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Abstract: From a managerial perspective, project success hinges on estimates at completion as they
allow tailoring response actions to cost and schedule overruns. While the literature is moving towards
sophisticated approaches, standard methodologies, such as Earned-Value Management (EVM) and
Earned Schedule (ES), are barely implemented in certain contexts. Therefore, it is necessary to improve
performance forecasting without increasing its difficulty. The objective of this study was twofold.
First, to guide modeling and implementing project progress within cost and to schedule Performance
Factors (PFs). Second, to test several PFs utilized within EVM and ES formulae to forecast project cost
and duration at completion. Progress indicators dynamically adjust the evaluation approach, shifting
from neutral to conservative as the project progresses, either physically or temporally. This study
compared the performance of the progress-based PFs against EVM and ES standard, combined, and
average-based PFs on a dataset of 65 real construction projects, in both cost and duration forecasting.
The results show that progress-based PFs provide more accurate, precise, and timely forecasts than
other PFs. This study allows practitioners to select one or more of the proposed PFs, or even to
develop one, following the guidelines provided, to reflect best their assumptions about the future
course of project performance.

Keywords: project management; monitoring and control; earned-value management; estimate at
completion; performance factor; progress indicator

1. Introduction

Project monitoring and control processes are crucial to project success. The larger and
more complex a project, the higher the likelihood of risks emerging and compromising
its performance [1]. Therefore, it is essential to monitor project activities and implement
control actions as needed [2].

Control actions are developed based on Estimates at Completion (EACs) obtained from
evaluating project performance. The extent of control actions depends on the deviation
between the EACs and their corresponding planned values [3]. However, EACs are subject
to variability, as various factors influence them, including the interrelationships among
project variables [4].

Earned Value Management (EVM) [5] and its extension, Earned Schedule (ES) [6], stand
among the most widely adopted project-monitoring methodologies. EVM compares the
project Work Performed (WP) and the Actual Cost (AC) with the Performance Measurement
Baseline (PMB), which consists of the Work Scheduled (WS) values from the project start
and its Planned Duration (PD). In contrast, ES focuses on the homonym metric (ES),
representing the time when the current WP was scheduled to be attained, as per the PMB.

Previous research has proven EVM and ES effective in multiple projects [7]. However,
both methodologies overlook cost and schedule performance relationships and trends [8].
Furthermore, neither EVM nor ES incorporate project progress into the evaluation of
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EACs. In contrast, the forecasting approach should be contingent on whether the project
performance has stabilized [9].

The limitations of EVM and ES have sparked studies exploring alternative methods
for project performance forecasting. These studies can be divided into two categories: those
that build on and aim to improve EVM and ES and those adopting a different approach,
including nonlinear regression, Bayesian inference, and Artificial Intelligence (AI).

Despite the advancements in project-monitoring methodologies, the adoption of
EVM and ES remains restricted in specific scenarios [10]. Additionally, the complexity of
sophisticated methods poses challenges for practical implementation by practitioners [11].
Consequently, there is a pressing need to enhance project performance forecasting by
refining EVM and ES without compromising their simplicity in application.

This study had a twofold objective. First, to guide modeling project progress and
implementing it within project Performance Factors (PFs), and to propose a series of
progress-based PFs to implement within EVM and ES formulae for evaluating the project
cost and duration estimates at completion. Second, to benchmark the proposed progress-
based PFs against EVM and ES standard, combined, and average-based PFs under the
accuracy, precision, and timeliness criteria at the overall, project, and progress levels.

This paper is structured as follows. Section 1 introduces the background of the
study and its objective. Section 2 describes standard and alternative methods to project
performance forecasting, highlighting the research gap. Section 3 illustrates the proposed
progress modeling, implementation, and benchmarking procedures. Section 4 presents
the benchmarking results. Section 5 discusses the results obtained, providing theoretical
and practical implications and describing the limitations of the method adopted. Lastly,
Section 6 concludes by stating the study limitations and future research avenues.

2. Literature Review
2.1. EVM and ES

EVM assesses project performance, using three metrics: Actual Cost (AC), Planned Value
(PV), and Earned Value (EV). Let t indicate time. Following Fleming and Koppelman [12],
the AC consists of the actual expenditures incurred by the WP, the PV corresponds to the
budgeted cost associated with the WS, as per

PV(t) = WS(t) · BAC, (1)

and the EV corresponds to the budgeted cost associated with the WP, as per

EV(t) = WP(t) · BAC. (2)

EVM evaluates the project Cost Estimate at Completion (cEAC) and Time Estimate at
Completion (tEACEVM), using two different approaches. The cEAC is determined by the
sum of the AC and the cost Estimate-to-Complete (cETC) [5], which is evaluated through
the ratio of the cost associated with the remaining work (BAC− EV) to the cost Performance
Factor (cPF), as per

cEAC(t) = AC(t) + cETC(t) = AC(t) +
BAC − EV(t)

cPF(t)
. (3)

Instead, the tEACEVM is determined by the ratio of the PD to the schedule Performance
Factor (sPF) [5], as per

tEACEVM(t) =
PD

sPF(t)
. (4)

In standard EVM, the cPF and the sPF are set to the Cost Performance Index (CPI)
and the Schedule Performance Index (SPIEVM), respectively. The former is the ratio of the
EV to the AC [5], as per

CPI(t) =
EV(t)
AC(t)

, (5)
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while the latter is the ratio of the EV to the PV [5], as per

SPIEVM(t) =
EV(t)
PV(t)

. (6)

An index higher, equal, or inferior to 1 indicates performance superior to, on a par with,
or below the PMB, respectively.

Previous studies have demonstrated EVM to be effective in cost forecasting [13,14] but
not in duration forecasting. Specifically, studies have criticized SPIEVM because it relies on cost
metrics (i.e., EV and PV), which equal the BAC of the project’s Actual Duration (AD), as per
Equations (1) and (2), making the index converge to 1 as the project progresses [15,16]. This
limitation has led to exploring alternative methodologies for schedule performance analysis.

ES was developed to overcome the limitations of SPIEVM. In ES, schedule performance
is based on the ES metric, calculated as per

ES(t) = z +
EV(t)− PV(z)

PV(z + 1)− PV(z)
where z : PV(z) ≤ EV(t) ≤ PV(z + 1), (7)

assuming linear progress between consecutive PV values [6]. Similar to Equation (3), the ES
Time Estimate at Completion (tEACES) is determined by the sum of t and the Time Estimate
to Complete (tETC), which consists of the ratio of the “remaining duration” (PD − ES) to
the SPIES [17], as per

tEACES(t) = t + tETC(t) = t +
PD − ES(t)

sPF(t)
. (8)

In a standard ES, the sPF corresponds to the ES Performance Index (SPIES), which is the
ratio of ES to t [6], as per

SPIES(t) =
ES(t)

t
. (9)

Unlike SPIEVM, the SPIES does not converge to 1 as the project approaches completion,
remaining meaningful throughout the project duration.

Earlier studies have proven ES more effective than EVM in duration forecasting [18,19].
Nonetheless, both methodologies present further limitations, from assessing cost and sched-
ule performances separately to neglecting trends [20]. These flaws have led researchers to
explore alternative methods for project performance forecasting.

Studies on project forecasting methods fall into two categories. The first category
entails those studies that rely on standard EVM and ES formulae but implement different
PFs. This method prioritizes simplicity as it neither introduces further assumptions nor
needs external data. Instead, the second category encompasses those studies that use
formulae different from those used by EVM and ES, introducing additional assumptions or
relying on external data to improve forecasting performance.

2.2. Performance-Factor-Based Forecasting Methods

PFs can be either time-invariant or time-based. Let x indicate the forecast target.
Time-invariant PFs assume the form xPF = z, ∀t ∈ [0 . . . AD]. The specific case in which

xPF(t) = z = 1 (10)

reflects the assumption by which the current Cost Variance (i.e., CV = EV − AC) [5]
or the ES Schedule Variance (i.e., SVES = ES − t) [6] will remain the same until project
completion (i.e., cEAC = BAC − CV and tEACES = PD − SVES), whereas setting sPF = 1
in Equation (4) reflects the assumption by which the project will end exactly on time (i.e.,
tEACEVM = PD). In contrast, time-based PFs assume the form xPF = f [PV, EV, AC, t],
determining the rate of future accrual (xPF < 1) or recovery (xPF > 1) of cost overruns (if
x = c) or schedule delay (if x = s).
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Regarding time-based PFs, standard EVM uses the CPI as the cPF and the SPIEVM as
the sPF. These PFs reflect two assumptions: first, cost and time performances are unrelated,
and second, future performance solely depends on the current one, ignoring any trends. To
relax these assumptions, studies have proposed combined PFs and average-based PFs.

Combined PFs, combining cost and schedule performances, encompass products
and weighted averages of the cPF and the sPF. Products include the EVM Critical Ratio
(CREVM), as per

CREVM(t) = CPI(t) · SPIEVM(t), (11)

and the ES Critical Ratio (CRES), as per

CRES(t) = CPI(t) · SPIES(t). (12)

Weighted averages include the EVM Weighted Average (WAEVM), as per

WAEVM(t; w) = w · CPI(t) + (1 − w) · SPIEVM(t), (13)

and the ES Weighted Average (WAES), as per

WAES(t; w) = w · CPI(t) + (1 − w) · SPIES(t), (14)

where w denotes the weight.
Average-based PFs, accounting for past trends in cost and schedule performances,

include the cumulative, moving, and exponential moving averages of standard and com-
bined PFs. Let xPF denote the x PF, where x = c indicates cost and x = s indicates schedule.
Then, the Cumulative Average (CA) is determined, as per

TCA(xPF, t) =
1
t

t

∑
j=0

xPF(j), (15)

the Moving Average (MA) is determined, as per

TMA(xPF, t; k) =
1
k

t

∑
j=t−k+1

xPF(j), (16)

where k indicates the sample window, and the Exponential Moving Average (EMA) is
determined, as per

TEMA(xPF, t;α) = α · xPF(t) + (1 − α) · TEMA(xPF, t − 1;α), (17)

where α indicates the smoothing factor, and 0 ≤ α ≤ 1.
Combined PFs have been tested in cost forecasting [13,21–25] and duration fore-

casting [18,26,27]. The same applies to the Cumulative Average and the Moving Aver-
age [22,28,29], as well as to the Exponential Moving Average [30–32]. In all the studies
above, while the best PF depended on the specific project characteristics, the CPI and the
SPIES were proven the most robust.

2.3. Other Forecasting Methods

Alternative forecasting methods to improve performance forecasting offer more so-
phisticated modeling capabilities, but they come at the expense of increased difficulty in
implementation. The methods include nonlinear regression, Bayesian inference, and AI.

Nonlinear regression studies are based on the properties of project S-curves. Specifi-
cally, the studies calculate duration and cost estimates at completion by fitting theoretical
models to the EV and AC data, respectively, and projecting the resulting models forward.
The method was tested in both cost forecasting [33,34] and duration forecasting [35,36].
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The difficulties related to nonlinear regression lie in choosing the theoretical model and
performing the curve-fitting procedure.

Bayesian inference methods rely on external data to evaluate the parameters of ex-ante
distributions [37] and use internal project-monitoring data to refine such distributions
during project execution. These methods are applied to project S-curves [38], to cost- and
schedule-overruns probability [39], and to risks-occurrences probability [40]. In adopting
the Bayesian approach, the difficulties lie in defining the ex-ante distributions, collecting
data to evaluate their parameters, and updating the parameters with the project in place.

AI algorithms use external data to build project-cost and duration forecasting models.
Several reviews of AI applications in project monitoring are available, including [41–43].
Algorithms include linear regression [44], support vector machine [45–47], tree-based
methods [48,49], k-nearest neighbors [50], ensemble methods [51,52], and artificial neural
networks [53–59]. The difficulty in using AI models lies in collecting the data and in the
procedures required to prevent underfitting and overfitting.

2.4. Research Gap

Despite the potential improvements in forecasting performance, alternative methods
to EVM and ES are rarely utilized in practice. This is due to several factors, chief among
them being difficulty in implementation or, one step earlier, lack of data on which to base
the necessary assumptions. For this reason, where the preconditions for adopting more
sophisticated methods are lacking, practitioners need simple methods that do not deviate
excessively from standard EVM and ES. In light of this, this study provides progress-based
PFs to predict the project-cost and duration estimates at completion while maximizing the
trade-off between prediction performance and implementation difficulty. All PFs consider
the current state of progress, which is used to move from a conservative projection to a
bottom-up projection as the project approaches completion.

3. Research Methodology

This section is divided into two parts. The first part introduces the PFs that will be
tested and describes how to model and implement progress within them. The second
part describes the benchmarking, including the procedures to preprocess the data and the
criteria to evaluate the forecasting performance of the models implementing the PFs.

3.1. Progress-Based Performance Factors

This study tested four categories of PFs: standard, combined, average-based, and progress-
based. Standard PFs include EVM and ES indexes. Combined PFs include combinations of
standard PFs. Average-based PFs are evaluated by calculating different types of averages
of standard and combined PFs. Lastly, progress-based PFs are evaluated by modeling and
implementing progress within standard PFs.

Let PI denote the generic Progress Indicator. Then, PI should be expressed in terms of
physical or time progress, and |PI| should range between 0% and 100% (i.e., 0 ≤ |PI| ≤ 1).
In light of this, physical progress can be expressed as per WP = EV/BAC while time
progress can be expressed as per ESs = ES/PD, where the subscript “s” distinguishes the
scaled from the unscaled variable.

This study sought to integrate PI into the xETC calculation, to shift from a neutral
approach (xPF = 1) to a more conservative one (xPF ̸= 1) as project performance stabilized.
Since 0 ≤ |PI| ≤ 1, PI could be implemented as a weight (Pw) or an exponent (Px). When
implemented as a weight, TWAP was determined, as per

TWAP(xPF, PIw, t) = [1 − PIw(t)] · 1 + Pw(t) · xPF(t). (18)

While PIw = 0 determined TWAP = 1, PIw = 1 determined TWAP = xPF. When imple-
mented as an exponent, TXP was determined, as per

TXP(xPF, PIx, t) = xPF(t)±PIx(t). (19)
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The effect of ±PIx on TXP was determined by both the PIx sign and the value of xPF, as per
Table 1.

Table 1. Combinations of PIx and xPF and their effect on TXP.

Scenario
xPF

<1 =1 >1

PIx = −1 TXP > xPF TXP = 1 TXP < xPF
−1 < PIx < 0 TXP > xPF TXP = 1 TXP < xPF

PIx = 0 TXP = 1 TXP = 1 TXP = 1
0 < PIx < 1 TXP > xPF TXP = 1 TXP < xPF

PIx = 1 TXP = xPF TXP = 1 TXP = xPF

The generic progress-based PFs could be evaluated by combining Equations (18) and (19) into

TWAXP(xPF, PIw, PIx, t) = [1 − PIw(t)] · 1 + PIw(t) · xPF(t)±PIx(t). (20)

The combinations of PIw and PIx determined the pace at which TWAXP shifted from
neutral to conservative.

To summarize, the standard PFs included 1, CPI, SPIEVM, and SPIES. The combined
PFs included CREVM, CRES, WAEVM, and WAES. The average-based PFs were evaluated
using all the standard PFs but 1 and the combined PFs; the parameters k and α were
set only once. The progress-based PFs were evaluated using all the standard PFs but 1,
and all the possible combinations of +WP, −WP, ESs, and −ESs as PIx and PIw. The total
number of PFs amounted to 71; the complete list will be provided when presenting the
benchmarking results.

3.2. Benchmarking

Benchmarking PFs involves testing them in cost and duration forecasting on a real
project dataset. This phase entails five steps: Data Collection, Scaling, Interpolation,
Forecasts Evaluation, and Performance Assessment.

3.2.1. Data Collection

Data Collection involves retrieving monitoring data from real projects to develop the
testing dataset. This study used 65 projects selected from the Operations Research and
Scheduling Research group of the Faculty of Economics and Business Administration at
Ghent University (Belgium) database [60]. Selection criteria ensured projects experienced
both cost and schedule variances throughout their execution. Table 2 provides the projects’
building type, the number of activities in the network, BAC, PD, AC(AD), and AD.

Table 2. Projects properties.

Code Building Type #Activities BAC PD AC(AD) AD

C2011-10 Residential 32 484,398.41 39 494,947.71 41
C2011-12 Commercial 49 3,027,133.19 7 3,102,395.91 7
C2011-13 Industrial 134 21,369,835.51 105 26,077,764.74 120
C2012-13 Civil 74 336,410.15 25 350,511.31 28
C2012-17 Residential 33 241,015.00 29 314,856.14 41
C2013-01 Civil 42 1,069,532.42 6 1,314,584.58 6
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Table 2. Cont.

Code Building Type #Activities BAC PD AC(AD) AD

C2013-02 Civil 181 1,236,603.66 17 1,146,444.38 17
C2013-03 Institutional 55 15,440,865.89 18 16,338,027.20 18
C2013-04 Institutional 252 2,113,684.00 7 2,512,524.00 11
C2013-06 Institutional 276 19,429,810.51 19 21,546,846.18 18
C2013-07 Residential 46 180,476.47 10 175,030.65 11
C2013-08 Residential 42 501,029.51 10 576,624.05 13
C2013-09 Commercial 71 1,537,398.51 8 1,696,971.79 10
C2013-10 Civil 197 11,421,890.36 30 15,218,926.38 30
C2013-11 Civil 167 5,480,518.91 21 5,451,028.00 20
C2013-12 Institutional 27 818,439.99 3 879,853.17 5
C2013-13 Commercial 11 1,118,496.59 10 955,929.22 9
C2013-14 Commercial 9 85,847.89 2 75,468.30 2
C2013-15 Commercial 17 341,468.11 5 298,833.81 4
C2013-16 Commercial 7 248,203.92 6 198,567.00 5
C2013-17 Commercial 23 244,205.40 6 203,605.97 5
C2014-01 Residential 52 38,697,822.73 24 39,777,643.30 23
C2014-04 Industrial 24 62,385,597.58 24 65,526,930.04 36
C2014-05 Residential 25 532,410.29 11 591,410.53 13
C2014-06 Residential 29 3,486,375.47 17 3,599,114.11 19
C2014-07 Residential 25 1,102,536.78 12 1,289,696.78 14
C2014-08 Residential 39 1,992,222.09 11 2,380,299.86 13
C2015-01 Institutional 27 612,769.44 6 646,473.65 9
C2015-02 Civil 216 1,121,316.94 8 967,988.79 9
C2015-03 Industrial 135 2,244,090.74 9 1,868,796.28 10
C2015-04 Residential 56 2,750,938.00 7 2,590,796.73 8
C2015-05 Residential 64 2,524,765.19 4 2,563,675.86 5
C2015-06 Residential 184 143,673.20 9 186,107.00 10
C2015-07 Industrial 138 5,999,600.00 8 5,414,544.00 9
C2015-08 Commercial 186 467,297.21 8 461,900.17 8
C2015-09 Civil 348 1,457,424.00 6 2,145,682.26 9
C2015-27 Civil 18 22,703.52 5 25,313.12 6
C2015-29 Institutional 204 1,874,496.82 8 1,887,087.25 8
C2015-30 Residential 40 440,940.89 14 440,940.89 14
C2015-31 Residential 29 1,310,723.46 16 1,282,185.98 21
C2015-32 Residential 53 2,509,031.42 15 2,509,031.42 14
C2015-33 Civil 12 214,417.71 3 224,789.67 5
C2015-34 Civil 13 511,325.86 4 440,394.16 7
C2015-35 Residential 10 14,956,314.25 38 16,068,878.30 41
C2016-01 Civil 28 671,383.50 12 703,703.50 14
C2016-02 Civil 23 962,181.56 12 972,341.56 13
C2016-03 Civil 25 926,888.01 10 910,728.01 11
C2016-07 Commercial 110 930,179.09 8 932,757.25 11
C2016-11 Residential 55 162,472.00 5 163,189.00 5
C2016-12 Residential 59 222,858.00 5 226,285.00 5
C2016-13 Residential 51 367,952.00 4 379,300.00 5
C2016-14 Residential 48 218,366.00 5 222,021.78 5
C2016-15 Residential 13 95,694.00 4 100,763.00 4
C2016-27 Residential 16 813,663.06 3 879,701.06 4
C2016-28 Residential 19 569,177.85 4 586,086.85 4
C2016-29 Residential 19 1,797,873.62 4 1,860,330.62 4
C2016-30 Residential 23 1,319,736.29 3 1,353,361.29 4
C2016-31 Residential 23 488,936.00 3 498,473.00 4
C2016-32 Residential 22 477,381.00 4 496,991.00 4
C2016-33 Residential 23 377,282.00 3 394,829.00 4
C2016-34 Residential 23 362,476.00 3 383,871.00 3
C2019-01 Residential 86 1,292,979.00 8 1,315,819.86 10
C2019-02 Residential 18 734,602.11 9 748,555.80 9
C2019-03 Civil 17 967,878.00 20 1,270,875.82 22
C2019-04 Civil 33 4,318,950.00 18 4,232,553.41 24
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3.2.2. Data Scaling

Data scaling involves expressing project data on a unitless scale. This step prevented
projects with metrics expressed in different orders of magnitude from biasing the perfor-
mance scores. Scaling was achieved by dividing the cost metrics (i.e., PV, EV, and AC) by
the BAC and time metrics (i.e., t, ES) by the PD. All the scaled metrics but WP and WS
were denoted using the subscript “s”. All the scaled metrics but t, AD, and AC ranged
between 0 and 1.

3.2.3. Data Interpolation

Data interpolation involves evaluating the project metrics at specific points in time.
This step allowed inferring the project’s evolution through all its stages. Interpolation
was performed linearly to obtain the project metrics values at 5% progress intervals (i.e.,
WP = .05, .10, . . . , .95. Records corresponding to WP = 0 and WP = 1 were omitted as no
forecasts were calculated at the project start (i.e., WP = 0) and end (i.e., WP = 1).

3.2.4. Forecast Evaluation

Forecast Evaluation involves using the PFs to calculate the project estimates at com-
pletion. All 71 PFs were used for both cost and duration forecasting. Cost forecasts were
determined by implementing the PFs as the cPF within Equation (3), while duration
forecasts were determined by implementing the PFs as the sPF within Equation (8).

3.2.5. Performance Assessment

This study compared the PFs’ forecasting performance under three criteria: accuracy,
precision, and timeliness. Accuracy referred to the ability to provide forecasts close to the
real value of the target variable. Precision referred to the ability to minimize the dispersion
of forecast errors. Timeliness referred to how fast forecasts achieved accuracy and precision.

For each observation i in the dataset, we let yi and ŷi indicate the real value and the
forecast for that observation, respectively. Then, the forecast error (Ei) was determined by
the difference between yi and ŷi, as per

Ei = yi − ŷi (21)

All performance criteria could be assessed by analyzing the functional boxplots of the
forecast errors. In the functional-boxplot variant, all measures were expressed as a function
of the WP. The variables Q1, Q2, and Q3 represented the first, second, and third quartiles,
respectively, while LB indicated the lower bound and UB the upper bound. Unlike in
standard boxplots, this study defined the LB and the UB as the 10th and 90th percentiles of
Ei, respectively.

Figure 1 illustrates a functional boxplot with the WP on the x-axis. The filled area
between Q3 and Q1 represents the functional InterQuartile Range (IQR = Q3 − Q1).
Following this notation, accuracy was assessed based on how close Q1, Q2, and Q3 fall to the
WP axis (i.e., E = 0), precision was assessed by the extent of the areas between the UB and
the LB and the IQR, and timeliness was determined by how fast these measures converged.

All performance criteria but timeliness could be summarized at a higher level without
analyzing each PF functional boxplot. To achieve this, the benchmark utilized three regres-
sion scores: Mean Absolute Error (MAE), measuring average accuracy, Root Mean Squared
Error (RMSE), measuring robustness, and a custom score based on the area determined by
Q1 and Q3 throughout the project progress (A), measuring precision.

We let n indicate the total number of observations in the project dataset. Then,
the MAE was evaluated, as per

MAE =
1
n

n

∑
i=0

|Ei|, (22)



Buildings 2024, 14, 643 9 of 22

the RMSE was evaluated, as per

RMSE =

√
1
n

n

∑
i=0

(Ei)2, (23)

and A was calculated by evaluating the integral between the first and third quartiles lines
and the WP-axis (Ei = 0), as per

A = AQ1,0 + AQ3,0 =
∫ .95

WP=.5
|Q1(WP)|dWP +

∫ .95

WP=.5
|Q3(WP)|dWP. (24)

.05 .95

0

UB(WP)

Q3(WP)

Q2(WP)

Q1(WP)

LB(WP)

IQR(WP)

WP

E

Figure 1. Example of forecast Error (E) functional boxplot with the Work Performed (WP) as the
x-axis.

Figure 2 provides an example of how A was calculated. The light blue area corresponds
to AQ3,0, while the dark blue one corresponds to AQ1,0.

.05 .95

0

Q3(WP)

Q1(WP)

AQ3,0

AQ1,0

WP

E

Figure 2. Example of functional boxplot Area score (A) evaluation.

4. Results

The PF parameters were assigned arbitrary values: weight parameter w = 0.8, sample
window parameter k = 1/10 PD, and smoothing parameter α = 0.75.

Table 3 presents the A, rank, MAE, and RMSE scores of the cPFs, calculated on the
entire dataset. The rank was determined based on the ascending order of A. The best-
performing PF was TXP(CPI, WP), ranking first with MAE = 0.0624 and RMSE = 0.1220.
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Among non-progress-based PFs, 1 ranked highest, placing 12th with MAE = 0.0638 and
RMSE = 0.1132. The best-performing standard PF was CPI, ranking 37th with MAE = 0.0793
and RMSE = 0.1662.

Table 3. Cost PFs forecasts: overall accuracy scores.

cPF Rank A MAE RMSE

TXP(CPI, WP) 1 0.8667 0.0624 0.1220
TWAXP(CPI, ESs, ESs) 2 0.8758 0.0611 0.1130
TWAP(CPI, WP) 3 0.8911 0.0628 0.1241
TWAXP(CPI, WP, WP) 4 0.8931 0.0622 0.1170
TWAXP(CPI, ESs, WP) 5 0.8962 0.0617 0.1149
TWAXP(CPI, WP, ESs) 6 0.8980 0.0617 0.1147
TWAP(CPI, ESs) 7 0.9063 0.0623 0.1200
TXP(CPI, ESs) 8 0.9096 0.0623 0.1190
TWAXP(SPIES, ESs, ESs) 9 0.9675 0.0626 0.1103
TWAXP(SPIES, ESs, WP) 10 0.9884 0.0638 0.1121
TWAXP(SPIES, WP, ESs) 11 0.9994 0.0640 0.1125
1 12 1.0270 0.0638 0.1132
TWAXP(SPIEVM, ESs, WP) 13 1.0304 0.0616 0.1091
TWAXP(SPIES, WP, WP) 14 1.0693 0.0655 0.1150
TWAXP(SPIEVM, WP, WP) 15 1.0724 0.0625 0.1109
TWAXP(SPIEVM, WP, ESs) 16 1.0765 0.0622 0.1098
TWAXP(CPI, WP,−WP) 17 1.0879 0.0663 0.1110
TWAXP(CPI, ESs,−WP) 18 1.1166 0.0668 0.1136
TWAXP(CPI, WP,−ESs) 19 1.1171 0.0668 0.1135
TWAXP(SPIES, WP,−WP) 20 1.1435 0.0726 0.1199
TWAXP(CPI, ESs,−ESs) 21 1.1459 0.0680 0.1174
TXP(CPI,−WP) 22 1.1597 0.0682 0.1093
TWAXP(SPIEVM, ESs, ESs) 23 1.1761 0.0658 0.1139
TCA(CPI) 24 1.1844 0.0779 0.1543
TCA(WAES) 25 1.1847 0.0757 0.1456
TWAXP(SPIES, ESs,−WP) 26 1.1853 0.0728 0.1198
TWAXP(SPIEVM, WP,−WP) 27 1.1872 0.0768 0.1260
TWAXP(SPIES, WP,−ESs) 28 1.1974 0.0728 0.1200
TMA(WAES) 29 1.2201 0.0764 0.1496
TMA(CPI) 30 1.2242 0.0776 0.1577
TEMA(WAES) 31 1.2286 0.0774 0.1526
WAES 32 1.2332 0.0786 0.1554
TEMA(CPI) 33 1.2384 0.0782 0.1617
TXP(CPI,−ESs) 34 1.2388 0.0711 0.1182
TEMA(WAEVM) 35 1.2458 0.0801 0.1601
WAEVM 36 1.2461 0.0811 0.1626
CPI 37 1.2495 0.0793 0.1662
TMA(WAEVM) 38 1.2537 0.0797 0.1578
TWAP(SPIES, WP) 39 1.2711 0.0719 0.1216
TCA(WAEVM) 40 1.3000 0.0810 0.1561
TWAXP(SPIES, ESs,−ESs) 41 1.3084 0.0746 0.1228
TWAP(SPIEVM, WP) 42 1.3504 0.0731 0.1245
TWAXP(SPIEVM, ESs,−WP) 43 1.3565 0.0791 0.1301
TWAP(SPIES, ESs) 44 1.3580 0.0687 0.1149
TXP(SPIES, WP) 45 1.3617 0.0772 0.1343
TWAXP(SPIEVM, WP,−ESs) 46 1.3652 0.0794 0.1308
TXP(SPIES, ESs) 47 1.3674 0.0712 0.1194
TWAXP(SPIEVM, ESs,−ESs) 48 1.4126 0.0851 0.1443
TXP(SPIEVM, WP) 49 1.4147 0.0726 0.1215
TWAP(SPIEVM, ESs) 50 1.5436 0.0796 0.1366
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Table 3. Cont.

cPF Rank A MAE RMSE

TXP(SPIES,−ESs) 51 1.5685 0.0866 0.1362
TXP(SPIES,−WP) 52 1.5810 0.0856 0.1337
TXP(SPIEVM,−WP) 53 1.6351 0.0978 0.1612
TXP(SPIEVM, ESs) 54 1.6569 0.0836 0.1468
TXP(SPIEVM,−ESs) 55 1.7554 0.1116 0.2235
TCA(SPIES) 56 3.4251 0.1445 0.2643
TCA(CRES) 57 3.4344 0.1670 0.2929
TMA(SPIES) 58 3.4371 0.1606 0.3470
TEMA(SPIES) 59 3.5705 0.1743 0.3915
TCA(SPIEVM) 60 3.5828 0.1592 0.2576
SPIES 61 3.6529 0.1930 0.5223
TMA(CRES) 62 3.7078 0.1936 0.3866
TMA(SPIEVM) 63 3.8219 0.1735 0.3089
TEMA(SPIEVM) 64 4.0941 0.1887 0.3603
TEMA(CRES) 65 4.1227 0.2116 0.4370
TCA(CREVM) 66 4.2254 0.1900 0.2973
SPIEVM 67 4.2499 0.2106 0.5122
CRES 68 4.2571 0.2322 0.5552
TMA(CREVM) 69 4.6078 0.2144 0.3732
TEMA(CREVM) 70 4.8626 0.2346 0.4331
CREVM 71 4.9789 0.2599 0.5708

Table 4 presents the A, rank, MAE, and RMSE scores of the sPFs, calculated on
the entire dataset. The rank was determined based on the ascending order of A. The
best-performing PF was TWAXP(CPI, ESs, WP), ranking first with MAE = 0.1158 and
RMSE = 0.1645. Among the non-progress-based PFs, 1 ranked highest, placing 6th with
MAE = 0.1180 and RMSE = 0.1670. The best-performing standard PF was CPI, ranking
49th with MAE = 0.1284 and RMSE = 0.1811.

Table 4. Schedule PFs forecasts: overall accuracy scores.

sPF Rank A MAE RMSE

TWAXP(CPI, ESs, WP) 1 3.1647 0.1158 0.1645
TWAXP(CPI, WP, ESs) 2 3.1652 0.1159 0.1645
TWAXP(CPI, ESs, ESs) 3 3.1663 0.1159 0.1645
TWAXP(CPI, WP, WP) 4 3.1705 0.1159 0.1646
TWAXP(SPIES, ESs, ESs) 5 3.1872 0.1210 0.1683
1 6 3.2053 0.1180 0.1670
TWAP(CPI, WP) 7 3.2083 0.1172 0.1645
TXP(CPI, WP) 8 3.2165 0.1166 0.1639
TWAXP(SPIES, WP, ESs) 9 3.2215 0.1225 0.1707
TWAXP(SPIES, ESs, WP) 10 3.2223 0.1222 0.1701
TXP(CPI, ESs) 11 3.2225 0.1163 0.1633
TWAP(CPI, ESs) 12 3.2298 0.1166 0.1636
TWAXP(SPIEVM, WP, ESs) 13 3.2410 0.1216 0.1682
TWAXP(SPIEVM, WP, WP) 14 3.2416 0.1226 0.1693
TWAXP(SPIEVM, ESs, WP) 15 3.2449 0.1215 0.1680
TWAXP(SPIES, WP,−WP) 16 3.2618 0.1206 0.1716
TXP(SPIES, ESs) 17 3.2680 0.1269 0.1745
TWAXP(CPI, ESs,−ESs) 18 3.2737 0.1218 0.1706
TWAP(SPIES, ESs) 19 3.2903 0.1258 0.1721
TWAXP(CPI, WP,−ESs) 20 3.2921 0.1218 0.1708
TWAXP(CPI, ESs,−WP) 21 3.2926 0.1218 0.1707
TWAXP(SPIES, WP, WP) 22 3.3066 0.1253 0.1748
TWAXP(CPI, WP,−WP) 23 3.3071 0.1226 0.1718
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Table 4. Cont.

cPF Rank A MAE RMSE

TWAXP(SPIES, ESs,−WP) 24 3.3189 0.1198 0.1698
TWAXP(SPIEVM, ESs, ESs) 25 3.3217 0.1223 0.1687
TWAXP(SPIES, WP,−ESs) 26 3.3230 0.1197 0.1697
TWAXP(SPIES, ESs,−ESs) 27 3.4070 0.1202 0.1702
TXP(SPIES, WP) 28 3.4219 0.1359 0.1942
TXP(CPI,−ESs) 29 3.4266 0.1272 0.1761
TXP(SPIES,−WP) 30 3.4289 0.1285 0.1862
TWAXP(SPIEVM, WP,−WP) 31 3.4344 0.1234 0.1733
TXP(CPI,−WP) 32 3.4353 0.1282 0.1785
TWAP(SPIES, WP) 33 3.4369 0.1320 0.1820
TWAXP(SPIEVM, WP,−ESs) 34 3.4800 0.1232 0.1730
TCA(CPI) 35 3.4819 0.1270 0.1768
TWAXP(SPIEVM, ESs,−WP) 36 3.4875 0.1231 0.1727
TMA(WAES) 37 3.5227 0.1263 0.1740
TWAXP(SPIEVM, ESs,−ESs) 38 3.5266 0.1251 0.1751
TCA(WAES) 39 3.5361 0.1254 0.1722
TXP(SPIEVM,−WP) 40 3.5525 0.1367 0.1963
TXP(SPIES,−ESs) 41 3.5658 0.1263 0.1810
TMA(CPI) 42 3.5862 0.1271 0.1774
TEMA(WAES) 43 3.5891 0.1266 0.1747
WAES 44 3.5952 0.1272 0.1760
TXP(SPIEVM, ESs) 45 3.6313 0.1299 0.1769
TWAP(SPIEVM, ESs) 46 3.6314 0.1301 0.1783
TEMA(CPI) 47 3.6344 0.1276 0.1789
TWAP(SPIEVM, WP) 48 3.6354 0.1302 0.1774
CPI 49 3.6448 0.1284 0.1811
TXP(SPIEVM, WP) 50 3.6543 0.1285 0.1735
TXP(SPIEVM,−ESs) 51 3.6829 0.1429 0.2189
WAEVM 52 3.7241 0.1313 0.1819
TEMA(WAEVM) 53 3.7326 0.1310 0.1812
TCA(WAEVM) 54 3.7360 0.1344 0.1852
TMA(WAEVM) 55 3.7738 0.1317 0.1819
TCA(SPIES) 56 4.4572 0.1854 0.3120
TCA(SPIEVM) 57 4.6418 0.1875 0.2760
TMA(SPIES) 58 4.6660 0.2096 0.4112
TEMA(SPIES) 59 4.8546 0.2228 0.4460
SPIES 60 5.0237 0.2418 0.5618
TMA(SPIEVM) 61 5.0523 0.1985 0.3096
TCA(CRES) 62 5.1055 0.1981 0.3250
TEMA(SPIEVM) 63 5.1683 0.2078 0.3432
SPIEVM 64 5.3570 0.2274 0.4825
TMA(CRES) 65 5.4495 0.2306 0.4433
TCA(CREVM) 66 5.6056 0.2045 0.2937
TEMA(CRES) 67 5.7082 0.2480 0.4880
CRES 68 5.9111 0.2687 0.5940
TMA(CREVM) 69 5.9979 0.2232 0.3426
TEMA(CREVM) 70 6.2270 0.2371 0.3833
CREVM 71 6.2867 0.2589 0.5104

Table 5 presents, for each project, the cPFs that minimized the MAE and RMSE
scores, calculated across all the WP values. Concerning MAE, the progress-based PFs
best performed in 32 projects, the average-based PFs in 21, the standard PFs in 8, and the
combined PFs in 4 projects. Regarding RMSE, the progress-based PFs best performed in
34, the average-based PFs in 20, the standard PFs in 8, and the combined PFs in 3 projects.
In 48 projects, the best cPF was consistent across both MAE and RMSE, while it differed
in the remaining 17 projects.
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Table 5. Cost forecasts: best PFs by project.

Code
MAE RMSE

cPF Score cPF Score

C2011-10 TWAXP(CPI, ESs,−ESs) 0.0070 TWAXP(CPI, ESs,−ESs) 0.0110
C2011-12 TWAP(CPI, ESs) 0.0062 TWAP(CPI, ESs) 0.0079
C2011-13 TWAXP(CPI, ESs, ESs) 0.0282 SPIES 0.0449
C2012-13 TXP(SPIEVM,−WP) 0.0244 TXP(SPIEVM,−WP) 0.0277
C2012-17 TCA(WAEVM) 0.0432 TCA(WAEVM) 0.0542
C2013-01 TCA(SPIEVM) 0.1056 TCA(SPIEVM) 0.1309
C2013-02 TCA(CPI) 0.0122 TCA(CPI) 0.0154
C2013-03 TXP(SPIEVM, WP) 0.0376 TXP(SPIEVM, WP) 0.0439
C2013-04 WAES 0.0302 WAES 0.0414
C2013-06 TCA(CREVM) 0.0365 TCA(CREVM) 0.0420
C2013-07 1 0.0075 TWAXP(SPIEVM, WP,−WP) 0.0093
C2013-08 CRES 0.0902 CRES 0.0998
C2013-09 CPI 0.0418 CPI 0.0501
C2013-10 TMA(SPIES) 0.3850 TXP(CPI,−WP) 0.4033
C2013-11 TXP(CPI,−WP) 0.0051 TXP(CPI,−WP) 0.0078
C2013-12 TCA(CPI) 0.0170 TXP(SPIES, WP) 0.0230
C2013-13 TWAP(SPIES, WP) 0.0537 TWAP(SPIES, WP) 0.0646
C2013-14 CPI 0.0016 CPI 0.0026
C2013-15 TXP(SPIES, WP) 0.0120 TWAP(SPIES, WP) 0.0179
C2013-16 TXP(SPIEVM,−WP) 0.1359 TXP(SPIEVM,−WP) 0.1610
C2013-17 TWAP(SPIEVM, WP) 0.1211 TWAXP(SPIEVM, WP, WP) 0.1556
C2014-01 TCA(CREVM) 0.0251 TCA(CREVM) 0.0314
C2014-04 TEMA(WAEVM) 0.0178 TEMA(WAEVM) 0.0223
C2014-05 TWAXP(CPI, WP, WP) 0.0210 TWAP(CPI, WP) 0.0306
C2014-06 TWAXP(CPI, WP, WP) 0.0057 TWAP(CPI, ESs) 0.0088
C2014-07 TXP(SPIEVM, ESs) 0.0228 TXP(SPIEVM, ESs) 0.0308
C2014-08 SPIEVM 0.0162 SPIEVM 0.0197
C2015-01 TWAXP(CPI, WP,−WP) 0.0169 TWAXP(CPI, WP,−WP) 0.0212
C2015-02 TXP(SPIES,−WP) 0.0870 TXP(SPIES,−WP) 0.0936
C2015-03 TXP(SPIEVM,−ESs) 0.0204 TXP(SPIEVM,−ESs) 0.0239
C2015-04 TXP(SPIES,−WP) 0.0461 TWAXP(SPIES, WP,−WP) 0.0503
C2015-05 TWAP(SPIEVM, WP) 0.0034 TWAP(SPIEVM, WP) 0.0043
C2015-06 TEMA(SPIEVM) 0.0197 TEMA(SPIEVM) 0.0234
C2015-07 TCA(SPIEVM) 0.0651 TCA(SPIEVM) 0.0679
C2015-08 TCA(WAEVM) 0.0158 TWAXP(SPIES, WP,−WP) 0.0188
C2015-09 TCA(CRES) 0.0761 TCA(CRES) 0.1433
C2015-27 TXP(CPI,−WP) 0.0263 TWAXP(CPI, ESs,−ESs) 0.0372
C2015-29 CPI 0.0014 CPI 0.0024
C2015-30 TXP(CPI,−WP) 0.0025 TXP(CPI,−WP) 0.0031
C2015-31 TXP(CPI,−ESs) 0.0204 TXP(CPI,−ESs) 0.0207
C2015-32 TWAXP(SPIES, WP, ESs) 0.0129 TWAXP(SPIES, ESs, WP) 0.0161
C2015-33 TWAXP(SPIEVM, ESs,−ESs) 0.0306 TWAXP(SPIEVM, ESs,−ESs) 0.0372
C2015-34 TXP(SPIES,−WP) 0.0591 TXP(SPIES,−WP) 0.0689
C2015-35 TCA(SPIEVM) 0.0331 TCA(SPIEVM) 0.0391
C2016-01 1 0.0087 1 0.0194
C2016-02 TCA(WAEVM) 0.0048 TCA(WAEVM) 0.0056
C2016-03 TWAXP(SPIES, ESs,−ESs) 0.0117 TXP(SPIEVM,−ESs) 0.0133
C2016-07 CPI 0.0026 CPI 0.0027
C2016-11 TWAXP(SPIEVM, ESs, ESs) 0.0032 TWAXP(SPIEVM, ESs, ESs) 0.0044
C2016-12 TCA(WAES) 0.0042 TCA(WAES) 0.0047
C2016-13 TWAP(SPIES, WP) 0.0099 TWAP(SPIEVM, WP) 0.0125
C2016-14 TWAXP(CPI, WP,−WP) 0.0029 TWAXP(CPI, WP,−WP) 0.0044
C2016-15 TCA(WAEVM) 0.0140 TCA(WAEVM) 0.0159
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Table 5. Cont.

Code
MAE RMSE

cPF Score cPF Score

C2016-27 TWAP(SPIES, ESs) 0.0097 TCA(WAES) 0.0135
C2016-28 TCA(WAES) 0.0040 TCA(WAES) 0.0047
C2016-29 TCA(WAEVM) 0.0052 TCA(WAEVM) 0.0061
C2016-30 TCA(WAEVM) 0.0046 TCA(WAEVM) 0.0068
C2016-31 TXP(CPI, WP) 0.0029 TXP(CPI, WP) 0.0037
C2016-32 CPI 0.0020 CPI 0.0023
C2016-33 TCA(CPI) 0.0123 TCA(CPI) 0.0161
C2016-34 TWAP(CPI, ESs) 0.0134 TXP(CPI, ESs) 0.0185
C2019-01 WAES 0.0054 TEMA(WAEVM) 0.0070
C2019-02 TCA(CPI) 0.0076 TCA(CPI) 0.0100
C2019-03 WAEVM 0.0319 WAEVM 0.0523
C2019-04 TWAXP(CPI, ESs, WP) 0.0041 TWAXP(CPI, ESs, WP) 0.0048

Table 6 presents, for each project, the sPFs that minimized the MAE and RMSE
scores, calculated across all the WP values. Concerning MAE, the progress-based PFs
best performed in 40 projects, the average-based PFs in 17, the standard PFs in 4, and the
combined PFs in 4 projects. Regarding the RMSE, the progress-based PFs best performed
in 38 projects, the average-based PFs in 16, the combined PFs in 7 projects, and the standard
PFs in 4. In 41 projects, the best cPF was consistent across both MAE and RMSE, while it
differed in the remaining 24 projects.

Table 6. Duration forecasts: best PFs by project.

Code
MAE RMSE

sPF Score sPF Score

C2011-10 TXP(SPIES,−ESs) 0.0213 TXP(SPIES,−ESs) 0.0282
C2011-12 TXP(SPIEVM,−ESs) 0.0420 TXP(SPIES,−ESs) 0.0541
C2011-13 TWAXP(CPI, ESs, ESs) 0.0461 TCA(WAES) 0.0516
C2012-13 TXP(SPIEVM,−WP) 0.0975 TXP(SPIEVM,−WP) 0.1055
C2012-17 TCA(SPIEVM) 0.0400 CPI 0.0561
C2013-01 TXP(SPIES,−ESs) 0.0053 TXP(SPIES,−ESs) 0.0073
C2013-02 TMA(CPI) 0.0259 TWAXP(SPIES, WP,−WP) 0.0305
C2013-03 TXP(SPIEVM,−WP) 0.0304 TXP(SPIES,−WP) 0.0457
C2013-04 TCA(SPIEVM) 0.1851 TCA(SPIEVM) 0.2153
C2013-06 TXP(CPI,−ESs) 0.0505 TXP(CPI,−ESs) 0.0533
C2013-07 TXP(CPI,−ESs) 0.0271 TXP(CPI,−WP) 0.0367
C2013-08 TEMA(CRES) 0.1933 CREVM 0.2220
C2013-09 CPI 0.1999 CPI 0.2112
C2013-10 TXP(SPIES,−WP) 0.0553 TXP(SPIES,−WP) 0.0722
C2013-11 TCA(WAEVM) 0.0209 TCA(WAEVM) 0.0303
C2013-12 TEMA(CREVM) 0.2268 TEMA(CREVM) 0.2511
C2013-13 TWAXP(CPI, ESs, ESs) 0.0143 TWAXP(SPIES, ESs, ESs) 0.0166
C2013-14 TXP(SPIEVM,−ESs) 0.0830 TXP(SPIEVM,−ESs) 0.1002
C2013-15 TWAXP(SPIES, WP,−WP) 0.0204 TWAXP(SPIES, WP,−WP) 0.0214
C2013-16 TWAP(CPI, WP) 0.1590 TWAP(CPI, WP) 0.1622
C2013-17 TXP(CPI,−WP) 0.1109 TXP(CPI,−WP) 0.1324
C2014-01 TWAXP(SPIES, ESs,−WP) 0.0265 TWAXP(SPIES, WP,−WP) 0.0401
C2014-04 TMA(CREVM) 0.2320 TCA(CREVM) 0.2736
C2014-05 TWAXP(CPI, WP, WP) 0.0417 TXP(CPI, WP) 0.0516
C2014-06 CPI 0.0334 CPI 0.0380
C2014-07 TCA(WAES) 0.0296 TCA(CPI) 0.0347
C2014-08 TCA(CREVM) 0.0213 TCA(CREVM) 0.0265
C2015-01 WAEVM 0.0761 WAEVM 0.0957
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Table 6. Cont.

Code
MAE RMSE

sPF Score sPF Score

C2015-02 TXP(SPIES,−WP) 0.1338 TXP(SPIES,−WP) 0.1460
C2015-03 TWAXP(CPI, ESs,−ESs) 0.0396 TWAXP(CPI, WP,−WP) 0.0484
C2015-04 TXP(SPIES,−WP) 0.1073 TXP(SPIES,−WP) 0.1164
C2015-05 SPIES 0.1223 SPIES 0.1312
C2015-06 TXP(SPIEVM, WP) 0.0250 TXP(SPIEVM, WP) 0.0342
C2015-07 TCA(CPI) 0.0581 TMA(CPI) 0.0702
C2015-08 TXP(SPIES,−WP) 0.0070 TXP(SPIES,−WP) 0.0144
C2015-09 CPI 0.1053 WAES 0.1727
C2015-27 TCA(WAEVM) 0.0917 TCA(SPIEVM) 0.1088
C2015-29 TXP(SPIEVM,−WP) 0.0004 TXP(SPIEVM,−WP) 0.0011
C2015-30 TXP(SPIES,−WP) 0.0424 TXP(SPIES,−WP) 0.0527
C2015-31 TCA(CPI) 0.1217 TCA(CPI) 0.1561
C2015-32 TWAXP(SPIEVM, ESs,−ESs) 0.0280 TWAXP(SPIEVM, ESs,−ESs) 0.0358
C2015-33 CRES 0.1032 CRES 0.1223
C2015-34 TXP(CPI,−WP) 0.2000 TCA(WAEVM) 0.2436
C2015-35 TCA(SPIES) 0.0157 TCA(SPIES) 0.0217
C2016-01 TWAXP(SPIEVM, WP, ESs) 0.0453 TWAXP(SPIEVM, ESs, ESs) 0.0704
C2016-02 TWAXP(SPIES, ESs,−WP) 0.0496 TWAXP(SPIES, ESs,−WP) 0.0595
C2016-03 WAEVM 0.0588 WAEVM 0.0734
C2016-07 TCA(SPIES) 0.1212 TCA(SPIES) 0.1549
C2016-11 TXP(SPIES,−WP) 0.0218 TXP(SPIES,−WP) 0.0289
C2016-12 TXP(SPIES,−ESs) 0.0013 TXP(SPIES,−ESs) 0.0037
C2016-13 TCA(SPIEVM) 0.0636 TCA(CREVM) 0.0833
C2016-14 TXP(SPIEVM,−WP) 0.0054 TXP(SPIES,−ESs) 0.0104
C2016-15 TXP(SPIES,−WP) 0.0092 TXP(SPIES,−WP) 0.0219
C2016-27 TXP(SPIEVM, ESs) 0.1144 TXP(SPIEVM, ESs) 0.1250
C2016-28 TXP(SPIES,−WP) 0.0229 TXP(SPIES,−WP) 0.0490
C2016-29 TXP(SPIES,−WP) 0.0600 TXP(SPIES,−WP) 0.0771
C2016-30 TCA(CREVM) 0.0419 TCA(CREVM) 0.0572
C2016-31 TCA(SPIEVM) 0.1330 TCA(CREVM) 0.1487
C2016-32 TXP(SPIES,−WP) 0.0670 TXP(SPIES,−WP) 0.0819
C2016-33 TXP(SPIEVM, ESs) 0.0493 WAEVM 0.0655
C2016-34 TXP(SPIES,−WP) 0.0670 TXP(SPIES,−WP) 0.0886
C2019-01 CRES 0.1170 CREVM 0.1443
C2019-02 TXP(SPIES,−WP) 0.0138 TXP(SPIES,−WP) 0.0202
C2019-03 TXP(SPIEVM,−WP) 0.0337 TXP(SPIEVM,−WP) 0.0434
C2019-04 TXP(SPIES,−ESs) 0.1329 TXP(CPI,−ESs) 0.1861

Table 7 presents, for each WP, the cPFs that minimized the MAE and RMSE scores,
calculated across all projects. Concerning the MAE, the progress-based PFs best performed
in the .05 ≤ WP ≤ .65 interval, the combined PFs best performed in the .70 ≤ WP ≤ .90 in-
terval, and the CPI best performed at WP = .95. Regarding the RMSE, the progress-based
PFs best performed in all but WP = .95 interval, where the average-based PFs performed
best. In both the MAE and RMSE scores, the SPIEVM-based scores best performed in the
WP ≤ .40, while the CPI-based PFs best performed in the remaining.
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Table 7. Cost forecasts: best PFs by WP.

WP
MAE RMSE

cPF Score cPF Score

.05 TWAP(SPIES, WP) 0.1189 TWAXP(CPI, ESs, ESs) 0.1909

.10 TWAXP(SPIEVM, ESs, WP) 0.1328 TWAXP(SPIEVM, ESs, WP) 0.2085

.15 TWAXP(SPIEVM, ESs, WP) 0.1246 TWAXP(SPIEVM, ESs, WP) 0.1953

.20 TWAXP(SPIEVM, ESs, WP) 0.1184 TWAXP(SPIEVM, ESs, WP) 0.1948

.25 TWAXP(SPIEVM, ESs, WP) 0.1118 TWAXP(SPIEVM, ESs, WP) 0.1892

.30 TWAXP(SPIEVM, ESs, WP) 0.1002 TWAXP(SPIEVM, ESs, WP) 0.1816

.35 TWAXP(SPIEVM, ESs, WP) 0.0948 TWAXP(SPIEVM, ESs, WP) 0.1761

.40 TWAXP(SPIEVM, ESs, WP) 0.0898 TXP(CPI,−WP) 0.1663

.45 TWAXP(CPI, ESs, ESs) 0.0862 TXP(CPI,−WP) 0.1604

.50 TWAXP(CPI, ESs, ESs) 0.0811 TXP(CPI,−WP) 0.1564

.55 TWAXP(CPI, ESs, ESs) 0.0761 TXP(CPI,−WP) 0.1463

.60 TXP(CPI, ESs) 0.0716 TXP(CPI,−WP) 0.1437

.65 TWAXP(CPI, ESs, ESs) 0.0628 TXP(CPI,−WP) 0.1318

.70 WAEVM 0.0524 TXP(CPI,−WP) 0.1131

.75 WAEVM 0.0429 TWAXP(SPIEVM, WP, WP) 0.0975

.80 WAEVM 0.0358 TWAXP(SPIEVM, WP, WP) 0.0913

.85 WAEVM 0.0296 TXP(CPI,−WP) 0.0878

.90 WAEVM 0.0238 TXP(CPI,−WP) 0.0846

.95 CPI 0.0165 TMA(SPIEVM) 0.0642

Table 8 presents, for each WP, the sPFs that minimized the MAE and RMSE scores,
calculated across all projects. Concerning the MAE, the progress-based PFs best performed
across all phases. Regarding the RMSE, the progress-based PFs performed best in all but
.75 ≤ WP ≤ .85 stages, where the standard PF performed best. In both the MAE and
RMSE scores, the early phases (i.e., WP ≤ .35/.40) and the very last phases (WP > .90)
were dominated by SPIES-based scores, while starting from the mid phases (WP > .40/.45),
the CPI-based PFs dominated.

Table 8. Duration forecasts: best PFs by WP.

WP
MAE RMSE

sPF Score sPF Score

.05 TXP(SPIES, WP) 0.1762 TXP(SPIES, WP) 0.2429

.10 TWAXP(SPIES, ESs, WP) 0.1827 TXP(SPIES, WP) 0.2490

.15 TXP(SPIES, ESs) 0.1701 TXP(SPIES, WP) 0.2194

.20 TXP(SPIES, ESs) 0.1632 TXP(SPIES, ESs) 0.2068

.25 TXP(SPIES, ESs) 0.1607 TXP(SPIES, ESs) 0.1998

.30 TWAXP(SPIES, WP, WP) 0.1459 TXP(SPIES, ESs) 0.1853

.35 TWAXP(SPIES, WP, WP) 0.1329 TXP(SPIES, ESs) 0.1761

.40 TWAXP(SPIES, WP, WP) 0.1244 TXP(CPI, ESs) 0.1639

.45 TWAXP(CPI, ESs, ESs) 0.1260 TXP(CPI, ESs) 0.1685

.50 TXP(CPI, ESs) 0.1262 TXP(CPI, ESs) 0.1735

.55 TWAP(CPI, ESs) 0.1238 TXP(CPI, ESs) 0.1728

.60 TXP(CPI, ESs) 0.1258 TWAP(CPI, ESs) 0.1769

.65 TWAP(CPI, ESs) 0.1143 TWAP(CPI, ESs) 0.1541

.70 TWAP(CPI, WP) 0.1023 TWAP(CPI, WP) 0.1426

.75 TWAP(CPI, WP) 0.0971 CPI 0.1362

.80 TWAXP(CPI, WP, WP) 0.0946 CPI 0.1296

.85 TWAXP(CPI, WP, WP) 0.0896 CPI 0.1242

.90 TWAXP(SPIES, WP,−WP) 0.0808 TWAXP(SPIES, WP,−WP) 0.1139

.95 TWAXP(SPIES, WP,−WP) 0.0695 TXP(SPIES,−WP) 0.0927
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Figure 3 displays the functional boxplots of the forecasting errors of the cEAC models
implementing 1, CPI, and the best progress-based cPF from Table 3, i.e., TXP(CPI, WP).
Regarding the standard PFs, 1 exhibited a larger range between UB and LB but a smaller
IQR than the CPI in the early stages; the opposite occurred in the mid–late stages. On the
other hand, TXP(CPI, WP) performed the best among the three cPFs, showing narrower
bounds throughout all but the mid-stages, as shifting from the CPI to 1 made it still subject
to CPI outliers. Furthermore, TXP(CPI, WP)’s IQR was narrower than the 1 and CPI ones
throughout all the phases.
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Figure 3. Functional boxplots of cost forecasting models implementing standard PFs and the best-
performing progress-based PF.

Figure 4 displays the functional boxplots of the forecasting errors of the tEAC mod-
els implementing 1, SPIEVM, SPIES, and the best progress-based sPF from Table 4, i.e.,
TWAXP(CPI, ESs, WP). Regarding the standard PFs, 1 performed best across all stages.
Using SPIEVM as the sPF in Equation (8) instead of Equation (4) provided more accu-
rate and precise results, yet fell behind other sPFs in performance. On the other hand,
TWAXP(CPI, ESs, WP) performed the best, showing slightly narrower bounds and IQR
throughout all the project phases.
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Figure 4. Functional boxplots of duration forecasting models implementing standard PFs and the
best-performing progress-based PF.

5. Discussion

From a theoretical perspective, this study revealed multiple aspects. First, the progress-
based PFs provided more accurate, precise, robust, and timely forecasts than the standard,
combined, and average-based PFs for the dataset under analysis. The differences in the
individual criteria were limited, especially when evaluated using scores calculated at
the dataset level. However, when analyzed in aggregate and at the individual-project
or physical-progress level, the differences in performance between progress-based and
other PFs were more appreciable. Furthermore, even the slightest improvements could
be crucial to project success in projects with hard budget or time constraints. This study
also revealed that, in certain cases, the most effective cost-performance forecasting model
(cPF) incorporated either SPIEVM or SPIES, while the most effective schedule-performance
forecasting model (sPF) incorporated CPI. This could be due to two reasons. On the one
hand, it is possible that cost performance was heavily influenced by schedule performance
or vice versa. Alternatively, it may be that one of the indices exhibited greater stability,
mitigating outliers in forecasting. This study also confirmed that the progress-based PFs
consistently outperformed the other approaches. However, no progress-based PF or PI
(either physical or temporal) emerged as the clear winner. Therefore, it is recommended to
consider forecasts from multiple PFs rather than relying solely on one.

From a practical perspective, this study provides guidance in developing progress-
based PFs to change how estimates are evaluated during project execution without switch-
ing methods. Then, the study proposes a set of PFs developed following these principles,
relying only on EVM and ES variables. While a particular PF may exhibit superior per-
formance compared to others or even appear to be entirely disconnected from the project
dynamics, its estimates should still be considered, complementing those derived from more
suitable PFs or expert judgment.

The method adopted by the study has several limitations, all of which refer to
Equation (20). First, the proposed progress-based PFs were developed using only CPI,
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SPIEVM, and SPIES. Second, the evaluation of xPF′ was limited to ±PIx. Third, the weights
[1 − Pw(t)] and Pw(t) that multiply 1 and xPF′, respectively, could be reversed, just as 1
could be substituted. Lastly, no project critical phase was identified, as all progress stages
(both in terms of physical progress and time progress) were accounted for in the same way.
All these limitations were deliberately adopted to avoid further complicating the construc-
tion of the progress-based PFs. Future research may address all directions unexplored by
the current study.

6. Conclusions

In project management, accurate and precise estimates are essential for making in-
formed decisions regarding control actions and their scope. However, due to the inherent
uncertainty in project activities, implementing the sophisticated estimation methods pro-
posed in the literature is often impractical for practitioners. This study aimed to address
this challenge by proposing a method that aligns with standard project-management prac-
tices while enhancing the reliability of estimates. Practitioners should readily adopt the
proposed method and seamlessly integrate it with existing processes, ensuring its practical
applicability and real-world impact.

The proposed method leverages the standard EVM and ES formulae to estimate project
completion cost and duration. However, it introduces projection factors that account for
physical project progress, temporal progress, or both. Progress is represented as an indicator
that, through weighting or exponentiation, allows the PF to be adjusted from a conservative
to a neutral value, effectively modifying the assumption underlying the remaining cost or
duration calculation.

The study tested 71 PFs on 65 real projects for cost and duration-to-completion forecast-
ing for 1235 total observations, each corresponding to a discrete advancement of physical
progress. The results, analyzed across the board, at the individual-project level and the
individual-percentage-of-physical-progress level, show that progress-based PFs can provide
more accurate, precise, and timely forecasts. The most significant improvement was perceived
in precision, followed by timeliness, and then by accuracy. In contrast to the sophisticated
methods predicted in the literature, although the performance improvement over standard
methodologies was limited, the proposed PFs were absolutely straightforward as they were
based entirely on the same metrics predicted by the standard methodologies.

This study faced the limitation of using only EVM and ES metrics in the construction
of the progress-based PFs. While these metrics provide valuable insights into project
performance, they may not capture the full spectrum of factors that influence project
progress and potential deviations from the original plan. Future research could explore
the inclusion of additional variables, such as the project’s complexity, the experience of
the project team, and external market conditions, to enhance the predictive power of the
proposed method. Another limitation lies in the dependence on the project dataset used.
Future studies could broaden the sample of projects analyzed.
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Abbreviations
The following abbreviations are used in this manuscript:

A Area
AC Actual Cost
AD Actual Duration
AI Artificial Intelligence
BAC Budget at Completion
CA Cumulative Average
cEAC Cost Estimate at Completion
cETC Cost Estimate To Complete
cPF Cost Performance Factor
CPI Cost Performance Index
CR Critical Ratio
CV Cost Variance
E Forecast Error
EAC Estimate at Completion
EMA Exponential Moving Average
ES Earned Schedule (Methodology)
ES Earned Schedule (Metric)
EV Earned Value
EVM Earned-Value Management
IQR Interquartile Range
LB Lower Bound
MA Moving Average
MAE Mean Absolute Error
PD Planned Duration
PF Performance Factor
PI Performance Indicator
PMB Performance Measurement Baseline
PV Planned Value
Q1 First Quartile
Q2 Second Quartile (or Median)
Q3 Third Quartile
RMSE Root Mean Square Error
sPF Schedule Performance Factor
SPI Schedule Performance Index
SV Schedule Variance
t Time Index
tEAC Time Estimate at Completion
tETC Time Estimate To Complete
UB Upper Bound
WA Weighted Average
WP Work Performed
WS Work Scheduled
y Target Variable Real Value
ŷ Target Variable Forecast
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