
01 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development of Bleeding Artificial Intelligence Detector (BLAIR) System for Robotic Radical Prostatectomy / Checcucci,
Enrico; Piazzolla, Pietro; Marullo, Giorgia; Innocente, Chiara; Salerno, Federico; Ulrich, Luca; Moos, Sandro; Quarà,
Alberto; Volpi, Gabriele; Amparore, Daniele; Piramide, Federico; Turcan, Alexandru; Garzena, Valentina; Garino, Davide;
De Cillis, Sabrina; Sica, Michele; Verri, Paolo; Piana, Alberto; Castellino, Lorenzo; Alba, Stefano; Di Dio, Michele; Fiori,
Cristian; Alladio, Eugenio; Vezzetti, Enrico; Porpiglia, Francesco. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN
2077-0383. - 12:23(2023). [10.3390/jcm12237355]

Original

Development of Bleeding Artificial Intelligence Detector (BLAIR) System for Robotic Radical
Prostatectomy

Publisher:

Published
DOI:10.3390/jcm12237355

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987383 since: 2024-03-28T13:22:17Z

MDPI



Citation: Checcucci, E.; Piazzolla, P.;

Marullo, G.; Innocente, C.; Salerno, F.;

Ulrich, L.; Moos, S.; Quarà, A.; Volpi,

G.; Amparore, D.; et al. Development

of Bleeding Artificial Intelligence

Detector (BLAIR) System for Robotic

Radical Prostatectomy. J. Clin. Med.

2023, 12, 7355. https://doi.org/

10.3390/jcm12237355

Academic Editors: Richard Naspro

and David T. Miyamoto

Received: 9 October 2023

Revised: 17 November 2023

Accepted: 25 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Development of Bleeding Artificial Intelligence Detector
(BLAIR) System for Robotic Radical Prostatectomy
Enrico Checcucci 1,* , Pietro Piazzolla 2 , Giorgia Marullo 3 , Chiara Innocente 3 , Federico Salerno 3,
Luca Ulrich 3 , Sandro Moos 3 , Alberto Quarà 4, Gabriele Volpi 1, Daniele Amparore 4 , Federico Piramide 4,
Alexandru Turcan 4, Valentina Garzena 4, Davide Garino 4 , Sabrina De Cillis 4, Michele Sica 4 , Paolo Verri 4 ,
Alberto Piana 5 , Lorenzo Castellino 6,7 , Stefano Alba 5, Michele Di Dio 8 , Cristian Fiori 4, Eugenio Alladio 6,7,
Enrico Vezzetti 3 and Francesco Porpiglia 4

1 Department of Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy; volpi_gabriele@yahoo.it
2 Department of Mechanical Engineering, Politecnico di Milano, 20156 Milano, Italy; pietro.piazzolla@polimi.it
3 Department of Management, Production, and Design Engineering, Polytechnic University of Turin,

10129 Turin, Italy; giorgia.marullo@polito.it (G.M.); chiara.innocente@polito.it (C.I.);
federico.salerno@polito.it (F.S.); luca.ulrich@polito.it (L.U.); sandro.moos@polito.it (S.M.);
enrico.vezzetti@polito.it (E.V.)

4 Department of Oncology, Division of Urology, University of Turin, San Luigi Gonzaga Hospital,
10043 Orbassano, Italy; quara.alberto@gmail.com (A.Q.); danieleamparore@hotmail.it (D.A.);
federico.piramide@gmail.com (F.P.); alexandru.turcan@edu.unito.it (A.T.); valentina.garzena@unito.it (V.G.);
davide.garino@unito.it (D.G.); sabrinatitti.decillis@gmail.com (S.D.C.); michele.sica1991@gmail.com (M.S.);
paoloverri05@gmail.com (P.V.); cristian_fiori@icloud.com (C.F.); porpiglia@libero.it (F.P.)

5 Romolo Hospital, Rocca di Neto (KR), 88821 Rocca di Neto, Italy; alb.piana@gmail.com (A.P.);
stefanoalba78@gmail.com (S.A.)

6 Department of Chemistry, University of Turin, 10124 Torino, Italy; lorenzo.castellino@unito.it (L.C.);
eugenio.alladio@unito.it (E.A.)

7 Antidoping Center “A. Bertinaria”, 10060 Turin, Italy
8 Division of Urology, Department of Surgery, SS Annunziata Hospital, 87100 Cosenza, Italy;

micheledidio@yahoo.it
* Correspondence: checcu.e@hotmail.it

Abstract: Background: Addressing intraoperative bleeding remains a significant challenge in the
field of robotic surgery. This research endeavors to pioneer a groundbreaking solution utilizing
convolutional neural networks (CNNs). The objective is to establish a system capable of forecast-
ing instances of intraoperative bleeding during robot-assisted radical prostatectomy (RARP) and
promptly notify the surgeon about bleeding risks. Methods: To achieve this, a multi-task learning
(MTL) CNN was introduced, leveraging a modified version of the U-Net architecture. The aim
was to categorize video input as either “absence of blood accumulation” (0) or “presence of blood
accumulation” (1). To facilitate seamless interaction with the neural networks, the Bleeding Artificial
Intelligence-based Detector (BLAIR) software was created using the Python Keras API and built
upon the PyQT framework. A subsequent clinical assessment of BLAIR’s efficacy was performed,
comparing its bleeding identification performance against that of a urologist. Various perioperative
variables were also gathered. For optimal MTL-CNN training parameterization, a multi-task loss
function was adopted to enhance the accuracy of event detection by taking advantage of surgical
tools’ semantic segmentation. Additionally, the Multiple Correspondence Analysis (MCA) approach
was employed to assess software performance. Results: The MTL-CNN demonstrated a remarkable
event recognition accuracy of 90.63%. When evaluating BLAIR’s predictive ability and its capacity to
pre-warn surgeons of potential bleeding incidents, the density plot highlighted a striking similarity
between BLAIR and human assessments. In fact, BLAIR exhibited a faster response. Notably, the
MCA analysis revealed no discernible distinction between the software and human performance in
accurately identifying instances of bleeding. Conclusion: The BLAIR software proved its competence
by achieving over 90% accuracy in predicting bleeding events during RARP. This accomplishment
underscores the potential of AI to assist surgeons during interventions. This study exemplifies the
positive impact AI applications can have on surgical procedures.
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1. Introduction

Prostate cancer (PCa) is the first urological malignancy in men, and among the local
treatment options, radical prostatectomy still remains the preferred one. In the last decades,
the advent of robotics has led to a groundbreaking shift from open or laparoscopic surgery
to robot-assisted radical prostatectomy (RARP), thanks to the well-denoted advantages for
the surgeons and potential benefits for the patients [1]. This increasing number of RARPs
around the world is related to an even higher number of young surgeons who are faced
with this surgical approach; however, as recently reported, 33% of neo-urologists in the
US are not able to perform robotic procedures at the end of their residency, and it could
potentially lead to the occurrence of future intraoperative adverse events [2]. With the
introduction of a standardized surgical training program [3,4], the field has witnessed the
emergence of new technologies as significant contributors.

Recently, Artificial Intelligence systems were introduced in surgical scenarios with the
aim of estimating surgical outcomes. The analysis of large amounts of patients’ information
can permit the creation of algorithms that are able to predict surgical outcomes, especially
in robotics.

One of the major challenges in laparoscopic/robotic surgery is dealing with intraoper-
ative bleeding, which accounts for 23% of all adverse events. Recent efforts have focused
on expediting the identification of bleeding during endoscopic procedures. Techniques
utilizing RGB space parameters [5] or employing color features to categorize pixels as
“blood” or “non-blood” have been explored. These methods leverage machine learning,
specifically the Support Vector Machine (SVM), to process and classify information [6]. In
the realm of deep learning, convolutional neural networks (CNNs) have proven to be a
suitable option for automatically extracting features [7] and detecting adverse events [8].
CNNs have been employed to segment bleeding sources and present them to surgeons,
classify images as bleeding or non-bleeding, and locate, recognize, and track bleeding
points in real-time [9]. In this sense, multi-task learning (MTL) is a promising strategy
within the realm of neural networks. Indeed, MTL allows for efficient simultaneous learn-
ing of multiple tasks, resembling the learning process of humans [10]. This is an I.D.E.A.L.
(Idea, Development, Exploration, Assessment, Long-term) study 0-1. The research ques-
tion is to develop an AI system able to predict the occurrence of intraoperative bleeding
during robot-assisted radical prostatectomy (RARP) and alert the surgeon about the risk
of bleeding. Our hypothesis is that our novel system, based on MTL-CNNs, can achieve
this result.

2. Materials and Methods

Herein, we present a study with a preclinical stage (I.D.E.A.L. 0) dealing with the
evaluation of our specifically developed software in a training phase. Then, our proof of
concept was tested on human pre-recorded videos (I.D.E.A.L. 1), demonstrating how it
works in a real-time video streaming setting.

2.1. MTL-CNN Development

Aiming to identify the principal actor in the action that strengthens and recognizes
the action itself [11,12], an MTL-CNN [13], as an architecture that can simultaneously learn
many tasks, was introduced in the current study. More specifically, the model could jointly
execute semantic segmentation and event detection, namely bleeding recognition, during
laparoscopic/robotic surgery. A new architecture was put into place with a dataset that
had been correctly manually classified to achieve this goal. The architecture comprised a
global feature extractor made up of convolutional layers shared by all tasks, followed by
a separate branch for each output [14]. Each weight is trained to minimize multiple loss



J. Clin. Med. 2023, 12, 7355 3 of 12

functions simultaneously due to the pooling of the weights for various tasks. The U-Net
architecture [15] has been modified to create the MTL-CNN architecture, which is shown in
Figure 1. The U-Net is a model that is frequently used in the literature because of the way
it is built, which enables detailed analysis of medical data. All tasks share the contracting
path (left side), which represents global feature extraction. In contrast to U-Net’s initial
architecture, the bottleneck of the feature extractor results in two independent output
branches, each of which handles a different task. Semantic segmentation is carried out
via the first branch (right–top side), which is adapted from the expanded path of U-Net.
The second branch, coupled with the encoder output as well, approaches event detection
as a classification problem using the U-Net encoder as its starting point. Two classes
might show up in the output in this case: 0 for “no blood accumulation” and 1 for “blood
accumulation.”
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Figure 1. Architecture of the employed CNN. Multi-channel feature maps are represented by each
box. The box top displays the number of channels, while its lower left border displays the x-y
dimensions. The backbone is represented by blue boxes, the first branch for semantic segmentation is
shown by green boxes, copied feature maps are indicated by gray boxes, and the second branch for
event detection is indicated by purple boxes. The various operations are shown by the arrows.

2.2. BLeeding Artificial Intelligence DetectoR (BLAIR) Software Implementation

In this section, we present in detail the software application that leverages the neural
network described in [11], called “Core NN,” in the following and is used for the clinical
validation focus of this paper. The BLeeding Artificial Intelligence-based DetectoR, or
BLAIR for short, has been developed in Python for rapid interfacing with the neural
networks through the Keras API. From an architectural perspective, BLAIR exploits PyQT
queues and treads to handle multiple tasks simultaneously. In particular, BLAIR receives
as input the video stream from the DaVinci robot, as recorded or during a live surgical
procedure, feeds the video frames to the Core NN, and provides the final user with insights
concerning the likelihood that bleeding is about to occur in the next few instants based
on the Core NN output. We base this approach on the Core NN validation tests that
can be found in the same [11] paper. Since keeping track of surgical tool movement was
not essential for the application’s main goal, we narrowed our attention for this purpose
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to the branch of the MTL-CNN that performs event detection. Therefore, the semantic
segmentation branch was employed to enhance bleeding recognition performance during
convolutional neural network internal calculation.

The BLAIR interface is very straightforward, as can be seen from Figure 2a. Its main
window shows the endoscope frame that has been fed to the Core NN, along with a warning
bar whose color and height change accordingly, with a higher probability of imminent
bleeding. The purpose of the bar is to be easily visible to the surgeon during the procedure
when the BLAIR interface is shown through the TilePro feature of the DaVinci console.
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Figure 2. The BLAIR application interface. (a) No bleeding prediction by the Core NN. When
repeated prediction with a small confidence percentage occurs in a time frame, the alert level in the
left bar increases (b) up to the point when the bleeding event occurs, as it can be seen in the dotted
circle (c). The gravity of the event does not change substantially the alert level (d).

Since the signal of the Core NN output is highly perturbed, the main innovative
contribution of this paper with respect to [11] is the results obtained with the application of
a low-pass filter (LPF) to reduce this signal noise and have a stabler output. When using
an LPF, only signals below a defined cutoff frequency are allowed to pass it, while signals
above the cutoff are attenuated. We used a Butterworth filter with a cutoff frequency of
5 Hz, which created a 20 ms delay that we considered acceptable in this application.

During the development and testing stages of the BLAIR application, we noticed that
the Core NN output signal filtered with our custom-designed LPF in case of repeated
detected possible bleeding occurrences, even if with a small confidence percentage but
repeating over the course of a time frame of approximately 2100–2300 ms (Figure 2b), tends
to precede a more noticeable bleeding event (Figure 2c). This feature has been integrated
into the application design so that the filtered output signal can be used to alert the surgeon
to an approaching bleeding event in a way that can be thought of as analogous to the
functioning of a parking sensor for cars.

The BLAIR application is currently unable to distinguish the gravity of the bleeding;
thus, a small or more significant event is detected with the same warning level (compare
Figure 2c and Figure 2d). In future improvements, this limitation will be addressed, as
will the introduction of precise information about the location of the organ of the probable
bleeding event.

2.3. Clinical Evaluation of BLAIR Software Performances

With the aim of evaluating the real-time clinical performances of our specifically
developed BLAIR software, the pre-recorded videos of 10 patients who underwent robot-
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assisted radical prostatectomy (RARP) plus extended lymph adenectomy at our center in
2023 were extracted. All the videos were reviewed by a dedicated urologist (A.Q.). At first,
all videos were watched on standard video player software; every occurrence of bleeding
was recorded on a dedicated database with its specific time of appearance.

Then, all the videos were launched on the BLAIR application, and again, we noted
every bleeding occurrence. Significant bleeding on BLAIR software was defined with a
threshold between 93 and 95%, according to our previously published experience [16].

The occurrence of the bleeding was registered in a dichotomic fashion (0: no bleeding;
1: bleeding).

2.4. Data Collection and Statistical Analysis

Preoperative and perioperative data were collected, especially in terms of estimated
blood losses (EBL) and intraoperative complications.

The concordance of the identification of bleeding events between humans and AI,
named “outcomes,” was registered; furthermore, the timing of the occurrence was noted.

Regarding the MTL-CNN training parameter optimization, a multi-task loss
was adopted:

loss = seg_loss + cls_loss

where seg_lossis is a binary cross-entropy loss function and cls_loss is a cross-entropy
loss function.

The following formula was used to determine the event detection branch accuracy:

Classification Accuracy = (#correct_predictions)/(#samples)

where #correct_predictions is the number of images that have been correctly classified, and
#samples is the total number of test images.

Furthermore, to evaluate software performance, we applied the Multiple Correspon-
dence Analysis (MCA) approach, which first provides a plot that helps identify variables
that are most correlated with each dimension computed by MCA modeling. The squared
correlations between variables and the dimensions are used as coordinates. MCA is a di-
mensionality reduction technique used for the exploration and visualization of categorical
data. It is an extension of Correspondence Analysis (CA) designed to handle datasets with
multiple categorical variables. MCA transforms the original high-dimensional categorical
data into a lower-dimensional space, where relationships between categories and variables
are preserved [17]. The technique identifies underlying patterns, associations, and depen-
dencies among categorical variables, aiding in the interpretation and understanding of
complex datasets. MCA is particularly useful when dealing with large contingency tables
and complex categorical dataset structures commonly encountered in the social sciences,
marketing, and survey data analysis. By providing a simplified representation of the data,
MCA facilitates data exploration and visualization, enabling researchers to gain valuable
insights and make informed decisions based on the patterns and relationships discovered
within the categorical dataset. In this context, MCA was employed for exploratory purposes
to evaluate whether the occurrence of true positive, false negative, and false positive results
was significant when using AI or not.

3. Results
3.1. MTL-CNN Training Phase Findings

The findings of the MTL-CNN’s training phase are reported in this section.
Both images and videos were used to evaluate the multi-task CNN. Figure 3a,b

demonstrates the trend of the training loss and event detection accuracy for each epoch.
The final model was then chosen for epoch 30, which was determined by experimental tests
on images and videos to be the best tradeoff between the two branches of the network.
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Figure 3. Training and validation metrics are trends. Training loss (a) and validation accuracy for the
event detection branch (b).

Regarding the image tests, the MTL-CNN was able to recognize events with an
accuracy of 90.63% without the use of any pre- or postprocessing techniques. Additionally,
the accuracy for each class was reported, yielding accuracy for the classes “no blood
accumulation” and “blood accumulation” of 86.67% and 94.12%, respectively.

3.2. Clinical Evaluation of BLAIR Software Performances

Clinical perioperative variables of the 10 patients whose videos have been reviewed
are reported in Table 1, and an example of data recording for software evaluation is shown
in Figure 4.

Table 1. Patients perioperative characteristics (BMI: body max index; EBL: estimated blood losses;
GS: Gleason Score).

Patient
ID

Age at Time of
Surgery BMI LND Operative

Time EBL Nerve
Sparing

Pathological
GS pT Prostate

Volume

#1 69 27 YES 119 350 Full 3 + 4 pT3a 30
#2 67 33 YES 124 400 NO 4 + 5 pT3a 38
#3 71 31 YES 127 500 NO 3 + 4 pT2c 55
#4 71 27 YES 134 300 Partial 3 + 4 pT2c 118
#5 75 29 YES 128 400 NO 4 + 4 pT3a 32
#6 52 24 YES 149 400 Full 3 + 4 pT3a 15
#7 65 24 YES 114 300 Partial 3 + 4 pT2c 68
#8 69 23 YES 175 500 NO 4 + 5 pT3b 35
#9 62 27 YES 132 350 Partial 4 + 3 pT2c 38

#10 70 28 YES 135 400 Partial 3 + 4 pT2c 59

The BLAIR software can predict and alert the surgeon to a potential bleeding oc-
currence in advance, as shown in the density plot of the delta time (BLAIR vs. human)
(Figure 5a). In terms of seconds, the majority of data points are clustered around zero,
which means that the Blair and human measurements are typically very similar. However,
there is a small tail of data points that extends to the right, which means that there are some
cases where the BLAIR and human measurements are significantly different. In particular,
the BLAIR approach is faster than the human approach since the delta time parameter is
computed by subtracting the clinical (human) detection time from the BLAIR detection
time. In particular, the BLAIR software is able to predict the bleeding 3 (IQR: 2) seconds
in advance.
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Figure 4. Examples of BLAIR software performance evaluations. (a) The software correctly predicts
the bleeding (true positive); (b) the software wrongly predicts a bleeding that did not occur (false
positive); (c) the software fails to predict a bleeding (false negative).

Then, to evaluate the BLAIR’s ability to identify bleeding with respect to the “gold
standard” of human evaluation, the MCA approach was applied, and a plot of the MCA
dimension was performed (Figure 5b). The variable “outcome” (concordance between
humans and AI in bleeding detection) has very poor significance. This result might suggest
that there is no significant difference between the outcomes provided by BLAIR and clinical
(human) detection of bleeding.

A similar result can be observed in the plot of the individuals provided by the MCA
model (Figure 5c). This plot shows that each individual provides its own behavior and
that the different patients can be clustered into different groups according to the values
of all the categorical features, with the exception of the “outcome” variable. This result
might suggest, once again, that no evidence is observed in differentiating the performance
of BLAIR and clinical (human) in identifying bleeding conditions.
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Figure 5. Clinical evaluation of BLAIR software performance. (a) Density plot of the delta time
(BLAIR vs. human) in terms of seconds. The x-axis represents the difference in time between the
BLAIR and clinical (human) measurements, and the y-axis represents the density of data points in that
range. It reports a histogram of the collected data, together with a KDE (Kernel Density Estimation)
plot, i.e., a smoothed representation of the data’s probability density function. (b) Plot of the MCA
dimension. (c) Plot of the MCA dimensions in terms of the individuals under analysis.

4. Discussion

Herein, we present a groundbreaking application of AI through specially developed
software named BLAIR. This software has the remarkable ability to predict bleeding
occurrences during robotic prostatectomy procedures and promptly alert the surgeon.

Our research followed the direction indicated by Rassweiler’s work in 2017 [18], which
highlighted the potential of AI in surgery to significantly reduce the death rate associated
with complications arising from surgical surroundings, instruments, and procedures.

Indeed, the incorporation of AI in surgery offers substantial advantages over tra-
ditional conventional methods [19]. It leads to faster patient recovery times, successful
treatment, reduced pain, less bleeding, and a lower risk of infection. Additionally, AI
in medicine empowers surgeons with unprecedented control and precision in minimally
invasive procedures [20].

Preliminary experiences with AI in robotic surgery have already been presented,
including the adoption of CNN for segmenting lung, bladder, and breast cancer types
from imaging, as well as navigation assistance in endoscopic pancreatic and biliary proce-
dures [21].
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For intra-operative guidance, AI has proven invaluable by providing enhanced vi-
sualization and localization during surgery. For instance, 3D prostate shapes have been
generated from multiple 2D ultrasound images [22], and a similar approach has been
applied to create 3D shapes of abdominal aortic aneurysms using two 2D fluoroscopic
images [23]. Furthermore, depth estimation using camera motion and 3D structural en-
vironment mapping have been successfully integrated with AI algorithms. Finally, AI
technology was integrated with 3D augmented reality (AR) image-guided surgery, al-
lowing for automatic overlapping of the images in a specific phase of the intervention
and guiding selective biopsies intraoperatively [24]. In the future, automatic overlapping
during the entire procedure can be achieved.

More recently, supervised ML systems have been employed to analyze surgical video
streams for instrument detection, segmentation, and pose estimation [25].

De Backer et al. [26] developed an advanced algorithm using deep learning networks
to detect robotic instruments in surgery. Trained on a dataset of 65,927 labeled instruments
across 15,100 frames, the algorithm achieves real-time instrument delineation through
binary segmentation. The researchers integrated their application with 3D models and
augmented reality (AR) images, connecting it to a dedicated laptop that combines AR video
with real-time instrument detection data. This creates an AR video displaying instrument
detection information on the robotic console via an Intuitive TilePro input.

Marullo et al. [13] introduced a multi-task CNN, an architecture able to simultaneously
learn multiple tasks. In the case study under consideration, the model was able to perform
simultaneous tool detection using semantic segmentation and event detection, specifically
bleeding identification, during laparoscopic surgery. The majority of the time, indeed, active
bleeding starts when one of the instruments closes or comes into contact with anatomical
tissues like the prostate. On the other hand, when the suction device begins to remove the
blood from the surgical field, there is a decrease in accumulated bleeding. It was interesting
that the network correctly identified the decrease in blood accumulation in the operating
scene during the test on the videos, as the percentage fell while the laparoscopic aspirator
was eliminating the blood accumulation. The fact that the features recovered from the
shared backbone for tool segmentation also proved valuable for event detection suggests
that the tasks to be solved simultaneously were chosen appropriately.

In the current days, where more and more young doctors have access to robotics [27],
and parallelly, the topic of identification of intraoperative adverse events (iAE) has gained
new awareness [28], the adoption of new technologies, such as AI, for intraoperative
bleeding detection perfectly fits this scenario. Furthermore, AI-based systems like the
proposed one can be applied during surgical training to improve both the surgeon’s
performance and the patient’s safety.

Considering its intrinsic exploratory nature, our study is not devoid of limitations.
From a technical standpoint, future studies will concentrate on two factors in order to

overcome current limitations. On the one hand, the network’s design needs to be expanded
to take into account the temporal information of data gleaned from a series of images within
a video instead of considering videos as independent frame-by-frame sequences of data,
aiming to increase the accuracy and dependability of the event detection branch. In order to
implement a neural network architecture taking into account the temporal pattern in data
sequences, a different data source should be provided, namely videos instead of images.
This shift may lead to issues in terms of computational power, which is much higher when
dealing with video sequences. Nonetheless, there are several benefits to using temporal
information; in fact, it allows physicians to better track the bleeding, identify its source,
and distinguish between active and passive bleeding. Moreover, temporal information may
further improve robustness by integrating data representing unexpected changes in the
surgical field into the training dataset.

Additionally, in order to improve prediction, the semantic segmentation task should
distinguish between different tools, increasing the number of classes identified by the net-
work, and the bleeding source should be localized to expand its potential clinical benefits
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when the human eye is unable to detect bleeding immediately. This could be achieved by
adding a new branch to the proposed architecture, leveraging on the potentialities of the
multi-task learning approach, which allows for simultaneous performance of different clas-
sifications, or integrating the semantic segmentation task with blood tracking functionality,
blending the information related to the blood accumulation and the identification of the
involved region of interest [29] for a full comprehension of the critical event. Moreover,
the number of classes could also be increased to better describe the bleeding event, which
could be spontaneous or non-spontaneous. In particular, it will be necessary to increase the
number of classes from 2 (blood accumulation/no blood accumulation) to 3 (spontaneous
bleeding/non-spontaneous bleeding/no bleeding). To this end, the labeling of the images
should be further refined to locate other features, including the tip of the cutting instrument
and any other regions of interest (e.g., bleeding source).

On the other hand, a dataset with more samples and increased variation might help
to enhance prediction accuracy by providing the model with different kinds of data, for
instance, RGB and depth videos, following a multimodal approach. In fact, neural networks
can generalize the classification performance of a given task to datasets different from those
used for training. The training must be performed on sufficiently heterogeneous and
variable datasets to allow the neural network to discern between the different anatomical
structures displayed within the frames and to perform the event detection phase in a
punctual and patient-specific manner, also in relation to anatomical variations among
patients. Moreover, generalization is core to handling different boundary conditions, which
are not uncommon when dealing with different datasets. Concerning lighting, differences
between frames are managed by implementing a preprocessing step involving histogram
equalization to enhance image contrast.

From a technological perspective, the adoption of a 3D camera, namely a camera capa-
ble of detecting depth, could provide a different source of information and, consequently,
allow us to adopt a multimodal approach. In this sense, stereoscopy (passive or active)
can provide state-of-the-art results in terms of resolution; nonetheless, the presence of two
different points of view could be challenging. For this reason, different 3D acquisition
technologies could be considered, such as structured light and time-of-flight, which allow
positioning the RGB and the depth sensor very close to each other (ideally in the same
exact position), diminishing the probability of occlusions and making the overall size of
the acquisition system smaller and more easily placeable in the surgical field.

From a clinical perspective, our BLAIR system was developed based on videos of
surgeries performed by experienced surgeons. Consequently, the recorded bleeding events
may appear less severe compared to those occurring during surgeries performed by novice
surgeons. Additionally, in the event of an unforeseen and abrupt bleeding occurrence
that has not been previously recorded by the software, it may encounter challenges in
recognizing and responding to it appropriately.

Finally, we would like to underscore the significance of ethical considerations, which
are fundamental when AI is employed in healthcare. As of now, this system is not intended
to replace the surgeon but has been developed solely as an assistant. Therefore, in the
event of software failure, the surgeon retains accountability for the surgical outcomes.
In the subsequent phases of software development, these aspects will also be addressed,
encompassing not only responsibility but also transparency and an explanation of BLAIR’s
decisions.

In the future, the same technology could be used for the identification and recognition
of some crucial steps of the intervention, guiding the surgeon during the incision maneuvers.
Furthermore, this system should be tested by young surgeons with the aim of verifying the
real clinical benefit of the BLAIR software application: the possibility to predict and alert
the surgeon of a risk of bleeding can effectively lead to a reduced EBL after the intervention,
improving patient safety.
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Moreover, this AI-based software, which is able to recognize the different elements
in the operative field, will represent the basis for future image-guided augmented reality
surgery by using 3D models of the patient’s anatomy.

5. Conclusions

Our BLAIR software was able to correctly predict the bleeding occurrence during
RARP with more than 90% accuracy. This experience represents how the application of AI
can potentially assist the surgeon during the intervention. In the current technology-driven
surgery era, AI will be a fundamental player in improving the safety of the intervention,
especially at the beginning of the learning curve.
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