
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks /
Marchisio, Alberto; De Marco, Antonio; Colucci, Alessio; Martina, Maurizio; Shafique, Muhammad. - ELETTRONICO. -
(2023), pp. 1-9. (Intervento presentato al convegno International Joint Conference on Neural Networks (IJCNN) tenutosi
a Gold Coast (Australia) nel 18-23 Giugno 2023) [10.1109/ijcnn54540.2023.10190994].

Original

RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and
Adversarial Attacks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ijcnn54540.2023.10190994

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987507 since: 2024-04-02T16:47:07Z

IEEE

To appear at the 2023 International Joint Conference on Neural Networks (IJCNN), Queensland, Australia, June 2023.

RobCaps: Evaluating the Robustness of Capsule
Networks against Affine Transformations and

Adversarial Attacks
Alberto Marchisio1,*, Antonio De Marco2,*, Alessio Colucci1, Maurizio Martina2, Muhammad Shafique3

1Technische Universität Wien, Vienna, Austria 2Politecnico di Torino, Turin, Italy 3New York University, Abu Dhabi, UAE
Email: alberto.marchisio@tuwien.ac.at, s254593@studenti.polito.it, alessio.colucci@tuwien.ac.at

maurizio.martina@polito.it, muhammad.shafique@nyu.edu

Abstract—Capsule Networks (CapsNets) are able to
hierarchically preserve the pose relationships between multiple
objects for image classification tasks. Other than achieving
high accuracy, another relevant factor in deploying CapsNets
in safety-critical applications is the robustness against input
transformations and malicious adversarial attacks.

In this paper, we systematically analyze and evaluate different
factors affecting the robustness of CapsNets, compared to
traditional Convolutional Neural Networks (CNNs). Towards
a comprehensive comparison, we test two CapsNet models
and two CNN models on the MNIST, GTSRB, and CIFAR10
datasets, as well as on the affine-transformed versions of
such datasets. With a thorough analysis, we show which
properties of these architectures better contribute to increasing
the robustness and their limitations. Overall, CapsNets achieve
better robustness against adversarial examples and affine
transformations, compared to a traditional CNN with a similar
number of parameters. Similar conclusions have been derived
for deeper versions of CapsNets and CNNs. Moreover, our
results unleash a key finding that the dynamic routing does not
contribute much to improving the CapsNets’ robustness. Indeed,
the main generalization contribution is due to the hierarchical
feature learning through capsules.

Index Terms—Machine Learning, Deep Neural Networks,
Convolutional Neural Networks, Capsule Networks, Dynamic
Routing, Adversarial Attacks, Affine Transformations, Security,
Robustness, Vulnerability

I. INTRODUCTION

In recent years, many works have explored the problems
of adversarial examples and affine transformations in
Convolutional Neural Networks (CNNs) for image
classification applications [1] [2] [3] [4]. Szegedy et al. [5]
proposed the concept of adversarial examples, i.e., examples
with small perturbations, imperceptible to the human eye,
that mislead high-confidence models when added to the
input. The same limitation of Deep Neural Networks (DNNs)
in image classification is also noticed if the input is affected
by affine transformations that do not modify the pixels but
their relative position in space. The most common means
of limiting these problems is to increase the generalization
level of a CNN, which is achievable using different methods.
Some research works proposed to increase the depth of
CNN architectures [6], others proposed to modify the
hyper-parameters [7] and using data pre-processing during

*These authors contributed equally to this work.

the training [8]. For a CNN, the convolutional and the Max
Pooling layers provide the generalization and the capability
to detect high-order features in a large region of the image
(invariance property), but without preserving any relation
with other identified features.

With the introduction of the Capsule Networks (CapsNets)
by Google [9], the basic building block of a neural network,
i.e., the neuron, has been replaced by a group of neurons,
called capsule. The capsules encode spatial information in
a vector form. When a detected feature moves around the
image, the probability of being detected does not vary, but its
pose information changes (equivariance property). The work
in [10] proposes an efficient way of learning the coupling
between capsules from different layers through the so-called
dynamic routing algorithm, an iterative process that replaces
the behavior of the max pooling, but without losing any
information. Hence, such a capsule structure improves the
network’s generalization because it can efficiently learn cross-
correlations between different features of the inputs. Recently,
Rajasegaran et al. [11] showed that a deeper version of
CapsNets can achieve high accuracy also on mid-complex
datasets like the CIFAR10 [12], despite reducing the number
of parameters compared to the shallower CapsNet in [10].

Existing works [13] [14] [15] [16] have analyzed the
vulnerabilities and robustness of CapsNets against affine
transformations and adversarial attacks, respectively. However,
they lack a systematic study comparing different types of
CapsNets and CNNs and a detailed analysis of the impact
of different CapsNet functions (like dynamic routing) on the
robustness. Moreover, Michels et al. [15] did not investigate
the CapsNets’ robustness when an adversarial defense, such
as the adversarial training [17], is applied.

Such analyses would establish an understanding of
differences between CNNs and CapsNets w.r.t. the robustness
against adversarial attacks and how the robustness of
CapsNets changes depending on the model features. This
could help future CapsNet designs in accounting for the
security vulnerabilities into design constraints, increasing the
applicability of CapsNets in real-world scenarios [18].

Research Questions and Associated Challenges
The goal of our paper is to investigate these research questions:

1) Are CapsNets more robust than CNNs against adversarial

1

ar
X

iv
:2

30
4.

03
97

3v
2

 [
cs

.L
G

]
 2

5
A

pr
 2

02
3

RobCaps Methodology (Section III)

Robustness to Adversarial AttacksRobustness to Affine Transformations

Evaluation of Different CapsNets
and CNNs (Sections V-A, V-B)

Evaluation of the contribution of
Adversarial Training (Section V-C)

Evaluation of the contribution of
Dynamic Routing (Section VI-B)

Generation of AffCIFAR and
AffGTSRB (Section IV-A)

Evaluation of different CapsNets
and CNNs (Sections IV-B)

CapsNets & CNN
Models

Datasets

Adversarial
Attacks

Evaluation of the contribution of
Dynamic Routing (Sections VI-A)

Fig. 1. Overview of our novel contributions in this work.

TABLE I
KEY RESULTS OBTAINED IN THIS PAPER.

DeepCaps ResNet20
Affine Accuracy AffNIST 87.60% 96.39%

Transformations Accuracy AffGTSRB 81.14% 89.75%
Robustness Accuracy AffCIFAR 78.66% 75.84%

Adversarial Accuracy MNIST PGD, ε = 0.05 1.20% 86.78%
Attacks Accuracy GTSRB PGD, ε = 0.02 50.35% 18.99%

Robustness Accuracy CIFAR10 PGD, ε = 0.005 37.49% 1.41%

attacks and affine transformations?
2) If yes, how can these phenomena be analyzed in a

systematic way?
3) Which CapsNet functions contribute more to the

robustness improvement?

Answering these questions is a challenging task. Firstly, we
evaluate a good metric of comparison between CapsNets and
CNNs, i.e., which network models give a fair and significant
robustness comparison, which types of adversarial attacks
are applied, etc. Then, it should be interesting to analyze
the transferability of the adversarial attacks, i.e., white-box
attacks. If an adversarial example has been generated to fool
network A, does it also fool network B?

Our Novel Contributions are (see Figure 1):

• We generate an affined-transformed version of the
CIFAR10 and GTSRB datasets, called affCIFAR and
affGTSRB, respectively. (Section IV-A)

• We evaluate / compare the robustness of different
CapsNets and CNNs (like ShallowCaps, DeepCaps,
ResNet20) against affine trans-formations for different
datasets and different networks. (Section IV-B)

• We compare the robustness of different networks against
adversarial attacks for different datasets. Further
analyses have been carried out in the presence of a
defense such as the adversarial training. (Section V)

• We evaluate the role of the dynamic routing towards the
CapsNets robustness. (Section VI)

In summary, our key results depicted in Table I show that
the DeepCaps [11] is more robust than a deeper ResNet20 [6]
against affine transformation and different types of adversarial
attacks, increasing the complexity of the input data. As we
will demonstrate, such improvements in the robustness also
hold when the adversarial examples are transferred from one
network to the other and vice-versa.

After showing the power of the capsules, we focus
our analysis on the dynamic routing, which increases the
confidence of the prediction, with a consequent improvement
in terms of accuracy. By knowing that, our challenging
question is: Is the dynamic routing also helpful in guaranteeing

Fig. 2. Example of an adversarial attack’s functionality, where strawberries are
misclassified as chesnuts [19].

the CapsNets robustness? Our results and analyses provide
great insights when relating CNNs and CapsNets against
adversarial attacks and affine transformations, as well as how
CapsNets’ behavior changes when modifying model features.

Before proceeding to the technical sections, we discuss
adversarial attacks and CapsNets in Section II to a level of
detail necessary to understand our contributions.

II. BACKGROUND AND RELATED WORK

A. Adversarial Attacks

Formally, having an example x that is correctly classified by
a well-trained model M(x) = ytrue, an adversarial example
x′ = x + η is defined as a new input, perceptually identical
to the original one, but wrongly classified by the model,
i.e., M(x′) 6= ytrue. Goodfellow et al. [19] proposed the
fast gradient sign method (FGSM), a white-box attack to
generate adversarial examples by exploiting the gradient of
the model w.r.t. the input image, towards the direction of
the highest loss. An example of its functionality is shown
in Figure 2, where the crafted noise added to the original
input is imperceptible to the human eye but results in a
misclassification. Afterwards, Madry et al. [17] and Kurakin
et al. [20] proposed two different versions of the projected
gradient descent (PGD) attack, which is an iterative version of
the FGSM that introduces a perturbation α to multiple smaller
steps. After each iteration, the PGD projects the generated
image into a ball with a radius ε, keeping small the size of
the perturbation. It is a white-box attack and has both the
targeted and untargeted versions. The algorithm consists of
the iteration expressed in Equation (1), where θ is the set of
parameters and t is the target label.

x′i = x′i−1 − projε(α · sign(∇xloss(θ, x, t))) (1)

Carlini and Wagner [21] proposed a powerful white-box
targeted attack method that exploits l∞, l1 and l2 distances to
preserve the imperceptibility of the adversarial example. It is
performed by solving the optimization problem expressed in
Equation (2).

||η||2 + c ·max(G(x, η, t)−M(x, θ)t,−k) (2)

The algorithm aims to minimize both the components
of the equation: (i) the distance η between the input and
the adversarial image and (ii) the distance between the
max output activation (G(x, η, t) := maxi6=t(M(x + η)))
and the confidence M(x)t of the target label t. The value
c is updated at every iteration to balance the two terms

2

soft
max

uj|1152

uj|1
uj|2

c1jc2j

uj|1
uj|2

uj|1152

vj

vjT

b1j
b2j

b1152j c2j
c1j

c1152j

Dynamic	Routing	

.

a1j
a2j

a1152j

squash()

c1152j

Fig. 3. Schematic overview of the processing flow occurring in the Dynamic routing of the DigitCaps layer.

during the generation of the attacked data. Many works
showed the success of such attacks in fooling DNNs and
provided state-of-the-art success rate results [19] [21] [17].
A common countermeasure to defend against such attacks is
the adversarial training [17], which extends the training set for
DNNs by also including the adversarial examples.

B. Capsule Networks

CapsNets gathered attention due to their capability to
achieve higher classification accuracy than traditional CNNs.
Sabour et al. [10] introduced the first CapsNet architecture,
based on the following differences w.r.t. traditional CNNs:
• capsules: multi-D entities, instead of single neurons, that

constitute each layer.
• a dynamic routing algorithm between two adjacent

capsules selects the capsules that must be propagated,
based on their pose agreement.

• a squash function compresses the components of each
capsule in a small interval at the end of each layer.

The architecture designed in [10], which we call
ShallowCaps (for ease of discussion), is composed of:
• a first standard convolutional layer with 256 9×9 kernels.
• a Primary Capsule layer, convolutional with 9×9 kernels

and the same parameters as the previous layer, but
reshaped to form 32 8-dimensional capsules.

• a DigitCaps layer of 10 capsules of dimension 16.
The last layer defines a transformation matrix that, during

the training, learns the relationship between all the capsules of
the Primary Capsule layer and the capsules of the DigitCaps
layer. The dynamic routing (Fig. 3) has the task of propagating
only the activations with a high contribution by updating a set
of coupling coefficients. Specifically, this iterative algorithm
ensures that only the most voted opinion among the predictions
is propagated to the DigitCaps layer.
The limit of this architecture is that it cannot correctly
generalize a complex dataset like the CIFAR10. Kumar et
al. [22] proposed a three-layer architecture, like the previous
one, for the GTSRB dataset [23], increasing the number of
capsules coupled with the DigitCaps layer. This one needs
a huge number of parameters and wasteful use of resources
to reach similar performances as traditional CNN models. To
solve this problem, the DeepCaps [11] has been designed to
reduce the number of parameters, exploiting deeper capsule

architectures. Without stacking more than one fully-connected
layer of capsules, the DeepCaps introduces a new kind of 3D
dynamic routing that exploits 3D convolutions.

Both the dynamic routing and the expectation-maximization
routing used by Hinton et al. [24] are computationally
expensive in terms of execution time. Many works tried to
accelerate the procedure at the algorithmic level [25] [26]
[27] or at the hardware level [28] [29] [30] [31] [32] [33],
and others proposed novel routing strategies [34] [35]. On
the contrary, many other works proposed to incorporate the
routing procedures into the training process, removing it. In
other words, it is possible to learn the coupling coefficients
implicitly, including them in the weights of the transformation
matrix. Furthermore, [36] proposed a different algorithm
introducing new coupling weights between two capsule layers,
called self-routing.

Our analysis (Section VI) also proves that the contribution of
the dynamic routing against attacks and affine transformations
is not effective. Then, incorporating it into the training process
could be a solution to avoid this expensive procedure.

Recent works showed the vulnerability of CapsNet against
adversarial attacks. Frosst et al. [37] investigated the detection
of adversarial examples using the reconstruction quality of
the CapsNets. Peer et al. [38] and Marchisio et al. [39]
applied the FGSM method [19] and their proposed attack
on CapsNets, respectively. Michels et al. [15] compared the
results of different attacks on CapsNets trained on different
datasets. The RoHNAS framework [40] includes adversarial
robustness among the optimization objectives and conducts
Neural Architecture Search to obtain energy efficient and
robust CapsNets. However, before employing CapsNets in
safety-critical applications, their robustness must be analyzed
in practical use-case scenarios, e.g., investigating applications
where the CapsNets’ classification accuracy is on par or better
than the state-of-the-art DNNs, and when robust defenses like
adversarial training are adopted.

III. IN-DEPTH VIEW OF OUR ROBCAPS METHODOLOGY

The CapsNets has been considered relatively more robust
towards adversarial attacks when compared to traditional
CNNs. To investigate this intuition, we present a detailed
analysis to answer our main research questions, and to show
(1) if and why the Capsule Network under attack provides

3

Affine Transforms
• Rotation
• Zoom
• Translation

Datasets CNNs
• ResNet20
• DeepCNN

Adversarial
Attacks
Library

CapsNets
• ShallowCaps
• DeepCaps

• affCIFAR
• affGTSRB

Attack
Transferability

Analysis

Robustness
Analysis

Adversarial Training
Robustness Analysis

Dynamic Routing
Robustness Analysis

Gradients for White-Box Attacks

Models

Minimum Noise
to Fool Network

Baseline Robustness

Fig. 4. Overview of our RobCaps methodology.

a better response than traditional CNNs, (2) which model
quality plays an important role, and their limits. Knowing the
main differences between CapsNets and traditional CNNs, we
explore the impact of these networks on affine transformations
and adversarial attacks. Moreover, we study the role of
different functions of a CapsNet on the robustness against
these attacks. Towards a fair and comprehensive evaluation,
the results for the ShallowCaps have been compared with three
different architectures (chosen according to their properties,
their number of parameters, and their depth) for three different
datasets, i.e., MNIST [41], GTSRB [23] and CIFAR10 [12].
• A deeper CapsNet architecture, like the DeepCaps

model [11]. Despite being deeper than the ShallowCaps,
it has fewer parameters. The DeepCaps employs four
groups of 2D convolutional capsule layers, with a 3D
convolution layer in the last group and a fully connected
capsule layer of 10 32D capsules.

• ResNet20 (He et al. [6]) is one of the best performing
CNN architectures for CIFAR10, used in various
applications. It would be interesting to compare the
capabilities of the CapsNet with a widely used CNN,
which is deeper and employs Residual Blocks with
convolutional and average pooling layers.

• A traditional CNN with the same depth as the DeepCaps,
but without multidimensional entities such as capsules.
The dimensions of the layers are reshaped in a 2D
fashion, using traditional convolutional layers with
batch normalization instead of capsules with squash
compression, and a traditional fully connected layer
instead of the DigitCaps layer with dynamic routing. Its
comparison w.r.t the DeepCaps highlights the contribution
to the robustness of 3D convolutions and capsules.

A. Step-By-Step View of our Methodology

Our methodology, shown in Fig. 4, is composed of these
following steps:

1) Evaluation of robustness on affine transformations:
i) Train our networks with the clean datasets using the

same hyperparameters and data augmentation.
ii) Generate the affine-transformed version of each dataset

for a given set of affine-transformations. For the
CIFAR10 and the GTSRB datasets, we design two
novel transformed datasets with random translations,
rotations, and zooms (which we call affCIFAR and
affGTSRB, see Section IV-A).

iii) Use such affCIFAR and affGTSRB datasets for
inference, as the case for the already existing
affNIST [42], to evaluate the response of the networks
to affine transformations.

2) Evaluation of robustness on adversarial attacks:
We use the saved parameters of the trained models to
evaluate the gradient, with respect to the input, for the
two implemented white-box attacks. The key steps of our
methodology are:
i) Apply the projected gradient descent (PGD) attack for

each architecture and dataset.
ii) Test the networks with the generated adversarial

inputs, evaluating the accuracy behavior, increasing the
perturbation level.

iii) Apply the Carlini Wagner attack (CW) for each dataset.
iv) Evaluate the mean distortion required by the algorithm

to misclassify 500 images of the test datasets and its
fooling rate.

v) Apply at the input to a network the adversarial image
generated with another one to test the transferability of
the attack.

vi) Test the robustness when the adversarial training
defense is applied.

3) Analyzing the contribution of the dynamic routing to
the CapsNet’s robustness:
i) Modify the dynamic routing of the DigitCaps layer of

the DeepCaps and then generate three versions of it
with different routing algorithms.

ii) Analyze the robustness against affine transformations.
iii) Analyze the robustness against PGD and CW attacks.

B. Experimental Setup

These architectures have been trained with the 40×40 sized
version of the MNIST dataset and tested on the affNIST for
evaluating the robustness against affine transformations. For
all the architectures tested on CIFAR10, input data have been
resized before the training, from 32×32 to 64×64, following
the pre-processing steps used in [11]. For the GTSRB dataset,
the input images’ size is kept at 32×32. The data augmentation
and hyperparameters used for the training are kept the same
for all the networks. As a regularization term, the CapsNets
have the reconstruction loss provided by the decoder. For the
evaluation of the loss, we use the same function as in [10] for
CapsNets and the Cross-Entropy for CNNs.

4

ResNet20
A
cc

u
ra

cy
 [

%
]

MNIST affNIST GTSRB affGTSRB CIFAR10 affCIFAR

9
9
.1

8

9
9
.1

9

9
9
.2

2

9
5
.2

9

9
9
.1

6

9
5
.6

4

9
4
.7

3

9
6
.3

9

7
7
.3

2

9
1
.5

2

9
1
.6

8

9
1
.4

8

7
5
.6

1

8
7
.6

0

8
2
.8

3

9
6
.3

9

7
8
.8

8

8
4
.1

4

7
9
.0

3

8
9
.7

5

7
8
.6

6

6
9
.9

0

7
5
.8

4

ShallowCaps DeepCaps CNN

100

80
90

70

60

50

Fig. 5. Robustness against affine transformations.

We implemented the attack algorithms using the
CleverHans [43] library, adapted for the Keras
framework [44] with Tensorflow backend [45]. The
networks have been trained on multiple Nvidia RTX-2080Ti
GPUs with CUDA 10. To have a good comparison metric,
we train different versions of the DeepCaps architecture
modifying/removing the dynamic routing.

IV. ROBUSTNESS AGAINST AFFINE TRASFORMATIONS

A. Affine-CIFAR10 (affCIFAR) and Affine-GTSRB (affGTSRB)
Datasets Generation

While a dataset with affine transformed images of the
MNIST dataset (affNIST) is already available, we create an
affine version of the CIFAR10 and GTSRB datasets, which we
call affCIFAR and affGTSRB, to compare the response of the
networks defined in Section III. The test data was created by
modifying the 10 000 test images from the original dataset with
random affine transformations. Every image is transformed
following these criteria:
• Translations: random pixels translations in one or in two

dimensions by a factor between 10% and 25% of the
input image size, with a fixed interval.

• Rotations: random rotations between +20 and −20
degrees with a fixed step.

• Zooms: the vertical and horizontal expansions are chosen
uniformly between 0.8 (i.e., shrinking the image by 20%)
and 1.2 (i.e., enlarging the image by 20%).

B. Affine Trasformations Results

For each model defined in Section III, we evaluate the
accuracy for all the datasets and their respective affine-
transformed versions. The results are shown in Figure 5.

ShallowCaps vs. DeepCaps: As shown in Figure 5, the
ShallowCaps on the CIFAR10 dataset achieves lower accuracy
than the state-of-the-art (77.32%). Such limitation is solved
by the DeepCaps, which reaches better results even when
using the affine version of the respective dataset (78.66%).
Thus, using a deeper architecture while keeping the same
capsule structure, the DeepCaps model has fewer parameters
while having better generalization. Its accuracy with the
CIFAR10 dataset (91.52%) and with the affine transformed
datasets are much higher compared to ShallowCaps. In fact,
despite the shallower model reaching a good accuracy on
the normal MNIST and GTSRB datasets, it is still unable to
generalize as the DeepCaps against affine transformations. The
improvement could also be explained by the presence of the
3D convolutional layer. The effect of having 3D convolutions,

compared to a stack of fully connected capsules, is similar
to when we compare the generalization level offered by
the Multi-Layer Perceptrons (MLP) and the CNNs. In the
DigitCaps layer, each element of the transformation matrix
learns if a capsule is correlated with each capsule of the
following layer. On the contrary, with the 3D convolution,
sliding a 3D kernel, the same weights are used among all the
capsules of the layer. This characteristic also allows learning
the presence of a particular feature if the input image is
spatially transformed (e.g., translated, rotated, or zoomed),
preserving the capsule structure.
DeepCaps vs. CNN and ResNet20: Another significant result
is provided by comparing the response of the DeepCaps
with a traditional CNN, having a similar base architecture.
While the accuracy of the CNN on the MNIST, GTSRB,
and CIFAR10 datasets is similar to the DeepCaps, the CNN’s
robustness against the affNIST, affGTSRB, and affCIFAR is
much lower. These results confirm the benefits of capsules
against affine transformations. Compared to the DeepCaps,
the ResNet20 is deeper but has fewer parameters. It can
generalize better for the affMNIST and affGTSRB but
worse for the affCIFAR dataset. This apparently contradictory
result is due to the difference in complexity between the
datasets. While for simple datasets, a deep CNN, like the
ResNet20, can generalize very well, for more complex tasks
like the affCIFAR, it is outperformed by the DeepCaps.
This observation highlights the capability of the capsule
architectures to preserve spatial correlations between the
features detected, and this difference w.r.t deeper traditional
CNNs is even more evident when the input dataset is
composed of complex features like the CIFAR10.

V. ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

A. Evaluations under the PGD Attack

We analyze the network response by increasing
the perturbation level ε, generated by the algorithm.
Figures 6a, 6b, and 6c show the results for the MNIST,
GTSRB, and CIFAR10 datasets, respectively.
ShallowCaps vs. ResNet20: Applying the PDG attack
for the MNIST dataset, the ResNet20 is less vulnerable
than other networks for low levels of ε. The ShallowCaps
robustness behavior, not so far from the one of the ResNet20,
overperforms the ResNet20 when ε ≈ 0.065. Hence, despite
the low number of layers, the ShallowCaps responds to the
PGD attack similarly to a deeper CNN.
DeepCaps vs. ShallowCaps: According to the results, the
ShallowCaps is more robust than the DeepCaps, in contrast

5

ROBUST

WEAK
WEAK

Fig. 6. Robustness against the PGD attack for (a) the MNIST, (b) the GTSRB, and (c) the CIFAR10 datasets.

ROBUST

WEAK

Fig. 7. Transferability for the PGD attack: comparison of the network response for (a) MNIST, (b) GTSRB, and (c) CIFAR10 datasets.

to what happens for affine transformations. This means
that increasing the depth of a CapsNet does not provide
more robustness against perturbed images. Note that the
ShallowCaps response for the CIFAR10 dataset has not been
examined because of its very low baseline accuracy, which is
not comparable with other networks.
DeepCaps vs. ResNet20 vs. CNN: For this kind of algorithm
and the MNIST dataset, Figure 6a shows that the DeepCaps
behaves worse than the ResNet20. On the contrary, for more
complex datasets like CIFAR10 or GTSRB, the results in
Figure 6 show that the ResNet20 is not as robust as for
the MNIST dataset. By increasing the perturbation’s size, the
attack’s success rate grows faster than on DeepCaps. Such an
outcome is in line with the takeaway from Section IV-B, which
showed the DeepCaps be more robust than the ResNet20
against the transformations in affCIFAR.

The behavior of the CNN curve for GTSRB and CIFAR10
always stays below the curve of the DeepCaps. It means that
the capsule architecture plays a fundamental role in improving
the robustness against the PGD attacks when the dataset
becomes more complex than the MNIST.
Transferability ResNet20 ⇐⇒ DeepCaps: Towards a more
comprehensive study of the robustness against the PGD,
we analyze the transferability of the attacks, between the
ResNet20 and the DeepCaps, presenting the two opposite
behaviors. We provide as inputs to the DeepCaps the
adversarial examples generated with the gradient of the
ResNet20 and vice-versa. Figure 7 shows the transferability
between these two networks for different datasets.

For the MNIST dataset, the attacks generated for the
ResNet20, tested on DeepCaps, have a more significant
effect than the opposite way. As shown in Figure 7a, this
outcome confirms that the ResNet20 appears suitable for the
generalization of the MNIST. The contrasting results can be
derived for the GTSRB and CIFAR10 dataset, where the

DeepCaps shows greater robustness than the ResNet20 due
to a better generalization ability for a more complex dataset.

B. Evaluations under the Carlini Wagner (CW) Attack

To have a more solid comparison, the CapsNets and CNNs
have also been tested against the CW attack, a different
kind of algorithm that does not define a threshold for the
magnitude of the perturbation (like the ε in the PGD attack).
It is an iterative targeted algorithm that tries to reduce the
gap between the target and the predicted class (success rate)
with the minimum perturbation (mean distortion), estimated
as the l2 distance. For a more robust network, the algorithm
necessitates more iterations to obtain that the probability of the
target class overcomes the probability of the correct class. As
a consequence, more iterations also imply a higher l2 distance
between the original image and the adversarial example. For
our estimations, we set a maximum of 10 iterations for the
MNIST and 5 iterations for the CIFAR10 dataset. In addition,
for the attacks on CIFAR10, the algorithm has been forced to
set the confidence of the targeted class to 0.5 higher than the
confidence of the true label. Table II reports the fooling rate
and the mean distortion for both the datasets.

CapsNets vs. CNNs: The CW attack is very effective for
traditional CNNs. In fact, it reaches a 100% fooling rate for
all three datasets. Similar findings were also made in [21].
On the other hand, both CapsNets show greater robustness
(i.e., lower fooling rate) than CNNs, for the MNIST dataset
(and also for the GTSRB, even if the fooling rate of the
DeepCaps is just a little bit lower than 100%). The CapsNets
also require a higher mean distortion than the CNNs, which
makes the resulting adversarial example more perceptible. For
the CIFAR10 dataset, the CW attack shows its effectiveness
because, for all the networks, the fooling rate is 100%.
However, we can notice that CapsNets are more robust due
to a higher mean distortion.

6

TABLE II
ROBUSTNESS RESULTS AGAINST THE CW ATTACK.

MNIST GTSRB CIFAR10
Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate Mean Distortion Fooling Rate

ShallowCaps 1.59 98.6% 1.31 100% - -
Deepcaps 1.24 86.8% 1.16 98.8% 0.34 100%

CNN 0.95 100% 0.59 100% 0.23 100%
ResNet20 0.94 100% 0.34 100% 0.12 100%

ROBUST

WEAK

Fig. 8. Adversarially vs. normally trained DeepCaps with (a) the GTSRB and (b) the CIFAR10 datasets.

TABLE III
TRANSFERABILITY OF THE CW ATTACK BETWEEN THE DEEPCAPS AND THE

RESNET20.

Network MNIST GTSRB CIFAR10
DeepCaps → ResNet20 97.4% 94.0% 86.8%
ResNet20 → DeepCaps 97.8% 95.4% 89.2%

DeepCaps vs. ShallowCaps: The DeepCaps appears to be
more robust than the ShallowCaps, because of a lower fooling
rate, despite having slightly lower mean distortion. Therefore,
the depth and the 3D convolutions help to generalize better
against the CW attack.
Transferability ResNet20 ⇐⇒ DeepCaps: Table III shows
the transferability of the attacks between ResNet20 and
DeepCaps for the CW attack. The values report the accuracies
of the two models that receive as input a sample of 500
targeted adversarial examples generated by the CW algorithm
applied to the other network. The high accuracy values
demonstrate the low level of transferability of the CW attack.
Despite this, the ResNet20 still achieves lower accuracies than
the DeepCaps, thereby performing less robustly.

C. DeepCaps defended with the PGD Adversarial Training

We also evaluate the robustness of DeepCaps when the
PGD adversarial training is applied, compared to the normally
trained DeepCaps. We chose an input perturbation ε equal to
0.03, with step size 0.005 in each iteration of the algorithm.
From Figure 8, we can derive that the adversarial training
increases the robustness of the DeepCaps against the PGD
attack, both for the CIFAR10 and GTSRB datasets, because its
classification accuracy is higher than the baseline DeepCaps.

The adversarial training with PGD defense helps the
networks also against the CW attack. For both the datasets,
from Table IV, comparing both the mean distortion and
the fooling rate, the defended DeepCaps appears more
robust. Hence, the adversarial training improves the model
interpretability and reduces the learning of brittle features, also
when the attack algorithm used for the defense is different
from the one used for the actual attack.

VI. ANALYZING THE CONTRIBUTION OF DYNAMIC
ROUTING TO THE ROBUSTNESS OF THE DEEPCAPS

As a further analysis, we investigate the contribution of
the dynamic routing towards the CapsNets generalization
and, as a consequence, towards their robustness. We train
two versions of the DeepCaps architecture. (i) The original
dynamic routing with three iterations has been replaced by
a simple connection (i.e., one iteration of dynamic routing)
in both the 3D convolutional and the DigitCaps layers. (ii)
The dynamic routing has been replaced by the self-routing
algorithm in the last fully connected layer. Then, we run the
experiments on such networks and compare them with the
original DeepCaps.

A. Evaluations under the Affine Trasformations

The results in Table V compare the accuracies achieved by
the DeepCaps with and without dynamic routing, and with
self-routing, for the MNIST, GTSRB, and CIFAR10 datasets.
While the difference is minimal, the response of the DeepCaps
without dynamic routing against affine transformations appears
to be slightly better. For the CIFAR10 dataset, even if the
accuracy with the normal dataset is higher with the dynamic
routing compared to the case without it, the latter works better
for the affCIFAR dataset. The self-routing shows some limits
increasing the complexity of the datasets.

We can derive that the dynamic routing does not contribute
significantly to the robustness against affine transformations.
Indeed, it makes the DeepCaps much computationally heavier.
The functionality of the dynamic routing is to inhibit the
propagation of the activation vectors with lower contribution
by lowering the values of the coupling coefficients in such
connections. Instead, the relationship between objects is
learned during training by the transformation matrix, which
could wrongly recognize some relationships between the
inputs and a wrong output label, which the dynamic routing
amplifies, together with the correct agreements. Hence, the
confidence of the incorrect label increases.

7

TABLE IV
ADVERSARIALLY AND NORMALLY TRAINED DEEPCAPS AGAINST THE CW ATTACK.

GTSRB CIFAR10
Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate

Normally trained DeepCaps 1.16 98.8% 0.34 100%
Adversarially trained DeepCaps 1.44 98.6% 0.84 96.6%

TABLE V
ROBUSTNESS RESULTS AGAINST AFFINE TRANSFORMATIONS.

Network MNIST40 GTSRB CIFAR10 AffNIST AffGTSRB AffCIFAR
DeepCaps without dynamic routing 99.27% 96.27% 91.47% 87.72% 84.54% 79.86%

DeepCaps with dynamic routing 99.19% 95.29% 91.52% 87.60% 84.14% 78.66%
DeepCaps with self routing 99.25% 95.60% 90.5% 88.15% 83.17% 77.37%

ROBUST

WEAK

Fig. 9. PGD results: comparison of the DeepCaps response for (a) MNIST and (b) GTSRB and (c) CIFAR10 datasets.

TABLE VI
ROBUSTNESS RESULTS AGAINST THE CW ATTACK.

MNIST GTSRB CIFAR10
Network Mean Distortion Fooling Rate Mean Distortion Fooling Rate Mean Distortion Fooling Rate

DeepCaps with dynamic routing 1.24 86.8% 1.16 98.8% 0.34 100%
DeepCaps without dynamic routing 1.62 74.0% 1.27 84.11% 0.46 100%

DeepCaps with self routing 2.28 48.6% 1.02 54.4% 0.52 99.2%

B. Evaluations under the Adversarial Attacks

The comparison analysis for the PGD attack applied to
the MNIST, GTSRB, and CIFAR10 datasets are shown in
Figures 9a, 9b and 9c, respectively.

For the MNIST dataset, the DeepCaps with dynamic routing
is slightly more robust than the version without it. On the
contrary, for the CIFAR10, the accuracy of the DeepCaps
without dynamic routing decreases faster when increasing the
perturbation ε. We can conclude that increasing the complexity
of the dataset, from MNIST toward the CIFAR10, the dynamic
routing does not improve the classification capability when the
input starts to be perturbed.

Table VI shows the results of the CW attack. The self-
routing seems to confer robustness with this attack, even if
the architecture with dynamic routing is again outperformed
by the one without it. Since the fooling rate is lower and
the mean distortion is higher without dynamic routing, we
can derive that the dynamic routing does not improve the
robustness against such an attack. It confirms that the dynamic
routing does not contribute much to the generalization.

VII. CONCLUSION

In this paper, we proposed a methodology to systematically
analyze the robustness of CapsNets against affine

transformations and adversarial attacks. Comparing CapsNets
and CNNs, we investigated which differences play critical
roles in increasing the robustness. The ShallowCaps are more
robust than comparable CNNs. However, despite the high
cost of training many parameters, they do not generalize well
on more complex datasets. The analysis results demonstrate
that they are more robust against adversarial attacks but show
their limits against affine transformations. Going deeper, the
DeepCaps model reduces this problem, decreasing the gap
between the transformed and untransformed versions of the
datasets, despite the lower number of parameters. Against the
adversarial attacks, the DeepCaps does not reach the same
robustness as the ShallowCaps for a simple task like the
MNIST classification. However, for a more complex dataset
like the CIFAR10, their performances overcome not only a
CNN with a similar architecture but also the ResNet20. In
addition, the DeepCaps offers even higher robustness when
the adversarial training is employed. The same conclusion
can be obtained for the affine transformations, where the
DeepCaps reaches a higher accuracy than the ResNet20 with
the affCIFAR dataset. Moreover, our results show that the
dynamic routing does not contribute much to improving the
CapsNets’ robustness.

Our thorough analysis paves the way for future CapsNet

8

designs, allowing designers to take into account adversarial
attacks when targeting safety-critical applications, as well as
leading the path for new adversarial attacks against CapsNets.

ACKNOWLEDGMENT

This work has been supported in part by the Doctoral
College Resilient Embedded Systems, which is run jointly
by the TU Wien’s Faculty of Informatics and the UAS
Technikum Wien. This work was also supported in parts by
the NYUAD Center for Artificial Intelligence and Robotics
(CAIR), funded by Tamkeen under the NYUAD Research
Institute Award CG010, the NYUAD Center for Interacting
Urban Networks (CITIES), funded by Tamkeen under the
NYUAD Research Institute Award CG001, and the NYUAD
Center for CyberSecurity (CCS), funded by Tamkeen under
the NYUAD Research Institute Award G1104.

REFERENCES

[1] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and
M. Shafique, “Hardware and software optimizations for accelerating deep
neural networks: Survey of current trends, challenges, and the road ahead,”
IEEE Access, vol. 8, pp. 225134–225180, 2020.

[2] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, “Deep learning for edge computing:
Current trends, cross-layer optimizations, and open research challenges,” in
2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019.

[3] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An updated survey of efficient hardware architectures for
accelerating deep convolutional neural networks,” Future Internet, 2020.

[4] S. Dave, A. Marchisio, M. A. Hanif, A. Guesmi, A. Shrivastava, I. Alouani,
and M. Shafique, “Special session: Towards an agile design methodology
for efficient, reliable, and secure ML systems,” in 40th IEEE VLSI Test
Symposium (VTS), pp. 1–14, IEEE, 2022.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in 2nd International
Conference on Learning Representations (ICLR), 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[7] S. R. Young, D. C. Rose, T. P. Karnowski, S. Lim, and R. M.
Patton, “Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments (MLHPC), pp. 4:1–4:5, ACM, 2015.

[8] W. Zhang, Y. Kinoshita, and H. Kiya, “Image-enhancement-based data
augmentation for improving deep learning in image classification problem,” in
IEEE International Conference on Consumer Electronics (ICCE-TW), 2020.

[9] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,”
in International Conference on Artificial Neural Networks (ICANN), pp. 44–
51, Springer, 2011.

[10] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”
in Advances in Neural Information Processing Systems (NeurIPS), 2017.

[11] J. Rajasegaran, V. Jayasundara, S. Jayasekara, H. Jayasekara, S. Seneviratne,
and R. Rodrigo, “Deepcaps: Going deeper with capsule networks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[12] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[13] J. Gu and V. Tresp, “Improving the robustness of capsule networks to image
affine transformations,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7283–7291, 2020.

[14] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique,
“Sevuc: A study on the security vulnerabilities of capsule networks against
adversarial attacks,” Microprocessors and Microsystems, 2023.

[15] F. Michels, T. Uelwer, E. Upschulte, and S. Harmeling, “On the vulnerability
of capsule networks to adversarial attacks,” CoRR, vol. abs/1906.03612, 2019.

[16] A. Marchisio, G. Caramia, M. Martina, and M. Shafique, “fakeweather:
Adversarial attacks for deep neural networks emulating weather conditions on
the camera lens of autonomous systems,” in International Joint Conference
on Neural Networks (IJCNN), pp. 1–9, IEEE, 2022.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in 6th International
Conference on Learning Representations (ICLR), 2018.

[18] M. Shafique, A. Marchisio, R. V. W. Putra, and M. A. Hanif, “Towards
energy-efficient and secure edge AI: A cross-layer framework ICCAD special
session paper,” in IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pp. 1–9, IEEE, 2021.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” in 5th International Conference on Learning Representations
(ICLR), 2017.

[21] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017.

[22] A. D. Kumar, “Novel deep learning model for traffic sign detection using
capsule networks,” CoRR, vol. abs/1805.04424, 2018.

[23] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detection
of traffic signs in real-world images: The german traffic sign detection
benchmark,” in The 2013 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, IEEE, 2013.

[24] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,”
in 6th International Conference on Learning Representations (ICLR), 2018.

[25] M. Yang, W. Zhao, J. Ye, Z. Lei, Z. Zhao, and S. Zhang, “Investigating
capsule networks with dynamic routing for text classification,” in Conference
on Empirical Methods in Natural Language Processing, 2018.

[26] A. Marchisio, B. Bussolino, A. Colucci, M. A. Hanif, M. Martina, G. Masera,
and M. Shafique, “Fastrcaps: An integrated framework for fast yet accurate
training of capsule networks,” in 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, IEEE, 2020.

[27] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and
M. Shafique, “Nascaps: A framework for neural architecture search to
optimize the accuracy and hardware efficiency of convolutional capsule
networks,” in IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pp. 114:1–114:9, IEEE, 2020.

[28] A. Marchisio, M. A. Hanif, and M. Shafique, “Capsacc: An efficient hardware
accelerator for capsulenets with data reuse,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 964–967, IEEE, 2019.

[29] A. Marchisio, B. Bussolino, A. Colucci, M. Martina, G. Masera, and
M. Shafique, “Q-capsnets: A specialized framework for quantizing capsule
networks,” in ACM/IEEE Design Automation Conference (DAC), 2020.

[30] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “Red-cane:
A systematic methodology for resilience analysis and design of capsule
networks under approximations,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1205–1210, IEEE, 2020.

[31] A. Marchisio, B. Bussolino, E. Salvati, M. Martina, G. Masera, and
M. Shafique, “Enabling capsule networks at the edge through approximate
softmax and squash operations,” in ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED), pp. 27:1–27:6, ACM, 2022.

[32] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “FEECA: design
space exploration for low-latency and energy-efficient capsule network
accelerators,” IEEE Trans. Very Large Scale Integr. Syst. (TVLSI), 2021.

[33] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, “Descnet:
Developing efficient scratchpad memories for capsule network hardware,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD), 2021.

[34] J. Choi, H. Seo, S. Im, and M. Kang, “Attention routing between capsules,”
in 2019 IEEE/CVF International Conference on Computer Vision Workshops
(ICCV Workshops), pp. 1981–1989, IEEE, 2019.

[35] H. Li, X. Guo, B. Dai, W. Ouyang, and X. Wang, “Neural network
encapsulation,” in European Conference on Computer Vision (ECCV),
pp. 266–282, 2018.

[36] T. Hahn, M. Pyeon, and G. Kim, “Self-routing capsule networks,” in Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[37] N. Frosst, S. Sabour, and G. E. Hinton, “DARCCC: detecting adversaries by
reconstruction from class conditional capsules,” CoRR, vol. abs/1811.06969,
2018.

[38] D. Peer, S. Stabinger, and A. J. Rodrı́guez-Sánchez, “Training deep capsule
networks,” CoRR, vol. abs/1812.09707, 2018.

[39] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique,
“Capsattacks: Robust and imperceptible adversarial attacks on capsule
networks,” CoRR, vol. abs/1901.09878, 2019.

[40] A. Marchisio, V. Mrazek, A. Massa, B. Bussolino, M. Martina, and
M. Shafique, “Rohnas: A neural architecture search framework with
conjoint optimization for adversarial robustness and hardware efficiency of
convolutional and capsule networks,” IEEE Access, 2022.

[41] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, 2012.

[42] T. Tieleman, “The affnist dataset,” cs.toronto.edu, 2013.
[43] I. J. Goodfellow, N. Papernot, and P. D. McDaniel, “cleverhans v0.1: an

adversarial machine learning library,” CoRR, vol. abs/1610.00768, 2016.
[44] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.
[45] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems,” CoRR, vol. abs/1603.04467, 2016.

9

	I Introduction
	II Background and Related Work
	II-A Adversarial Attacks
	II-B Capsule Networks

	III In-Depth View of our RobCaps Methodology
	III-A Step-By-Step View of our Methodology
	III-B Experimental Setup

	IV Robustness Against Affine Trasformations
	IV-A Affine-CIFAR10 (affCIFAR) and Affine-GTSRB (affGTSRB) Datasets Generation
	IV-B Affine Trasformations Results

	V Robustness Against Adversarial Attacks
	V-A Evaluations under the PGD Attack
	V-B Evaluations under the Carlini Wagner (CW) Attack
	V-C DeepCaps defended with the PGD Adversarial Training

	VI Analyzing the Contribution of Dynamic Routing to the Robustness of the DeepCaps
	VI-A Evaluations under the Affine Trasformations
	VI-B Evaluations under the Adversarial Attacks

	VII Conclusion
	References

