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Abstract
For some special window functions 𝜓𝛼 ∈ 𝐻2(ℂ+), we
prove that, over all sets Δ ⊂ ℂ+ of fixed hyperbolic mea-
sure 𝜈(Δ), those for which the Wavelet transform 𝑊𝜓𝛼

with window 𝜓𝛼 concentrates optimally are exactly the
discs with respect to the pseudo-hyperbolic metric of
the upper half space. This answers a question raised
by Abreu and Dörfler in Abreu and Dörfler (Inverse
Problems 28 (2012) 16). Our techniques make use of
a framework recently developed by Nicola and Tilli
in Nicola and Tilli (Invent. Math. 230 (2022) 1–30),
but in the hyperbolic context induced by the dila-
tion symmetry of the Wavelet transform. This leads us
naturally to use a hyperbolic rearrangement function,
as well as the hyperbolic isoperimetric inequality, in
our analysis.

MSC 2020
49Q10, 49Q20, 49R05, 42B10, 94A12, 81S30

1 INTRODUCTION

In this paper, our main focus will be to answer a question by Abreu and Dörfler [1] on the sets
that maximise concentration of certain wavelet transforms.
Given a fixed function g ∈ 𝐿2(ℝ), theWavelet transform with window g is defined as

𝑊g𝑓(𝑥, 𝑠) =
1

𝑠1∕2 ∫ℝ 𝑓(𝑡)g
(
𝑡 − 𝑥

𝑠

)
𝑑𝑡, ∀𝑓 ∈ 𝐿2(ℝ). (1.1)
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2019

This map is well-defined pointwise for each 𝑥 ∈ ℝ, 𝑠 > 0, but in fact, it has better properties if we
restrict ourselves to certain sub-spaces of 𝐿2. Indeed, if 𝑓, g are so that 𝑓, ĝ = 0 over the negative
half line (−∞, 0), then it can be shown that the wavelet transform is an isometric inclusion from
theHardy space𝐻2(ℂ+) to 𝐿2(ℂ+, 𝑠−2 𝑑𝑥 𝑑𝑠), as long as g ∈ 𝐻2(ℂ+) is such that 2𝜋‖ĝ‖2

𝐿2(ℝ+,𝑡−1)
=

1.
The Wavelet transform has been introduced first by Daubechies and Paul in [10], where the

authors discuss its properties with respect to time-frequency localisation, in comparison to the
short-time Fourier transform operator introduced previously by Daubechies in [9] and Berezin
[8]. Together with the short-time Fourier transform, theWavelet transform has attracted attention
of several authors. As the literature of this topic is extremely rich, we could not, by any means,
provide a complete account of it here, and thuswemention specially those papers interested in the
problem of obtaining information from a domain from information on its localisation operator—
see, for instance, [1, 2, 4–6, 12, 22], and the references therein.
In this manuscript, we shall be interested in the continuous wavelet transform for certain

special window functions, and in how much of its mass, in an 𝐿2(ℂ+, 𝑠−2 𝑑𝑥 𝑑𝑠)−sense, can be
concentrated on certain subsets of the upper half space.
Fix 𝛼 > 0. We then define 𝜓𝛼 ∈ 𝐿2(ℝ) to be such that

𝜓𝛼(𝑡) =
1

𝑐𝛼
1[0,+∞)𝑡

𝛼𝑒−𝑡,

where one lets 𝑐𝛼 = ∫ ∞
0 𝑡2𝛼−1𝑒−2𝑡𝑑𝑡 = 22𝛼−1Γ(2𝛼). Here, we normalise the Fourier transform as

𝑓(𝜉) =
1

(2𝜋)1∕2 ∫ℝ 𝑓(𝑡)𝑒
−𝑖𝑡𝜉 𝑑𝜉.

Fix now a subset Δ ⊂ ℂ+ of the upper half space. We define then

𝐹𝛼Δ ∶= sup

{
∫Δ |𝑊𝜓𝛼

𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠
𝑠2

∶ 𝑓 ∈ 𝐻2(ℂ+), ‖𝑓‖2 = 1

}
.

The constant 𝐹𝛼
Δ
measures, in some sense, the maximal wavelet concentration of order 𝛼 > 0 in

Δ. Fix then 𝛼 > 0. A natural question, in this regard, is that of providing sharp bounds for 𝐹𝛼
Δ
,

in terms of some quantitative constraint additionally imposed on the set Δ. This problem has
appeared previously in some places in the literature, especially in the context of the short-time
Fourier transform [5, 6, 18]. For the continuous wavelet transform, we mention, in particular, the
paper byAbreu andDörfler [1], where the authors pose this question explicitly in their last remark.
The purpose of this manuscript is to solve the problem mentioned in the previous paragraph,

under the constraint that the hyperbolic measure of the set Δ, given by

𝜈(Δ) = ∫Δ
𝑑𝑥 𝑑𝑠

𝑠2
< +∞,

is prescribed. This condition arises in particular if one tries to analyse when the localisation
operators associated with Δ

𝑃Δ,𝛼𝑓 = ((𝑊𝜓𝛼
)∗1Δ𝑊𝜓𝛼

)𝑓
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2020 RAMOS and TILLI

are bounded from 𝐿2 to 𝐿2. It follow, by [22, Propositions 12.1 and 12.12], that

‖𝑃Δ,𝛼‖2→2
⩽

⎧⎪⎨⎪⎩
1, or(
𝜈(𝐷)

𝑐𝛼

)
.

(1.2)

As

𝐹𝛼Δ = sup
𝑓∶ ‖𝑓‖2=1∫Δ |𝑊𝜓𝛼

𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠
𝑠2

= sup
𝑓∶ ‖𝑓‖2=1 ⟨𝑃Δ,𝛼𝑓, 𝑓⟩𝐿2(ℝ),

we have the two possible bounds for 𝐹𝛼
Δ
, given by the two possible upper bounds in (1.2). By con-

sidering the first bound, one is led to consider the problem of maximising 𝐹𝛼
Δ
over all setsΔ ⊂ ℂ+,

which is trivial by taking Δ = ℂ+.
From the second bound, however, we are induced to consider the problem we mentioned

before. In this regard, the main result of this note may be stated as the following Faber–Krahn
inequality for the Wavelet transform:

Theorem 1.1. LetΩ ⊂ ℂ+ be a set of finite hyperbolic measure and 𝛼 > 0. Then

sup
𝜈(Ω)=𝑠

sup
𝑓∈𝐻2(ℂ+)

∫Ω |𝑊𝜓𝛼
𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠

𝑠2‖𝑊𝜓𝛼
𝑓‖2

𝐿2
(
ℂ+, 𝑑𝑥 𝑑𝑠

𝑠2

) (1.3)

is attained if and only ifΩ is a pseudo-hyperbolic disc centred at some 𝑧 ∈ ℂ+, with 𝜈(Ω) = 𝑠, and if
𝑓(𝑡) = 𝑐 ⋅ 1

𝑦1∕2
𝜓𝛼(

𝑡−𝑥

𝑦
), for some 𝑐 ∈ ℂ ⧵ {0}. Thus, we have

∫Ω |𝑊𝜓𝛼
𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠

𝑠2
⩽

(
1 −

(
1 +

𝜈(Ω)

𝜋

)−2𝛼
)‖𝑊𝜓𝛼

𝑓‖2
𝐿2

(
ℂ+, 𝑑𝑥 𝑑𝑠

𝑠2

). (1.4)

The proof of Theorem 1.1 is inspired by the recent proof of the Faber–Krahn inequality for the
short-time Fourier transform, by Nicola and the second author [18]. Indeed, in the present case,
one may take advantage of the fact that the wavelet transform induces naturally a mapping from
𝐻2(ℂ+) to analytic functions with some decay on the upper half plane. This parallel is also the
starting point of the proof of the main result in [18], where the authors show that the short-time
Fourier transform with Gaussian window induces naturally the so-called Bargmann transform,
and one may thus work with analytic functions.
The next steps follow the general guidelines as in [18]: one fixes a function and considers certain

integrals over level sets, carefully adjusted to match the measure constraints. Then one uses rear-
rangement techniques, togetherwith a coarea formula argumentwith the isoperimetric inequality
stemming from the classical theory of elliptic equations, in order to prove bounds on the growth
of such quantities.
The main differences in this context are highlighted by the translation of our problem in terms

of Bergman spaces of the disc, rather than Fock spaces. Furthermore, we use a rearrangement
with respect to a hyperbolic measure, in contrast to the usual Hardy–Littlewood rearrangement
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2021

in the case of the short-time Fourier transform. This presence of hyperbolic structures induces
us, further in the proof, to use the hyperbolic isoperimetric inequality. In this regard, we point
out that a recent result by Kulikov [16] used a similar idea in order to analyse extrema of certain
monotone functionals on Hardy spaces.
As highlighted above, our current argument hinges strongly on the presence of analyticity. In

that regard, we mention the works [13] and [7], where an explicit characterisation is given of
when a Wavelet transform yields an analytic transform. In both cases, the relevant functions are
essentially multiples of our allowed windows 𝜓𝛼. Thus, in order to extend ourmain result to more
general wavelet transforms, it seems that a new idea is needed.
This paper is structured as follows. In Section 2, we introduce notation and the main concepts

needed for the proof, and perform the first reductions of our proof. With the right notation at
hand, we restate Theorem 1.1 —which allows us to state crucial additional information on the
extremizers of inequality (1.4)—in Section 3, where we prove it. Finally, in Section 4, we discuss
related versions of the reduced problem, and remark further on the inspiration for the hyperbolic
measure constraint in Theorem 1.1.

2 NOTATION AND PRELIMINARY REDUCTIONS

Before moving on to the proof of Theorem 1.1, we must introduce the notion that shall be used
in its proof. We refer the reader to the excellent exposition in [22, chapter 18] for a more detailed
account of the facts presented here.

2.1 The wavelet transform

Let𝑓 ∈ 𝐻2(ℂ+) be a function on theHardy space of the upper half plane. That is,𝑓 is holomorphic
on ℂ+ = {𝑧 ∈ ℂ∶ Im(𝑧) > 0}, and such that

sup
𝑠>0 ∫ℝ |𝑓(𝑥 + 𝑖𝑠)|2 𝑑𝑥 < +∞.

Functions in this space may be identified in a natural way with functions 𝑓 on the real line, so
that 𝑓 has support on the positive line [0, +∞] (see, for instance, [11] for this and related results).
We fix then a function g ∈ 𝐻2(ℂ+) ⧵ {0}, so that

‖ĝ‖2
𝐿2(ℝ+,𝑡−1)

< +∞.

Given a fixed g as above, the continuous Wavelet transform of 𝑓 with respect to the window g is
defined to be

𝑊g𝑓(𝑧) = ⟨𝑓, 𝜋𝑧g⟩𝐻2(ℂ+) (2.1)

where 𝑧 = 𝑥 + 𝑖𝑠, and 𝜋𝑧g(𝑡) = 𝑠−1∕2g(𝑠−1(𝑡 − 𝑥)). From the definition, it is not difficult to see
that𝑊g is an isometry from𝐻2(ℂ+) to 𝐿2(ℂ+, 𝑠−2 𝑑𝑥 𝑑𝑠), as long as 2𝜋‖ĝ‖2

𝐿2(ℝ+,𝑡−1)
= 1.
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2022 RAMOS and TILLI

2.2 Bergman spaces on ℂ+ and 𝔻

For every 𝛼 > −1, the Bergman space 𝛼(𝔻) of the disc is the Hilbert space of all functions 𝑓 ∶

𝔻 → ℂ that are holomorphic in the unit disc 𝔻 and are such that

‖𝑓‖2𝛼
∶= ∫𝔻 |𝑓(𝑧)|2(1 − |𝑧|2)𝛼 𝑑𝑧 < +∞.

Analogously, the Bergman space of the upper half place 𝛼(ℂ
+) is defined as the set of analytic

functions in ℂ+ such that

‖𝑓‖2𝛼(ℂ
+)
= ∫ℂ+ |𝑓(𝑧)|2𝑠𝛼 𝑑𝜇+(𝑧),

where 𝑑𝜇+ stands for the normalised area measure on ℂ+. These two spaces defined above do not
only share similarities in their definition, but indeed it can be shown that they are isomorphic: if
one defines

𝑇𝛼𝑓(𝑤) =
2𝛼∕2

(1 − 𝑤)𝛼+2
𝑓

(
𝑤 + 1

𝑖(𝑤 − 1)

)
,

then 𝑇𝛼 maps𝛼(ℂ
+) to𝛼(𝔻) as a unitary isomorphism. For this reason, dealing with one space

or the other is equivalent, an important fact in the proof of the main theorem below.
For the reason above, let us focus on the case of 𝔻, and thus we abbreviate 𝛼(𝔻) = 𝛼 from

now on. The weighted 𝐿2 norm defining this space is induced by the scalar product

⟨𝑓, g⟩𝛼 ∶= ∫𝔻 𝑓(𝑧)g(𝑧)(1 − |𝑧|2)𝛼 𝑑𝑧.
Here and throughout, 𝑑𝑧 denotes the bidimensional Lebesgue measure on 𝔻.
An orthonormal basis of 𝛼 is given by the normalised monomials 𝑧𝑛∕

√
𝑐𝑛 (𝑛 = 0, 1, 2, …),

where

𝑐𝑛 = ∫𝔻 |𝑧|2𝑛(1 − |𝑧|2)𝛼 𝑑𝑧 = 2𝜋 ∫
1

0
𝑟2𝑛+1(1 − 𝑟2)𝛼 𝑑𝑟 =

Γ(𝛼 + 1)Γ(𝑛 + 1)

Γ(2 + 𝛼 + 𝑛)
𝜋.

Note that

1

𝑐𝑛
=
(𝛼 + 1)(𝛼 + 2)⋯ (𝛼 + 𝑛 + 1)

𝜋𝑛!
=
𝛼 + 1

𝜋

(
−𝛼 − 2

𝑛

)
(−1)𝑛,

so that from the binomial series we obtain

∞∑
𝑛=0

𝑥𝑛

𝑐𝑛
=
𝛼 + 1

𝜋
(1 − 𝑥)−2−𝛼, 𝑥 ∈ 𝔻. (2.2)

Given 𝑤 ∈ 𝔻, the reproducing kernel relative to 𝑤, that is, the (unique) function 𝐾𝑤 ∈ 𝛼 such
that

𝑓(𝑤) = ⟨𝑓,𝐾𝑤⟩𝛼 ∀𝑓 ∈ 𝛼 (2.3)
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2023

is given by

𝐾𝑤(𝑧) ∶=
1 + 𝛼

𝜋
(1 − 𝑤𝑧)−𝛼−2 =

∞∑
𝑛=0

𝑤
𝑛
𝑧𝑛

𝑐𝑛
, 𝑧 ∈ 𝔻

(the second equality follows from (2.2); note that 𝐾𝑤 ∈ 𝛼, as the sequence 𝑤
𝑛
∕
√
𝑐𝑛 of its coef-

ficients with respect to the monomial basis belongs to 𝓁2). To see that (2.3) holds, it suffices to
check it when 𝑓(𝑧) = 𝑧𝑘 for some 𝑘 ⩾ 0, but this is immediate from the series representation of
𝐾𝑤, that is,

⟨𝑧𝑘, 𝐾𝑤⟩𝛼 = ∞∑
𝑛=0

𝑤𝑛⟨𝑧𝑘, 𝑧𝑛∕𝑐𝑛⟩𝛼 = 𝑤𝑘 = 𝑓(𝑤).

Concerning the norm of𝐾𝑤, we have readily from the reproducing property the following identity
concerning their norms:

‖𝐾𝑤‖2𝛼
= ⟨𝐾𝑤,𝐾𝑤⟩𝛼 = 𝐾𝑤(𝑤) =

1 + 𝛼

𝜋
(1 − |𝑤|2)−2−𝛼.

We refer the reader to [21] and the references therein for further meaningful properties in the
context of Bergman spaces.

2.3 The Bergman transform

Now, we shall connect the first two subsections above by relating the wavelet transform to
Bergman spaces, through the so-called Bergman transform. For more detailed information, see,
for instance, [3] or [1, section 4]. Recall first that the functions 𝜓𝛽 ∈ 𝐻2(ℂ+) satisfy, 𝛽 > 0,

𝜓𝛽 =
1

𝑐𝛽
1[0,+∞)𝑡

𝛽𝑒−𝑡,

where 𝑐𝛽 > 0 is chosen so that 2𝜋‖𝜓𝛽‖2𝐿2(ℝ+,𝑡−1) = 1.
Now fix 𝛼 > −1. The Bergman transform of order 𝛼 is then given by

𝐵𝛼𝑓(𝑧) =
1

𝑠
𝛼
2
+1
𝑊𝜓𝛼+1

2

𝑓(𝑥, 𝑠) = 𝑐𝛼 ∫
+∞

0
𝑡
𝛼+1
2 𝑓(𝑡)𝑒𝑖𝑧𝑡 𝑑𝑥.

From this definition, it is immediate that 𝐵𝛼 defines an analytic function whenever 𝑓 ∈ 𝐻2(ℂ+).
Moreover, it follows directly from the properties of the wavelet transform above and (2.5) below
that 𝐵𝛼 is a unitary map between𝐻2(ℂ+) and𝛼(ℂ

+).
Finally, note that the Bergman transform 𝐵𝛼 is actually an isomorphism between 𝐻2(ℂ+) and

𝛼(ℂ
+).

Indeed, let 𝑙𝛼𝑛 (𝑥) = 1(0,+∞)(𝑥)𝑒
−𝑥∕2𝑥𝛼∕2𝐿𝛼𝑛(𝑥), where {𝐿

𝛼
𝑛}𝑛⩾0 is the sequence of generalised

Laguerre polynomials of order 𝛼. It can be shown that the function 𝜓𝛼𝑛 ∈ 𝐻2(ℂ+) so that

𝜓𝛼𝑛(𝑡) = 𝑏𝑛,𝛼𝑙
𝛼+1
𝑛 (2𝑡), (2.4)
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2024 RAMOS and TILLI

with 𝑏𝑛,𝛼 suitably chosen, satisfies

𝑇𝛼(𝐵𝛼𝜓
𝛼
𝑛)(𝑤) = 𝑒𝛼𝑛(𝑤). (2.5)

Here, 𝑒𝛼𝑛(𝑤) = 𝑑𝑛,𝛼𝑤
𝑛, where 𝑑𝑛,𝛼 is so that ‖𝑒𝛼𝑛‖𝛼

= 1. Thus, 𝑇𝛼◦𝐵𝛼 is an isomorphism between
𝐻2(ℂ+) and𝛼(𝔻), and the claim follows.

3 THEMAIN INEQUALITY

3.1 Reduction to an optimisation problem on Bergman spaces

By the definition of the Bergman transform above, we see that

∫Δ |𝑊𝜓𝛼
𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠

𝑠2
= ∫Δ̃ |𝐵2𝛼−1𝑓(𝑧)|2𝑠2𝛼−1 𝑑𝑥 𝑑𝑠,

where Δ̃ = {𝑧 = 𝑥 + 𝑖𝑠∶ − 𝑥 + 𝑖𝑠 ∈ Δ}. Thus, we may work directly with the maps 𝐵𝛼
defined before.
To that extent, fix a parameter 𝛼 > −1 and apply the map 𝑇𝛼 above to 𝐵𝛼𝑓; this implies that

∫Δ̃ |𝐵𝛼𝑓(𝑧)|2𝑠𝛼 𝑑𝑥 𝑑𝑠 = ∫Ω |𝑇𝛼(𝐵𝛼𝑓)(𝑤)|2(1 − |𝑤|2)𝛼 𝑑𝑤,
where Ω is the image of Δ̃ under the map 𝑧 ↦ 𝑧−𝑖

𝑧+𝑖
on the upper half plane ℂ+. Note that, from

this relationship, we have

∫Ω (1 − |𝑤|2)−2 𝑑𝑤 = ∫𝔻 1Δ
(

𝑤 + 1

𝑖(𝑤 − 1)

)
(1 − |𝑤|2)−2 𝑑𝑤

=
1

4 ∫Δ
𝑑𝑥 𝑑𝑠

𝑠2
=
𝜈(Δ)

4
.

This leads us naturally to consider, on the disc 𝔻, the Radon measure

𝜇(Ω) ∶= ∫Ω (1 − |𝑧|2)−2𝑑𝑧, Ω ⊆ 𝔻,

which is, by the computation above, the area measure in the usual Poincaré model of the hyper-
bolic space (up to a multiplicative factor 4). Thus, studying the supremum of 𝐹𝛼

Δ
over Δ for which

𝜈(Δ) = 𝑠 is equivalent to maximising

𝑅𝛽(𝑓,Ω) =
∫Ω |𝑓(𝑧)|2(1 − |𝑧|2)𝛽 𝑑𝑧‖𝑓‖2𝛽

(3.1)

over all 𝑓 ∈ 𝛽 and Ω ⊂ 𝔻 with 𝜇(Ω) = 𝑠∕4, where 𝛽 = 2𝛼 − 1.
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2025

With these reductions, we are now ready to state a Bergman space version of Theorem 1.1.

Theorem 3.1. Let 𝛼 > −1, and 𝑠 > 0 be fixed. Among all functions 𝑓 ∈ 𝛼 and among all
measurable sets Ω ⊂ 𝔻 such that 𝜇(Ω) = 𝑠, the quotient 𝑅𝛼(𝑓,Ω) as defined in (3.1) satisfies the
inequality

𝑅(𝑓,Ω) ⩽ 𝑅(1, 𝐷𝑠), (3.2)

where𝐷𝑠 is a disc centred at the origin with 𝜇(𝐷𝑠) = 𝑠. Moreover, there is equality in (3.2) if and only
if 𝑓 is a multiple of some reproducing kernel 𝐾𝑤 andΩ is a ball centred at 𝑤, such that 𝜇(Ω) = 𝑠.

Note that, in the Poincaré disc model in two dimensions, balls in the pseudo-hyperbolic metric
coincide with Euclidean balls, but the Euclidean and hyperbolic centres differ in general, as well
as the respective radii.

Proof of Theorem 3.1. Let us begin by computing 𝑅(𝑓,Ω) when 𝑓 = 1 and Ω = 𝐷𝑟(0) for some
𝑟 < 1.

𝑅(1, 𝐷𝑟) =
∫ 𝑟
0 𝜌(1 − 𝜌2)𝛼 𝑑𝜌

∫ 1
0 𝜌(1 − 𝜌2)𝛼 𝑑𝜌

=
(1 − 𝜌2)1+𝛼|𝑟

0

(1 − 𝜌2)1+𝛼|1
0

= 1 − (1 − 𝑟2)1+𝛼.

As 𝜇(𝐷𝑟) is given by

∫𝐷𝑟 (1 − |𝑧|2)−2 𝑑𝑧 = 2𝜋 ∫
𝑟

0
𝜌(1 − 𝜌2)−2 𝑑𝜌

= 𝜋(1 − 𝑟2)−1|𝑟0 = 𝜋
(

1

1 − 𝑟2
− 1

)
,

we have

𝜇(𝐷𝑟) = 𝑠 ⟺
1

1 − 𝑟2
= 1 +

𝑠

𝜋
,

so that 𝜇(𝐷𝑟) = 𝑠 implies 𝑅(1, 𝐷𝑟) = 1 − (1 + 𝑠∕𝜋)−1−𝛼. The function

𝜃(𝑠) ∶= 1 − (1 + 𝑠∕𝜋)−1−𝛼, 𝑠 ⩾ 0

will be our comparison function, and we will prove that

𝑅(𝑓,Ω) ⩽ 𝜃(𝑠)

for every 𝑓 and every Ω ⊂ 𝔻 such that 𝜇(Ω) = 𝑠.
Consider any 𝑓 ∈ 𝛼 such that ‖𝑓‖𝛼

= 1, let

𝑢(𝑧) ∶= |𝑓(𝑧)|2(1 − |𝑧|2)𝛼+2,
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2026 RAMOS and TILLI

and observe that

𝑅(𝑓,Ω) = ∫Ω 𝑢(𝑧) 𝑑𝜇 ⩽ 𝐼(𝑠) ∶= ∫{𝑢>𝑢∗(𝑠)} 𝑢(𝑧) 𝑑𝜇, 𝑠 = 𝜇(Ω), (3.3)

where 𝑢∗(𝑠) is the unique value of 𝑡 > 0 such that

𝜇({𝑢 > 𝑡}) = 𝑠.

That is, 𝑢∗(𝑠) is the inverse function of the distribution function of 𝑢, relative to the measure 𝜇.
Observe that 𝑢(𝑧) can be extended to a continuous function on 𝔻, by letting 𝑢 ≡ 0 on 𝜕𝔻.
Indeed, consider any 𝑧0 ∈ 𝔻 such that, say, |𝑧0| > 1∕2, and let 𝑟 = (1 − |𝑧0|)∕2. Then, on the

disc 𝐷𝑟(𝑧0), for some universal constant 𝐶 > 1 we have

𝐶−1(1 − |𝑧|2) ⩽ 𝑟 ⩽ 𝐶(1 − |𝑧|2) ∀𝑧 ∈ 𝐷𝑟(𝑧0),

so that

𝜔(𝑧0) ∶= ∫𝐷𝑟(𝑧0) |𝑓(𝑧)|2(1 − |𝑧|2)𝛼 𝑑𝑧 ⩾ 𝐶1𝑟
𝛼+2 1

𝜋𝑟2 ∫𝐷𝑟(𝑧0) |𝑓(𝑧)|2 𝑑𝑧
⩾ 𝐶1𝑟

𝛼+2|𝑓(𝑧0)|2 ⩾ 𝐶2(1 − |𝑧0|2)𝛼+2|𝑓(𝑧0)|2 = 𝐶2𝑢(𝑧0).

Here, we used that fact that |𝑓(𝑧)|2 is sub-harmonic, which follows from analyticity. As|𝑓(𝑧)|2(1 − |𝑧|2)𝛼 ∈ 𝐿1(𝔻), 𝜔(𝑧0) → 0 as |𝑧0| → 1, so that

lim|𝑧0|→1
𝑢(𝑧0) = 0.

As a consequence, we obtain that the superlevel sets {𝑢 > 𝑡} are strictly contained in 𝔻. Moreover,
the function 𝑢 so defined is a real analytic function. Thus, (see [15]) all level sets of 𝑢 have zero
measure, and as all superlevel sets do not touch the boundary, the hyperbolic length of all level
sets is finite; that is,

𝐿({𝑢 = 𝑡}) ∶= ∫{𝑢=𝑡} (1 − |𝑧|2)−1 𝑑1 < +∞, ∀ 𝑡 > 0.

Here and throughout the proof, we use the notation𝑘 to denote the 𝑘−dim. Hausdorff measure.
It also follows from real analyticity that the set of critical points of 𝑢 also has hyperbolic length

zero:

𝐿({|∇𝑢| = 0}) = 0.

Finally, we note that a suitable adaptation of the proof of Lemma 3.2 in [18] yields the following
result. As the proofs are almost identical, we omit them, and refer the interested reader to the
original paper.
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2027

Lemma 3.2. The function 𝜚(𝑡) ∶= 𝜇({𝑢 > 𝑡}) is absolutely continuous on (0,max 𝑢], and

−𝜚′(𝑡) = ∫{𝑢=𝑡} |∇𝑢|−1(1 − |𝑧|2)−2 𝑑1.

In particular, the function 𝑢∗ is, as the inverse of 𝜚, locally absolutely continuous on [0, +∞), with

−(𝑢∗)′(𝑠) =

(
∫{𝑢=𝑢∗(𝑠)} |∇𝑢|−1(1 − |𝑧|2)−2 𝑑1

)−1

.

Let us then denote the boundary of the superlevel set where 𝑢 > 𝑢∗(𝑠) as

𝐴𝑠 = 𝜕{𝑢 > 𝑢∗(𝑠)}.

We have then, by Lemma 3.2,

𝐼′(𝑠) = 𝑢∗(𝑠), 𝐼′′(𝑠) = −

(
∫𝐴𝑠 |∇𝑢|−1(1 − |𝑧|2)−2 𝑑1

)−1

.

As the Cauchy–Schwarz inequality implies(
∫𝐴𝑠 |∇𝑢|−1(1 − |𝑧|2)−2 𝑑1

)(
∫𝐴𝑠 |∇𝑢|𝑑1

)
⩾

(
∫𝐴𝑠 (1 − |𝑧|2)−1 𝑑1

)2

,

letting

𝐿(𝐴𝑠) ∶= ∫𝐴𝑠 (1 − |𝑧|2)−1 𝑑1

denote the length of 𝐴𝑠 in the hyperbolic metric, we obtain the lower bound

𝐼′′(𝑠) ⩾ −

(
∫𝐴𝑠 |∇𝑢|𝑑1

)
𝐿(𝐴𝑠)

−2. (3.4)

To compute the first term in the product on the right-hand side of (3.4), we first note that

Δ log 𝑢(𝑧) = Δ log (1 − |𝑧|2)2+𝛼 = −4(𝛼 + 2)(1 − |𝑧|2)−2,
which then implies that, letting 𝑤(𝑧) = log 𝑢(𝑧),

−1

𝑢∗(𝑠) ∫𝐴𝑠 |∇𝑢|𝑑1 = ∫𝐴𝑠 ∇𝑤 ⋅ 𝜂 𝑑1 = ∫𝑢>𝑢∗(𝑠) Δ𝑤 𝑑𝑧

= −4(𝛼 + 2)∫𝑢>𝑢∗(𝑠) (1 − |𝑧|2)−2 𝑑𝑧 = −4(𝛼 + 2)𝜇({𝑢 > 𝑢∗(𝑠)}) = −4(𝛼 + 2)𝑠.
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2028 RAMOS and TILLI

Here, we have used 𝜂 to denote the outward-pointing normal vector on 𝐴𝑠. Therefore,

𝐼′′(𝑠) ⩾ −4(𝛼 + 2)𝑠𝑢∗(𝑠)𝐿(𝐴𝑠)
−2 = −4(𝛼 + 2)𝑠𝐼′(𝑠)𝐿(𝐴𝑠)

−2. (3.5)

On the other hand, the isoperimetric inequality on the Poincaré disc—see, for instance, [14, 19,
20]—implies

𝐿(𝐴𝑠)
2 ⩾ 4𝜋𝑠 + 4𝑠2,

so that, plug-in into (3.5), we obtain

𝐼′′(𝑠) ⩾ −4(𝛼 + 2)𝑠𝐼′(𝑠)(4𝜋𝑠 + 4𝑠2)−1 = −(𝛼 + 2)𝐼′(𝑠)(𝜋 + 𝑠)−1. (3.6)

Getting back to the function 𝜃(𝑠), we have

𝜃′(𝑠) =
1 + 𝛼

𝜋
(1 + 𝑠∕𝜋)−2−𝛼, 𝜃′′(𝑠) = −(2 + 𝛼)𝜃′(𝑠)(1 + 𝑠∕𝜋)−1∕𝜋. (3.7)

As

𝐼(0) = 𝜃(0) = 0 and lim
𝑠→+∞

𝐼(𝑠) = lim
𝑠→+∞

𝜃(𝑠) = 1,

we may obtain, by a maximum principle kind of argument,

𝐼(𝑠) ⩽ 𝜃(𝑠) ∀𝑠 > 0. (3.8)

Indeed, consider 𝐺(𝑠) ∶= 𝐼(𝑠) − 𝜃(𝑠). We claim first that 𝐺′(0) ⩽ 0. To that extent, note that

‖𝑢‖𝐿∞(𝐷) = 𝑢∗(0) = 𝐼′(0) and 𝜃′(0) = 1 + 𝛼

𝜋
.

On the other hand, we have, by the properties of the reproducing kernels,

𝑢(𝑤) = |𝑓(𝑤)|2(1 − |𝑤|2)𝛼+2 = |⟨𝑓,𝐾𝑤⟩𝛼|2(1 − |𝑤|2)𝛼+2
⩽ ‖𝑓‖2𝛼

‖𝐾𝑤‖2𝛼
(1 − |𝑤|2)𝛼+2 = 1 + 𝛼

𝜋
, (3.9)

and thus 𝐼′(0) − 𝜃′(0) ⩽ 0, as claimed. Consider then

𝑚 ∶= sup{𝑟 > 0∶ 𝐺 ⩽ 0 over [0, 𝑟]}.

Suppose 𝑚 < +∞. Then, by compactness, there is a point 𝑐 ∈ [0,𝑚] so that 𝐺′(𝑐) = 0, as 𝐺(0) =
𝐺(𝑚) = 0. Let us first show that 𝐺(𝑐) < 0 if 𝐺 ≢ 0.
In fact, we first define the auxiliary function ℎ(𝑠) = (𝜋 + 𝑠)𝛼+2. The differential inequalities

(3.6) and (3.7) that 𝐼, 𝜃 satisfy may be combined, in order to write

(ℎ ⋅ 𝐺′)′ ⩾ 0. (3.10)
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2029

Thus, ℎ ⋅ 𝐺′ is increasing on the whole real line. As ℎ is increasing on ℝ, we have two options:

(1) either𝐺′(0) = 0, which implies, from the fact that one has equality in (3.9), that𝑓 is amultiple
of the reproducing kernel 𝐾𝑤. In this case, an explicit computation shows that 𝐺 ≡ 0, which
contradicts our assumption;

(2) or𝐺′(0) < 0, in which case the remarks made above about ℎ and𝐺 imply that𝐺′ is increasing
on the interval [0, 𝑐]. In particular, as 𝐺′(𝑐) = 0, the function 𝐺 is decreasing on [0, 𝑐], and the
claim follows.

Thus, 𝑐 ∈ (0,𝑚). As 𝐺(𝑚) = lim𝑠→∞ 𝐺(𝑠) = 0, there is a point 𝑐′ ∈ [𝑚,+∞) so that 𝐺′(𝑐′) = 0.
But this is a contradiction to (3.10): note that 0 = 𝐺(𝑚) > 𝐺(𝑐) implies the existence of a point 𝑑 ∈
(𝑐,𝑚]with𝐺′(𝑑) > 0. Asℎ ⋅ 𝐺′ is increasing overℝ, and (ℎ ⋅ 𝐺′)(𝑐) = 0, (ℎ ⋅ 𝐺′)(𝑑) > 0, we cannot
have (ℎ ⋅ 𝐺′)(𝑐′) = 0. The contradiction stems from supposing that𝑚 < +∞, and (3.8) follows.
With (3.2) proved, we now turn our attention to analysing the equality case in Theorem 3.1. To

that extent, note that, as a by-product of the analysis above, the inequality (3.8) is strict for every 𝑠 >
0, unless 𝐼 ≡ 𝜃. Indeed, suppose that 𝐼(𝑠0) = 𝜃(𝑠0) for some 𝑠0 > 0. As 𝐼 ⩽ 𝜃 pointwise, we have,
by the same argument in the preceding paragraph, a contradiction between the Equation (3.10)
and the critical points of 𝐺′.
Now assume that 𝐼(𝑠0) = 𝜃(𝑠0) for some 𝑠0 > 0, then Ω must coincide (up to a negligible set)

with {𝑢 > 𝑢∗(𝑠0)} (otherwisewewould have strict inequality in (3.3)), andmoreover 𝐼 ≡ 𝜃, so that

‖𝑢‖𝐿∞(𝐷) = 𝑢∗(0) = 𝐼′(0) = 𝜃′(0) =
1 + 𝛼

𝜋
.

By the argument above in (3.9), this implies that the 𝐿∞ norm of 𝑢 on 𝔻, which is equal to (1 +
𝛼)∕𝜋, is attained at some 𝑤 ∈ 𝔻, and as equality is achieved, we obtain that 𝑓 must be a multiple
of the reproducing kernel 𝐾𝑤, as desired. This concludes the proof of Theorem 3.1. □

Remark 1. The unique part of Theorem 3.1 may also be analysed through the lenses of an over-
determined problem. In fact, we have equality in that result if and only if we have equality in (3.6),
for almost every 𝑠 > 0. If we let 𝑤 = log 𝑢, then a quick inspection of the proof above shows that
equality in (3.6) for almost all 𝑠 > 0 implies that 𝑤 satisfies, for such 𝑠,

⎧⎪⎪⎨⎪⎪⎩
Δ𝑤 = −4(𝛼+2)

(1−|𝑧|2)2 in {𝑢 > 𝑢∗(𝑠)},

𝑤 = log 𝑢∗(𝑠), on 𝐴𝑠,|∇𝑤| = 𝑐

1−|𝑧|2 , on 𝐴𝑠.

(3.11)

By mapping the upper half plane ℍ2 to the Poincaré disc by 𝑧 ↦ 𝑧−𝑖

𝑧+𝑖
, one sees at once that a

solution to (3.11) translates into a solution of the Serrin over-determined problem

⎧⎪⎨⎪⎩
Δℍ2𝑣 = 𝑐1 in Ω,
𝑣 = 𝑐2 on 𝜕Ω,|∇ℍ2𝑣| = 𝑐3 on 𝜕Ω,

(3.12)

whereΔℍ2 and∇ℍ2 denote, respectively, the Laplacian and gradient in the upper half spacemodel
of the two-dimensional hyperbolic plane. By themain result in [17], the only domainΩ that solves
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2030 RAMOS and TILLI

(3.12) is a geodesic disc in the upper half space, with the hyperbolic metric. Translating back,
this implies that {𝑢 > 𝑢∗(𝑠)} are (hyperbolic) balls for almost all 𝑠 > 0. A direct computation then
shows that 𝑤 = log 𝑢, with 𝑢(𝑧) = |𝐾𝑤(𝑧)|2(1 − |𝑧|2)𝛼+2, is the unique solution to (3.11) in those
cases, and therefore, if we have equality in Theorem 3.1, we must have that 𝑓 is a multiple of a
certain reproducingKernel𝐾𝑤 for the Bergman space, finishing the uniqueness part of that result.

Remark 2. Theorem 3.1 directly implies, by the reductions above, Theorem 1.1. In addition to that,
we may use the former to characterise the extremals to the inequality (1.4).
Indeed, let𝛽 = 2𝛼 − 1. It can be shown that the reproducing kernels𝐾𝑤 for𝛽(𝔻) are the image

under 𝑇𝛽 of the reproducing kernels for𝛽(ℂ
+), given by

𝛽
𝑤(𝑧) = 𝜅𝛽

(
1

𝑧 − 𝑤

)𝛽+2

,

where 𝜅𝛽 accounts for the normalisation we used before. Thus, equality holds in (1.4) if and only
if Δ is a pseudo-hyperbolic disc, and moreover, the function 𝑓 ∈ 𝐻2(ℂ+) is such that

𝐵𝛽𝑓(𝑧) = 𝜆𝛼𝛽
𝑤(𝑧), (3.13)

for some 𝑤 ∈ ℂ+. On the other hand, it also holds that the functions {𝜓𝛽𝑛}𝑛∈ℕ defined in (2.4) are
so that 𝐵𝛽(𝜓𝛼0 ) =∶ Ψ

𝛽
0
is a multiple of ( 1

𝑧+𝑖
)𝛽+2. This can be seen by the fact that 𝑇𝛽(Ψ

𝛽
0
) is the

constant function.
From these considerations, we obtain that 𝑓 is a multiple of 𝜋𝑤𝜓

𝛽
0
= 𝜋𝑤𝜓

2𝛼−1
0

, where 𝜋𝑤 is
as in (2.1). As 𝜓2𝛼−1

0
is just a multiple of the window 𝜓𝛼 originally defined, this finishes the

characterisation of extremals in Theorem 1.1.

4 OTHERMEASURE CONSTRAINTS AND RELATED PROBLEMS

As discussed in the introduction, the constraint on the hyperbolicmeasure of the setΔ can be seen
as the one that makes the most sense in the framework of the Wavelet transform.
In fact, another way to see this is as follows. Fix 𝑤 = 𝑥1 + 𝑖𝑠1, and let 𝑧 = 𝑥 + 𝑖𝑠, 𝑤, 𝑧 ∈ ℂ+.

Then

⟨𝜋𝑤𝑓, 𝜋𝑧g⟩𝐻2(ℂ+) = ⟨𝑓, 𝜋𝜏𝑤(𝑧)g⟩𝐻2(ℂ+),

where we define 𝜏𝑤(𝑧) = (
𝑥−𝑥1
𝑠1

, 𝑠

𝑠1
). By (2.1), we get

∫Δ |𝑊𝜓𝛼
(𝜋𝑤𝑓)(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠𝑠2

= ∫Δ |𝑊𝜓𝛼
𝑓(𝜏𝑤(𝑧))|2 𝑑𝑥 𝑑𝑠𝑠2

= ∫(𝜏𝑤)−1(Δ) |𝑊𝜓𝛼
𝑓(𝑥, 𝑠)|2 𝑑𝑥 𝑑𝑠

𝑠2
. (4.1)

Thus, suppose one wants to impose a measure constraint like 𝜈̃(Δ) = 𝛿, where 𝜈̃ is a measure on
the upper half plane. The computations in (4.1) tell us that 𝐹𝛼

Δ
= 𝐹𝛼

𝜏𝑤(Δ)
, ∀𝑤 ∈ ℂ+. Thus, one is
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2031

naturally led to suppose that the class of domains {Δ̃ ⊂ ℂ+∶ 𝜈̃(Δ̃) = 𝜈̃(Δ)} includes {𝜏𝑤(Δ), 𝑤 ∈

ℂ+.}.
Therefore, 𝜈̃(Δ) = 𝜈̃(𝜏𝑤(Δ)). Taking first 𝑤 = 𝑥1 + 𝑖, one obtains that 𝜈̃ is invariant under hori-

zontal translations. By taking𝑤 = 𝑖𝑠1, one then obtains that 𝜈̃ is invariantwith respect to (positive)
dilations. It is easy to see that any measure with these properties has to be a multiple of the
measure 𝜈 defined above.
On the other hand, if one is willing to forego the original problem and focus on the quotient

(3.1), one may wonder what happens when, instead of the hyperbolic measure on the (Poincaré)
disc, one considers the supremum of 𝑅(𝑓,Ω) over 𝑓 ∈ 𝛼(𝔻), and now look at |Ω| = 𝑠, where | ⋅ |
denotes Lebesguemeasure.
In that case, the problem of determining

𝛼 ∶= sup|Ω|=𝑠 sup
𝑓∈𝛼(𝔻)

𝑅(𝑓,Ω)

is much simpler. Indeed, take Ω = 𝔻 ⧵ 𝐷(0, 𝑟𝑠), with 𝑟𝑠 > 0 chosen so that the Lebesgue measure
constraint on Ω is satisfied. For such a domain, consider 𝑓𝑛(𝑧) = 𝑑𝑛,𝛼 ⋅ 𝑧

𝑛, as in (2.5). One may
compute these constants explicitly as:

𝑑𝑛,𝛼 =

(
Γ(𝑛 + 2 + 𝛼)

𝑛! ⋅ Γ(2 + 𝛼)

)1∕2

.

For these functions, one has ‖𝑓𝑛‖𝛼
= 1. We now claim that

∫𝐷(0,𝑟𝑠) |𝑓𝑛(𝑧)|2(1 − |𝑧|2)𝛼 𝑑𝑧 → 0 as 𝑛 → ∞. (4.2)

Indeed, the left-hand side of (4.2) equals, after polar coordinates,

2𝜋𝑑2𝑛,𝛼 ∫
𝑟𝑠

0
𝑡2𝑛(1 − 𝑡2)𝛼 𝑑𝑡 ⩽ 2𝜋𝑑2𝑛,𝛼(1 − 𝑟2𝑠 )

−1𝑟2𝑛𝑠 , (4.3)

whenever 𝛼 > −1. On the other hand, the explicit formula for 𝑑𝑛,𝛼 implies this constant grows at
most like a (fixed) power of 𝑛. As the right-hand side of (4.3) contains a 𝑟2𝑛𝑠 factor, and 𝑟𝑠 < 1, this
proves (4.2). Therefore,

𝑅(𝑓𝑛,Ω) → 1 as 𝑛 → ∞.

So far, we have been interested in analysing the supremum of sup𝑓∈𝛼
𝑅(𝑓,Ω) over different

classes of domains, but another natural question concerns a reversed Faber–Krahn inequality:
if one is instead interested in determining the minimum of sup𝑓∈𝛼

𝑅(𝑓,Ω) over certain classes
of domains, what can be said in both Euclidean and hyperbolic cases?
In that regard, we first note the following: the problem of determining the minimum of

sup𝑓∈𝛼
𝑅(𝑓,Ω) over Ω ⊂ 𝔻, 𝜇(Ω) = 𝑠 is much easier than the analysis in the proof of The-

orem 3.1. Indeed, by letting Ω𝑛 be a sequence of annuli of hyperbolic measure 𝑠, with Ω𝑛 ⊂
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2032 RAMOS and TILLI

𝐷 ⧵ 𝐷(0, 1 − 1

𝑛
), ∀𝑛 ⩾ 1, and thus |Ω𝑛| → 0 as 𝑛 → ∞, we have

inf
Ω∶ 𝜇(Ω)=𝑠

sup
𝑓∈𝛼(𝐷)

𝑅(𝑓,Ω) = 0, ∀ 𝛼 > −1,

as𝑢(𝑧) → 0 as |𝑧| → 1. On the other hand, the situation is starkly differentwhen one considers the
Lebesgue measure in place of the hyperbolic one. Indeed, we shall show below that we may also
explicitly solve the problem of determining theminimum of sup𝑓∈𝛼

𝑅(𝑓,Ω) over all Ω, |Ω| = 𝑠.
For that purpose, we define

𝛼 = inf
Ω∶ |Ω|=𝑠 sup𝑓∈𝛼

𝑅(𝑓,Ω).

Then we have

𝛼 ⩾ inf|Ω|=𝑠 1𝜋 ∫Ω (1 − |𝑧|2)𝛼 𝑑𝑧. (4.4)

Now, we have some possibilities.

(1) If 𝛼 ∈ (−1, 0), then the function 𝑧 ↦ (1 − |𝑧|2)𝛼 is strictly increasing on |𝑧|, and thus the left-
hand side of (4.4) is at least

2∫
(𝑠∕𝜋)1∕2

0
𝑡(1 − 𝑡2)𝛼 𝑑𝑡 = 𝜃1𝛼(𝑠).

(2) If 𝛼 > 0, then the function 𝑧 ↦ (1 − |𝑧|2)𝛼 is strictly decreasing on |𝑧|, and thus the left-hand
side of (4.4) is at least

2∫
1

(1−𝑠∕𝜋)1∕2
𝑡(1 − 𝑡2)𝛼 𝑑𝑡 = 𝜃2𝛼(𝑠).

(3) Finally, for 𝛼 = 0,0 ⩾ 𝑠.

In particular, we can also characterise exactlywhen equality occurs in the first two cases above:
for the first case, we must have Ω = 𝐷(0, (𝑠∕𝜋)1∕2); for the second case, we must have Ω = 𝔻 ⧵

𝐷(0, (1 − 𝑠∕𝜋)1∕2); note that, in both cases, equality is indeed attained, as constant functions do
indeed attain sup𝑓∈𝛼

𝑅(𝑓,Ω).
Finally, in the third case, if one restricts to simply connected sets Ω ⊂ 𝔻, we may to resort to [1,

Theorem 2].
Indeed, in order for the equality sup𝑓∈0

𝑅(𝑓,Ω) = |Ω|
𝜋
, to hold, one necessarily has

(1Ω) = 𝜆,

where  ∶ 𝐿2(𝔻) → 0(𝔻) denotes the projection onto the space 0. But from the proof of
[1, Theorem 2], as Ω is simply connected, this implies that Ω has to be a disc centred at the
origin. We summarise the results obtained in this section below, for the convenience of the
reader.
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A FABER–KRAHN INEQUALITY FORWAVELET TRANSFORMS 2033

Theorem4.1. Suppose 𝑠 = |Ω| is fixed, and consider 𝛼 defined above. Then𝐶𝛼 = 1, ∀𝛼 > −1, and
no domainΩ attains this supremum.
Moreover, if one considers𝛼 , one has the following assertions.

(1) If 𝛼 ∈ (−1, 0), then sup𝑓∈𝛼
𝑅(𝑓,Ω) ⩾ 𝜃1𝛼(𝑠), with equality if and only ifΩ = 𝐷(0, (𝑠∕𝜋)1∕2).

(2) If 𝛼 > 0, then sup𝑓∈𝛼
𝑅(𝑓,Ω) ⩾ 𝜃2𝛼(𝑠), with equality if and only ifΩ = 𝔻 ⧵ 𝐷(0, (1 − 𝑠∕𝜋)1∕2).

(3) If 𝛼 = 0, sup𝑓∈𝛼
𝑅(𝑓,Ω) ⩾ 𝑠. Furthermore, ifΩ is simply connected, thenΩ = 𝐷(0, (𝑠∕𝜋)1∕2).

The assumption that Ω is simply connected in the third assertion in Theorem 4.1 cannot be
dropped in general, as any radially symmetric domain Ω with Lebesgue measure 𝑠 satisfies the
same property. We conjecture, however, that these are the only domains with such a property:
that is, if Ω is such that sup𝑓∈0

𝑅(𝑓,Ω) = |Ω|, then Ωmust have radial symmetry.
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