
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MAP-MIND: An Offline Algorithm for Optimizing Game Engine Module Placement in Cloud Gaming / Lotfimahyari, Iman;
De Giovanni, Luigi; Gadia, Davide; Giaccone, Paolo; Maggiorini, Dario; Palazzi, Claudio E.. - In: IEEE ACCESS. - ISSN
2169-3536. - ELETTRONICO. - (2024), pp. 1-1. [10.1109/access.2024.3380900]

Original

MAP-MIND: An Offline Algorithm for Optimizing Game Engine Module Placement in Cloud Gaming

Publisher:

Published
DOI:10.1109/access.2024.3380900

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987296 since: 2024-03-25T10:37:55Z

IEEE

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

MAP-MIND: An Offline Algorithm for Optimizing
Game Engine Module Placement in Cloud Gaming
IMAN LOTFIMAHYARI1 (Member, IEEE), LUIGI DE GIOVANNI2, DAVIDE GADIA3, PAOLO
GIACCONE1 (Senior Member, IEEE), DARIO MAGGIORINI3, and CLAUDIO E. PALAZZI2
(Member, IEEE)
1Politecnico di Torino, Torino, Italy
2Università degli Studi di Padova, Padova, Italy
3Università degli Studi di Milano, Milano, Italy

ABSTRACT Online gaming has seen a significant surge in popularity, becoming a dominant form of
entertainment worldwide. This growth has necessitated the evolution of game servers from centralized
to distributed models, leading to the emergence of distributed game engines. These engines allow for
the distribution of game engine modules (GEMs) across multiple servers, improving scalability and
performance. However, this distribution presents a new challenge: the game engine module placement
problem. This problem involves strategically placing GEMs to maximize the number of accepted placement
requests while minimizing the delay experienced by players, a critical factor in enhancing the gaming
experience. The problem can be formulated as an Integer Linear Programming (ILP) model, which provides
an optimal solution but suffers from high computational complexity, making it impractical for real-world
applications. To address this challenge, this paper introduces two novel heuristic algorithms, MAP-MIND
and MAP-MIND*. The MAP-MIND algorithm demonstrates superior performance, achieving near-optimal
delay and more than 92%GEM request acceptance in the worst heterogeneous scenarios. The MAP-MIND*
algorithm, while slightly under-performing MAP-MIND in terms of delay, proves to be significantly faster,
making it a viable alternative for real-world applications with equal GEM request acceptance. The trade-
off between the two algorithms offers a flexible approach to GEM placement, balancing performance and
computational efficiency.

INDEX TERMS Cloud gaming, distributed game engines, placement algorithm

I. INTRODUCTION

IN recent years, there has been a notable trend in the world
of video games: they are increasingly evolving into online

services. In an online game, the gaming experience relies on
a server providing a shared exchange point for many players.
This central hub may provide a single-user experience as well
as a shared virtual environment for the users to interact with
each other. In any case, the server is responsible for efficiently
managing the shared resources among the player population,
independently from game mechanics.

Online games’ evolution has seen many stages. In the
beginning, a centralized (physical) server was in charge
of managing all gaming sessions, with obvious scalability
issues. In the second generation, with the increasing
availability of cloud computing, gaming servers have
been distributed in the cloud and run as a combination
of virtualized software services. The adoption of cloud

computing to implement cloud gaming allowed for a
significant cost reduction and an improvement in scalability.
In the last generation, game streaming has been introduced.
In game-streaming, the computation is completely offloaded
to the remote (cloud-based) server, and a video stream is
sent to the player [1], [2]. A client handles the player’s
inputs, which are sent back to the game server. This paradigm
shift eliminates the need for gamers to acquire and maintain
cutting-edge hardware while making high-quality gaming
experiences more accessible than ever before. As a result,
the number of players using game streaming is ramping
up, opening up new business opportunities for modern
game companies. Services like Google Stadia [3] (now
discontinued), Amazon Luna [4], GeForce CloudGaming [5],
and Microsoft Xbox Cloud [6] exemplify this model, where
the player’s device is only responsible for displaying the
game scene streamed from private data centers equipped with

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

dedicated hardware.
Hopefully, the new way to provide gaming services will

move millions of existing and next-generation players from
legacy platforms to cloud gaming. Anyway, such a large-
scale migration might generate a workload able to overtax
even hyper-scaling cloud architectures. While the capability
to scale up in terms of raw computation power can be given
for granted, modern cloud architectures are not designed
to organize internal modules while taking into account
strict Quality of Service (QoS) requirements. Currently, in
today’s cloud architectures, gaming services are placed where
resources are available using legacy optimization policies and
relying on over-provisioning to fulfill the QoS required by
the user for an optimal gaming experience. We anticipate that
the future of gaming services will demand the distribution
of game server software, operating within game engines,
across cloud infrastructure. Accommodating this shift while
prioritizing the gaming experience and resource optimization
presents a substantial challenge, particularly for conventional
monolithic game engines.

The primary research challenge at present revolves
around the design and development of a new generation
of game engines capable of harnessing the dynamic
resource allocation provided by cloud architecture. These
next-generation game engines are envisioned as being
composed of discrete modules, each handling a specific
aspect of the game’s functioning, named Game Engine
Modules (GEMs) [7]. GEMs can be launched on-demand,
dispersed throughout the cloud continuum based on resource
availability, and strategically located to reduce gaming delay
for the user [8].

Strategically positioning these modules within the cloud
continuum is an intricate endeavor that directly impacts
the system’s performance and user experience. One distinct
feature of GEM placement, which differentiates it from
virtual machine placement, is that GEMs can be utilized by
multiple players simultaneously. As a result, the placement
process necessitates a continuous, synchronous backstream
for all participating players. This situation is comparable to
synchronously streaming a video to a multitude of viewers,
with the unique twist that these viewers can ‘‘interact’’ with
the watching video but are unable to reverse the stream.

The GEM placement challenge entails determining the
most advantageous positions for these modules within the
cloud continuum. The aim is to minimize the delay perceived
by the gamer, providing a smooth and seamless game-play
experience. However, this is a complex task that presents
various challenges. While the dynamic nature of cloud
resources complicates theGEMplacement problem, the focus
is on the challenges associated with the varying requirements
of different GEMs, such as compute power, memory, and
network bandwidth. An equally critical consideration is the
network delay between the GEMs and the gamers. Optimal
GEMplacement should prioritize the reduction of the player’s
experienced delay, ensuring a seamless and highly responsive
gaming experience. However, achieving this requires a

thorough understanding of the network structure and the
geographical distribution of players. It is worth mentioning
that the aforementioned cloud gaming platforms are closed-
source and do not disclose the techniques they employ for the
optimal placement of the monolithic games they offer.
In this study, we define the optimal GEM placement

problem, considering each GEM’s bandwidth and resource
needs. Initially focusing on a single-player per-game session,
our approach is then extended to accommodate multiple
players within the same game arena, both scenarios being of
significant practical relevance. Our model aims to maximize
the acceptance of GEM placement requests while minimizing
the delay experienced by players. The first optimization goal
leads to both optimized resource utilization and enhanced
player satisfaction due to the acceptance of more play
requests.
To solve this optimization problem, we develop a two-

phase approximation algorithm, denoted as MAximized-
Placement with MINimized-Delay (MAP-MIND), which
runs on a set of GEM requests. In the first phase, MAP-
MIND places the GEMS to maximize the number of
accepted GEMs. In the second phase, MAP-MIND revises
the placement to minimize delay. Subsequently, we introduce
MAP-MIND*, a faster variant of MAP-MIND, which serves
as a practical alternative for real-world applications, albeit
with a slight trade-off in terms of delay compared to the
original MAP-MIND. We compare MAP-MIND and MAP-
MIND* with the optimal solver, which suffers from limited
scalability. Given that no existing solutions share our specific
optimization objective, we also compare them with standard
placement algorithms that either minimize delay (derived
from the scenario of Virtual Machine placement in cloud
computing systems) or maximize placement through bin-
packing standard approaches. Through extensive simulations,
we show that MAP-MIND closely approximates the optimal
solution achieved by the solver in terms of both the delay and
the number of accepted GEMs.
Furthermore, it also outperforms the other algorithms in

terms of delay, number of accepted GEMs, and running
time. On the other hand, MAP-MIND* reduces the execution
time at the cost of degraded delays. This demonstrates the
effectiveness of our approach in tackling the GEM placement
problem. It is important to highlight that ourmodel can handle
scenarios involving dynamic resource usage. Our resource
utilization strategy is based on estimating the worst-case
resource requirements for the games.
The remainder of this paper is organized as follows: Sec. II

describes the architecture of distributed game engines. In
Sec. III, we provide a formal description of the problem
and formulate a mathematical optimization model for the
scenario of both a single player per GEM and many players
per GEM (i.e., a game arena scenario). In Sec. IV, we propose
MAP-MIND andMAP-MIND* as approximation algorithms
to solve the problem presented in Sec. III. In Sec. V, we
assess by simulation the performance of both MAP-MIND
and MAP-MIND* by comparing them with some proposed

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

GEM2

GEM4

GEM1

GEM2 GEM6

GEM5

GEM7 GEM8

Session
frontend

Rendering and
encoding

Physics
and AI

In-game
core logic

GEM9
Metadata

egress

Game Engine

GEM3

FIGURE 1. Example of game session workflow in CODEG [8].

variants and with the state-of-the-art approaches. In Sec. VI,
we discuss the related work in the state-of-the-art literature.
Finally, we draw our conclusions in Sec. VII.

II. CODEG: A CLOUD-ORIENTED DISTRIBUTED GAME
ENGINE APPROACH
The Cloud-Oriented Distributed Engine for Gaming
(CODEG) model, as presented in [8], introduces a
groundbreaking approach to cloud gaming by fully utilizing
the capabilities of modern cloud infrastructure. This model
redefines game engines as network-wide operating systems,
which are partitioned into functional units known as Game
Engine Modules (GEMs). Fig. 1 shows an example of a
game session in which GEMs are grouped into different
functionalities necessary to implement the game service.
The request for new game sessions triggers the request
to start new GEMs. All the requests that arrive during a
predefined observation time window are allocated based on
the placement algorithm.

Each GEM represents a basic component of a game engine,
activated as needed, and eventually linked to other GEMs to
implement the whole game service. This modular approach
allows for greater flexibility and scalability, as GEMs can
be deployed based on real-time game demand. The CODEG
model operates under the assumption that modern cloud
infrastructures are composed of multiple Compute Nodes
(CNs). These CNs could be physical servers in a data center or
virtual servers in a cloud environment, as shown in Fig. 2. The
model utilizes this distributed architecture to host the GEMs,
efficiently spreading the workload of the game engine across
multiple CNs.

The model also assumes that all players are connected to
the same network provider and that the data center hosting
the game engine is optimally located to minimize delay.
This is vital for ensuring a smooth gaming experience, as
significant delays can result in interruptions and disruptions
during gameplay. Furthermore, the CODEG model takes
advantage of advanced network virtualization techniques.
These techniques allow for the creation of logical networks
with specific QoS levels. This ensures that game-related
traffic has guarantees of minimum bandwidth and maximum
delay. In the CODEG model, the servers hosting the GEMs
are connected through the network. The nodes and edges of

Cloud infrastructure

CN
Edge
Network

PlayerAccess node

Core
NetworkGEM1 GEM3 GEM4GEM2 GEM5 GEM7 GEM8GEM6

FIGURE 2. Example of compute nodes (CN) and GEM co-location.

TABLE 1. Notation.

Notation Description

N Set of network nodes (i.e., compute nodes or access nodes)
E Set of network links
T Network topology
K Types of resources available at the nodes
rkn Amount of resource of type k available at node n
ρks Amount of resource of type k needed by game session s
S Set of game sessions to place
GEMs Group of co-located GEM running game session s
P Set of all the players
Ps Set of players in the game session s
h(p) Access node of player p
d(p, n) Delay experienced by player p if GEMs is placed in node n
dmax(s, n) Maximum delay experienced by players in Ps if GEMs is placed in

node n
dtot(s, n) Summation of the delays experienced by the players in Ps if GEMs is

placed in node n
dmax
s Maximum delay allowed for each player of the game session s
N(s) Set of nodes for which the maximum delay is satisfied for all the

players in the game session s
λs Reserved bandwidth for game session s
buv Available bandwidth on link (u, v)
P(s, n) Set of links used by the traffic for game session s if GEMs is placed in

node n
ϕuv
sn = 1 if the link (u, v) belongs to P(s, n), 0 otherwise

xsn = 1 if GEM for game session s is placed at node n, 0 otherwise

this network represent the CNs and the logical or physical
links between them, respectively.
Each game session in the CODEG model has a unique

maximum tolerable delay. This is defined based on the nature
of the game and is set to maximize fairness among players of
the same multiplayer game session and to satisfy the Quality
of Experience (QoE) perceived by each player.

III. OPTIMAL GEM PLACEMENT
In this section, we describe our system model, and then
we formulate the placement problem, whose objective is
to maximize the number of accepted game sessions while
minimizing the overall delay experienced by their players.
This combined objective function is designed to maximize
the profits of the game providers while maximizing the
QoE perceived by the players as well. Each game can be
implemented by composingmultiple GEMs. However, for the
sake of simplicity, this work considers games that contain
a single GEM or multiple GEMs that are co-located, as
shown in Fig. 2. We now introduce the adopted notation,
reported also in Table 1. Let T = (N ,E) represent the
graph describing the network topology, where E is the set of
network links andN is the set of network nodes, which can be

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

either CNs or access nodes, where the players connect to the
network. We define K as the set of resource types available
in the nodes, including CPU, memory, and storage. We use rkn
to denote the amount of resources of type k ∈ K available at
node n ∈ N .

Let S be the set of game sessions to place. We assume
multiple players for each game session; as a special case, a
game session could be played by a single player. We also
assume a single GEM or a group of co-located GEMs per
game session s, and we denote it by GEMs. Let P be the
set of all the players, whereas Ps ⊆ P be the subset of
players associated with the game session s ∈ S. Let ρks , for
any k ∈ K , be the amount of resource of type k that is
required by GEMs. Note that such value may depend on the
actual number of players (e.g., according to a proportional
law), serving as an upper bound for the worst-case scenario
of the required resource amount. Let h(p) ∈ N be the access
node of player p ∈ P. Assume now that GEMs is placed on
node n ∈ N . Let d(p, n) be the delay experienced by player
p, computed as the sum of the communication delay from
h(p) to n, the GEMs processing delay, and the communication
delay from n to h(p). Let dmax(s, n), for any s ∈ S, be
the maximum delay experienced by any of the players in
Ps: dmax(s, n) = maxp∈Ps d(p, n). Similarly, let dtot(s, n)
be the summation of all the delays experienced by each of
the players in Ps: dtot(s, n) =

∑
p∈Ps d(p, n). Note that it is

possible to pre-compute the set of all dmax(s, n) and dtot(s, n)
withO(N 2|P|) operations. Let dmax

s be themaximum allowed
delay for game session s, which has been devised to satisfy
the expected performance at the endpoint. This parameter
expresses the main threshold related to the QoS constraint.
Given dmax

s , it is possible to pre-compute the set N (s) ⊆ N
of nodes where GEMs can be placed such that all the players
experience a delay compatible with the maximum allowed
one: N (s) = {n ∈ N | dmax(s, n) ≤ dmax

s }.
We assume single-path routing according to the shortest

path. Let P(s, n) be the overall routing paths, i.e., the set of
links used to route traffic from all the access nodes of the
players in the games session s to node n and back from n
to all the access nodes. We define an indicator function ϕuvsn
equal to 1 iff the link (u, v) belongs to P(s, n). We assume
that the bandwidth is reserved for each game session through a
dedicated network slice. The bandwidth reserved for the game
session s along the links belonging to the routing paths (i.e.,
for any e ∈ P(s, n)) is denoted as λs, and buv represents the
available bandwidth on link (u, v) ∈ E . Notably, λs is equal
to the maximum bandwidth, among all the links in P(s, n),
required by the aggregate traffic for game session s, and it
typically grows with |Ps|. Note that all the parameters defined
so far are pre-computed based on the network topology and
the maximum allowed delay.

The decision variables are denoted by binary variables xsn,
defined as equal to 1 iff GEMs is placed at node n. Whenever
there are not enough resources in a CN for a game session or
the corresponding constraint on the maximum delay cannot
be met, the game session request is dropped, and all the

corresponding players abort the game.
We formulate the problem as an Integer Linear

Programming (ILP) model. The problem can be viewed as a
generalized assignment problem, as the sole decision revolves
around identifying the CN where each game session GEM
should be placed. The optimal GEM placement for multi-
player GEMs can be formulated as follows:

max
{xsn}

(α
∑
s∈S

∑
n∈N(s)

xsn −
∑
s∈S

∑
n∈N(s)

xsndtot(s, n)) (1)

subject to ∑
n∈N(s)

xsn ≤ 1, ∀ s ∈ S (2)

∑
s∈S:n∈N(s)

ρks xsn ≤ rkn , ∀ k ∈ K , n ∈ N (3)

∑
s∈S,n∈N(s)

λsϕ
uv
snxsn ≤ buv, ∀ (u, v) ∈ E (4)

xsn ∈ {0, 1}, ∀s ∈ S, n ∈ N (s) (5)

The objective function (1) combines two components and
aims to maximize the total number of accepted game sessions
(first term), and secondly, to minimize the overall delay
experienced by the players (second term). Indeed, α is a
large enough constant such that the objective function will
always prefer solutions with a larger number of accepted
game sessions, independently from the overall delay. To
achieve this, we choose α = |P|(2dnet + dproc), where
dnet is the diameter of the network in terms of delay and
dproc is the maximum processing delay per game session.
Constraint (2) assigns the GEM for each game session to at
most one CN; indeed, a game session may be dropped due
to a lack of resources in the CNs compatible with the related
maximum delay requirement. Constraint (3) ensures that the
CN resources are not exceeded. Constraint (4) ensures that the
reserved bandwidth for each game session does not exceed the
network link capacity. Finally, (5) defines the domain of the
decision variables. We now claim the following:

Property 1. The optimal GEM placement problem is NP-
hard.

Proof. We show the problem complexity by reduction from
the multiple knapsack problem, which is known to be NP-
hard, in a weak sense. By assuming no constraints on
bandwidth (i.e., buv = ∞,∀(u, v) ∈ E), (4) can be omitted.
By assuming no constraints on the maximum delay, all CNs
become delay-eligible for all GEMs (i.e., N (s) = N). Now,
the placement of GEMs is decided solely by the resources on
each CN. We can simplify these resources to just one type,
such as CPU. The problem of optimizing GEM placement
then becomes identical to the multiple knapsack problem,
where N represents the set of knapsacks, S the set of items,
the CN’s CPU capacity represents the capacity of each
knapsack, and the CPU demand of the GEMs represents the
sizes of the items to be selected, and the profit for item s in
knapsack n is represented by α− dtot(s, n).

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

IV. APPROXIMATED ALGORITHMS
Property 1 implies that an optimal solver for the GEM
placement problem is likely not scaling well with problem
instance size, and this motivates the design of an
approximated approach able to solve large instances of the
problem within a constrained time-frame. In response, we
have introduced two approximate search algorithms inspired
by local search methods, MAP-MIND and MAP-MIND*,
each striking a distinct balance between efficiency and
computational complexity.

We note that our devised approach is general and
implementation-independent. It can be integrated with any
resource orchestrator, e.g., Kubernetes for the case of
virtualization obtained with containers.

A. THE MAP-MIND ALGORITHM
We are interested in scalable algorithms able to cope with
large input instances. We propose an approximate search
algorithm called MAximize-Placement and MINimize-Delay
(MAP-MIND). MAP-MIND aims to simplify and solve the
problem of optimized placement by addressing the multi-
criteria objective function (1) through two distinct phases.
The first phase, denoted as MAP, is devoted to maximizing
the acceptance of the game sessions’ requests, and the second
one, denoted as MIND, aims at minimizing the average
delay experienced by the players. Coherently with (1), MAP-
MIND prioritizes maximizing acceptance over minimizing
the average delay.

In the first phase, the algorithm strives to accommodate
as many game session requests as possible, regardless of
the incurred delay. To do so, the GEMs are sorted based on
the maximum delay allowed by their players (i.e., dmax

s for
GEMs). This choice is motivated by the fact that it gives
more chances to the GEMs with small delay requirements
to be placed in nodes closer to the access nodes compared
to other GEMs with large delay requirements. The algorithm
starts to place the sorted GEMs using a Best-Fit approach [9],
where the GEMs’ resource requirements are considered with
respect to the available resources on the computing nodes.
The algorithm divides the sum of each resource requirement
by the total available resources of the same type within
the network. The resource with the highest ratio is deemed
the decision-maker resource by the Best-Fit algorithm. This
algorithm prioritizes nodes with smaller available values of
the decision-maker resource. As a result, it optimizes the
utilization of available resources throughout the network.

For the second phase, the placement solution of the first
phase is used as the initial solution to minimize the delays.
This phase is iterative and adopts two possible steps to modify
the current solution: (i) move, (ii) swap. A node n is said
to be eligible for GEMs if it belongs to N (s), it has enough
resources to run GEMs, and there is enough bandwidth along
the routing path, during the current iteration of the algorithm.
The move step tries to move each placed GEM to another
eligible node, if available, which gives the players of that
GEM the minimum experienced delay. This procedure will

Input: S: Set of game session requests
Input: T = (N , E): Network topology
Input: Available bandwidths and resources in the network
1: procedure MAP-MIND
2: PHASE 1: MAximize Acceptance (MAP)
3: Y ← ∅ ▷ Initialize temporary placement
4: xsn ← 0 ∀s ∈ S, n ∈ N ▷ Initialize GEMs placement

5: k1 = argmax
k∈K

(∑
s∈S ρks∑
n∈N rkn

)
▷ Identify the relative bottleneck resource

6: sort s ∈ S w.r.t. dmax
s in incr. order ▷ Sort by maximum tolerable delay

7: for s ∈ sorted S do ▷ For each game session request s
8: n′ ← −1, score←∞ ▷ Initialize best node and its score
9: for n ∈ N do ▷ Find the best eligible node
10: if (n is eligible for s) ∧ (rk1n < score) then
11: score← rk1n , n′ ← n ▷ Update selected node and score
12: if n′ ̸= −1 then ▷ If the best node is found
13: Y ← Y ∪ {(s, n′)} ▷ Update the temp placement
14: xsn′ ← 1 ▷ Update placement variables
15: Update the available bandwidth along P(s, n′) and rkn′ ∀k ∈ K

16: PHASE 2-1: MINimize average Delays (MIND:Move step)
17: sort Y w.r.t. dtot(s, n) in desc. order ▷ Sort by total delay
18: Improved = True
19: while Improved = True do ▷ Iterate until no improvement is experienced
20: Improved = False
21: for (s, n) ∈ sorted Y do ▷ For each GEM
22: n′′ ← −1,∆← 0 ▷ Initialize best destination node and its score
23: for n′ (̸= n) ∈ N do
24: if (n′ is eligible for s) ∧ (dtot(s, n)− dtot(s, n′) > ∆) then
25: n′′ ← n′,∆← dtot(s, n)− dtot(s, n′) ▷ Update node, score
26: if ∆ ̸= 0 then
27: Y ← Y \ {(s, n)} ∪ {(s, n′′)} ▷Move from n to n′′

28: xsn′′ ← 1, xsn ← 0 ▷ Update placement variables
29: Update the available bandwidth along P(s, n) and P(s, n′′)
30: Update rkn , r

k
n′′ ∀k ∈ K

31: Improved = True
32: PHASE 2-2: MINimize average Delays (MIND:Swap step)
33: Improved = True
34: while Improved = True do ▷ Iterate until no improvement is experienced
35: Improved = False
36: for (s, n) ∈ sorted Y do ▷ For each GEM
37: (s′′, n′′)← (−1,−1),∆← 0 ▷ Initialize best swap and its score
38: for (s′, n′)(̸= (s, n)) ∈ sorted Y do ▷ For each GEM
39: if (n′ is eligible for s) ∧ (n is eligible for s′) then
40: ∆′ ← dtot(s, n) + dtot(s′, n′)− dtot(s, n′)− dtot(s′, n)
41: if∆′ > ∆ then
42: (s′′, n′′)← (s′, n′) ▷ Update candidate
43: ∆← ∆′ ▷ Update score
44: if ∆ ̸= 0 then
45: Y ′ ← Y ′ \ {(s, n), (s′′, n′′)} ∪ {(s, n′′), (s′′, n)} ▷ Swap
46: xsn ← 0, xs′′n′′ ← 0 ▷ Update old placement variables
47: xsn′′ ← 1, xs′′n ← 1 ▷ Update new placement variables
48: Update the available bandwidth along P(s, n) and P(s′′, n′′)
49: Update the available bandwidth along P(s′′, n) and P(s, n′′)
50: Update rkn , r

k
n′′ ∀k ∈ K

51: Improved = True
52: return {xsn}s∈S,n∈N

FIGURE 3. Pseudocode of MAP-MIND.

be repeated until no GEM movement is available to reduce
the players’ experienced delay. In the subsequent swap step,
the algorithm tries to swap the position of each GEM with
another GEM to reduce the average delay experienced across
all players. The reason behind prioritizing the move step over
the swap step is due to the Best-Fit approach used in the
first phase, which may lead to having some empty nodes
(especially at low loads) that could be efficiently used by the
move steps rather than the swap steps.

The pseudocode of MAP-MIND is provided in Fig. 3. It
takes as input S with the game session requests, the graph
describing the network topology, the available bandwidth on
the links, and the available resources on the nodes.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

In the first phase, after the initialization of the placement
variables and a temporary placement set, the decision-maker
resource will be determined (ln. 3-5). Now, GEMs are sorted
in increasing order based on their maximum tolerable end-
to-end delay (ln. 6). Then, for each GEM in sorted order, the
best destination node and its score will be initialized (ln. 7-8).
Then, all the nodes are checked to find the eligible node with
the minimum available decision-maker resource, coherently
with a Best-Fit approach (ln. 9-11). TheGEMand the selected
node are then added to the set of accepted GEMs, while the
related placement variable and the available bandwidth and
resources of the network are updated accordingly (ln. 12-15).
If no eligible node is found, the GEM’s related placement
variables will remain unassigned.

Then, the second phase starts. During the first step (move),
the accepted GEMs are sorted based on their average players’
delay (ln. 17). For each accepted GEM, the algorithm tries
to find another eligible node that minimizes the end-to-end
delay compared to the current GEM placement. If such a
node is found, the GEM placement is updated accordingly,
and the resources of the source and destination nodes along
with the corresponding bandwidths are updated (ln. 19-31).
This process is repeated until no improvementmove is found.
During the second step (swap), the algorithm finds pairs

of accepted GEMs whose swap will be feasible in terms
of maximum delay, bandwidth, and resources, and the
overall delay will be decreased (ln. 33-43). If such a
pair is found, it updates the placement allocation and the
corresponding resource availability (i.e., bandwidth, memory,
CPU, and storage) (ln. 45-50). This process is iterated until no
improving swaps can be executed.

We also present a simplified version ofMAP-MIND, called
MAP-MIND*, whose pseudocode is reported in Fig. 4. It
mimics the original MAP-MIND structure in two phases, but
in the second phase, it combines the move step (ln. 19-27)
and the swap step (ln. 29-41) at each iteration. This approach
allows us to reduce the running time compared to MAP-
MIND but at the cost of slightly more delay, as shown in the
following section.

V. NUMERICAL EVALUATION
A. SIMULATION METHODOLOGY
To evaluate the performance of our proposed algorithms, we
developed an event-driven simulator using Python 3.8 on an
Ubuntu 20.04.6 LTS system with 16GB RAM and an 8X
Intel Core-i5-10210U-1.60GHz CPU.We also run an optimal
solver (OPT) obtained by implementing the ILP formulation
presented in Sec. III using AMPL as modeling language and
Cplex 12.8.0 as a solver. The solver runs on anUbuntu 18.04.6
LTS system with 32GB of RAM and a 12X Intel Core-i7-
8700-3.20GHz CPU.

The network topology is a random geometric graph with a
specified number of nodes (|N |) and average degree (g). We
only considered connected instances of the graph. The edges
of the graph represent the communication links between pairs
of nodes, and the propagation delays are set proportional to

Input: S: Set of game session requests
Input: T = (N , E): Network topology
Input: Available bandwidths and resources in the network
1: procedure MAP-MIND*
2: PHASE 1: MAximize Acceptance (MAP)
3: Y ← ∅ ▷ Initialize temp placement
4: xsn ← 0 ∀s ∈ S, n ∈ N ▷ Initialize GEMs placement

5: k1 = argmax
k∈K

(∑
s∈S ρks∑
n∈N rkn

)
▷ The relative bottleneck resource

6: sort s ∈ S w.r.t. dmax
s in incr. order ▷ Sort by maximum tolerable delay

7: for s ∈ sorted S do ▷ For each game session request s
8: n′ ← −1, score←∞ ▷ Initialize best node and its score
9: for n ∈ N do
10: if (n is eligible for s) ∧ (rk1n < score) then
11: n′ ← n, score← rk1n ▷ Update selected node and score
12: if n′ ̸= −1 then
13: Y ← Y ∪ {(s, n′)} ▷ Update the temp placement
14: xsn′ ← 1 ▷ Update placement variables
15: Update the available bandwidth along P(s, n′) and rkn′ ∀k ∈ K

16: PHASE 2: MINimize average Delays (MIND:MOVE or SWAP)
17: sort Y w.r.t. dtot(s, n) in desc. order ▷ Sort by total delay
18: for (s, n) ∈ sorted Y do
19: n′′ ← −1,∆← 0 ▷ Initialize best destination node and its score
20: for n′ (̸= n) ∈ N do ▷ Check for possible MOVE
21: if (n′ is eligible for s) ∧ (dtot(s, n)− dtot(s, n′) > ∆) then
22: n′′ ← n′,∆← dtot(s, n)− dtot(s, n′) ▷ Update node, score
23: if ∆ ̸= 0 then ▷MOVE
24: Y ← Y \ {(s, n)} ∪ {(s, n′′)} ▷Move from n to n′′

25: xsn′′ ← 1, xsn ← 0 ▷ Update placement variables
26: Update the available bandwidth along P(s, n) and P(s, n′′)
27: Update rkn , r

k
n′′ ∀k ∈ K

28: else ▷ Check for possible SWAP
29: (s′′, n′′)← (−1,−1),∆← 0 ▷ Initialize best swap and its score
30: for (s′, n′)(̸= (s, n)) ∈ sorted Y do ▷ For each GEM
31: if (n′ is eligible for s) ∧ (n is eligible for s′) then
32: ∆′ ← dtot(s, n) + dtot(s′, n′)− dtot(s, n′)− dtot(s′, n)
33: if∆′ > ∆ then
34: (s′′, n′′)← (s′, n′),∆← ∆′ ▷ Update GEM, score
35: if ∆ ̸= 0 then ▷ SWAP
36: Y ′ ← Y ′ \ {(s, n), (s′′, n′′)} ∪ {(s, n′′), (s′′, n)}
37: xsn ← 0, xs′′n′′ ← 0 ▷ Update old placement variables
38: xsn′′ ← 1, xs′′n ← 1 ▷ Update new placement variables
39: Update the available bandwidth along P(s, n) and P(s′′, n′′)
40: Update the available bandwidth along P(s′′, n) and P(s, n′′)
41: Update rkn , r

k
n′′ ∀k ∈ K

42: return {xsn}s∈S,n∈N

FIGURE 4. Pseudocode of MAP-MIND∗.

the link lengths. For generality, we normalized the delay of
each link to the average of all shortest paths in the same graph.
We assumed a negligible processing delay for all GEMs at
each node and null network access delay, since for simplicity
(but without loss of generality) we defined dmax

s for game
session s at the net of the processing delays and access delays.
We also assumed unlimited bandwidth and routing based
on the shortest path. We considered two main settings for
the maximum tolerable delay of the GEMs: (i) No Delay
Constraint (NDC) in which dmax

s = ∞ to model all the games
for which the perceived delay is not a relevant constraint (e.g.,
chess); (ii) Uniform Delay Constraint (UDC) in which dmax

s
is uniformly distributed between 0 and maximum Round Trip
Time (RTT) in the network graph, to model a large variety of
game scenarios with different sensitivity to delays. Players’
access nodes for each game session are selected uniformly
from the available nodes, where the same node can be selected
more than once.

Each node is equipped with CPU, memory, and storage
capacities set to 5 GHz, 32 GB, and 512 GB, respectively.

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

For every GEM, the requirements for CPU, memory, and
storage are uniformly distributed between 0 and 1 GHz, 0
and 1 GB, and 0 and 1 GB, respectively. We determine the
Utilization Factor (UF) based on the system’s bottleneck
resource. According to the above scenario settings, we expect
the CPU to be such a bottleneck. Our choice is influenced
by the observation that, in real-world scenarios, one resource
will invariably become the limiting factor in placement
decisions. While our primary focus is on the bottleneck
resource, we also factor in other potential non-bottleneck
resources in our requirements. This approach ensures that
we consider the influence of all resources on the algorithms.
To achieve the desired UF, we generate GEMs sequentially.
This generation continues until the cumulative bottleneck
resource requirements of the produced GEMs in S either
match or surpass the product of the target UF and the total
CPU capacity across the entire network.

B. TEST SCENARIOS

We explore the following test scenarios:

• Scenario 1: Varying Number of Players per GEM -
We examine the influence of changing the number of
players per GEM, i.e., for each game session, varying
it in the set {1, 2, 10, 50}, with |N | = 32, g = 4, and
UF = 0.8. We chose these values based onmodern game
genres. Single-player games like Red Dead Redemption
II [10] and Horizon Forbidden West [11] often require
substantial resources due to large maps or complex
AI. Two-player games can be competitive, like Street
Fighter 6 [12] and FIFA 23 [13], or collaborative like
Portal 2 [14]. In eSports, games typically involve 10
players with two teams of 5 competing, as seen in Dota
2 [15], League of Legends [16], Valorant [17], and
Counter-Strike [18]. Battle royales like Fortnite [19],
Player Unknown Battle Grounds (PUBG) [20], and
Fall Guys [21] fall in the 50-player category, although
Fortnite and PUBG can start with up to 100 players,
and Fall Guys with 40 to 60, depending on the map.
However, matchmaking timeout issues often reduce the
starting player count, making an average of 50 players a
reasonable assumption for our simulations.

• Scenario 2a: Varying Number of CNs - We explore
the system’s behavior with different network sizes by
varying |N | ∈ {16, 32, 48}, with g = 4, and UF = 0.8.

• Scenario 2b: Scaling resources of CNs - We explore
the system’s behavior where the resources of nodes
are scaled by a factor in {1, 4, 16} relative to a base
resource amount for the compute nodes (CPU, memory,
and storage) with |N | = 32, g = 4, and UF = 0.8.

• Scenario 3: Varying Average Graph Degree - We
investigate the impact of varying connectivity levels
within the network, which is a primary determinant of
RTT latency in a shortest-path routed network. This
investigation involves varying g ∈ {3, 4, 5}, with |N | =
32 and a utilization factor of UF = 0.8.

• Scenario 4:VaryingUF - To study how different levels of
resource utilization affect the system’s performance, we
vary theUF∈ {0.1, 0.5, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99},
with |N | = 32, and g = 4. It is worth noting
that by considering the variation in UF, we inherently
incorporate the impact of changing the number of game
session placement requests.

• Scenario 5: Varying UF with Heterogeneous Resources
- We consider a scenario where the nodes’ resources are
randomly selected to be either in {1GHz, 8GB, 128GB}
or in {5 GHz, 32 GB, 512 GB} (i.e., CPU, memory, and
storage respectively), simulating a more heterogeneous
environment and reflecting variations in different
resources across nodes. Similar to scenario 4, we vary
the UF ∈ {0.1, 0.5, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99},
with |N | = 32, and g = 4.

• Scenario 6: Multiple-resource Bottleneck - We consider
a scenario to assess how the algorithms behave in
uncommon situations where more than one resource
acts as a bottleneck. To create this scenario, we
replicated scenario 4 but introduced two resource
bottlenecks by maintaining the same ratio between the
two resource requirements of the GEMs (e.g., CPU and
memory) and the corresponding available resources in
the network. For each GEM, the CPU, memory, and
storage requirements are uniformly distributed between
0 and 1GHz, 0 and 6.4GB, and 0 and 1GB, respectively.

• Scenario 7: Batch-placement in an online scenario - We
explore applicability to dynamic resource availability in
an online scenario showcasing a realistic system with
game sessions arriving and leaving. We consider in total
105 requests for GEM to arrive following a Poisson
process. Following the realistic cases, the game session
associated with each GEM has a random duration in
the interval [60, 3600] s (e.g., the average game session
length in PUBG [20]), after which the GEM releases
the occupied resources. We assume that |N | = 32 and
g = 4. The CPU is considered the sole bottleneck,
creating a single-bottleneck resource scenario even with
multiple resources, reflecting a realistic situation. We
set the offered load to the network to be 0.5, resulting
in average inter-arrival times for the GEMs of 11.25 s.
We run the placement algorithm every∆t time, denoted
as ‘‘batch-window’’, on all the GEMs that arrived
during the last batch-window, considering the available
resources. All the unplaced GEMs are dropped. We
set ∆t ∈ {0, 11.25, 25, 50, 100, 200, 400} s, where the
value 0 means that the placement algorithm runs GEM
by GEM. The corresponding average batch sizes are
shown in {0, 1, 2, 4.5, 9, 18, 36} GEMs respectively.
The different values for ∆t reflect different tradeoffs
between computation complexity and reactivity to
changes in the workload. The number of players
for each incoming GEM is uniformly selected from
{1, 2, 4, 10, 50} to showcase a real system in which
different kinds of games exist. When each game session

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

finishes, the corresponding resources are released.
This scenario showcases our approach’s adaptability to
online environments, using the batch-window concept
to balance complexity and workload responsiveness in
fluctuating cloud resource availability scenarios.

We considered both 1-player GEMs and 2-player GEMs as 2
sub-scenarios for each of scenarios 2 to 6. These scenarios
collectively provide a comprehensive system examination,
considering various parameters and configurations. By
exploring these different aspects, including the specific
cases of 1-player and 2-player GEMs, we can derive a
robust understanding of the system’s characteristics and
performance under diverse conditions.

For each test, we generated different random network
topologies and for each topology, we generated multiple
random sets S according to the mentioned parameters.
Wemeasured twomainmetrics: the acceptance probability

for the GEMs and the average normalized delay, averaged
across all the players and normalized based on the average
RTT of each network topology. Finally, we compared the
complexity and execution time of all the algorithms. It is
important to note that the described scenarios represent a
selected subset of multiple test scenarios we considered to
examine the algorithms’ behavior in various situations. We
excluded test cases that showed behavioral results similar to
those already reported.

C. ALTERNATIVE ALGORITHMS
For comparison, we considered the optimal algorithm,
denoted as OPT, solving the problem (1)-(5). To our
knowledge, prior research has not delved into heuristic
algorithms for the game engine module placement problem,
rendering our study pioneering in this area. Thus, for
comprehensive comparison, we evaluated the following
alternative algorithms.

• RaNDom (RND): It selects the GEMs in random order.
For each selected GEM, it finds an eligible node in
random order.

• Quality-driven heuristic* (QDH*): It selects the GEMs
in random order. For each selected GEM, it finds an
eligible node by searching the nodes with dtot(s, n)
in increasing order. The algorithm is an extension
for multiplayer to QDH proposed in [22], which was
designed for the placement of single-tenant containers.

• First-Fit-Decreasing (FFD): It sorts the GEMs based
on the CPU requirement in decreasing order. For each
GEM, it finds an eligible node by searching the nodes
in random order. The algorithm belongs to the First-Fit-
Decreasing (FFD) heuristics that have been shown to
have given often good results for one-dimensional bin-
packing problems [23].

• MAP-RaNDom_First (MAP-RNDF): It is a two-phase
algorithm, with the first phase identical toMAP inMAP-
MIND. For the second phase, it selects the GEMs in
random order, and for each selected GEM, it checks

FIGURE 5. Probability of dropping game session requests under scenario
1 for UDC.

the nodes in random order to find an eligible node that
reduces the overall delay if the GEM is moved there.
Then it checks the other GEMs in random order to find
the first one that is eligible to swap with and reduces the
overall delay.

• MAP-RaNDom_Greedy (MAP-RNDG): It is a two-phase
algorithm similar to MAP-RNDF. But in the second
phase, for each randomly selected GEM, it checks all
the nodes for themove or swap steps (as inMAP-MIND)
and chooses the one that minimizes the overall delay.

• MAP-STeepest_Descent (MAP-STD): It is a two-phase
algorithm extending the search options compared to
MAP-RNDG. At each iteration, for each GEM, it
considers all possible eligible nodes for the move and
all possible GEMs to swap with and selects the option
that minimizes the overall delay. It keeps iterating until
no improvement on the overall delay is possible.

D. SIMULATION RESULTS
It is important to note that, in all experiments, the
dropping probability and delay graphs should be analyzed
in conjunction, with a particular emphasis on the dropping
probability as the key objective. Additionally, for all two-
phase algorithms where MAP serves as the first phase (i.e.,
MAP-MIND, MAP-MIND*, MAP-RNDF, MAP-RNDG,
and MAP-STD), the acceptance probability is the same.
To maintain clarity in the probability graphs across all
experimental scenarios and avoid redundancy, we represent
all these algorithms solely with MAP.

Scenario 1: Varying the number of players per GEM
In Fig. 5, we report the acceptance ratio for the UDC setting,
whereas Fig. 6 shows the average normalized delay for NDC
and UDC settings, under scenario 1. We have omitted the
dropping probability for NDC since it consistently remains
at zero.
In both UDC and NDC settings, each algorithm

individually exhibits similar behavior. Generally, in the case
of multi-player GEM with a high number of players, all
algorithms tend to exhibit similar delays. This phenomenon
occurs because, in high-player GEM scenarios, player
distribution across different nodes forces GEM placement
onto nodes with greater network centrality. This can result in

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

FIGURE 6. Average normalized delay under scenario 1 for UDC (left) and
NDC (right).

TABLE 2. Average execution time [s] under scenario 1 for UDC.

Algorithm 1-player 2-player 10-player 50-player

RND 0.010 0.012 0.035 0.143
FFD 0.016 0.019 0.048 0.179
QDH* 0.020 0.028 0.112 0.442
MAP 0.027 0.032 0.09 0.332

MAP-RNDF 0.813 0.830 1.05 2.05
MAP-RNDG 0.908 1.03 1.49 3.17
MAP-MIND* 0.873 0.969 1.54 3.71
MAP-MIND 1.37 1.96 6.30 15.6
MAP-STD 39.8 48.6 166 613

OPT 0.209 0.264 3.44 840 (i)

(i) Calculated only for the instances that were finished before 900 s wall-
clock time (i.e., 88% of them).

higher dropping in less efficient algorithms, particularly in the
case of UDC. However, certain algorithms opted to drop some
GEMs, which subsequently led to lower delays in UDC, as we
will elaborate on shortly. Lastly, as the number of players per
GEM is reduced, higher efficiency algorithms demonstrate
a greater reduction in the delay while maintaining a low
dropping probability.

From the figures, as expected, all two-phase algorithms
that use MAP as their first placement phase show the
closest results for dropping probability to OPT. They have
no dropping for 1-player GEMs, while they show a very
small dropping probability for 2-player GEMs and amoderate
increase in dropping probability up to 50-player GEMs.
Among them, in terms of delay, MAP-MIND and MAP-STD
show the closest delay to OPT while starting with MAP-
MIND*, MAP-RNDG, and MAP-RNDF the experienced
delay becomes worse. On the other hand, all the one-
phase algorithms such as RND, QDH*, and FFD start
dropping GEMs even for 1-player GEMs. For GEMs with
a higher number of players, their dropping probability
increases noticeably. RND shows the best probability of
dropping among the three mentioned ones as it performs load
balancing, which results in the highest delay as shown in the
figures as well. QDH* achieves lower delay as it prioritizes
reducing delay over dropping, so it drops more than RND
while achieving near-optimal delay. As anticipated, FFD
displays the worst delays since its primary goal is to
enhance the acceptance probability. Interestingly, it presents
the highest drop probability for 1-player and 2-player GEM

scenarios. This is because it overlooks another crucial GEM
placement constraint: the GEMs’ maximum tolerable delay.
However, for a large number of players per GEM, specifically
more than 10 players, the suitable nodes based on delay
for different GEMs primarily narrow down to the network
central nodes. Now, its dropping probability becomes less
than QDH* algorithm and converges to the RND algorithm
as it does a simple load balancing. Notably, all algorithms,
except RND and FFD, converge to a similar value for the
delay as the number of players per GEM increases.
Table 2 presents the execution times for different

algorithms under scenario 1. Notably, MAP-STD, the
heuristic akin to MAP-MIND, exceeds typical setup times
for real game environments. In contemporary multiplayer
games, a wait time of approximately 10 s (up to 60 s before
gameplay) is deemed acceptable for establishing co-players
or rivals in an arena. Conversely, MAP-MIND operates
under a worst-case scenario involving over 12, 000 players
across approximately 256 games, each accommodating
50 players with diverse delay thresholds. Despite this
complexity, the algorithm achieves near-optimal delay and
less than 8% dropping. MAP-MIND*, while providing
expedited execution at the expense of slightly increased delay,
demonstrates the potential for further time reduction through
efficient implementation. A comparison of MAP with other
2-phase algorithms underscores the negligible time required
for the MAP phase relative to the subsequent phase, focused
on refining placement solutions through moves and swaps to
minimize delays.
Optimal results for both 1-player and 2-player GEM

scenarios typically require less than 1 s of computation
time. However, for the 10-player GEM scenario, the average
execution time extends to a few tens of seconds, with
some instances taking approximately 40 s, indicating notable
variability. Remarkably, for 50-player GEM scenarios,
computation time varies significantly, with instances being
resolved in under 10 s or requiring over 900 s.

Scenario 2a: Varying the number of CNs
In this experiment, we report results under scenario 2a and
only for the UDC case. This is because, in the case of NDC, all
algorithms’ dropping probability is zero, and the delay results
are similar to the UDC case. We report for the 1-player and
2-player GEM cases. The dropping probability and the delay
experienced by the GEMs for UDC are shown in Fig. 7 and
Fig. 8 respectively. The results regarding the experienced
delay under scenario 2a are entirely consistent with the
results of the 1-player and 2-player GEMs in the previous
experiments under scenario 1. An interesting observation
is that by increasing the number of CNs, the dropping
probability of one-phase algorithms (i.e., FFD, QDH*, and
RND), decreases for both 1-player and 2-player GEMs. This
is due to the increase in possible CNs for GEM placement.
For 1-player GEMs, the delay for smarter algorithms reduces
by increasing the CNs, but in 2-player GEMs, only the
central CNs are eligible due to the possible positions of the

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

FIGURE 7. Probability of dropping under scenario 2a for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

FIGURE 8. Average normalized delay under scenario 2a for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

TABLE 3. Average execution time [s] under scenario 2a for UDC.

Algorithm |N | = 16 |N | = 48
1-player 2-player 1-player 2-player

RND 0.005 0.007 0.019 0.023
FFD 0.006 0.008 0.034 0.041
QDH* 0.009 0.013 0.040 0.059
MAP 0.010 0.013 0.055 0.073

MAP-RNDF 0.238 0.225 2.04 2.09
MAP-RNDG 0.246 0.274 2.46 2.78
MAP-MIND* 0.226 0.253 2.33 2.63
MAP-MIND 0.387 0.425 4.39 5.70
MAP-STD 4.41 4.94 158 206

OPT 0.084 0.098 0.489 0.653

2 players of each GEM. In summary, MAP-based algorithms
experience the closest dropping probability to OPT, while
one of our proposed algorithms, MAP-MIND, is also close
to OPT in terms of experienced delay.

We conducted a comparison of algorithm execution times
for this scenario, where the average number of GEMs is
128, 256, and 384 respectively. The results are presented in
Table 3. Interestingly, MAP-STD, the heuristic most similar
to MAP-MIND, requires 10 to 30 times longer to achieve
similar delay results. OPT consistently achieves results in less
than 1 s on average, irrespective of the number of CNs. MAP-
MIND* demonstrates lower computation times compared to
MAP-MIND. QDH* and MAP-STD yield improved delay
results, while the first exhibits increased GEM dropping and
the second significantly longer computation time.

FIGURE 9. Probability of dropping under scenario 2b for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

FIGURE 10. Average normalized delay under scenario 2b for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

Scenario 2b: Scaling resources of CNs
Under scenario 2b, we present only the results for the UDC
case. The reason is that, similarly to scenario 2a in the NDC
case, all algorithms exhibit a null dropping probability, and
the delay results align closely with those observed in the UDC
scenario. The dropping probability and the delay experienced
by the GEMs for UDC are shown in Fig. 9 and Fig. 10
respectively.
As anticipated, our proposed algorithms maintain a

minimum dropping probability of zero (similar to optimal)
across all network scales for 1-player GEMs. With increased
resources, QDH* and RND converge rapidly to our
algorithms due to the widened disparity between GEM and
resource sizes, mitigating competition for available resources.
In terms of delay, MAP-MIND exhibits behavior close
to optimal, almost matching QDH*, while MAP-MIND*
trades off some delay for execution speed, outperforming
competitors except QDH*. For multiplayer GEMs, all MAP-
based algorithms outperform RND, QDH*, and FFD in
dropping probability, approaching results closest to optimal.
Regarding the delay, all algorithms demonstrate similar
behavior, with RND and FDD showing slightly worse delays.

Scenario 3: Varying average graph degree
An interesting, yet expected, observation is that by increasing
the average degree of the graph, the dropping probability
of the less sophisticated algorithms slightly decreases for
UDC with 2-player GEMs. This is because as the graph

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

FIGURE 11. Probability of dropping under scenario 3 for UDC with
2-player GEMs.

FIGURE 12. Probability of dropping under scenario 4 for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

becomes more connected, the length of the shortest paths
decreases, which is equivalent to reducing network delays.
This leads to more delay-eligible CNs for less sophisticated
algorithms at each GEM placement, thereby reducing their
dropping probability. For NDC, no dropping occurs for any
of the algorithms. However, we observed that altering the
average degree of the graph does not affect the average
normalized delay results, and all previous observations
regarding the behavior quality of the algorithms remain
consistent. The dropping probability for UDC with 2-player
GEMs is illustrated in Fig. 11.

Scenario 4: Varying the utilization factor
The dropping probability for UDC with both 1-player and
2-player GEMs is illustrated in Fig. 12. From the results of
NDC, we report the dropping probability of both 1-player
and 2-player GEMs as shown in Fig. 14. This is because it
presents the only interesting behavior that differs from the
aforementioned scenario. The delay results for UDC with 1-
player GEMs are illustrated in Fig. 13. We do not report the
delay results for UDC with 2-player GEMs, as it does not
provide any interesting observations, being similar to the 2-
player case in Fig. 8.

For 1-player GEMs, considering Fig. 13 and Fig. 12
together, as expected, RND and FFD exhibit the worst delay
since they are indifferent to the achieved delay. RND shows
some minor dropping, especially at high loads. However,
interestingly and contrary to what is expected, FFD displays
a considerable dropping probability (i.e., the worst among
all algorithms for UF ≥ 0.5). This is due to the algorithm

FIGURE 13. Ave. normalized delay under scenario 4 for UDC with 1-player
GEMs.

FIGURE 14. Probability of dropping under scenario 4 for NDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

ignoring the important role of maximum tolerable delay for
GEMs while trying to maximize placement.
On the other hand, QDH* achieves a good delay, almost

approximating the OPT, which is gained by dropping some
of the GEMs. All the MAP-based algorithms show almost
zero dropping, even at the highest loads, while MAP-
STD and MAP-MIND display the best delays, completely
approximating the OPT. Notably, as discussed in Sec. V-E,
the execution time of MAP-MIND, is much less than
that of MAP-STD, making MAP-MIND the winner. Also,
MAP-MIND* demonstrates a completely acceptable delay
compared to other algorithms by considering its brilliant mix
of execution time and dropping probability.
In the case of 2-player GEMs, other than RND and FFD,

which achieve the worst delay, the remaining algorithms
show almost identical delay results. The difference lies in the
dropping probability, where we observe an increase for all
algorithms, except for the OPT, compared to 1-player GEMs.
This behavior for 2-player GEMs is expected, as in most
cases, only the central CNs are eligible due to the potential
positions of the two players of each GEM.
For NDC with 1-player GEMs, when the offered load

exceeds 0.95 of the network resources, RND and QDH*
start to drop the GEMs, even for NDC. This highlights the
weakness of the algorithms that do not consider placement
maximization in their logic. Now, compared to UDC cases,
FFD can demonstrate its placement power by having no
dropping, even at the highest load, as it does not consider the
maximum tolerable delay as a constraint for GEM placement.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

FIGURE 15. Probability of dropping under scenario 5 for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

FIGURE 16. Ave. normalized delay under scenario 5 for UDC with 1-player
GEMs.

MAP-based algorithms only show negligible dropping at the
highest load.

Scenario 5: Varying UF with heterogeneous resources
The dropping probability for both 1-player and 2-player
GEMs and the average normalized delay for 1-player GEMs
are illustrated in Fig. 15 and Fig. 16, respectively.

When contrasted with a network featuring homogeneous
resources, all algorithms with heterogeneous resources
manifest qualitatively similar behavior regarding average
normalized delay and dropping probability. As expected,
in the presence of heterogeneous resources, we observe a
small increase in both delays at low loads and dropping
probabilities. The former observation can be attributed to the
restricted resources on certain CNs, resulting in the placement
of some GEMs on more distant CNs. The latter observation
is a direct consequence of the former since distant nodes are
more likely to exceed the maximum tolerable delay for the
mentioned GEM, leading to its dropping.

Scenario 6: Multiple-resource bottleneck
The dropping probability for both 1-player and 2-player
GEMs and the average normalized delay for 1-player GEMs
are illustrated in Fig. 17 and Fig. 18, respectively. When
comparing the results with scenario 4 (i.e., single-resource
bottleneck), no significant differences are observed except
at very high loads (i.e., UF ≥ 0.95). At these high loads,
all algorithms begin to drop the GEMs more rapidly. By
concentrating solely on one bottleneck during placement,

FIGURE 17. Probability of dropping under scenario 6 for UDC with: i)
1-player GEMs (left), ii) 2-player GEMs (right).

FIGURE 18. Ave. normalized delay under scenario 6 for UDC with 1-player
GEMs.

another bottleneck can emerge, leading to drops. In such
cases, even the OPT struggles to accommodate all the GEMs
within the network.

Scenario 7: Batch-placement in an online scenario
The dropping probability and the average normalized delay
for an online scenario are illustrated in Fig. 19.
In general, the decision to place the newly arrived GEMs

at the end of each batch-window is based on a snapshot
of GEMs, lacking foresight into upcoming GEMs in future
windows. This myopic view can lead to sub-optimal global
decisions over the entire simulation period. The effect should
be explained by simultaneously considering two factors: (i)
batch-window size∆t , and (ii) the efficiency of the algorithm.
Here ∆t has a paramount effect, as a larger size of collected
GEMs provides more information, enabling the proposed
algorithms to make more informed decisions about GEM
placement and lowering the probability of dropping.
From Fig. 19 (left graph), it is evident that increasing

the value of ∆t reduces the dropping probability for all
algorithms. On the other hand, when algorithms make
locally optimized decisions based on the current window’s
GEMs, they may allocate resources in a way that efficiently
satisfies immediate GEMs but could potentially block
critical resources needed for special or delay-critical GEMs
in subsequent windows. Thus, more locally optimized
algorithms are likely to achieve worse results globally for the
smallest windows and better results for the largest windows.
This is coherent with the OPT results in Fig. 19 (left graph).

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

FIGURE 19. Probability of dropping (left) and ave. normalized delay (right) in UDC and under scenario 7.

Also, MAP-MIND demonstrates the same behavior,
having worse results than MAP-MIND* for small windows.
Considering the small structural difference between the
two algorithms, investigating larger windows than shown in
Fig. 19 is needed to show that the two algorithms eventually
converge together and possibly change their positions as
forecasted above. Regarding the delay, for all window sizes,
OPT outperforms the algorithms as it aims to minimize
placement delay, while MAP-MIND performs slightly better
than MAP-MIND* due to slightly more dropped GEMs. It
is worth reminding that, due to the nature of MAP as the
first phase in our algorithms, to maximize placement, it trades
delay for acceptance, leading to high acceptance at the cost of
large but even acceptable delay (see Fig. 19 right graph).

On the other hand, introducing a collection window alters
the incoming pattern, creating a burst of GEMs to place,
which leads to raising the dropping probability. For instance,
consider two distinct GEMs arriving at different times where
only one specific server can serve them. If the computation
of the first GEM concludes before the arrival of the second,
one of them would need to be dropped if they coexist within
the same window under batch placement. This scenario
highlights the limitations of both window-based processing
of collected GEMs and locally optimized decision-making. In
the NDC case, where servers are interchangeable for GEMs,
the effect of the window is limited to merely extending the
average waiting time for GEMs to be served, which may
result in dropping excess GEMs if∆t exceeds the maximum
computation time. Conversely, in the UDC scenario, where
servers are not interchangeable for GEMs (i.e., some servers
are not suitable in terms of delay for some GEMs), a
combination of the two aforementioned effects is observed.

Interestingly, in the current landscape of online gaming,
a wait time averaging more than 60 s to start a game is
likely to be considered inconvenient by players. This suggests
a window size not greater than 60 s, which, according to
Fig. 19, showcasesMAP-MIND* as a viable choice for online
scenarios given its simplicity and efficiency.

E. COMPUTATIONAL COMPLEXITY OF DIFFERENT
ALGORITHMS
As a theoretical performance bound, we investigate and
compare the computational complexity of our algorithms.

TABLE 4. Computational complexity and average calculated iterations for
different algorithms under the scenario 1.

Algorithm
Worst-case Ave. iterations for k-player

computational GEM with k equal to
complexityO() 1 2 10 50

RND |S||N | 908 928 1.58k 2.37k
QDH* |S||N |2 log |N | 350 780 2.63k 3.57k
FFD |S|(log |S|+ |N |) 4.32k 4.27k 4.37k 4.72k

MAP-RNDF |S|2 23.3k 14.5k 11.1k 10.5k
MAP-RNDG |S|2 74.2k 72.1k 68.5k 64.1k
MAP-MIND* |S|2 23.2k 29.8k 43.8k 48.2k
MAP-MIND |S|3 201k 247k 368k 388k
MAP-STD |S|3 15M 15M 16M 17M

The computational complexity of the process is influenced
by the number of GEMs (|S|) and CNs (|N |). As the worst-
case scenario, we consider the NDC scenario to maximize
the search space. In such a scenario, all nodes are eligible,
resulting in the highest number of potential moves and swaps.
The first phase of all MAP-based algorithms, in the worst

case, results in |S||N | iterations. The moving phase of MAP-
MIND iterates over all GEMs andCNs, resulting inO(|S||N |)
iterations. In the worst case, this process is repeated |S|
times, leading to O(|S|2|N |) total steps. The swapping phase
iterates over all pairs of GEMs, resulting inO(|S|2) iterations
that, in the worst case, can be repeated |S| times. This
leads to O(|S||N | + |S|2|N | + |S|3) as the complexity of
MAP-MIND. In contrast, in the delay-enhancing part, MAP-
MIND* iterates over all GEMs while merging the move
and swap in one phase, resulting in O|S|(|N |+ |S|) steps
in the worst case. This leads to O(|S||N | + |S|2) as the
complexity of MAP-MIND*. It can be simply shown that
the complexity of MAP-RNDF and MAP-RNDG is equal
to that of MAP-MIND*. On the other hand, the MAP-STD
moving phase iterates over all GEMs and CNs, resulting in
O(|S||N |) iterations, and the swapping phase iterates over all
pairs of GEMs, resulting in O(|S|2) iterations. In the main
iteration, the whole process can be repeated |S| times in the
worst case, as it can loop over all pairs of GEMs, which leads
to a complexity of O(|S||N | + |S|2|N | + |S|3). Given that
|S| ≫ |N |, Table 4 reports the worst-case computational
complexity for all algorithms.
We also reported the observed average number of

iterations, moves, and swaps for all two-phased algorithms
in Table 4. Upon comparing the two columns of Table 4,

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

it is interesting to note that MAP-MIND*, despite having
the same worst-case complexity as MAP-RNDF and MAP-
RNDG, exhibits the minimum number of iterations and
the best delay results among the three. However, while
it slightly underperforms MAP-MIND in terms of delay,
it is significantly more efficient and faster. Conversely,
while MAP-MIND and MAP-STD have similar worst-
case complexities and yield comparable delay performance,
MAP-MIND proves to be substantially faster in practice
compared to MAP-STD. In conclusion, we anticipate that our
algorithms, implemented in fast, general-purpose languages
like C++, require minimal computational resources and thus
incur negligible overhead when deployed in real-time cloud
gaming environments.

VI. RELATED WORK
The GEM placement problem is similar to the VNF (Virtual
Network Function) placement in cloud systems. The Co-
Location Placement (CLP) strategy, utilized in various
studies, aligns with our approach where we treat all GEMs
of a multi-GEM game as a single large abstract GEM [24]–
[26]. Authors in [24] justify CLP by addressing seamless
handovers for mobile users moving between providers using
a fog-based authentication mechanism. The work in [25] uses
CLP by treating each task as an independent inseparable
request, each served by a single data center. In [26], CLP is
justified assuming each task in the vehicular networks context
can only be offloaded to one resource.

The problem of optimal VNF placement is typically NP-
hard, making optimal solutions computationally challenging.
For instance, in [27], a heuristic based on Integer Linear
Programming (ILP) for VNF placement was introduced,
akin to our two-phase approach. While effective for larger
instances, its high execution time, due to the iterative call
to the ILP solver, may curtail its practical application.
As a result, machine learning techniques [28]–[30] or
heuristic/meta-heuristic algorithms [31]–[35] are employed
to efficiently address the VNF placement challenge.

In [28], the authors presented an online VNF placement
strategy for Edge Computing networks using Reinforcement
Learning. This strategy diminished user delay by positioning
VNFs closer to users, but it exhibited a high rejection
rate. Another study in [29] integrated Deep Reinforcement
Learning with Graph Neural Networks to enhance VNF
placement, thereby reducing service request rejections and
adapting to broader network types. Meanwhile, [30] utilized
deep reinforcement learning for VNF placement to reduce the
average end-to-end delay by allocating more VNFs in MEC.
However, this approach did not account for maximizing
VNF acceptance. The authors of [31] introduced a heuristic
solution, MaxSR, which dynamically orchestrates services
in 5G networks using a backtracking approach. In [32], a
genetic algorithm-based heuristic was developed to minimize
resource costs. Another study [33] proposed the MINI
heuristic algorithm to optimize resource utilization, showing
marginal improvements over another heuristic based on

the Genetic Algorithm (GA) for VNF acceptance. Some
works focused on offline batch request placements. For
example, [34] proposed an offline simulated annealing-
based heuristic for placing VNFs for delay-sensitive requests.
The heuristic introduced in [35], termed Previous Window
Deployment (PWD), is based on Learn and Deploy (LAD)
and aims to maximize user service. Notably, none of these
studies contemplated shared services among users, which
corresponds to the multi-player case in our gaming scenario.
Several studies have explored VNF sharing, also better

described as reusability, within the context of the VNF
placement problem [36]–[44], mimicking the multi-player
gaming scenario. For instance, [36] explored the VNF
placement within a single physical node, allowing VNF
sharing across multiple Network Services (NSs). They
proposed a heuristic algorithm that prioritizes NSs on
shared VNF instances, ensuring processing delays meet the
required thresholds. [39] tackled the dynamic VNF placement
challenge, deciding whether to migrate existing VNFs or
deploy new ones to optimize VNF reuse. The objective was
to enhance the network operator’s profitability, and a column
generation-based algorithm was suggested for this purpose.
In [41], a dynamic heuristic algorithm was introduced to
minimize overall network OPEX and physical resource
fragmentation for the VNF placement issue, where multiple
NSs can share VNF instances. Although these studies focus
on VNF placement for NSs that incorporate VNF re-usability,
none align with the multiplayer shared GEM challenge.
Several works have proposed heuristic-based algorithms

emphasizingmaximizing the number of accepted VNFs [35]–
[37], [44]–[52]. For example, [45] introduced a potential
game approach for VNF placement in satellite edge networks.
Like our approach, they support VNF co-location, but they
applied a distributed placement decision and did not consider
shared VNFs. In [48], two heuristics, one greedy-based and
the other Tabu search-based, were proposed to maximize
profit through placement. They successfully increased the
admission rate for offline placement but did not consider
shared VNFs. Authors of [50] tackled the delay-aware VNF
dynamic placement and routing problem by constructing
a heuristic optimization data structure called VNF-splitted
multi-stage edge-weight graph. Their algorithm demonstrated
superior performance in average traffic acceptance rate
compared to others. Like our approach, they considered a
maximum tolerable delay but did not focus on minimizing
the delay or considering shared VNFs. The study in [52]
presented an online heuristic framework named Holu,
which aimed to solve the VNF placement problem by
considering the centrality of the compute nodes and the power
consumption of a VNF. They showed improvement in VNF
acceptance but did not consider minimizing delay. Also, the
shared VNF considered in their model is distinct in nature as
users share resources but do not interact.
Some works have proposed heuristic algorithms for

the VNF placement problem with a focus on delay
minimization [49], [53]–[56]. For instance, in [49], an

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

evolutionary algorithm was proposed to enhance various
metrics for IoT devices’ service placement. Their approach
maximizes the use of the fog nodes for the placement,
which in turn improves service delay and response times.
However, they did not consider the shared VNF scenario. The
work in [54] addressed the VNF placement problem in non-
terrestrial networks by formulating it as a weighted graph-
matching problem using a Linear Programming algorithm
and the Hungarian-based algorithm. Their goal was to
minimize delay and maximize resource utilization. Lastly,
[56] introduced a genetic-based heuristic algorithm for
service placement aimed at minimizing application delay.
However, neither shared VNFs nor the maximization of VNF
placement was targeted in these last two papers.

In summary, while the aforementioned related works
have attempted to address various facets of our problem,
to our knowledge, no existing research has holistically
addressed all the requirements of our problem, especially
concerning multiplayer GEMs. This distinction is significant,
as the definitions of shared VNFs in current literature differ
markedly from our approach.

VII. CONCLUSION
The research presented in this paper addresses the optimal
placement of game engine modules (GEM) in cloud gaming
scenarios. The proposed algorithms, MAP-MIND and MAP-
MIND*, have been developed to effectively balance the
maximization of the number of placed GEMs and the
minimization of delay experienced by the players. We
rigorously evaluated the performance of these algorithms
through extensive simulations. MAP-MIND was shown to
approximate the optimal solution closely, with a very small
dropping probability in worst-case scenarios. Conversely,
while the MAP-MIND* algorithm slightly under-perform in
terms of delay compared to MAP-MIND, it offers significant
advantages in terms of computation time,making it a practical
alternative for real-world applications where large instances
of the placement problem must be considered. We defer the
extension of our proposed approach to include other cost
functions, such as energy costs and computation costs from
various cloud providers, to future work. Additionally, we
expect that our work will inspire the development of new
enhanced algorithms helped by machine-learning approaches
to learn from past data in online scenarios.

REFERENCES
[1] M. Claypool, D. Finkel, A. Grant, and M. Solano, ‘‘Thin to win? network

performance analysis of the OnLive thin client game system,’’ in ACM
NetGames, 2012.

[2] A. Bujari,M.Massaro, andC. E. Palazzi, ‘‘Vegas over access point:Making
room for thin client game systems in a wireless home,’’ IEEE Transactions
on Circuits and Systems for Video Technology, vol. 25, no. 12, 2015.

[3] ‘‘Google Stadia,’’ https://stadia.google.com, accessed: 2023-10.
[4] ‘‘Amazon Luna,’’ https://www.amazon.com/luna, accessed: 2023-10.
[5] ‘‘GeForce Cloud Gaming,’’ https://www.nvidia.com/geforce-now,

accessed: 2023-10.
[6] ‘‘Xbox Cloud Gaming,’’ https://www.xbox.com/en-US/cloud-gaming,

accessed: 2023-10.

[7] D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari, and C. E. Palazzi,
‘‘SMASH: A distributed game engine architecture,’’ in IEEE ISCC, 2016.

[8] L. De Giovanni, D. Gadia, P. Giaccone, D. Maggiorini, C. E. Palazzi, L. A.
Ripamonti, and G. Sviridov, ‘‘Revamping cloud gaming with distributed
engines,’’ IEEE Internet Computing, vol. 26, no. 6, 2022.

[9] G. Dósa and J. Sgall, ‘‘Optimal analysis of best fit bin packing,’’ in
Automata, Languages, and Programming. Springer, 2014.

[10] ‘‘Red Dead Redemption II,’’ https://www.rockstargames.com/
reddeadredemption2/, accessed: 2023-10.

[11] ‘‘Horizon Forbidden West,’’ https://www.playstation.com/it-it/games/
horizon-forbidden-west/, accessed: 2023-10.

[12] ‘‘Street Fighter 6,’’ https://www.streetfighter.com/6, accessed: 2023-10.
[13] ‘‘FIFA 23,’’ https://www.ea.com/games/fifa/fifa-23, accessed: 2023-10.
[14] ‘‘Portal 2,’’ https://store.steampowered.com/app/620/Portal_2/, accessed:

2023-10.
[15] ‘‘Dota 2,’’ https://www.dota2.com/, accessed: 2023-10.
[16] ‘‘Leage of Legends,’’ https://leagueoflegends.com/, accessed: 2023-10.
[17] ‘‘Valorant,’’ https://playvalorant.com/, accessed: 2023-10.
[18] ‘‘Counter-Strike,’’ https://www.counter-strike.net/, accessed: 2023-10.
[19] ‘‘Fortnite,’’ https://www.fortnite.com/, accessed: 2023-10.
[20] ‘‘Player Unknown Battle Ground (PUBG),’’ https://pubg.com/en-na,

accessed: 2023-10.
[21] ‘‘Fall Guys,’’ https://www.fallguys.com/en-US, accessed: 2023-10.
[22] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,

‘‘Placing virtual machines to optimize cloud gaming experience,’’ IEEE
Transactions on Cloud Computing, vol. 3, no. 1, 2015.

[23] J. N. Gupta and J. C. Ho, ‘‘A new heuristic algorithm for the one-
dimensional bin-packing problem,’’ Production planning & control,
vol. 10, no. 6, 1999.

[24] A. Ali, T.Mallick, S. Sakib, M. Hossain, Y.-D. Lin et al., ‘‘Provisioning fog
services to 3GPP subscribers: Authentication and application mobility,’’
arXiv preprint arXiv:2112.02476, 2021.

[25] T. Sato and E. Oki, ‘‘Program file placement strategies for machine-
to-machine service network platform in dynamic scenario,’’ IEICE
Transactions on Communications, 2020.

[26] B. Kar, K.-M. Shieh, Y.-C. Lai, Y.-D. Lin, andH.-W. Ferng, ‘‘QoS violation
probability minimization in federating vehicular-fogs with cloud and edge
systems,’’ IEEE Transactions on Vehicular Technology, vol. 70, no. 12,
2021.

[27] B. Addis, G. Carello, and M. Gao, ‘‘ILP-based heuristics for a virtual
network function placement and routing problem,’’ Networks, vol. 78,
no. 3, 2021.

[28] C. R. De Mendoza, B. Bakhshi, E. Zeydan, and J. Mangues-Bafalluy,
‘‘Near optimal VNF placement in edge-enabled 6G networks,’’ in IEEE
ICIN, 2022.

[29] P. Sun, J. Lan, J. Li, Z. Guo, and Y. Hu, ‘‘Combining deep reinforcement
learning with graph neural networks for optimal VNF placement,’’ IEEE
Communications Letters, vol. 25, no. 1, Jan 2021.

[30] A. Dalgkitsis, P.-V. Mekikis, A. Antonopoulos, G. Kormentzas, and
C. Verikoukis, ‘‘Dynamic resource aware VNF placement with deep
reinforcement learning for 5G networks,’’ in IEEE GLOBECOM, 2020.

[31] M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar,
‘‘Dynamic VNF placement, resource allocation and traffic routing in 5G,’’
Computer Networks, vol. 188, 2021.

[32] N. Kiran, X. Liu, S. Wang, and C. Yin, ‘‘VNF placement and resource
allocation in SDN/NFV-enabledMEC networks,’’ in IEEEWCNCW, 2020.

[33] C. Zhiqi, Z. Sheng, W. Can, Q. Zhuzhong, X. Mingjun, W. Jie, and
J. Imad, ‘‘A novel algorithm for NFV chain placement in edge computing
environments,’’ in IEEE GLOBECOM, 2018.

[34] C. S. R. M. Prabhu Kaliyammal Thiruvasagam, Abhishek Chakraborty,
‘‘Latency-aware and survivable mapping of VNFs in 5G network edge
cloud,’’ in IEEE (DRCN), 2021.

[35] D. Harris and D. Raz, ‘‘Dynamic VNF placement in 5G edge nodes,’’ in
IEEE NetSoft, 2022.

[36] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, ‘‘Reducing
service deployment cost through VNF sharing,’’ IEEE/ACM Transactions
on Networking, vol. 27, no. 6, 2019.

[37] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘SAP:
Subchain-aware NFV service placement in mobile edge cloud,’’ IEEE
Transactions on Network and Service Management, vol. 20, no. 1, March
2023.

[38] A. Mohamad and H. S. Hassanein, ‘‘On demonstrating the gain of SFC
placement with VNF sharing at the edge,’’ in IEEE GLOBECOM, 2019.

VOLUME 11, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

I. Lotfimahyari et al.: MAP-MIND: An Offline Algorithm for Optimizing GEM Placement in Cloud Gaming

[39] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, ‘‘On dynamic service function
chain deployment and readjustment,’’ IEEE Transactions on Network and
Service Management, vol. 14, no. 3, 2017.

[40] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, ‘‘Latency-aware VNF chain
deployment with efficient resource reuse at network edge,’’ in IEEE
INFOCOM, 2020.

[41] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, ‘‘Orchestrating virtualized network functions,’’ IEEE Transactions
on Network and Service Management, vol. 13, no. 4, 2016.

[42] A. Mohamad and H. S. Hassanein, ‘‘PSVShare: A priority-based SFC
placement with VNF sharing,’’ in IEEE NFV-SDN, 2020.

[43] A. Ebrahimzadeh, N. Promwongsa, S. N. Afrasiabi, C. Mouradian, W. Li,
Á. Recse, R. Szabó, and R. H. Glitho, ‘‘H-horizon sequential look-ahead
greedy algorithm for VNF-FG embedding,’’ in IEEE NFV-SDN, 2021.

[44] Y. Yue, B. Cheng, M. Wang, B. Li, X. Liu, and J. Chen, ‘‘Throughput
optimization and delay guarantee VNF placement for mapping SFC
requests in NFV-enabled networks,’’ IEEE Transactions on Network and
Service Management, vol. 18, no. 4, 2021.

[45] X. Gao, R. Liu, and A. Kaushik, ‘‘Virtual network function placement
in satellite edge computing with a potential game approach,’’ IEEE
Transactions on Network and Service Management, vol. 19, no. 2, 2022.

[46] A. Hmaity, M. Savi, L. Askari, F. Musumeci, M. Tornatore, and
A. Pattavina, ‘‘Latency-and capacity-aware placement of chained virtual
network functions in FMC metro networks,’’ Optical Switching and
Networking, vol. 35, 2020.

[47] C. Morin, G. Texier, C. Caillouet, G. Desmangles, and C.-T. Phan, ‘‘VNF
placement algorithms to address the mono and multi-tenant issues in edge
and core networks,’’ in IEEE CloudNet, 2019.

[48] N. Promwongsa, A. Ebrahimzadeh, R. H. Glitho, and N. Crespi, ‘‘Joint
VNF placement and scheduling for latency-sensitive services,’’ IEEE
Transactions on Network Science and Engineering, vol. 9, 2022.

[49] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, ‘‘Solving the multi-
objective problem of IoT service placement in fog computing using cuckoo
search algorithm,’’ Neural Processing Letters, vol. 54, no. 3, 2022.

[50] L. Liu, S. Guo, G. Liu, and Y. Yang, ‘‘Joint dynamical VNF placement and
SFC routing in NFV-enabled SDNs,’’ IEEE Transactions on Network and
Service Management, vol. 18, no. 4, Dec 2021.

[51] A. Mohamad and H. S. Hassanein, ‘‘Prediction-based SFC placement with
VNF sharing at the edge,’’ in IEEE LCN, 2022.

[52] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-
Machuca, ‘‘Holu: Power-aware and delay-constrained VNF placement
and chaining,’’ IEEE Transactions on Network and Service Management,
vol. 18, no. 2, 2021.

[53] C. Richard, A. Christos, and P. P. Dimitrios, ‘‘Dynamic, latency-optimal
VNF placement at the network edge,’’ in IEEE INFOCOM, 2018.

[54] Y. Yue, X. Tang, W. Yang, X. Zhang, Z. Zhang, C. Gao, and L. Xu,
‘‘Delay-aware and resource-efficient VNF placement in 6G non-terrestrial
networks,’’ in IEEE WCNC, 2023.

[55] M. Guido, S. Riccardo, Y. Jalolliddin, and K. Adlen, ‘‘Formally verified
latency-aware VNF placement in industrial internet of things,’’ in IEEE
WFCS, 2018.

[56] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, ‘‘A genetic-based
approach for service placement in fog computing,’’ The Journal of
Supercomputing, vol. 78, no. 8, 2022.

IMAN LOTFIMAHYARI received his BSc and
MSc in Electronics Engineering from IAU
University in 2003 and 2007, respectively. In
March 2020, he received his second MSc in
Telecommunication Engineering from Politecnico
di Torino, Italy, and joined the Telecommunication
Networks Group of Politecnico di Torino as
a Ph.D. student. His current research interests
involve programmable data planes for SDN,
blockchains, and cloud computing.

LUIGI DE GIOVANNI received his M.S. and
Ph.D. in Computer and Systems Engineering
from Politecnico di Torino, Italy, in 1999 and
2004 respectively. He is an Associate Professor
of Operations Research at Università degli Studi
di Padova, Italy. His research interests focus
on Combinatorial Optimization, Mathematical
Programming, Meta-heuristics applications for
telecommunication and logistic network design,
scheduling, and airport/air traffic management.

DAVIDE GADIA received his M.Sc. and Ph.D.
in Computer Science from the University of
Milan, Italy, in 2003 and 2007 respectively. He
is an Associate Professor at the Department of
Computer Science of the University of Milan.
His research interests focus on Video Game
Programming, Procedural Content Generation for
Computer Graphics and Video Games, Game
Engine architectures, and VR. He is affiliated with
PONG (Playlab fOr inNovation in Games) Lab.

PAOLO GIACCONE received the Dr.Ing. and
Ph.D. degrees in telecommunications engineering
from the Politecnico di Torino, Italy, in 1998 and
2001, respectively. He is a Full Professor in the
Department of Electronics, Politecnico di Torino.
His main area of interest is the design of optimal
control and resource allocation algorithms in next-
generation networks.

DARIO MAGGIORINI received his M.S. and
Ph.D. in Computer Science from the University
of Milan in 1997 and 2002 respectively. He
is an Associate Professor at the Department of
Computer Science of the University of Milan and
co-founder of the PONG (Playlab fOr inNovation
inGames) lab. Heworked onQoS formulti-service
IP-based networks, large network scalability,
multimedia transmission, mobile services, and
opportunistic networks. Since 2011, he focused his

expertise on software architectures for entertainment applications.

CLAUDIO E. PALAZZI received his M.S. degree
in Computer Science from UCLA in 2005, his
Ph.D. degree in Computer Science from UniBO
in 2006, and his Ph.D. degree in Computer
Science from UCLA in 2007. He is an Associate
Professor of Computer Science at the Università
degli Studi di Padova, Italy. His research interests
are the design and analysis of communication
protocols for wired and wireless networks, Internet
architectures, and mobile users, with an emphasis

on mobile applications and multimedia entertainment.

16 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3380900

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

