Weights
(weight) and Weight Exponent (wgtExp). This is made
according to the neuron models similarities exploited in [3].

We multiply weights and Vth by a factor (k) calculated
from the weight magnitudes of all the SNN synapses as in
Eq. (14):

k =
24 − 1

maxall synapses(| weighti |)
(14)

With the multiplication of the weights by k we use all
the dynamic range for the maximum value, thus minimizing
wgtExp. All the setup parameters are summarized in
Tab. VI.

Offline implementation Loihi implementation
Parameter Value Precision Parameter Value Precision
Vth ×1 Float 64 bits Vth mant ×k Fixed 12 bits

weight ×1 Float 64 bits weight ×k Fixed 8 bits
τ 0.2 Float 64 bits δv 3276 Fixed 12 bits
b 0 Float 64 bits bias 0 Fixed 8 bits
− − Float 64 bits δi 0 Fixed 12 bits

TABLE VI: Translation of parameters to the Loihi Chip for the LaneSNNs
(For the Loihi the weight bits also include the wgtExp bits).

We implement all the trained LaneSNNs developed in
the previous Sec. IV-B onto the Loihi Neuromorphic Chip,
considering all the possible values of Vth, λ and lr,
characterized by the best parameter p. The implementation is
conducted using the Intel Nx SDK API version 1.0.0 running
onto the Nahuku32 partition. This code is developed using
the NxTF Layers and in particular NxConv2D and NxDense
utilities [28]. The LaneSNNs are tested on the testing set of
the DET dataset [9]. For feeding the input images, we use
the same method applied for the offline training discussed
in Sec. IV-B. Hence, we create a spike train for each pixel
of each input image on-the-fly. Each spike train lasts for 30
time steps. We insert a blank time of 10 time steps between
two consecutive samples.

To perform the computation of the IoU measure, we find
the best threshold directly from the reconstructed images at
the output of the Loihi chip. Then, we perform the steps
discussed in Sec. IV-A.

D. Pareto Optimal Solutions

To efficiently evaluate the LaneSNNs implemented onto
the Intel Loihi, we can analyze multiple Pareto-optimal
models. Therefore, we use the Pareto Optimal frontier
curve to find the best trade-off solutions between the
achieved IoU and:
1) latency, i.e., the mean time duration required for the

classification of all the pixels of a single image (Fig. 6.1);
2) power consumption of the entire Intel Loihi chip

(Fig. 6.2);
3) network complexity, number of neurocores occupied

(Fig. 6.3).
From the first graph (Fig. 6.1) we can see that within

the Pareto-optimal curve, the maximum time to detect the
lanes on a stream of 30 time steps is limited to 7.27 ms
and it is achieved by the Fully-C800 network (label 1 ).
It can be reduced to 6.02 ms with a reduction on IoU of
about 6% (label 3 ). In the second graph (Fig. 6.2), we can
notice that the lowest Pareto-optimal power consumption is
achieved by the simplest Fully-C600 network (labels 1 - 5 ),
but the highest IoU is reached by the Fully-C800 network
(label 6 ). Overall, the power consumption of Intel Loihi
chip does not vary much around 1W .

Fig. 6.3 shows that, among the Pareto-optimal solutions,
the Fully-C600 network is the simplest due to the lower
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Fig. 6: Pareto-optimal solutions for Fully-C800, Fully-C600, Fully-C800600 LaneSNNs.

number of occupied neurocores (labels 1 - 5 ). Moreover,
the best IoU is achieved by the Fully-C800 network, but its
complexity is significantly greater than the minimum value.

E. Best Results for Each LaneSNN

The best results in terms of IoU for each type of LaneSNN
for both offline and online implementations are summarized
in Tab. VII.

TABLE VII: Best IoU measures achieved by the different LaneSNNs for
offline (GPU) and online (Loihi) implementations.

IoU CNN IoU Fully-C600 IoU Fully-C800 IoU Fully-C800600
GPU Loihi GPU Loihi GPU Loihi GPU Loihi
0.598 0.208 0.637 0.527 0.633 0.542 0.652 0.416
0.551 0.349 0.632 0.623 0.629 0.613 0.590 0.550

The CNN LaneSNN has the lowest IoU values
for both online and offline implementations. Its offline
implementation achieves an acceptable value of IoU , but this
result dramatically decreases for the online implementation,
due to the weights approximation errors propagating layer
by layer during the translation from offline to online.

The highest offline result is achieved by the Fully-
C800600 network, which has two fully-connected hidden
layers. However, it achieves lower IoU for the online
implementation than the same achieved by the simpler fully-
connected networks Fully-C600 and Fully-C800. The best
online result is achieved by the Fully-C600 network, which
is the simplest SNN. Moreover, its online and offline IoU
measures, even if they are slightly greater, are comparable
to the results obtained with the Fully-C800 network.

F. Comparison with the State-of-the-Art

In our work, as discussed in Sec. II, we prefer less
complex SNNs. This means that they can be effectively
implemented onto the Intel Loihi Neuromorphic Chip and
achieve competitive results for real-time embedded systems,
with low power consumption and low latency. This is also
favored by the use of event-based cameras as vision sensors
of the AD system. On the other hand, in literature, there are
many algorithms that involve non-spiking NNs to face the
problem of lane detection.

For a fair comparison, we consider the results achieved
by state-of-the-art networks on the same dataset (DET
dataset [9]). Therefore all these NNs also use an event-based
camera as the vision sensor for the AD system.

The results of the state-of-the-art methods, which are
FCN [29], DeepLabv3 [35], RefineNet [36], LaneNet [37],

TABLE VIII: Comparison of IoU achieved by different algorithms [25] for
the lane detection problem faced by the semantic segmentation approach.

Classifier IoUoffline IoUonline Number of parameters
FCN 0.585 − 132.27 M

DeepLabv3 0.585 − 39.05 M
RefineNet 0.614 − 99.02 M
LaneNet 0.647 − 0.53 M
SCNN 0.673 − 25.16 M
LDNet 0.767 − 5.71 M

CNN LaneSNN (ours) 0.598 0.349 1.39 M
Fully-C600 LaneSNN (ours) 0.637 0.623 1.20 M
Fully-C800 LaneSNN (ours) 0.633 0.613 1.60 M

Fully-C800600 LaneSNN (ours) 0.652 0.550 2.00 M

SCNN [15] and LDNet [25], are compared to our LaneSNNs
in Tab. VIII.

We can notice that our CNN LaneSNN achieves higher
performance than the FCN and DeepLabv3 algorithms
despite they use more complex networks to make their
predictions. The FCN uses AlexNet [38] made of five
convolutional layers, three pooling layers, and three fully-
connected layers. DeepLabv3 [39] is made by Atrous Spatial
Pyramid Pooling (ASPP) layers. It probes an incoming
convolutional feature layer with filters at multiple sampling
rates. This method is not yet developed onto the Loihi with
only NxTF facilities [28] that do not implement the ASPP
layers. Moreover, it has lower performance than RefineNet
(based on the use of long residual connections), LaneNet
(using upsampling layers and conventional algorithms at
the end of the process), SCNN (based on slice-by-slice
convolutions), and LDNet (using ASPP, many convolution
stacks, and upsampling layers). These structures cannot be
developed onto the Loihi with the NxTF facilities [28]
that implement pooling, fully connected, and traditional
convolution layers.

All the other fully-connected LaneSNNs have IoU
comparable with LaneNet and overcome the performance
of more complex algorithms. Moreover, the Fully-C800600
LaneSNN achieves a similar result as the one obtained by
the SCNN algorithm, while using less than 10× number
of parameters. On the other hand, the highest IoU value
has been measured by the LDNet, at the price of very high
complexity and furthermore, it cannot be implemented onto
the neuromorphic hardware.

The previous considerations do not take into account
that all LaneSNNs are tested on the modified DET dataset
(discussed in Sec. II-B) and not on the original, as it is
for all the other presented algorithms. However, the DET
dataset pre-processing step allows all the LaneSNNs to be
directly implementable on the Intel Loihi Neuromorphic
Chip achieving competitive performance also online.



V. CONCLUSION

In this paper, we presented LaneSNNs, a novel class of
simple SNN models based on the semantic segmentation
approach, to find the position of the lanes on the driving
road, thanks to event streams coming from an event-based
camera. To the best of our knowledge, they represent the
first SNNs implemented onto the Intel Loihi Neuromorphic
Chip able to face the lane detection problem. Since they are
implemented as an end-to-end system, they do not use a post-
processing stage of grouping and clustering. For training, we
use a direct supervised learning rule and we develop a novel
loss function that is the linear composition of WCE and MSE.

We design four structures with different complexity
degrees and we call them CNN, Fully-C600, Fully-C800 and
Fully-C800600. The first is made of five convolution layers
and a final fully-connected layer. The second and third are
made by a fully-connected hidden layer made of 600 and
800 neurons respectively. The fourth is made of two fully
connected hidden layers.

We train the LaneSNNs with different parameters and
then we implement the resulting SNNs onto the Intel Loihi
Neuromorphic Chip. The best offline result for the offline
implementation is achieved by the Fully-C800600 LaneSNN
with IoU equal to 0.652, while the best online result is
achieved by the Fully-C600 network with IoU equal to
0.623. These values are comparable with the same achieved
by other state-of-art algorithms such as LaneNet [37] and
RefineNet [36]. Thanks to its implementation onto the Loihi
Neuromorphic Research Chip, its maximum latency is less
than 8 ms and its power consumption is about 1 W
during the classification of a single image, thereby making
it superior to all the state-of-the-art techniques in terms of
performance and power efficiency.

LaneSNNs enable high-performance yet energy-efficient
lane detection for AD systems while leveraging the advanced
neuromorphic processors.
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