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Summary

To foster the advancement of smart city components and the Internet of Things
(IoT) applications, future wireless systems need to offer extensive system capacity,
ultra-high data speeds, minimal latency, high dependability, low energy consump-
tion, and large connection densities. These networks are expected to revolution-
ize various applications in a variety of contexts, including massive machine-type
communications (mMTC), ultra-reliable low latency communication (uRLLC), and
better mobile broadband services (EMBB).

Due to the widely varying and quickly growing need for mobile wireless net-
works, meeting the requirements of these applications has become challenging. To
provide ubiquitous connections for billions of devices, efficiently manage the surging
mobile data traffic, and support algorithm-driven applications, an effective solution
is necessary. Machine learning (ML) is seen as a crucial tool to address these chal-
lenges. Moreover, the utilization of new frequencies and surge in number of users
motivated new technologies such as non-orthogonal multiple access (NOMA) and
intelligent reflecting surfaces (IRS).

The goal of this thesis is to establish ML-based methods for 5G and beyond
(B5G) wireless communication systems that use NOMA and IRS. The study in-
volves the utilization of deep reinforcement learning (DRL) to enhance IRS opera-
tions in downlink NOMA situations, as well as terahertz (THz) networks assisted
by multi-hop IRS. The emphasis will be on maximizing the total data transmis-
sion rate. Furthermore, DRL is utilized for the secure cross-layer design of the
IRS NOMA-SWIPT (Simultaneous Wireless Information and Power Transfer) IoT
scenario, focusing on maximizing the secure sum-rate for legitimate IoT devices
(IoTDs) operating under the IRS NOMA-SWIPT scheme, and meeting packet loss
constraints within the system. It was shown that the utilization of the DRL in the
aforementioned scenarios enabled significant performance enhancements compared
to existing classical solutions, which are typically sub-optimal due to the non-
convex nature of the formulated problems. Furthermore, DRL models had better
complexity scaling properties with increased system complexity (e.g. number of
IRS elements).
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Chapter 1

Introduction

1.1 Motivation
In the 5G/6G era, the emergence of innovative use cases such as augmented re-

ality (AR), virtual reality (VR), machine-type networking, online games, Voice over
IP (VoIP), autonomous driving, smart applications, sensor networks, and the realm
of interconnected devices including Internet of Things (IoT) has highlighted the ne-
cessity for reliable wireless networks that can overcome the limitations of current
wireless technologies and bridge the critical performance gap [51], [50]. To meet
these requirements, researchers are exploring modern various access and modulation
schemes. This exploration is driven by the higher demand for bandwidth, necessi-
tated by the need for faster communication, and the scarcity of available frequency
bands. In response, 5G and 6G technologies are venturing into high frequencies
like mmWave and THz. However, these higher frequencies bring challenges such as
higher attenuation, reduced coverage, and Line of Sight (LOS) limitations. To ad-
dress these issues, researchers are investigating technologies like Machine Learning
(ML), Non-Orthogonal Multiple Access (NOMA), and Intelligent Reflecting Sur-
faces (IRS). Nevertheless, the incorporation of IRS NOMA introduces increased
complexity to the system, a challenge that can be tackled using ML approaches
[51], [50].

1.2 Problem Statement
In IRS NOMA scenarios, the problem of tuning the IRS phase shifts to optimize

the sum-rate is non-convex as a result of the constant modulus restriction, which
arises from the reflective nature of the IRS without signal amplification. Traditional
methods struggle to find mathematical solutions for such large-scale communica-
tion schemes, and exhaustive search (ES) approaches are impractical due to their
complexity. To overcome these challenges and solve the optimization problem, we
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Introduction

employ a DRL method, specifically deep deterministic policy gradient (DDPG), as
an alternative to mathematical methods.

1.3 Deliverables
This dissertation yields the following key deliverables:

1. An algorithm for maximizing the total transmission data rate of an IRS
NOMA network using DRL, thereby enhancing network performance and
increasing user data rate attainment.

2. A method for overcoming non-convexity and unit modulus constraints in the
NOMA IRS system using DDPG. This method addresses challenges in han-
dling limited channel state information (CSI) and compares the efficiency of
DDPG with the ES in IRS NOMA systems.

3. A framework for utilizing the DDPG scheme in the context of uplink multiple
access cascaded IRS with THz communications. This framework solves over-
determined sets of equations in a multi-hop IRS scenario.

4. An approach for maximizing received power in multi-hop IRS scenarios using
DDPG. It determines optimal phase shift reflecting matrices to maximize
received power while considering interference from other users and compares
the efficiency of DDPG with mathematical methods.

5. A method for optimizing the aggregate data transmission rate of users in
multi-hop IRS scenarios using DDPG, demonstrating superior performance
and reduced complexity compared to an ES.

6. A framework for secrecy sum-rate maximization for IoTDs using DDPG with
cross-layer design. It optimizes the secrecy sum-rate by determining optimal
phases of IRS, power allocation factors, and energy harvesting (EH) factors
while addressing non-convex optimization problems.

1.4 Methodology
The research methodology of the dissertation involves analyzing and modeling

the key research areas such as 5G, 6G, THz, IRS, cascaded IRS, NOMA, SWIPT,
EH, DRL, etc. An optimization problem is developed based on the provided sys-
tem model. considering the system’s limitations, constraints, and non-convexity.
Mathematical methods and the DRL algorithm are employed to solve this problem
and find optimal solutions, which are compared to sub-optimal solutions generated
from mathematical methods.

4



1.5 – Thesis Objectives

The methodology is divided into several work packages:
WP1: Conducting a background study and literature review on the main re-

search areas, including IRS, NOMA, DRL, DDPG, multi-hop, THz, etc. This
involves collecting relevant research topics, thoroughly reviewing research articles,
and identifying the research focus and questions.

WP2: Building a comprehensive system and channel model that incorporates
the aforementioned research areas. This step aims to develop a clear and robust
model that facilitates the derivation and formulation of the optimization problem.

WP3: Formulating the optimization model to maximize overall system effi-
ciency while taking into account the system model’s constraints, limitations, and
non-convex nature.

WP4: Proposing an innovative and effective strategy for solving the non-convex
optimization problem and improving system performance.

WP5: Planning, designing, and simulating the system model using DRL, ES,
and sub-optimal mathematical methods.

WP6: Conducting a comparison between the results obtained from each solu-
tion method, considering their respective complexities, and analyzing the advan-
tages and disadvantages of each technique.

WP7: Publishing research papers and completing the dissertation write-up
based on the findings and outcomes of the research.

By following this methodology, the dissertation aims to contribute to the exist-
ing knowledge in the field and provide insights into optimizing the efficiency of IRS
NOMA and multi-hop IRS NOMA systems within the context of wireless systems.

1.5 Thesis Objectives
The overarching goal of this thesis is to propose optimal techniques for utiliz-

ing IRS and NOMA techniques in 5G and beyond communication technologies. In
order to achieve the overall goal, we tackle three main technologies that can be
used for future wireless networks; namely, THz physical layer, NOMA and IRS.
The aforementioned technologies will be utilized to address specific gaps in the net-
work design and performance namely; multi-user capacity enhancement, coverage
extension, and security. More specifically, the following objectives are identified:

1. Propose a framework for using IRS in downlink NOMA systems to maximize
sum rate under limited CSI knowledge.

2. Propose a framework for using cascaded IRS to extend the coverage of THz
technology when used in uplink.

3. Propose a framework for using IRS in downlink NOMA with security and
energy constraints.

5
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1.6 Thesis Contributions
The following contributions are made by this dissertation to the field of wireless

communications:

1. Proposing a DRL based method to optimize the sum rate of a downlink IRS
NOMA under the assumption of limited CSI.

2. Proposing a DRL based method to optimize the sum rate of a multi-user
uplink THz system supported by cascaded IRS backbone.

3. Proposing a DRL based method to optimize the secure sum rate of a down-
link IRS NOMA system under energy harvesting and cross-layer packet-loss
constraints.

These contributions provide valuable insights into the field of wireless communi-
cations by addressing optimization problems in IRS NOMA systems and cascaded
IRS systems. Additionally, the dissertation explores the optimization of the secrecy
sum-rate in the context of IoTDs, introducing a novel DDPG-based approach. The
research findings provide valuable insights for establishing effective, secure, and
safe wireless communication networks, facilitating advancements in future network
technologies.

1.7 Thesis Layout
The dissertation is structured in the following manner:

Chapter 1: Introduction: This chapter serves as an introductory section to
the dissertation, presenting the motivation behind the research, the methodology
employed, the objectives of the study, and the contributions made to the field of
wireless communications.

Chapter 2: Literature Review: The primary motifs, key concepts, and
state-of-the-art schemes are illustrated in this chapter. An exhaustive analysis of
related work in the literature is carried out, evaluating and comparing the proposed
work with existing studies.

Chapter 3: Downlink Non-Orthogonal Multiple Access (NOMA) With
Intelligent Reflecting Surfaces (IRS) Empowered by Deep Reinforcement
Learning: Chapter 3 investigates the scenario of the IRS NOMA downlink net-
work. The objective is to maximize the total transmission rate while considering
limited CSI knowledge and the incorporation of imperfect SIC in practical NOMA
systems. The chapter encompasses the presentation and development of the opti-
mization problem and explores the suggested DDPG-based solution.

Chapter 4: A Deep Reinforcement Learning Technique for Terahertz
Multiple Access in a Multi-hop IRS Network Topology: This chapter is

6



1.7 – Thesis Layout

dedicated to exploring the uplink multiple access multi-hop IRS scenario in a THz
system. The primary objective is to utilize the DDPG algorithm to maximize the
total throughput of users. The chapter addresses the challenges posed by the IRSs’
constant modulus restrictions and the over-determined set of equations.

Chapter 5: Deep Reinforcement Learning-Based Cross-Layer Design
for Secure IRS NOMA-SWIPT Systems in IoT Environments: Chapter
5 examines the indoor scenario of the secure cross-layer design of IRS NOMA
downlink system, focusing on maximizing the aggregated secrecy throughput of
legitimate Internet of Things Devices (IoTDs) and conveying energy to near and far
NOMA IoTDs. The chapter focuses on employing the IRS for adjusting the phase of
the incoming signal, optimizing NOMA power allocation, and EH, and minimizing
network layer packet loss. The problem of non-convex optimization is handled using
DRL, specifically the DDPG algorithm, to obtain optimum parameters.

Chapter 6: Conclusion and Future Prospects: The dissertation concludes
and summarizes the findings in this final chapter. The fundamental results of the
research are reviewed, and suggestions for future research work in the field of IRS
NOMA architecture are provided.

By following this layout, the dissertation presents a comprehensive exploration
of IRS NOMA systems and their optimization in various scenarios, showcasing the
proposed DDPG-based solutions and their contributions to the field of wireless
communications.
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Chapter 2

Background and literature survey

Multiple access schemes are crucial for efficiently utilizing constrained frequency
resources and accommodating the diverse communication needs of various appli-
cations. Traditional multiple-access approaches including FDMA, TDMA, and
CDMA have been extensively utilized in earlier generations of wireless networks.
Nonetheless, these methods have their limitations concerning spectrum efficiency,
latency, and the ability to support massive connectivity. To address these limita-
tions, new multiple access methods are suggested for 5G and 6G networks. One
example is NOMA, which allows multiple users to jointly utilize the same time-
frequency resources by leveraging the power or code domain. NOMA improves
spectrum efficiency and supports a large number of simultaneous connections. It
is shown to be particularly effective in scenarios involving distinct service quality
demands and fluctuating channel conditions [29].

The evolution towards 5G/6G networks is driven by the demand for reliable
wireless communication to support a wide range of applications. To meet these
requirements, modern multiple access and modulation techniques, such as NOMA,
along with advanced technologies like IRS, SWIPT, and DRL, are being explored.
These advancements aim to overcome the limitations of existing wireless networks
and enable efficient and reliable connectivity in the era of 5G/6G [51], [50].

2.1 Background

2.1.1 Background on NOMA
In previous generations of wireless networks, such as 1G, 2G, 3G, and 4G,

OMA techniques like CDMA, TDMA, FDMA, and OFDMA were used to allocate
radio resources to users. These techniques ensured that multiple users were sep-
arated based on orthogonal properties, such as time, frequency, code, or space.
Deviating from this orthogonality led to interference, resulting in degraded com-
munication quality, inefficient resource utilization, and data loss. However, the
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Background and literature survey

increasing demands for connectivity in 5G/6G networks have necessitated a new
approach, giving rise to NOMA [6]. NOMA has garnered considerable interest as a
promising solution for 5G and beyond because of its potential to boost spectrum ef-
ficiency, improve link connectivity, and substantially increase capacity compared to
OMA schemes. NOMA empowers multiple users to simultaneously transmit within
a common pool of shared resources through power domain multiplexing, without
strict constraints on the orthogonality of frequency subcarriers. Although simulta-
neous transmission introduces interference, NOMA employs a technique known as
Successive Interference Cancellation (SIC) to mitigate its impact.

2.1.2 Intelligent Reflecting Surfaces (IRSs)
IRS is considered a cutting-edge concept and a research hotspot in wireless

communications, serving as an extension to M-MIMO technology. IRS has risen
as a highly auspicious technology with significant potential for enabling smart and
adaptable wireless communication environments. It consists of a digitally-controlled
electromagnetic surface, known as a metasurface, comprising numerous low-cost
semi-passive scattering elements. These elements consume minimal power and can
be programmed to manipulate the electromagnetic properties, specifically altering
the phase of the incoming RF signals. The unique capability of the IRS lies in its
ability to coherently combine the reflected signals, optimizing the received power, or
counter-actively combining them to alleviate interference. Unlike traditional wire-
less communication technologies implemented at the receiver, IRS actively controls
the properties of the propagated signals, thereby enhancing the received signal
strength. This leads to enhanced efficiency in contrast to wireless communication
networks lacking IRS, effectively realizing the concept of a smart radio environment
[51], [50], [75].

By reshaping the wireless propagation channel, IRS can amplify transmitted
signals, improve received signal strength for intended users, and mitigate interfer-
ence for unintended users. This not only improves the overall signal quality but also
provides innovative and cost-effective methods for meeting the crucial benchmarks
of 6G networks. In summary, IRS is an advanced technology that enables the de-
velopment of intelligent and adaptable wireless communication environments. By
actively manipulating signal properties, IRS holds immense potential for enhancing
wireless communication systems, boosting performance, and realizing the goals of
future 6G networks. [19].

2.1.3 Terahertz Technology (THz)
THz technology is anticipated to have a pivotal role in the advancement of 6G

networks, which aim to support unprecedented services and bandwidth-intensive
applications. These applications include Terabytes Per Second (Tbps) IoT, Tbps
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wireless local area network (WLAN) systems, ultra-broadband THz space com-
munication networks, wireless networks-on-chip communication networks, Tbps
integrated access backhaul wireless communication systems, and more. Meeting
the requirements of these applications necessitates a significant capacity boost,
approximately 1000 times higher than that of 5G systems [4]. To address the
challenge of spectrum scarcity and meet the increasing service demands, the mi-
gration towards THz bands with frequencies ranging from 0.1 up to 10 THz is seen
as a promising solution. THz spectrum bands offer a vast amount of bandwidth
when effectively utilized, making them a fundamental element of 6G communica-
tion networks. Operating in the THz frequencies enables substantial data rates
and capacities. However, there are several challenges associated with THz commu-
nication, including high propagation losses, severe path attenuation, intermittent
wireless links, and highly dynamic and uncertain channels. These limitations re-
sult in unreliable sporadic links, restricting THz communications to short-range
and presenting challenges due to the extremely small wavelength (λ) values [51],
[50], [20].

2.1.4 Energy Harvesting
EH involves capturing power from various sources such as radio frequency (RF)

waves, thermal gradients, and light to provide energy for devices. It is particularly
important in communication systems and IoT environments to extend battery life
and promote sustainability. They offer the potential to capture energy from the
environment and power IoT devices (IoTDs), reducing the reliance on batteries
and contributing to a more eco-friendly and cost-effective IoT ecosystem. By har-
nessing energy from the surrounding environment, IoTDs can operate for longer
periods without the need for frequent battery replacements. Challenges in EH
models include power limitations, intermittent energy availability, complex energy
management, and the cost and complexity of setting up EH infrastructure. These
challenges need to be addressed to fully harness the benefits of EH in communica-
tion systems [51], [50], [37], [5].

2.1.5 Reinforcement Learning
Reinforcement Learning (RL) is a subset of ML that empowers an agent to

interact with its environment, learning through experimentation and adjustment
based on feedback received from the environment. The fundamental components
of the RL model include the environment, action, state, reward, policy, and Q-
value function. The environment represents the agent’s surroundings, the state
signifies its current condition, and the reward reflects the response obtained from
the environment. The policy dictates how the agent maps its state to actions,
while the Q-value function assesses the quality of actions taken in specific states.
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During each temporal step, the agent acquires a state s(τ) from the environment
and selects an action a(τ) according to a given policy π. Subsequently, the agent
obtains a reward r(τ) as a performance measure for the action undertaken within
the state s(τ), and the state transitions to s(τ+1). The objective of the RL agent
is to determine the optimal action a(τ) within a provided state s(τ) to maximize
the total reward r(τ) over an episode. The interaction between the agent and
the environment is modeled as a Markov Decision Process (MDP). Notably, RL
algorithms differ from dynamic programming as they do not assume knowledge of
a particular MDP mathematical model, making them well-suited for large MDPs
where the use of specific mathematical methods is impractical [14].

Figure 2.1: DRL-based Model

RL schemes such as deep Q-learning (DQL), policy gradient (PG), and DDPG
share a common goal, which is to train an agent to acquire a strategy that max-
imizes rewards within an environment. However, DQL is limited to discrete-time
spaces and cannot handle continuous action-spaces, making it a value-based learn-
ing method. The PG scheme has a slow convergence rate in the context of wireless
communication. DDPG addresses these limitations by combining Q-networks and
the PG techniques as revealed in Fig. 2.2. It is capable of handling continuous
action-spaces dynamic, and non-convex wireless communication scenarios. Thus, it
offers improved performance compared to the individual algorithms [14].
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2.1.6 Deep Deterministic Policy Gradient

Figure 2.2: Hybrid approach: DDPG combining DPG and DQN

DDPG is an RL method designed for environments with continuous action
spaces. It learns from experience, utilizing an off-policy approach with a replay
buffer to manage a large store of past experiences. DDPG employs neural networks
to estimate the Q-value function and policy, making it well-suited for complex, high-
dimensional environments. Two sets of networks, online and target networks, are
used to enhance stability. The online networks include the actor-network for select-
ing actions and the critic-network for evaluation, while the target networks mirror
them. Soft network parameter updates gradually align target network parameters
with online networks. The actor-network directly calculates actions based on the
state, and the critic-network assesses state-action pairs by estimating the Q-value.
Soft updates with small values further enhance learning stability and convergence,
ensuring smoother updates and overall algorithm stability. The DDPG framework
includes actor-networks for state-to-action mapping and critic-networks for action
evaluation. To further stabilize learning, target actor and critic networks estimate
future actions and Q-values, guiding training using the Q-target formula. This ar-
chitecture enhances decision-making in RL tasks, promoting effective learning and
performance improvement. The DDPG implementation process is illustrated in
Fig. 2.3 and detailed in Algorithm 1.
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Figure 2.3: DDPG-based model
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Algorithm 1 DDPG Implementation Process
1: Input: Learning rate 𭟋, decay factor γ, batch quantity B, memory buffer D with

capacity C, Maximum number of iterations T .
2: Output: Optimal actor-network weights signified as oµ and critic-network weights

designated as oQ.
3: Initialization: Set i = 0 and initialize the experience memory buffer D with capacity

C.
4: Randomly initialize the actor-network µ(s; oµ) with weights oµ, the critic-network

Q(s, a; oQ) with weights oQ, the target actor-network µτ (s; oµ
′) with weights oµ

′ , and
the target critic-network Qτ (s, a; oQ

′) with weights oQ
′ .

5: Set the initial target parameters equal to the main parameters, i.e., oµ
′ ← oµ and

oQ
′ ← oQ.

6: for episode i = 1, 2, ..., B do
7: Initiate random noise N for action exploration.
8: Obtain initial information about the first state sτ .
9: for time step τ = 1, 2, ..., T do

10: Determine the state sτ and choose action aτ = µ(sτ |oµ) + N.
11: Perform action aτ , receive reward rτ , and observe the subsequent state sτ+1.
12: Store the tuple (aτ , sτ , rτ , sτ+1) in the replay memory D.
13: Randomly sample a mini-batch of transitions (ai, si, ri, si+1) B from the mem-

ory buffer D.
14: Compute the target yi = ri + γQ′(si+1, µ′(si+1; oµ

′); oQ
′) if i ≤ B, and yi = ri

if i = B.
15: Update the critic-network oQ parameters to minimize the loss: L =

1
|B|
∑︁|B|
i=1

(︂
yi −Q(s(i), a(i)|oQ)

)︂2

16: Update the actor-network oµ parameters using the extracted policy gradient:
∇oµJ ≈ 1

|B|
∑︁|B|
i=1∇aQ(s(i), a(i)|oQ)∇oµµ(s(i)|oµ)

17: Update the target actor and critic-network parameters: oj
′ = υoj + (1− υ)oj′ ,

where j = Q or µ.
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2.2 Relevant Literature Survey

2.2.1 IRS NOMA
Deploying IRS in wireless communication systems converts it into a smart radio

environment capable of supporting diverse user requirements, such as extending
coverage, enhancing data rates, minimizing power consumption, and improving
transmission security [19]. Meanwhile, NOMA emerges as an innovative approach
for optimizing performance in upcoming communication networks, offering higher
capacity and increased spectrum efficiency in contrast to OMA approaches [28].
Several research studies have investigated schemes combining IRS with OMA [66,
25, 12, 54, 53]. However, the synergy between IRS and NOMA offers a potent rem-
edy for enhancing spectral efficiency, energy efficiency, and communication coverage
[11]. A typical IRS-aided NOMA model involves a BS transmitting signals to K

NOMA users through the IRS in scenarios where there is no LOS communication
link between the BS and the users.

Numerous research studies have investigated the use of IRS in NOMA systems,
both in the downlink and uplink scenarios. These studies include [8, 72, 65, 78, 70,
62, 36, 69, 79, 77, 34, 15, 58, 16, 63, 46, 43, 44, 61, 68, 67, 33, 38, 76].
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In the downlink scenario, [8] proposed a new NOMA transmission scheme using
IRS to increase the number of served users. [72] focused on secure transmission in
IRS NOMA networks. [65] optimized the rate performance and fairness in a down-
link IRS-assisted NOMA system. [78] optimized power allocation and beamforming
in an IRS mmWave NOMA scheme. [62] considered a single IRS aiding downlink
transmission to maximize signal power. [36] investigated a multi-user downlink
scenario using optical IRS for VLC systems. [69, 79, 77, 34, 15, 58] explored dif-
ferent objectives in STAR-IRS-aided downlink NOMA networks. [46] studied an
IRS-assisted NOMA-HARQ system for IoT users situated in areas with no direct
line of sight (NLoS) propagation. [43] analyzed error performance in a multi-user
IRS NOMA scenario. [44] enhanced physical layer security in an IRS downlink
MIMO NOMA system. [68] investigated IRS-assisted NOMA transmission to near
and far users.

In the uplink scenario, [70] optimized the users’ sum-rate in an IRS NOMA sys-
tem. [16] proposed an uplink cognitive radio NOMA scheme with rate splitting and
IRS. [63] utilized double IRSs to increase the sum-rate. [61] developed a symbiotic
radio uplink NOMA IRS scheme. [67] addressed data extraction and detection in
an IRS uplink NOMA system. [33] employed IRS in multi-IoTDs MEC systems to
improve latency performance.

Unlike most studies using classical methods, [38] and [76] employed ML tech-
niques. [38] utilized federated learning (FL) with IRS to reduce training latency in
NOMA systems. [76] used distributed ML for passive beamforming in STAR-IRS
downlink NOMA, adopting a partitioning approach and a DRL agent.

In summary, the existing literature extensively explores IRS NOMA scenarios
in downlink and uplink configurations, addressing various objectives such as cover-
age extension, rate optimization, and spectral efficiency enhancement. The studies
employ mathematical optimization methods [8, 72, 65, 78, 70, 62, 36, 69, 79, 77,
34, 15, 58, 16, 63, 46, 43, 44, 61, 68, 67, 33] to solve complex problems, with recent
approaches integrating ML techniques like federated learning and distributed ML
[38, 76]. However, a significant research gap exists as these studies assume accurate
channel knowledge between the IRS and users, which contrasts real-world scenar-
ios where limited channel knowledge is prevalent, especially with semi-passive IRS
elements, which cannot be used to estimate channels accurately. Further, DRL is a
distinct type of ML technique, different from federated learning, that offers signifi-
cant potential for overcoming the limitations imposed by limited channel knowledge
and improving the system’s performance. By leveraging DRL techniques, we can
effectively mitigate the challenges associated with limited channel knowledge and
improve the overall system performance.
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2.2.2 IRS in THz Communication
To enhance the achievable data rate and coverage in THz communication net-

works, researchers have recently explored the implementation of cascaded IRS.
Several studies [41, 39, 52, 71, 2, 26, 27] have investigated different aspects of this
technology. For example, in [41], the focus was on an IRS-aided multi-hop multi-
pair unicast communication system, involving numerous transmitters and receivers
engaging in mutual communication. The authors suggested distributed control
mechanisms for the IRSs to optimize the attainable data rate in a multi-hop inter-
ference channel. In [39], a multi-IRS-assisted M-MIMO system was studied. The
goal was to boost the minimum received signal power in a scenario where a BS
with multiple antennas transmits independent signals to faraway users with single
antennas. Cascaded LOS communication linkages were built between the BS and
the users by exploiting collaborative signal reflections from several groups of IRSs.
Another study [52] focused on a multi-IRS network with decode and forward re-
laying assistance. Here, a sole source (BS) establishes communication with a sole
destination (user), aiming to determine the optimal arrangement of IRSs, the count
of IRSs, and the count of reflecting units (RUs) that maximize the ergodic rate.
The work in [71] investigated a communication network scenario that involves mul-
tiple users and employs multi-hop configurations for downlink communication using
IRSs. The main goal was to maximize the total transmission rate by concurrently
optimizing the beamforming at the BS and the phase adjustments of multiple IRSs
while communicating with multiple users. Moreover, in [2], the focus shifted to
an uplink cascaded IRS network. The main goals here were to increase the re-
ceiver power and expand the coverage distance in a THz communication system.
To achieve this, the authors suggested a multi-hop system involving passive IRS
operating in the THz frequency range to mitigate the substantial signal attenuation
caused by air molecule absorption. In contrast to the research articles stated above
[41, 39, 52, 71, 2] that used classical techniques to tackle their optimization chal-
lenges, the research articles [26] and [27] took a different approach by utilizing the
DRL approach to tackle the issue of non-convex optimization. These studies intro-
duced a hybrid beamforming strategy for networks with cascaded IRSs, to extend
the coverage of THz networks. To reduce propagation losses in a THz downlink
broadcast system, they inspected the joint design of the analog beamforming at
the IRSs and digital beamforming at the BS. This scenario involves a single source
transmitting to multiple destinations (multi-user scenario).

Notably, the existing literature on THz communication networks with cas-
caded IRS has extensively explored various aspects, including multi-hop unicast,
M-MIMO systems, DF relaying, and uplink cascaded IRS scenarios. While classical
optimization techniques have been employed in most studies, some have introduced
DRL to tackle non-convex optimization challenges. However, a notable research gap
exists as none of the existing works have utilized the DRL approach to solve the
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over-determined system of equations in the uplink cascaded IRS multiple access sce-
nario, specifically considering spatially correlated channels between IRS elements.
This gap is addressed in this dissertation by employing DDPG to optimize the
phase shifts of cascaded IRS for two alternative scenarios: maximizing the rate for
a specific user and maximizing the aggregate rate for both users.

2.2.3 Security and Energy Harvesting in IRS NOMA
Several research studies have concentrated on the implementation of physical

layer security IRS NOMA networks, recognizing the advantages offered by both IRS
and NOMA technologies [44], [60, 59, 21, 18, 55, 73, 13, 3]. These studies aim to
enhance network coverage, capacity, spectral efficiency, and connectivity on a large
scale. For instance, [60] provided an overview of NOMA, addressing its limitations
and highlighting the potential of the IRS to overcome these limitations. They also
discussed the realization of Physical Layer Security (PLS) in IRS NOMA networks.
Meanwhile, other studies such as [44, 59, 21, 18, 55, 73, 13] investigated secure
NOMA IRS scenarios with diverse aims, including the maximization of sum-rate,
improvement of secrecy performance, reduction of secrecy outage probability, en-
hancement of effective secrecy throughput, and reduction of eavesdropper’s SINR.
Notably, these prior works did not consider energy harvesting as a means of trans-
ferring energy to legitimate users in their scenarios. In contrast, [3] proposed a
non-cooperative NOMA scenario with a PLS scheme that utilized artificial noise
(AN) to secure the downlink and transfer energy to legitimate users but did not
consider the incorporation of IRS. To the best of our knowledge, none of the ex-
isting studies in the literature have delved into cross-layer design, accounted for
packet loss calculations at the network layer, or explored novel ML-based solutions
instead of relying on conventional mathematical techniques to tackle optimization
problems.
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Chapter 3

Downlink Non-Orthogonal
Multiple Access (NOMA) with
Intelligent Reflecting Surfaces
(IRS) Empowered by DRL

In this chapter, our primary focus is on the first major contribution of this the-
sis, which involves the development of a DRL approach for an IRS NOMA system.
The primary aim is to maximize the total system sum-rate while addressing sev-
eral critical challenges that arise in such a setup. The initial challenge we address
pertains to the constraint of the constant amplitude of the IRS, which makes the
optimization of sum-rate using IRS phase shifts a non-trivial task, requiring inno-
vative solutions. The second challenge pertains to the limited CSI between the IRS
and the users. In practice, obtaining accurate CSI can be difficult, which makes it
necessary to develop strategies that work effectively under such uncertainty. Lastly,
we consider the incorporation of the SIC technique. SIC is an essential aspect of
NOMA networks, where users with stronger channel conditions help in decoding
and canceling the signals of other users with weaker channels. This introduces ad-
ditional complexity in the optimization process. To address these challenges, we
suggest a novel DRL-based method that learns to optimize the phase shifts of the
IRS and the distribution of power among the users. By employing DRL, the system
can adapt and make decisions based on its environment and experience, even in
the presence of limited CSI and constant modulus constraints. Overall, our focus
in this chapter is on presenting the design and formulation of the DRL approach
for the IRS-NOMA system, which is aimed at achieving significant gains in the
sum-rate and addressing the practical limitations of IRS and NOMA technologies.
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3.1 System Model
We investigate the downlink transmission of a NOMA system supported by an

IRS, as illustrated in Fig. 3.1. The system consists of K users, each equipped
with a single antenna. The BS is equipped with a single antenna as well. To
simplify the analysis, we assume that the users are listed in ascending order based
on their distances from the IRS, with user 1 being the farthest away and user
K being the closest. This sequence is determined by the expected magnitudes of
their channel gains, guaranteeing the condition |hr,1|2 < |hr,2|2 < . . . < |hr,K|2.
We examine a quasi-static scenario, where the ordering of users (based on their
distances from the IRS) changes slowly over time. When such changes occur, the
system initiates power allocation reconfiguration to adapt to the new user ordering
effectively. In this setup, there exists no direct connection or LOS communication
link that connects the BS to the users. Instead of communicating directly with
each other, the BS and users communicate through an IRS. The IRS comprises N
reflecting elements, organized in a grid structure with dimensions Nx and Ny.

Furthermore, our analysis incorporates several practical aspects of the system,
including:

1. Power Allocation with IRS using DRL: The use of DRL is employed
for average-based power allocation NOMA and equal power allocation OMA
schemes. In the NOMA configuration, power allocation factors αi are as-
signed to users according to their distances from the IRS, without relying
on instantaneous CSI. The power allocation factors satisfy the condition
α1 > α2 > ... > αK, and the vector of power allocation coefficients is de-
noted as ααα = [α1, α2, ..., αK]. The power allocation is determined based on
the long-term mean of the random channel gains.

2. Successive Interference Cancellation (SIC): Users implement SIC us-
ing long-term channel statistics, considering the limited information of the
instantaneous CSI between the IRS and users, the SIC process process relies
on statistical channel information.

3. End-to-end estimation: The BS can estimate the complete channel, which
combines the effects of both the transmit (ht) and receive (hr,κ) channels.
Pilot transmission conducted by the BS and users is used to estimate the
overall channel, as both are active nodes [64].
These practical aspects are taken into account to ensure the feasibility and
effectiveness of the suggested DRL-based power allocation algorithm in IRS-
aided NOMA systems.

22



3.1 – System Model

Figure 3.1: Enhancing wireless communication with IRS.

Our system model operates by utilizing static power allocation while simul-
taneously optimizing the proficiency of the NOMA system. This optimization is
achieved by adapting the channel using phase adjustments implemented by the
IRS. These adjustments compensate for random channel variations and account
for the use of long-term SIC ordering, which remains fixed across multiple channel
realizations, as opposed to the conventional approach where the SIC order changes
for each realization.

The signal that is transmitted by the BS, denoted as x, is the sum of signals
intended for each user, and it is expressed below:

x =
K∑︂
κ=1

√︂
PκSκ, (3.1)

In this context, the power allocated to each user κ, represented as Pκ = ακPt,
adheres to the condition P1 > P2 > ... > PK, Pt is the BS transmit power. Each
user’s signal, denoted as Sκ, has a normalized power (i.e., E[|Sκ|2] = 1 for κ ∈
1, ...,K, and E[.] represents the mathematical expectation).

The signal received at user K, designated as yκ, is composed of several com-
ponents, including the path loss between the BS and IRS, represented by ct; the
path loss between the IRS and user K denoted as cr,κ; the communication channel
link from the BS to the IRS, expressed as ht ∈ C1×N ; the matrix of phase shifts
denoted as Φ ∈ CN×N ; the channel link from the IRS to user K, symbolized by
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hr,κ ∈ CN×1; and finally, the presence of additive white Gaussian noise (AWGN)
represented as n. Accordingly,

yκ = ctcr,κhHr,κΦhtx+ n, (3.2)

yκ = ctcr,κhHr,κΦht
K∑︂
κ=1

√︂
Pκsκ + n,

In the presented model, we have various parameters and notations. Let ct =
(1 + dΞt

t )− 1
2 represent a certain coefficient related to the distance dt separating the

BS and the IRS. Similarly, cr,κ = (1 + dΞr
r,κ)− 1

2 is another coefficient associated with
the distance dr,κ separating the IRS and user K. Here, Ξt and Ξr represent the path
loss exponents associated with the link between the BS and the IRS, and between
the IRS and user, K [35, 9].

The matrix Φ is a diagonal matrix that follows the unit modulus constraint;
thereby, ensuring that the absolute value of each phase shift element equals 1. In
other words, |ϕi|2 = |ejθi|2 = 1 for all elements i in the range 1,2, ..., N , where N
is the total number of passive reflecting elements. The phase shift associated with
the ith passive reflecting unit is denoted as θi, and its value ranges from 0 to 2π.
Additionally, the channel links from the BS to the IRS and from the IRS to users
are modeled using the rician fading model. The BS-IRS channel includes LoS and
NLoS components, while the IRS-user channel encompasses both LoS and NLoS
components.

ht =
√︄

K1

K1 + 1 h̄t +
√︄

1
K1 + 1 h̃t, (3.3)

hrκ =
√︄

K2

K2 + 1 h̄rκ +
√︄

1
K2 + 1 h̃rκ, (3.4)

The parameter K1 characterizes the Rician factor of the channel ht. This channel is
composed of two components: the LoS component, represented by h̄t ∈ C1×N , and
the NLoS component, represented by h̃t ∈ C1×N . Similarly, K2 denotes the Rician
factor associated with the channel hr,κ. This channel consists of two components
as well: the LoS component, denoted by h̄r,κ ∈ CN×1, and the NLoS component,
designated as h̃r,κ ∈ CN×1.

Therefore, the received SINR for user κ is expressed as follows:

γk =
c2
t c

2
r,κ|hHr,κΦht|2Pκ

c2
t c2
r,κ|hHr,κΦht|2

∑︁K
i=κ+1 Pi + σ2 . (3.5)
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Indeed, it is important to highlight that when κ = K, the following expression
c2
t c

2
r,κ|hHr,κΦht|2

∑︁K
i=κ+1 Pi becomes equivalent to zero.

Moreover, the data rate of user κ is expressed as:

Rκ = log2(1 + γκ). (3.6)

The illustration of the signaling and feedback model for our IRS NOMA sys-
tem can be seen in Fig. 3.2. In this representation, the BS assigns power Pk =
[P1, P2, P3, ..., PK] to the users. Following this, the users calculate their respective
rates and transmit this information to the IRS, which plays the role of the DRL
agent within the system. The agent calculates the reward based on the received
information and then proceeds to adjust the phases of the IRS accordingly. Our
DRL model tracks the changes in channel magnitude by continuously adapting the
IRS phase to maximize the total transmission rate. Therefore, the system utilizes
DRL to optimize the IRS phase according to the total transmission rate feedback
from the users, enabling learning and achieving ideal sum-rate fine-tuning with the
existence of partial CSI.

Figure 3.2: Feedback and signaling scheme for IRS-aided NOMA

3.2 Problem Formulation for IRS-NOMA Sys-
tem

The primary objective of this study is to determine the ideal phase shift values
for the IRS units, aiming to maximize the total transmission rate of the users, as
indicated by the following equation:
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Rsum =
K∑︂
κ=1

log2 (1 + γκ) . (3.7)

Nevertheless, the assumption made in (3.7) of perfect SIC represents an ideal
scenario. Achieving perfect SIC relies on two impractical assumptions: (i) hav-
ing perfect knowledge of CSI and (ii) attaining perfect information decoding. In
reality, these suppositions are not feasible. To present a more realistic approach,
we consider that at every stage of interference cancellation, a residual fraction is
introduced denoted as 0 ≤ ϵ≪ 1, which represents the remaining interfering signal
after the cancellation process [1]. Within our system, the power allocation and SIC
for NOMA rely on the long-term averages of channel characteristics. Moreover, the
adjustment of IRSs using DRL is employed to reconfigure the channel conditions
and achieve optimal performance for NOMA. Consequently, the SINR received in
(3.5) at user κ is given as:

γ̃κ =
c2
t c

2
r,κ|hHr,κΦht|2Pκ

c2
t c2
r,κ|hHr,κΦht|2

(︂
ϵ
∑︁K−1
j=1 Pj +∑︁K

i=κ+1 Pi
)︂

+ σ2
. (3.8)

In the case where κ = 1, the expression c2
t c

2
r,κ|hHr,κΦht|2

∑︁K−1
j=1 Pj becomes equal

to 0. This implies that for the first user, there is no residual interference from the
imperfect SIC caused by other users in the system. Furthermore, when ϵ = 0, γ̃κ
is equal to γκ, representing the ideal case. In this scenario, there is no residual
interference after SIC, and the SINR received for user κ is equivalent to the SINR
in an ideal, interference-free environment.

Thus, the problem formulated at the IRS is to obtain the matrix of the ideal
phase shifts Φ that maximizes Rsum, which is expressed as:

max
Φ

K∑︂
κ=1

log2 (1 + γ̃κ) , (3.9)

s.t.

K1 :|ϕi|2 = 1,∀i ∈ {1,2, ..., N},
K2 :ακ ≥ 0, ,

K3 :
K∑︂
κ=1

ακ = 1 (3.10)

Here, constraint K1 ensures that the IRS elements’ phase shifts satisfy the
constant amplitude constraint, ensuring that the magnitude of each phase shift
element remains equal to 1. However, constraints K2 and K3, which represent
the power allocation constraints, are redundant in the optimization problem. The
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rationale behind this is that the system model relies on fixed power allocation
coefficients determined from the statistics of the long-term channel, and thus, the
power constraints are already satisfied. Hence, constraints K2 and K3 are no longer
necessary for the optimization problem, and they can be eliminated.

Alternatively, the problem of optimization presented in (3.9) is reformulated
as maximizing the SINR γ̃κ by obtaining the optimal phase shift Φ, as shown
in (3.11). However, solving this problem is challenging because of the objective
function and non-convex nature of the constant amplitude restriction [70] and [62].
Previous works have utilized the Semi-Definite Relaxation (SDR) method to achieve
near-ideal solutions. Nevertheless, it is crucial to highlight that the computational
complexity of the SDR method is excessively high, reaching O((N + 1)6) [49].

max
Φ

K∑︂
κ=1

c2
t c

2
r,κ|hHr,κΦht|2Pκ, (3.11)

s.t. |ϕi|2 = 1,∀i ∈ {1,2, ..., N}.

Moreover, considering the practical limitations of having incomplete informa-
tion about the CSI for the IRS-user channels hr,κ and the presence of imperfect
interference cancellation, attempting to solve the optimization problem analyti-
cally becomes infeasible. Due to the system’s dynamic nature and the complexity
of the problem, we propose the adoption of RL techniques to find the ideal phase
shifts of the IRS. By leveraging the power of RL, we can train an agent to acquire
the optimal phase configurations that boost the total transmission rate, considering
the system’s dynamics and the limited CSI information available.

3.3 DDPG Approach for IRS Phase Control
This section outlines a method for controlling the phase shift of an IRS using

the DDPG scheme (see Fig. 2.3). We address the problem of optimization described
in (3.9) which aims to maximize the sum-rate considering SIC. DDPG is an RL
technique that combines the benefits of PG and QL, and it does not require a
model of the system. Given that the system’s states mainly rely on the channel
gains and the resultant sum-rate, and the actions are associated with the IRS
phase shifts, we are dealing with a system characterized by continuous states and
continuous actions. DDPG is advantageous in this situation as it can effectively
manage systems with both continuous state and action spaces [14]. DDPG utilizes
four NNs: actor, critic, target actor, and target critic networks. This architecture
ensures stability during training. By learning the policy, DDPG can effectively
solve the optimization problem presented in (3.9). This architecture is designed to
ensure stability during training. By learning the policy, DDPG effectively addresses
the optimization problem presented in (3.9).
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3.3.1 System Mapping to DDPG
The initial step in using RL to solve a problem is to define the core elements of

an RL scheme, which include the state space, action space, and reward function for
the problem. In the subsequent discussion, we delve into this mapping process and
provide an overview of the typical behavior exhibited by the RL scheme using the
DDPG algorithm. During the mapping process, the problem at hand is translated
into a suitable representation of actions, states, and rewards. The state space
encompasses the relevant variables or information that characterizes the current
state of the problem. The action-space represents the set of feasible actions that can
be taken within the problem domain. The reward function quantifies the desirability
or quality of the outcomes associated with different states and actions, guiding the
RL algorithm during the learning process.

Once the problem is appropriately mapped, the RL method utilizing DDPG is
employed. DDPG is a specific RL algorithm that combines the strengths of PG
and QL. By utilizing NNs, DDPG can handle continuous state and action-spaces.
It includes training for four various NNs. This architecture helps maintain stability
during training.

In terms of behavior, the RL method using DDPG aims to learn an ideal
decision-making strategy. It engages with the environment iteratively by observ-
ing states, taking actions, getting rewards, and adjusting the policy as necessary.
Through this iterative process, the RL algorithm progressively improves its decision-
making abilities, seeking to maximize the cumulative rewards obtained over time.

To summarize, the first step in utilizing RL to solve a problem involves mapping
the problem onto the core elements of an RL system, encompassing the state-space,
action-space, and reward function. Following this, the RL method, particularly
DDPG, is utilized to acquire an optimal policy through iterative interactions with
the environment, aiming to maximize cumulative rewards.

State-space

The DDPG agent’s state-space at timestep τ is given below:

s(τ) = [h(τ)
t ,Φ(τ−1), γ̂(τ−1)], (3.12)

Here, the communication link between the IRS serving as the agent and the BS
acting as the source is represented by ht. The term Φ(τ−1) denotes the previous
action taken by the IRS. The phase action represents the specific adjustment or
configuration applied to the IRS to manipulate the wireless signal reflections.

γ̂(τ−1) refers to the estimated SINR values of the users in the previous state.
These values depend on the rates of the users associated with the particular ac-
tion taken by the IRS. The SINR reflects the ratio of the desired signal power to
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the combined interference and noise power, indicating the quality of the wireless
transmission for each user. It is represented as γ = [γ1, γ2, . . . , γκ, . . . , γK].

By incorporating these elements into the state-space, the DDPG agent can con-
sider the channel gain, the previous IRS phase action, and the previous estimated
SINR values for users as part of its decision-making process.

Action-space

The actions in the DDPG agent correspond to the IRS phase shift values. These
phase shifts are real numbers obtained from the NN and utilized as the input of
a complex exponential function to represent the actual phase. The resulting array
determines the phase shift for each IRS unit. Consequently, the set of possible
actions can be described using the subsequent policy function, formulated as follows:

a(τ) = µ(s(τ)|oµ) + n(τ) (3.13)

Here, the policy function is represented by µ, while the parameters (i.e., weights
of the NN) are represented by oµ. The policy function accepts the state (τ) as input
and returns the desired action a(τ).

Additionally, n(τ) represents the action noise based on the OU approach. This
noise helps add exploration to the agent’s actions, promoting diversity and avoiding
the agent’s confinement to local optima during the learning process.

To summarize, the DDPG agent’s set of actions is defined by the policy function,
taking the current state s(τ) as input and generating the action a(τ). The policy
function is defined by the parameters oµ, representing the NN weights. The action
is further influenced by the OU process-based action noise n(τ), which encourages
exploration during the learning process [56].

Reward function

The reward function is a function that rewards the agent for reaching the max-
imum capacity ever attained. It is expressed as below:

r(τ) = R(τ)
sum −Rsum,max (3.14)

where R(τ)
sum symbolizes the actual total users’ transmission rate at time-step τ ,

which represents the aggregated data rate achieved by all users in the system.
Conversely, Rsum,max denotes the maximum attained sum-rate during the learning
phase.

The reward r(τ) is determined as the difference between the current aggregated
rate R(τ)

sum and the highest aggregated rate ever reached Rsum,max. This formulation
allows the DDPG agent to strive for higher sum-rates by incentivizing improvements
over the best performance achieved thus far.
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In conclusion, the reward function bases its evaluation of the agent’s perfor-
mance on the total users’ rate. Therefore, the agent seeks out improvements to
optimize system capacity by comparing the present sum-rate to the total transmis-
sion rate achieved.

3.3.2 Balancing Exploration and Exploitation in RL
To explore the continuous action-space in DDPG, the exploration is facilitated

using noise produced by the Ornstein-Uhlenbeck (OU). The OU method generates
noise by drawing samples from a correlated Gaussian distribution. It is specifically
designed to produce temporally correlated noise, which helps the agent explore the
action-space effectively. The correlated nature of the noise allows the agent to have
smoother transitions between consecutive actions, promoting stability during the
learning process.

By incorporating the OU process-based action noise, the DDPG agent can ex-
plore a wide range of actions, preventing it from getting stuck in local optima and
encouraging the discovery of better policies. This exploration is crucial for the
agent to learn and adapt in complex environments with continuous action-spaces.

In summary, the OU process is employed to generate noise that enables explo-
ration in the agent’s action-space. This noise is sampled from a correlated normal
distribution, providing smooth transitions between actions and facilitating effective
learning and adaptation.

3.3.3 DDPG Scheme
The core purpose of the DDPG scheme is to facilitate the training of the IRS

agent to make optimal decisions in response to variations in unknown environments.
Specifically, the agent’s specific objective is to iteratively determine the ideal phase
shifts that maximize the total rate through successive iterations of the DDPG
scheme. Notably, the agent has limited CSI concerning the link between the IRS
and users. To address this, the agent relies on feedback from the BS regarding
estimated channels to obtain the CSI of the channel between the BS and IRS.
However, the agent faces the limitation of not having direct access to CSI for the
communication link between the IRS and the receiver. To overcome this constraint,
the agent employs an indirect indicator by utilizing the feedback SNR. This SNR
feedback provides an alternative measure that the agent can use to find out the
quality of the IRS-to-receiver channel, enabling it to make informed decisions in
the absence of direct CSI. The tuning of the IRS phases in this setup is effectively
tuning the channel effect.

The ultimate goal of the DDPG scheme is to train the IRS agent in such a
way that it can choose actions leading to the maximization of the long-term mean
reward, which, in this situation, is equivalent to maximizing the total transmission
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rate while adapting to the changes in unknown environments. The agent achieves
this objective by learning to adapt its randomized policy effectively, considering the
stochastic behavior of the environment. This adaptive learning allows the agent to
cope with uncertainties in the environment and ultimately results in the optimiza-
tion of long-term rewards. It is crucial to emphasize that the prime objective of
the DDPG scheme is not to provide the best possible immediate reaction to the
channel’s stochastic fluctuations. Instead, the algorithm focuses on learning the
probabilistic representation of the uncertain environment and adapting its unique
policy for responding to statistical patterns accordingly to maximize long-term re-
wards. This long-term optimization ensures that the agent can make informed
decisions in the face of uncertainties and achieve overall better performance over
time.

During each iteration, the IRS agent watches the current state, which consists
of the transmitting channel (h(t)

t ), the previous action taken (Φ(t−1)), and the pre-
viously estimated SINR (γ̂(t−1)). Subsequently, it employs the actor-network to
compute the action (Φ(t)) that boosts the reward, as specified in (3.14), which
corresponds to the total sum-rate.

Furthermore, the critic-network uses both the state and action inputs to obtain
the aggregated rate. When the aggregate rate from the users is collected, a new
state is observed, prompting the IRS to adjust the phase shifts accordingly. The
policy parameters (oµ) used to calculate the action are modified according to the
total rate feedback received from the user devices. This iterative process continues
until the system acquires the ability to attain optimal sum-rate tuning despite the
limitations posed by limited CSI. To gain a more comprehensive understanding of
the DDPG algorithm, kindly refer to Algorithm 1.

3.3.4 Neural Network Architecture
The DDPG agent employs a four-NN architecture that includes actor, critic,

target actor, and target critic networks. This design provides stability when train-
ing. Each actor and critic-network is made up of 2 hidden layers, each with 256
nodes. The actor-network accepts an input of size 2N + K and produces an out-
put of size N , aligning with the continuous nature of DDPG. The DDPG agent’s
structure enables significant scalability with progressively growing complexity.

3.4 Complexity Analysis
To assess the effectiveness of the DDPG algorithm, we compare its complexity

to that of the ES algorithm. The complexities of both algorithms can be inferred
from the provided descriptions in Algorithm 1 and Algorithm 2. In our analysis, we
focused on the computations performed during the exploitation stage of the DDPG
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algorithm to evaluate its complexity, which heavily relies on the actor-network’s
architecture. Deep NNs consist of input, output, and concealed layers (i.e. the
layers that lie between the input and output strata of a DNN). We examine several
factors in our analysis, including the count of states (S), the number of neurons
within the input of each layer (I), the number of concealed layers (H), the number
of neurons in the output of each layer (O), and the count of actions (A). The
complexity of the input layer relates to S× I, and the complexity of the concealed
layers correlates to H× I×O, and the complexity of the output layer is connected
to O× A. Consequently, the cumulative complexity of the DRL algorithm can be
expressed as follows:

CDDPG = S× I + H × I× O + O×A.
Furthermore, in the DDPG scheme, the action yielding the highest reward is

always selected, and a linear search is performed on the output. Consequently, the
overall computational complexity of a NN forward pass can be represented as:

CDDPG = S× I + H × I× O + O×A + A.
Please note that the above analysis assumes a simplified perspective and does

not consider additional factors such as activation functions, regularization tech-
niques, or the training process itself.

The complexity of the ES approach is described as follows when K users, N
IRS elements, and ⌊ 2π

∆Φ⌋ phase search steps are taken into account:

CES = O

(︄
K×

(︃
⌊ 2π
∆Φ⌋+ 1

)︃N)︄
. (3.15)

Here, CES represents the complexity of the ES scheme. The computational
effort increases exponentially as the count of IRS elements N and phase search
steps ⌊ 2π

∆Φ⌋ increases. Hence, the search space expands significantly, making the ES
approach computationally demanding and impractical for large-scale scenarios.

Consequently, with an increase in the number of users or IRS units, the com-
plexity of the DDPG algorithm experiences a notably more pronounced reduction
compared to the ES algorithm. Hence, DDPG demonstrates substantially reduced
complexity compared to ES as the count of users or IRS units rises.

3.5 Bench-marking Assessment Schemes
To evaluate the effectiveness of the suggested algorithm, it is essential to have

reference systems for comparison. However, the current body of literature lacks a
definitive upper boundary or theoretical constraint for the examined system, and
establishing such an upper limit poses intricate and demanding challenges. Hence,
we introduce two benchmark reference models to assess the effectiveness of our
approach. The first reference model is based on a discretized ES approach of the
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IRS phases. While this method serves as an approximate upper bound, it is not a
precise theoretical limit. The ES technique explores various combinations of IRS
phases to seek the optimal solution. The second reference model employs OMA
and serves as a performance lower bound. This benchmarking scheme provides a
baseline comparison for assessing the efficiency of our suggested approach. OMA
assumes that the available resources are divided among the users in an orthogonal
manner, thus eliminating interference between users. By evaluating our suggested
scheme’s performance to that of existing reference models, we can gain insights into
its effectiveness and understand how it performs relative to the upper and lower
bounds.

3.5.1 Upperbound on Performance

Algorithm 2 ES Approach for IRS Phase Shifts’ Matrix
1: Set ∆Φ = 2π

30 , N = 4.
2: for ϕ1 = 0 : 2π

30 : 2π; do
3: for ϕ2 = 0 : 2π

30 : 2π; do
4: for ϕ3 = 0 : 2π

30 : 2π; do
5: for ϕ4 = 0 : 2π

30 : 2π; do
6: Compute and save Rsum(ϕ1, ϕ2, ϕ3, ϕ4)
7: Endfor
8: Endfor
9: Endfor

10: Endfor
11: Obtain the optimum Φ∗ = argmaxϕ1,ϕ2,ϕ3,ϕ4 Rsum

To evaluate the efficiency of the DDPG scheme compared to the upper bound,
we employ a discretized ES method. This approach allows us to approximate
the total transmission rate by searching for the matrix of optimal phase shifts.
The algorithm used for this purpose is outlined in Algorithm 2. To mitigate the
computational complexity associated with the ES, we limit the number of IRS
RUs. This serves as evidence that the DDPG scheme can effectively approximate
the upper limit. Specifically, for every IRS unit, we consider phase values ranging
from 0 to 2π with an incremental step of 2π/30. This yields 30M phase shift
matrix combinations. Subsequently, we compute the total transmission rate for K

end-users based on these combinations.

3.5.2 Baseline Scheme: Orthogonal Multiple Access (OMA)
The OMA signal model assumes that the available resources, whether in terms of

frequency or time, are equally divided among the K users. OMA scheme allows the
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users to receive the signal without experiencing interference. In contrast, NOMA
enables simultaneous transmission and offers control over interference. However,
serving K OMA end-users using TDMA or FDMA demands K time slots or fre-
quency channels, where each user occupies a specific frequency or time slot.

The BS transmitted signal in the OMA scheme is expressed as:

xOMA
κ =

√︂
Ptsκ, (3.16)

From the user’s perspective, the received signal can be expressed as:

yOMA
κ = ctcr,κ

√︂
PtsκhHr,κΦht + n, (3.17)

Therefore, the SNR for user κ is given as:

γκ =
c2
t c

2
r,κ|hHr,κΦht|2Pt

σ2 , (3.18)

The rate for user κ can be calculated as:

ROMA
κ = 1

K
log2(1 + γOMA

κ ), (3.19)

Hence, the total OMA rate is expressed as:

ROMA
sum = 1

K

K∑︂
κ=1

log2

(︄
1 +

c2
t c

2
r,κ|hHr,κΦht|2Pt

σ2

)︄
. (3.20)

where ROMA
sum symbolizes the sum of the individual data rates for each user, normal-

ized by K.

3.6 Performance Evaluation and Analysis
The numerical results presented showcase the proficiency of the DRL-based

IRS NOMA communication network, considering an IRS with N = 16 RUs. The
default values used for the evaluation of the DRL scheme are outlined in Table 3.1.
Specifically, the system configuration includes one BS antenna (Nt = 1) and one
antenna per end-user (Nr = 1). The distance separating the BS and the IRS is fixed
at 50 m, but the distances separating the IRS and the users are produced at random
between 200 and 1500 m. The communication channel link separating the BS and
IRS, as well as the links separating the IRS and users, are modeled using the rician
fading model with rician factors K1 = K2 = 10. The communication link between
the BS and the IRS is assumed to be accurately determined, whereas the link from
the IRS to users has limited CSI. The system operates within a 10 MHz bandwidth,
with a BS transmit power (Pt) of 40 dBm and a noise power spectral density
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Table 3.1: Parameters Used in Simulation

Simulation Parameters Values
IRS RUs (N) 16

User K antennas Nr 1
BS antennas Nt 1

dt 50
dr,K 200 - 1500
Pt 40 dBm

Network bandwidth 10 MHz
Noise PSD -174 dBm/Hz

Ξt 2
Ξr 2.8

K1, K2 10
Critic-network’s 𭟋C 0.001
Actor-network’s 𭟋A 0.0005

Discount Coefficient Γ 0.99
Soft Updates Factor υ 0.05

Batch size B 64
Capacity of the Memory Buffer C 100000

(PSD) of −174 dBm/Hz. The outcomes of the numerical simulations are obtained
for 1000 Monte Carlo runs. Overall, these simulation results provide insights into
the efficiency of the DRL-based IRS NOMA scheme, and they demonstrate the
performance of the algorithm in achieving improved total rate performance through
iterative learning and optimization.

The DDPG algorithm employs DNNs for both the actor and critic-networks.
A total of 128 neurons are used as input by the actor-network, while 16 neurons
are produced as output. It consists of two hidden layers, each with 256 neurons,
succeeded by the ReLU activation unit. To ensure sufficient gradient, the actor-
network output layer employs the tanh() function. The critic-network takes inputs
for both states and actions. The critic-network takes inputs of both actions and
states. The state is routed through 2 dense layers consisting of 128 and 256 neu-
rons respectively, succeeded by ReLU activation units. The action passes through a
single dense layer with 128 neurons. The outputs of both networks are then passed
through separate layers before being concatenated to form the critic-network’s in-
put. Two further hidden strata each consisting of 256 neurons are added, succeeded
by the ReLU activation unit. The critic-network concludes with an output layer
containing 16 neurons. Adam optimizer is used by the actor and critic-networks
to update their settings. Over 1000 channel iterations, the average sum-rate is
computed. The learning rate for the actor-network, denoted as 𭟋A, is assigned a
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value of 0.0005, the learning rate for the critic-network, denoted as 𭟋C , is assigned
a value of 0.001, the soft update coefficient υ is set to 0.05, the discount factor Γ
is adjusted to 0.99, and the buffer capacity C is configured to hold 100,000 entries.
The noise is considered to be complex AWGN with a 0.1 variance and a zero mean.

Our primary focus in this section is to assess the DDPG algorithm’s performance
to ensure that the calculated total transmission rate values closely approximate the
upper bound. To determine the maximum achievable sum-rate, we employ the
ES approach, assuming perfect knowledge of the channel. Considering the high
complexity of the ES scheme, we limit the count of IRS RUs to N = 4 instead of
N = 16. This allows us to verify the capability of the DDPG algorithm to closely
approximate the upper limit. For each reflecting unit, we examine phase shifts
ranging from 0 to 2π with an incremental step of 2π

30 . Consequently, there are a
total of 304 potential permutations of phase shift matrices. We compute the total
rates for a system with 16 users and perform 1000 Monte Carlo iterations. By
conducting these evaluations, we can determine the extent to which our suggested
DDPG scheme can approximate the upper bound, thus validating its effectiveness
in enhancing the total rate performance of the IRS NOMA network.
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Figure 3.3: Comparing upper bound performance with the proposed DDPG
scheme. K = 16, N = 4, and ∆Φ = 2π
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Figure 3.4: Comparing NOMA sum-rate with iteration plots.
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Figure 3.5: Comparing sum-rates of IRS NOMA and IRS OMA for various
number of users. Pt = 40 dbm, and N = 16.
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Figure 3.6: Comparison between IRS NOMA and IRS OMA sum-rates vs
different power levels. K = 16, and N = 16.

Comparatively, the complexity of the ES algorithm can be computed as the
product of the number of Monte Carlo simulations 1000, the total users’ count 16,
and the total count of phase shift matrices (304), yielding a total of 1.2960 × 1010

iterations. The time necessary to complete this ES is roughly 124.86 hours. The to-
tal rate obtained by the DDPG scheme closely approximates the upper bound and
is near to ideal, as revealed in Fig. 3.3. These findings reveal the computational ef-
ficiency and effectiveness of the DDPG algorithm in achieving near-optimal results
for the problem of sum-rate optimization in the IRS NOMA communication sys-
tem, as it achieves comparable performance to the ES algorithm with significantly
reduced computational burden.

In Fig. 3.4, the convergence of the DRL method is demonstrated through the
average NOMA rate versus iteration plots. It can be observed that the average rate
increases with time until reaching an almost stable value, indicating the successful
training process of the DRL algorithm. This reaffirms the effectiveness of our
approach in optimizing the efficiency of the IRS NOMA network.
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Figure 3.7: NOMA sum-rate analysis for different power levels N = 16.
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Figure 3.9: Total achievable data rate at the closest user, accounting for imperfect
SIC. K = 32, and N = 16.
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Figure 3.10: Comparing upper bound performance with the proposed DDPG
algorithm incorporating imperfect SIC. K = 16, N = 4,and ∆Φ = 2π

30 .

Figure 3.5 illustrates a comparison between the sum-rates of IRS NOMA and
IRS OMA across varying user counts, with a transmit power of 40 dBm. NOMA
outperforms OMA by offering a greater sum-rate value when the number of users
is limited (less than 16). This is because NOMA allows users in the power domain
to share resources, removing the requirement for bandwidth division. As a result,
both the rate and the spectral efficiency have increased. OMA, on the other hand,
does not entail resource sharing, resulting in user bandwidth partition. As the user
count surpasses 16, the interference among users increases, and OMA outperforms
NOMA by giving a greater sum-rate. Fig.3.6 shows that IRS OMA performs slightly
superior to IRS NOMA at low transmission power levels and in scenarios involving
16 users. This is due to interference experienced by IRS NOMA users during
simultaneous transmission at low SINR, but OMA users do not. At low SINR,
the NOMA system lacks enough power to provide significant channel disparity
across users, reducing the potential advantage afforded by NOMA. However, under
conditions of higher power levels, the sum-rate of the IRS NOMA system surpasses
that of the IRS OMA system.
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Further, Fig. 3.7 illustrates the total rate of NOMA across varying power levels
ranging from 10 dBm to 80 dBm. The uppermost curve signifies the aggregate
rate at 80 dBm, while the lower curve corresponds to the total rate at 10 dBm.
Notably, as the power level rises, the total data rate also demonstrates an increase,
enabling the IRS NOMA system to accommodate more users effectively. Addition-
ally, Figure 3.8 demonstrates the capacity of the DDPG algorithm to effectively
handle a greater amount of IRS units, showcasing its scalability. However, due to
the computationally prohibitive complexity, the ES approximate upper bound is
not displayed in these cases. Importantly, it’s crucial to highlight that the overall
data rate performance sees enhancement when the number of IRS units increases.
This improvement is attributed to the added degrees of freedom and the enhanced
capability to focus the signal more effectively at the intended destination.

Moreover, Fig.3.9 and Fig.3.10 provide visual representations of the users’ total
data rate in scenarios involving imperfect SIC. In this context, the residual interfer-
ence stemming from the power of all users remains within the denominator of the
rate equation. Moreover, Fig. 3.9 displays the rate attributed to user κ, who is the
nearest user to the BS, across varying power levels and ϵ values. User 1 positioned
farthest from the BS, does not perform SIC, thereby directing the analysis toward
examining the data rate specifically for user K. It is evident that with increasing
imperfection, the data rate for user K demonstrates a decline. The depicted curves
in the plots correspond to various ϵ values, which signifies the proportion of residual
interference. When ϵ is equal to 0, perfect SIC is achieved, resulting in the highest
data rate for user K. In comparison, when ϵ holds a value greater than 0, the
achieved rates for user K are lower.

As the value of ϵ increases, the rate decreases due to the growing fraction of im-
perfection. Consequently, imperfect SIC has a negative impact on the rates of users
employing SIC. Fig.3.10 depicts the performance of the DDPG algorithm versus the
ES scheme during imperfect SIC. With the increase of ϵ values, there is a decrease
in the data rate owing to the increased proportion of imperfection. Consequently,
the rates of users employing SIC are adversely affected by the imperfection. This
phenomenon is illustrated in Fig. 3.10, which showcases the comparative perfor-
mance of the DDPG scheme against the ES algorithm under conditions of imperfect
SIC. The calculation of the optimal phase shifts is performed to optimize the total
data rate, considering the constraints of limited channel knowledge and ϵ values
greater than zero. Remarkably, despite the presence of imperfect SIC, it’s evident
that the DDPG method consistently approaches the upper-performance limit.
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Chapter 4

A Deep Reinforcement Learning
Approach for THz Multiple
Access in a Multi-hop IRS
Network Topology

This chapter focuses primarily on the thesis’s second main contribution, which
involves developing a DRL approach for THz multiple access in a multi-hop IRS
Network Topology. The objectives are twofold: maximizing the targeted user’s rate
while treating the second user as an interfering factor, and maximizing the total
rate of the system.

For the first objective, one challenge involves handling the constant modulus
constraints of the multi-hop IRSs, which makes optimizing the phase shifts at IRS1
and IRS2 complex and requires innovative solutions. Another potential problem in
the uplink multi-hop IRS multiple access scheme is dealing with an over-determined
set of equations, considering the different paths established through combinations
of reflective elements in IRS1 and IRS2. To address these challenges, sub-optimal
mathematical methods are utilized, and the results are compared with the pro-
posed DRL scheme. The second objective is a more difficult problem to solve,
as it is non-convex, NP-hard, and more complicated. It is challenging to find an
analytical solution utilizing typical mathematical approaches, and ES becomes im-
practical for large-scale communication systems. To overcome these challenges, a
novel DRL-based approach is introduced, employing DDPG to determine the opti-
mum IRS phases in the multi-hop communication network, and the obtained results
are compared to that of the ES scheme considering the limited number of RUs. The
approach takes into consideration the spatial correlation of the channel between the
two IRSs, and aims to achieve two scenarios: enhancing the rate for the desired
user and increasing the overall rate for all users in our system.
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4.1 System Model
We assume in the system model that our setup comprises two users, each

equipped with a single antenna, operating in a wireless communication system
where these users transmit data to a BS with the help of a multi-hop IRS. This
configuration is depicted in Fig. 4.1. It is valuable to acknowledge that increas-
ing the number of antennas and users does not provide additional insights but
introduces complexity to the system without clear benefits. Additionally, both
users have parabolic antennas that are highly directional, meaning that they can
focus the transmitted signal toward the center of IRS1. Further, the communica-
tion system operates at a frequency within the THz range. The decision to utilize
THz frequencies is intentional, mainly because of their appropriateness in scenar-
ios with constrained coverage areas, which is ideal for users 1 and 2. To address
the substantial propagation losses experienced by THz signals due to absorption
in air molecules, we have integrated a cascaded IRS system. As a result, this con-
figuration significantly boosts signal strength, especially for signals encountering
difficulties in traveling long distances due to their short wavelength and high fre-
quency. The cascaded IRS setup emerges as a strategic solution to augment the
overall resilience and efficiency of the communication process within the challenging
THz spectrum. Moreover, the transmitter antennas have a diameter of Dt, while
the receiver antenna has a diameter of Dr. The distances from each user to IRS1,
from IRS1 to IRS2, and from IRS2 to the receiver are designated as rtκ, r2, and r3,
respectively. Similarly, the horizontal distances between each user and the center
of IRS1, IRS1 and IRS2, and IRS2 and the receiver are symbolized as rκ,1,h, r2,h,
and r3,h, respectively. The angles of the incoming signal w.r.t. the center of IRS1
and IRS2 are denoted as ψi1,1, and ψi2,1, respectively. Similarly, the reflected angles
from IRS1 and IRS2 w.r.t. their center are designated as ψi,2, and ψr,2, respectively.
The two users’ heights, IRS1 height, IRS2 height, as well as the receiver’s height,
are represented as ℓTx,1, ℓTx,2, ℓs1, ℓs2, and ℓRx, respectively. The phase of each RU
is adjusted by the IRS to steer the incoming signal toward a particular reflection
path. E indicates the quantity of RUs within IRS1, while F represents the number
of RUs in IRS2.
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Figure 4.1: Multi-hop IRS network model.

The signal transmitted by each user κ is given as:

xκ =
√︂
Ptzκ, (4.1)

where κ ∈ [1,2], Pt designates the transmitting power for every transmitter, zκ
denotes user κ’s signal with normalized power (E[|zκ|2] = 1), and E[.] represents
the expected value.

Hence, user κ’s received signal is given as below:

yκ = hHr ΦFHH
e,fΦEhHt,κxκ + n0 (4.2)

yκ = hHr ΦFHH
e,fΦEhHt,κ

√︂
Ptzκ + n0, (4.3)

In the system model, several parameters and variables are defined as follows:
The communication channel link connecting user κ and IRS1 is represented by the
vector ht,κ, which has the dimension 1 × E. The communication link connect-
ing IRS1 and IRS2 is depicted by the matrix He,f , which possesses dimensions of
E × F . The communication link connecting IRS2 and the receiver is illustrated
by the vector hr, which is of size F × 1. The matrices representing the phase ad-
justments for IRS1 and IRS2 are expressed as ΦE = diag(e−jθ1 , e−jθ2 , ..., e−jθE ) and
ΦF = diag(e−jω1 , e−jω2 , ..., e−jωF ), correspondingly. These matrices ensure that the
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constraint of the constant modulus is satisfied, such that |ϕe|2 = |Λe−jθe|2 = 1 for
all e ∈ 1,2, ..., E, and |ϕf |2 = |Λe−jωf |2 = 1 for all f ∈ 1,2, ..., F , where Λ symbolizes
the reflection amplitude, assumed to be uniform across all elements. The function
diag(.) represents the diagonal matrix. The phase shifts of the ethand f th RUs are
denoted by θe and ωf , respectively. The superscripts e and f refer to the ethand f th
RUs, respectively. These phase adjustments are used to manipulate the channel
between the transmitter and the receiver. The objective is to tune the phase shifts
of the RUs to maximize the received signal strength at the receiver. The values of
θe and ωf range from 0 to 2π. The AWGN at the receiver is represented by the
random variable n0, which takes the form of a complex Gaussian random variable
with zero mean and a variance of σ2, where σ2 represents the noise power in linear
scale. The signal phase originating from each user to IRS1, as well as from IRS2 to
the receiver, can be calculated using the following equations.

ηκ = 2πrtκ
λ

, (4.4)

η3 = 2πr3

λ
, (4.5)

Here, the parameter λ denotes the wavelength, which is calculated as the speed of
light (c), approximately 3× 108 meters per second (m/s), divided by the frequency
(f) measured in Hertz (Hz). By applying these equations, the deterministic phase
shifts can be obtained based on the distances traveled by the signals. The distances
(rtκ and r3) are multiplied by 2π and divided by the wavelength to convert them
into phase shifts in terms of cycles or radians. This allows precise control and
manipulation of signal propagation in systems utilizing IRSs.

The communication channel links between the transmitters and IRS1, ht,κ, and
the communication link between the IRS2 and the receiver, hr, are represented to
follow the Rician fading model [27], [12]. This model is described as follows:

ht,κ =
√︄

K1

K1 + 1 h̄t,κ +
√︄

1
K1 + 1 h̃t,κ, (4.6)

hr =
√︄

K2

K2 + 1 h̄r +
√︄

1
K2 + 1 h̃r, (4.7)

Here, K1 represents the Rician factor for ht,κ, while h̄t,κ corresponds to the LOS
constituent of the channel, and h̃t,κ represents the NLOS constituent of the channel.
Similarly, K2 signifies the Rician factor for hr, where h̄r denotes the LOS portion
of the channel and h̃r signifies the NLOS portion of the channel.

The channel between the two IRSs denoted as He,f , follows a spatially correlated
Rayleigh fading channel model. The choice of the Rayleigh fading model for the
channels between the two IRSs is based on their proximity in location and operation
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on the same frequency. In such conditions, there is no prevalent Line-of-Sight (LOS)
link, hence the applicability of the Rayleigh fading model to characterize the channel
behavior. Further, the exponential spatially correlated model is used to calculate
the covariance matrix R, where the correlation coefficient ρ acts as the controlling
parameter and takes values within the range of [0,1]. The elements of the matrix
R are expressed as follows:

[R]e,f = ρ|e−f |e|e−f |ψi,2 , (4.8)

Here, ψi,2 represents the angle of arrival between IRS1 and IRS2. Higher ρ values
indicate a stronger correlation among the components of He,f , with a significant
correlation observed between adjacent RUs. The correlation decreases as the dis-
tance between RUs increases[49], [47].

It is assumed that the first hop channels ht,κ and the third hop channel hr are
precisely known to both the users and the receiver. While channel estimation and
obtaining CSI is a challenging task in a communication network including the IRS,
several methods have been proposed to address this issue. For example, in [74], an
effective channel estimation approach for a double multi-user MIMO IRS communi-
cation scheme was proposed. In [75], an extensive survey was conducted regarding
channel estimation for wireless communications aided by the IRS, focusing on prac-
tical design solutions. Additionally, in [24], a system for channel estimation involv-
ing the IRS was introduced. This system employs a limited number of IRS units to
process received pilot signals through compressed sensing techniques, thereby en-
abling effective channel estimation. These approaches empower the IRS to enhance
the communication links between the IRS and the BS, as well as between the IRS
and the users.

The gains for the users’ and receiver antennas, denoted as Gt(O) and Gr(O),
respectively, can be given as follows:

Gt,κ(O) = 4et
J1
(︂
πDt sin(O)

λ

)︂
sin(O) . (4.9)

Gr(O) = 4er
J1
(︂
πDr sin(O)

λ

)︂
sin(O) . (4.10)

Here, J1(.) represents the Bessel function of the first kind of order 1, Dt and
Dr are the diameter of the transmitter and receiver antennas. The parameter O
represents the angle measured from the broadside of the antenna [42], where the
highest gain occurs when O = 0 and is written as:

Gt,κ(O) = et

(︃
πDt

λ

)︃2
. (4.11)
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Gr,κ(O) = er

(︃
πDr

λ

)︃2
. (4.12)

The aperture efficiencies for the transmitter and receiver antennas are repre-
sented by et and er, respectively. The gain of each RU can also be given as [42].

Each RU’s power radiation pattern can be represented as follows:

G(ψi1,κ) = 4 cos(ψi1,κ), 0 ≤ ψi1,κ ≤
π

2 , (4.13)

Here, the angle at which the signal from user κ arrives at IRS1 is represented
as ψi1,κ. [42].

The cumulative gains and losses between each user and the receiver are expressed
as Lτ,κ. These include free space path losses (FSPL), antenna gains, and THz
absorption losses [49], [47]. Mathematically, we have:

Lτ,κ = LFSPL,τ,κLabs,κ (4.14)

The entire THz absorption losses for each transmitter Txκ are represented by
Labs,κ. These losses are calculated using a simplified model presented in [31] at
typical atmospheric conditions. On the other hand, the entire FSPL for each trans-
mitter Txκ is represented by LFSPL,κ and can be expressed as[49], [47]:

LFSPL,τ,κ = LFSPL,κLFSPL,r, (4.15)

The term LFSPL,κ represents the FSPL for the signal reflected from IRS1 to
IRS2 and is given by:

LFSPL,κ =

(︂
λ
4π

)︂2
Gt,κGψi1,κ

Gψr,1

r2
tκ

, (4.16)

Similarly, LFSPL,r corresponds to the FSPL for the third hop, linking IRS2 and
the receiver, is formulated as:

LFSPL,r =

(︂
λ
4π

)︂4
Gψi,2Gψr,2Gr

r2
2r

2
3

. (4.17)

The total FSPL for each transmitter Txκ can be obtained as follows:

LFSPL,τ,κ =
(︄
λ

4π

)︄6
Gt,κG(ψi1,κ)G(ψr,1)G(ψi,2)G(ψr,2)Gr

r2
tκr

2
2r

2
3

. (4.18)

In (4.18), Gt,κ designates the transmitter Txκ gain, G(ψi1,κ) and G(ψr,1) de-
note the power radiation patterns of the incident angle ψi1,κ towards IRS1 and the
reflected angle ψr,1 towards IRS2, respectively. Similarly, G(ψi,2) and G(ψr,2) rep-
resent the power radiation patterns of the incident angle ψi,2 towards IRS2 and the
reflected angle ψr,2 towards the receiver, respectively. Finally, Gr denotes the gain
of the receiver antenna [49], [47].
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4.1.1 Rate of the Desired User in the Presence of Interfer-
ence

The desired user’s rate in the presence of interference is given by (4.19). Here,
Rκ, and γκ represent the data rate and the SINR of user κ, respectively.

Rκ = log2(1 + γκ), (4.19)

The SINR γκ is defined as:

γκ = P
(κ)
Rx∑︁K

i=1 i /=κ P
(i)
Rx + σ2

, (4.20)

Here, the received power of user κ is represented by P
(κ)
Rx , and σ2 denotes the

noise variance at the receiver. The denominator in (4.20) represents the aggregate
interference power stemming from all remaining users. The objective of this section
is to derive the expression for the received power given by (4.24) and the E2E total
rate (4.32). Additionally, we provide a detailed analysis of two objectives: 1)
Optimize the received signal power for user 1. 2) Maximize the sum data rate for
both users.

However, it is important to note that maximizing the rate, (4.19), for individual
users or the sum rate, (4.32), for both users using analytical solutions is mathe-
matically intractable and not feasible. For the first goal, we utilize sub-optimal
optimization solutions available in the literature. We address the over-determined
system of equations that has more equations than unknowns by considering the as-
sumption of a spatially correlated channel. Mathematical solutions for this system
are typically challenging to obtain, and thus, sub-optimal optimization methods
are employed. Additionally, we suggest employing DRL techniques, specifically
DDPG, to solve the same problem. We assess the performance of the DDPG al-
gorithm in comparison to sub-optimal methods. For the second goal, we use the
DDPG scheme to solve a non-convex optimization problem. To assess the DDPG
algorithm’s performance for this objective, we compare its results with the results
obtained using a discretized ES method.

Deriving the Received Power for user κ (P (κ)
Rx )

In our setup, the two users are transmitting at IRS1, and their signals cover all
IRS1 units from different distances and angles.

The power that is reflected from the eth RU of IRS1 is represented as follows:

P (κ)
r,e =

(︄
λ

4π

)︄2
Gt,κG(ψi1,κ)G(ψr,1)

r2
tκ

|ht,κe|2|ϕe|2Pt, (4.21)
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Here, ϕe = Λee
−jθe denotes the exponential of the phase shift of the eth reflecting

element in IRS1, and Λe stands for the reflection coefficient of the eth RU in IRS1.
The antenna gain for user κ is designated by Gt,κ, the RU gain from the incident
angle is symbolized as G(ψi1,κ), the gain of the RU from the reflected angle is
represented as G(ψr,1), and rtκ signifies the distance separation between user κ
and the eth IRS1’s RU. |ht,κe|2 represents the squared magnitude of the channel
coefficient between user κ and the eth RU. Pt denotes the transmitted power.
Similarly, the power that is reflected from the f th RU of IRS2’s as a result of
being reflected by the eth RU of IRS1 can be expressed as:

P
(κ)
r,ef =

(︄
λ

4π

)︄4
Gt,κG(ψi1,κ)G(ψr,1)G(ψi,2)G(ψr,2)

r2
tkr

2
2

|ht,κe|2|ϕe|2|Hef |2|ϕn|2Pt, (4.22)

Here, ϕf = Λfe
−jωf denotes the exponential of the phase shift of IRS2 f th

reflecting unit, and its reflection coefficient is designated as Λf . G(ψi,2) signifies
the gain of the RU based on the incident angle ψi,2, and G(ψr,2) denotes the gain
of the RU corresponding to the reflected angle. Hef signifies the channel coefficient
connecting the eth RU of IRS1 and the f th RU of IRS2. Finally, the power received
at the receiver across the channel Hef is expressed as:

P
(κ)
rx,ef =

(︄
λ

4π

)︄2 P
(κ)
r,ef

r2
3
Gr|hrf |2, (4.23)

Here, r3 designates the distance between IRS2 and the receiver. Gr represents
the antenna gain of the receiver, and |hrf |2 represents the squared magnitude of
the channel coefficient between IRS2’s f th RU and the receiver.

The overall received power for user κ can be expressed as:

P
(κ)
Rx =

⃓⃓⃓⃓
⃓⃓√︂Lτ,κ E∑︂

e=1

F∑︂
f=1
|ht,κe||Hef ||hrf | × e−j(φtκe

+θe+φef +ωf +φrf
+ηκ+η3)

⃓⃓⃓⃓2
Pt, (4.24)

Here, Labs,κ represents the absorption loss, which is included in Lτ,κ. The phase
terms φtκe

, φef , φrf
denote the phases for the user channel ht,κe, He,f channel, and

receiver channel hrf , respectively. ηκ and η3 represent additional phase terms.
It is essential to notice that the absorption loss term, Lτ,κ, is included in the

expression for the total received power given by (4.24).

Proposition 1. The overall received power for user κ is represented as follows:

P
(κ)
Rx =

⃓⃓⃓√︂
Lτ ,κe

−jη3hHr ΦFHH
efΦFhHt,κe−jηκ

⃓⃓⃓2
Pt. (4.25)

Proof. The proof of Proposition 1 is given in Appendix 6.1.
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By substituting (4.25) into (4.20), the SINR γκ for user κ can be obtained as
follows:

γκ =

⃓⃓⃓√︂
Lτ ,κe

−jη3hHr ΦFHH
efΦEhHt,κe−jηκ

⃓⃓⃓2
Pt∑︁K

i=1 i /=κ

⃓⃓⃓√︂
Lτ ,ie−jη3hHr ΦFHH

efΦEhHt,ie−jηi

⃓⃓⃓2
Pt + σ2

. (4.26)

4.1.2 Maximizing Desired User’s Data Rate in the Presence
of Interference

In this section, our primary focus is on analytically deriving the first goal, which
is centered around enhancing the data rate for the intended user while accounting
for the second user’s presence as an interfering factor. Our aim revolves around
identifying the optimal phases of the interconnected IRSs that lead to the high-
est achievable rate for the desired user. This entails determining the ideal phase
settings of the multi-hop IRSs to maximize the data rate received by the intended
user. Nevertheless, we face two significant challenges. Firstly, the problem is non-
convex, and secondly, obtaining a closed-form solution proves to be mathematically
complex. To tackle these obstacles, we propose two sub-optimal methods to maxi-
mize the received power for the intended user. Additionally, we introduce a DDPG
approach aimed at optimizing the data rate for the intended user.

Desired User’s Rate Maximization Problem

To maximize the rate for the desired user while accounting for interference from
the other user, the optimization is given by (4.27).

max
ΦF ,ΦE

log2 (1 + γκ) , (4.27)

s.t. |ϕe|2 = 1,∀e ∈ {1,2, ..., E},
|ϕf |2 = 1,∀f ∈ {1,2, ..., F},

However, because of the restrictions imposed by the constant modulus on the
reflective units of IRS1 and IRS2, the problem is non-convex and falls into the
category of NP-hard problems [48]. Consequently, obtaining a closed-form an-
alytical expression for the IRSs’ ideal phase shifts is mathematically intractable.
The ideal approach necessitates striking a balance between enhancing the desired
user’s received SNR and reducing interference from the second user. These sub-
objectives may not necessarily align with each other. As a result, we propose a
sub-optimal greedy method by focusing on maximizing the desired user’s received
power. Although this solution does not guarantee optimal performance according
to the rate maximization objective, our simulation results demonstrate that it pro-
vides a good compromise between complexity and achieved results. This approach
offers a practical alternative to mitigate the challenges posed by the non-convexity
of the problem and the complexity of optimizing the rate directly through ES.

55



A Deep Reinforcement Learning Approach for THz Multiple Access in a Multi-hop IRS Network Topology

Sub-optimal Methods: Maximizing the Desired User’s Received Power

Our goal can be recast as finding a solution for (4.28) to maximize the total
received power P (κ)

Rx for the intended user.

θe + ωf + φt1e
+ φef + φrf

+ η1 + η3 = ν, ∀e, f. (4.28)

This system of equations can be understood as finding a set of phase shifts
across all paths established by the reflective elements of IRS1 and IRS2 that result
in a maximum received power. Without loss of generality, we can choose a constant
value ν = 0.

Equation (4.28) represents an over-determined set of equations containing E+F
unknowns, corresponding to the phase shifts of IRS1 and IRS2 RUs, and E × F
equations, corresponding to the different paths formed by the combinations of the
reflective elements. The goal is to obtain the phase shifts that satisfy this system
of equations and maximize the received power.

We can express (4.28) as:

AΘ = C (4.29)

where Θ is (E +F )× 1 vector representing the phase shifts of IRS1 and IRS2 (i.e.,
θ1, θ2, ..., θE, ω1, ω2, ..., ωF ), A is a binary matrix with dimensions (E×F )×(E+F ),
and C is a (E×F )×1 vector with known constant values including the transmitter
channel’s (ht,κ) phase shifts, Hef channel’s phase shifts, and the receiver channel’s
(hr) phase shifts.

By solving this equation, we determine the optimal phase shifts that will result
in maximizing the received power. It is important to note that finding an analyt-
ical closed-form solution for this problem is very hard due to the over-determined
situation.

We provide a detailed explanation of (4.28) below:
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⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0 1 0 . . . 0
0 1 . . . ... 0 1 . . . ...
... . . . . . . ... ... . . . . . . ...
0 . . . 0 1 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

E+F

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
...
θe
...

θE−1
θE
ωE+1

...
ωE+f

...
ωE+F−1
ωE+F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

(E+F )×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−φtκ,1 − φ11 − φr,1 − ηκ,1 + η3,1
...

−φtκ,E − φE1 − φr,1 − ηκ,E + η3,1
...

−φtκ,1 − φ12 − φr,2 − ηκ,1 + η3,2
...

−φtκ,E − φE2 − φr,2 − ηκ,E + η3,1
...

−φtκ,e − φef − φr,f − ηκ,e + η3,f
...

−φtκ,1 − φ1F − φr,F − ηκ,1 + η3,F
...

−φtκ,E − φEF − φr,F − ηκ,E + η3,F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

(E×F )×1

To address the inconsistency of the system described in (4.28), we employ two
approximate mathematical techniques: the Pinv and the BLS. These techniques
allow us to find approximate solutions for the unknown variables θe and ωf , and
subsequently calculate the received power for a selected desired user (i.e. user
1). We compare the results obtained from the mathematical methods with those
produced a the DRL solution, utilizing a DDPG architecture.

Pseudo-Inverse Solution: The Pinv method is employed to solve the over-
determined set of equations in (4.28):

Θ = A+C, (4.30)

where A+ is the Pinv of the matrix A defined as

A+ = (A⊺A)−1A⊺. (4.31)

This equation represents the system of equations where the matrix A of size (EF )×
(E +F ) is multiplied by the matrix Θ of size (E +F )× 1 and yields the matrix C
of size (EF )× 1.

Block Solution: By assuming spatially correlated channels, it is possible to de-
velop a low-complexity approximate solution for cases with higher ρ values between
adjacent RUs using the exponential correlation model [2]. In scenarios with high
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channel correlation, the channel matrix Hef can be assumed to have a block struc-
ture, where elements within each block share the same phase, while there is no
interdependence or correlation observed between adjacent blocks.

Since the number of unknowns, E+F , representing the total number of elements
in IRS1 and IRS2, is smaller than the number of equations, E × F , representing
the entire elements in the channel matrix between IRS1 and IRS2, we need to
reduce the number of equations. The key idea of the block solution is to treat each
group of channel elements as one block with the same value. By doing so, redundant
equations in the channel matrix He,f can be eliminated using row reduction methods
such as Gaussian Elimination, reducing the rank of He,f to the number of blocks
E×F
Nblk

, where Nblk is the number of channel elements within a single block. This
reduction in the number of rows within the channel matrix will also be reflected in
(4.28), which will no longer be over-determined since the number of equations is
reduced. It is important to mention that the count of independent elements in IRS1
and IRS2 remains the same, but the number of equations is reduced from E×F to
less than E + F .

Using this approach, the over-determined set of equations becomes solvable if
the number of blocks E×F

Nblk
≤ E + F . Thus, we can employ the block solution to

reformulate the overall received power for user 1 in (4.24).

Algorithm 3 Block solution (BLS) Based Scheme
1: Input: E, F , ht, He,f , hr, Nblk
2: Output: PRxκ , θe, ωf
3: if E + F ≤ E × F then
4: Separate the channel He,f elements into blocks.
5: if E + F ≥ E×F

Nblk
then

6: Compute the overall received power by applying equation (4.24), considering
each set of channel elements as a single block with identical values.

7: else
8: if E + F < E×F

Nblk
then

9: Obtain the solution to (4.28) using the Pinv method and compute the over-
all received power using (4.24).

10:
endif

11:
endif

12:
endif

Since the problem of maximizing the rate of one of the users under interference
from the other is a sub-problem from the sum rate maximization problem, we
directly move to the latter and address the former within after establishing DRL
setup.
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4.1.3 Maximizing the Total Rate for Two Users
The objective in the second scenario is to obtain the ideal phase shifts for IRS1

and IRS2. This optimization aims to maximize the overall data transmission rate
for both users. The sum-rate equation is expressed as follows:

Rsum =
K∑︂
κ=1

log2 (1 + γκ) . (4.32)

The challenge of determining the optimal phase shift matrices ΦF and ΦE that
maximize the total rate, denoted as Rsum, is formulated as follows:

max
ΦF ,ΦE

K∑︂
κ=1

log2 (1 + γκ) , (4.33)

s.t. |ϕe|2 = 1, ∀e ∈ 1,2, ..., E,
|ϕf |2 = 1, ∀f ∈ 1,2, ..., F ,

The problem formulated in (4.33) is a problem with an NP-hardness that has a
non-tractable solution owing to the non-convex nature arising from the constraints
imposed by the constant modulus properties of the reflecting elements in IRS1
and IRS2 [48]. Analytically solving this problem is very hard, and traditional
mathematical methods are not applicable. To address this challenge, we employ
a DRL technique, specifically the DDPG algorithm, as an alternative approach to
solve this complex problem. Additionally, we consider two limiting cases: an upper
bound case where there is no interference and full channel phase compensation can
be achieved, and a lower bound case where the phases of the IRS elements are
randomly chosen.

4.1.4 Upper bound on Performance
Given the condition of zero interference and the ability of IRSs to completely

nullify phase shifts among various paths of reflection, we can approximate an upper
limit for the total transmission rate based on the equation (4.26) representing the
SINR. Consequently, the SINR for user κ is represented as below:

γUκ =

⃓⃓⃓√︂
Lτ ,κ|hHr ||HH

e,f ||hHt,κ|
⃓⃓⃓2
Pt

σ2 , (4.34)

The upper limit on the total rate is obtained as a result of this condition, which
is formulated as:

RU
sum =

K∑︂
κ=1

log2

(︂
1 + γUκ

)︂
. (4.35)
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4.2 Controlling Multi-hop IRS Phases utilizing
DDPG

As previously stated, the optimization challenges presented in (4.27) and (4.33)
are characterized as non-convex, and employing ES to identify the optimal phases
that achieve the maximum rate is computationally not feasible. As a result, we
develop a DDPG solution to determine the ideal phase shifts of the multi-hop IRS.

In this part, we explain the framework of the suggested DDPG method as shown
in Fig. 2.3 to address the problem of optimization for the multi-hop IRS system in
(4.27) and (4.33). Deep Q-Networks are unsuitable for this scenario due to their
limitation in handling only discrete temporal spaces. Furthermore, in the realm
of wireless communication, the convergence of the PG method is insufficient [14].
DDPG represents a model-free RL method that amalgamates the advantages of Q-
networks and the PG algorithm, effectively mitigating the shortcomings inherent in
both techniques. This method leverages both continuous state and action spaces,
as mentioned in [14]. Thus, knowing the policy leads to the resolution of the
optimization problem in (4.27) and (4.33).

The DDPG scheme is made up of various essential parts, including the agent,
the action designated as a(τ), the state denoted as s(τ), the reward symbolized
as r(τ), the Q-value function represented as Q(s, a|oQ), and the policy function
indicated as µ. The IRS1 and IRS2 are the agents in our system. The states
denoted as s(τ) encompass the SINR for user 1 at the receiver, the SINR received
for user 2 at the receiver, and the total rate for all users at the previous time step
(τ − 1). The actions a(τ) refer to the phases of IRS1 and IRS2, while the reward r(τ)

corresponds to the received power for user 1, serving as our first objective, and the
collective rate of all the users, serving as our second objective. To ensure stability,
the DDPG approach consists of the following NNs: the critic-network, the target
critic-network, the actor-network, and the target actor-network.

4.2.1 System Mapping to DDPG
The first step in addressing the system model’s optimization challenge is to

transform it into the essential components of the DDPG scheme. These compo-
nents include the action-space, the state-space, and the reward function. In the
subsequent paragraphs, we will elaborate on the details of this mapping process
and offer an overview of the DDPG algorithm’s overall behavior. To begin, the
system model needs to be represented in a way that can be interpreted by the
DDPG algorithm. This involves defining the state space, which encapsulates the
relevant variables and information about the system at a given time. Additionally,
the action-space needs to be defined to encompass the available actions that can
be taken by the algorithm to interact with the system.
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In terms of the general behavior of the DDPG algorithm, it follows a process
that involves exploration and exploitation. Throughout the exploration phase, the
algorithm explores different actions and their outcomes to gather information about
the system. This exploration helps in learning the underlying dynamics and un-
certainties of the system. Once the exploration phase is complete, the exploitation
phase begins, where the algorithm leverages the knowledge gained to make informed
decisions and select actions that maximize the expected rewards.

State space

The state space of the DDPG agent at time step τ is delineated as follows:
In pursuit of the first aim: (Maximization of the user rate under interference)

s(τ) = [γ(τ−1)
1 , γ

(τ−1)
2 , P

(τ−1)
Rxκ

], (4.36)

To fulfill the second objective: (Maximization of the sum rate)

s(τ) = [γ(τ−1)
1 , γ

(τ−1)
2 , R(τ−1)

sum ], (4.37)

Here, γ(τ−1)
1 and γ(τ−1)

2 represent the received SINR for user 1 and user 2 respec-
tively, at receiver Rx. P

(τ−1)
Rxκ

corresponds to user x’s received power at receiver.
R(τ−1)
sum represents the total rate of the users at timestep τ − 1.

By considering these state representations, the DDPG agent can effectively
capture and utilize the relevant information needed to make informed decisions
and optimize the system’s performance.

Action-space

The actions in the DDPG algorithm correspond to the phase shift values of IRS1
and IRS2. The outcome is an array that encompasses the phase shift for each IRS
unit. Therefore, the action-space can be described using the below policy function:

a(τ) = µ(s(τ)|oµ) + n(τ) (4.38)

Here, µ represents the policy function, whereas oµ denotes the parameters of
the NN. n(τ) refers to the action noise, that is produced using the OU noise [56].

Since the action-space is continuous, it is explored by incorporating noise pro-
duced by the OU process. This process draws noise from a correlated normal distri-
bution and samples it, allowing for exploration while maintaining some correlation
between consecutive actions. The DDPG algorithm employs a policy function to
determine the actions, which are the IRS1 and IRS2 phase shift values.
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Reward function

The reward function is crucial in guiding the DDPG algorithm towards the
desired behavior. It evaluates the outcome of each action taken by the algorithm
and provides a numerical reward or penalty based on predefined criteria. The aim
is to shape the behavior of the algorithm to maximize the cumulative rewards over
time.

The reward function for the first aim is determined by the intended user’s highest
obtained power:

r(τ) = P
(τ)
Rxκ

. (4.39)

Here, P (τ)
Rxκ

represents the highest received power at timestep τ . The reward is
directly proportional to the received power, indicating that the agent is incentivized
to enhance the received power for the desired user.

For the second aim, the reward function is the highest total rate across both
users:

r(τ) = R(τ)
sum. (4.40)

In this case, R(τ)
sum represents the total rate across both users at timestep τ . The

reward relies on the total rate, which motivates the agent to optimize the overall
rate achieved by the users.

4.2.2 DDPG Scheme Operation
The main purpose of the DDPG scheme, as described in Algorithm 1, is to

train the agents IRS1 and IRS2 to make decisions or carry out actions that achieve
maximum long-term mean reward. In this case, the reward is defined based on the
received power of user 1 and the sum-rate of both users. The focus is on main-
taining a high average reward over time, rather than responding instantaneously
to changes in the environment. In each iteration of the algorithm, the agents IRS1
and IRS2 observe the current state, that includes the SINRs γ(τ−1)

1 , and γ
(τ−1)
2 at

state (τ − 1). They also observe the reward obtained in the previous state. Based
on this information, the agents calculate the actions ΦE and ΦF that maximize the
cumulative or extended-term reward. This action selection process is performed by
the actor-network, which maps the observed state to the optimal action.

The critic-network works in tandem with the actor-network. It accepts the
action and observed state as inputs and estimates the expected reward. In this
case, the expected reward corresponds to the received power of the primary user
and the combined rate of both users. The critic-network helps in evaluating the
quality of the chosen actions and guides the learning process. After calculating the
reward, the agents observe the new state and adjust the phases of IRS1 and IRS2
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accordingly. This procedure is iteratively repeated until the system learns to attain
the optimum reward by adapting the actions and phases.

To enhance stability during the learning process, the target networks are peri-
odically updated based on the latest actor and critic parameter values. This helps
in reducing the effects of parameter fluctuations and improves the convergence of
the algorithm. In essence, the DDPG algorithm strives to train the agents to make
choices that optimize the average reward over the long term, taking into account
the previous states, actions, rewards, and observations of the environment. By iter-
atively adjusting the actions and phases based on the feedback received, the agents
learn to optimize the system performance over time.

4.3 Complexity Analysis
To demonstrate the DRL algorithm’s advantages, we compare its complexity to

that of the Pinv solution, the BLS method, and the ES scheme.
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Figure 4.2: Comparing complexity:DRL vs. Pinv vs. BLS vs. ES. E=F=18,
NBLK = 9.
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The DRL algorithm’s complexity is explained in section 3.4 as follows:

CDRL = S× I + H × I× O + O×A + A (4.41)

In contrast, the Pinv solution of a matrix A with dimensions EF × (E + F )
is computed using its singular value decomposition (SVD), a useful computational
technique for dimensionality reduction in over-determined systems, with a com-
plexity of O((EF )2× (E+F )), where EF > (E+F ), and E and F represent IRS1
and IRS2 number of elements, respectively [30, 57]. On the other hand, for the BLS
method, the complexity of inverting a matrix A with dimension of EF

Nblk × (E + F )
is reduced to O(( EF

Nblk
)2 × (E + F ), where E×F

Nblk
≤ (E + F ).

Furthermore, the complexity of the ES scheme (CES) can be inferred from Al-
gorithm 4 and is expressed as:

CES = O

(︄
K×

(︃
⌊ 2π
∆Φ⌋+ 1

)︃(E+F ))︄
, (4.42)

where K designates the number of users and ⌊ 2π
∆Φ⌋ denotes the number of phase

search steps.
Consequently, the DRL algorithm’s shows lower complexity than that of the

Pinv, BLS, and ES techniques as the IRS elements count increases. This relationship
is depicted in figures: Fig.4.2a and Fig.4.2b.

4.4 Numerical Results
We examine the proficiency of the proposed DDPG-based cascaded IRS-assisted

wireless THz system in this section. To evaluate the efficiency of the DDPG scheme,
we compare it to benchmark schemes in two scenarios: maximizing the rate for the
intended user (user 1) and maximizing the total transmission rate for two users.

We present two evaluation schemes as benchmark models for our communication
system in the rate maximization scenario. The first scheme is based on the Pinv
method, while the second scheme uses the BLS approach. Both schemes consider
IRS1 with E = 18 reflecting elements and IRS2 with F = 18 reflecting elements.

In the sum rate maximization scenario, we compare the total rates achieved
through the utilization of the DDPG approach with those resulting from employ-
ing a discretized ES approximation as an approximate benchmark. To minimize
the complexity of the ES scheme, we limit the count of reflecting elements to E = 4
for IRS1 and F = 4 for IRS2. We examine phase shifts ranging from 0 to 2π with
an incremental step of 2π/72 for each IRS element, resulting in (72+1)E+F possible
combinations of matrices for phase shifts. The choice of search steps significantly
influences the computational complexity and level of detail in exploring the angle
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Algorithm 4 Exhaustive Search Scheme
1: Initialize E = 4, F = 4, ∆θ = 2π

72 , ∆ω = 2π
72 ,

2: for θ1 = 0 : 2π
72 : 2π; do

3: for θ2 = 0 : 2π
72 : 2π; do

4: for θ3 = 0 : 2π
72 : 2π; do

5: for θ4 = 0 : 2π
72 : 2π; do

6: for ω1 = 0 : 2π
72 : 2π; do

7: for ω2 = 0 : 2π
72 : 2π; do

8: for ω3 = 0 : 2π
72 : 2π; do

9: for ω4 = 0 : 2π
72 : 2π; do

10: Compute and save Rsum(θ1, θ2, θ3, θ4, ω1, ω2, ω3, ω4)
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for
17: end for
18: end for
19: Find Θ∗ = argmaxθ1,θ2,θ3,θ4,ω1,ω2,ω3,ω4 Rsum
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Table 4.1: Simulation Parameters

Simulation Parameters Values
Users’ count (K) 2

Users’ antenna count (Nt) 1
Receiver’s antenna count (Nr) 1

Speed of wireless waves free space (c) 3× 108

Transmission Frequency (f) 300× 109

Wave Length λ 1× 10−3

IRS1 Reflecting Elements Count (E) 18
IRS2 Reflecting Elements Count (F) 18

IRS1 Coordinates (xr1, yr1, hr1) (5,10,12)
IRS2 Coordinates (xr2, yr2, hr2) (10,10,12)

rtk 3 to 15
r2 15

Reflection Coefficient of IRS1 and IRS2 (Λ) 1
Antenna Diameter (Dt) 0.12

Rx Coordinates (xrx, yrx, hr) (20,0,5)
Channel Width 2× 109 MHz

Noise PSD (NPSD) −174 dB/Hz
Rx Noise figure (FdB) 10

Average noise power represented in dB as (N0) −174 dB/Hz
Noise power expressed in a linear scale (no) 7.9621× 10−11

Path attenuation exponent (user κ to IRS1) 2
Path attenuation exponent (IRS2 to receiver Rx) 2

Rician factors (K1 and K2) 10
𭟋C 3× 10−4

𭟋A 1× 10−4

Discount factor (Γ) 0.99
Soft updates weight(υ) 1× 10−3

Batch Quantity (B) 128
Episodes Count 10000

Capacity of the Replay Memory (C) 105

space during an exhaustive search. A search step of 2π/30, with a smaller denom-
inator used in chapter 3, reduces the computational complexity by employing a
smaller search space, enabling a less detailed exploration. Conversely, a step of
2π/72, with a larger denominator, strikes a balance between computational com-
plexity and detail, providing a moderate resolution for angle exploration. This step
is more complex than the finer resolution used in chapter 3, allowing for a more
detailed exploration of angles during the exhaustive search. Once the optimal ma-
trices for phase shifts are obtained through the DDPG algorithm, the corresponding
sum-rates for the users are calculated accordingly.

In addition to the benchmark schemes, we also compare sum-rates produced by
the DDPG algorithm with those computed according to the random phase shift
generation as another lower benchmark scheme to our system.

Table 4.1 shows the default simulation settings used in the DDPG-based multi-
hop IRS method. The total rates are determined through numerical calculations
involving 103 Monte Carlo iterations.

The suggested DDPG method consists of both critic and actor-networks, each
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of which is implemented as DNNs having 4 layers. Every layer is represented by a
linear module with defined input and output sizes. The actor-network takes states
as input and generates actions as output, having a total of 36 neurons. It consists of
two hidden layers with 128 neurons each, preceded by the rectified linear activation
unit. To ensure an appropriate gradient, the output layer of the actor-network
employs the tanh() function. The actions and states are merged to form the input
that is fed into the critic-network. It also has two hidden layers of 128 neurons
apiece, which are succeeded by the ReLU activation unit. The critic-network’s
output layer represents the Q-value having 36 neurons. The Adam optimizer is
employed for updating parameters in both the actor and critic-networks. The
simulation outcomes are an average of 1000 iterations. The actor-network’s learning
step size, indicated as 𭟋A, is equal to 3× 10−4, while the critic-network’s learning
step size, denoted as 𭟋C , is equal to 1× 10−4. The discount factor Γ is set to 0.99,
the batch size is set to 128, the replay buffer C is of size 105, and the total episodes
are set to 10,000.
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Figure 4.3: Convergence analysis of the DDPG algorithm

The obtained results, as depicted in Fig. 4.3, demonstrate the convergence of
the DRL scheme. The plot illustrates the rewards plotted against the episodes, and
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it is evident that the rewards consistently increase over time until reaching a steady
state value. This indicates the successful learning process of the algorithm.

4.4.1 Maximizing Desired User’s Data Rate in the Presence
of Interference

In the forthcoming numerical simulations, we present the outcomes of maximiz-
ing the rate for the intended user at the receiver by plotting the rate of the first user
against the ratio of distances between the two users. We consider several methods,
including DDPG, BLS, and Pinv techniques, to compare their performances.
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Figure 4.4: Data rate of user 1 as a function of distance ratio for ρ = 1.0.

In Fig. 4.4, the rate of user 1 is depicted for the DDPG scheme as a function
of the distance ratio ranging from 0.2 to 1. It is shown that as the ratio of the
distance between the two users increases, the rate of the first user decreases. This
is because the second user becomes closer to the first user, resulting in increased
interference from user 2 to user 1. Furthermore, Fig. 4.4 illustrates the rate of user
1 for the DDPG scheme compared to the Pinv and BLS methods, assuming ρ = 1.0.
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It is shown that the rate achieved by the DDPG approach surpasses that of the Pinv
and BLS methods. This highlights the effectiveness and superiority of the DDPG
algorithm in maximizing the rate for user 1 in comparison to the Pinv and BLS
methods.
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Figure 4.5: Data rate of User 1 as a function of distance ratio with ρ value equal
to 0.75.
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Figure 4.6: Data rate of User 1 as a function of distance ratio with for ρ = 0.25.

In the following figures Fig.4.4, Fig.4.5, and Fig. 4.6, the rate of user 1 is plotted
for the DDPG algorithm, BLS, and Pinv solution as a function of the distance ratio,
considering different ρ values. It is shown that as ρ decreases, the rate of user 1
decreases for all three methods. This is because a lower ρ implies less correlation
between the channels, leading to increased interference and a reduced rate for user
1. Furthermore, as ρ increases, the data rates produced by the DDPG scheme
exhibit higher values compared to the BLS and Pinv methods. This is because
increasing ρ enhances the DDPG’s learning efficiency, allowing it to exploit the
benefits of correlated channels and achieve higher data rates. However, It’s crucial
to emphasize that when ρ values are low, the difference in data rates between the
DDPG scheme and the other methods diminishes.
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Figure 4.7: Data rate of user 1 as a function of distance ratio for different ρ
values. E=F=18.

In Fig. 4.7, the rates generated by the DDPG algorithm are plotted against the
distance ratio for different ρ values. It is observed that as ρ increases, the data
rates for the DDPG scheme also increase. This is because a higher ρ indicates
a stronger relationship between the channels, allowing the DDPG algorithm to
leverage this correlation and improve its learning efficiency. As a result, the DDPG
approach attains superior data rates compared to other techniques, particularly
for high values of ρ. This demonstrates the importance of correlated channels in
the DDPG scheme and their beneficial impact on data rates. By exploiting the
correlations, the DDPG algorithm can more efficiently optimize the phase shifts of
the cascaded IRSs, leading to improved performance in data rates.

4.4.2 Maximizing the Aggregated Rate for Both Users
In the subsequent simulations, we demonstrate the outcomes of employing the

DDPG method to optimize the total rate for both users. We graphically illustrate
the sum-rate as a function of the ratio of distances between user 1 and user 2 for
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various ρ values, as revealed in Fig. 4.8a. From the results, it is evident that the
total rate achieved through the DDPG approach increases as the ρ value increases.
This indicates that the DDPG algorithm leverages the higher correlation between
channels to tune the phase shift values of the multi-hop IRSs and achieve higher
overall data rates for the two users.

In the below numerical simulations, we employed fixed learning rates for the
DDPG algorithm. Specifically, the actor-network’s learning rate (𭟋A) equals 10−4,
and the critic-network’s learning rate (𭟋C) equals 3×10−4. The impact of different
learning rates on DDPG data rates is illustrated in Fig. 4.8b, where we compare
learning rates of 10−3, 10−4, and 10−5 for the actor-network, and 3×10−3, 3×10−4,
and 3 × 10−5 for the critic-network. Results show that the peak DDPG data rate
is attained when the actor-network’s learning rate is set to 10−4 and the critic-
network’s learning rate is set to 3 × 10−4. This demonstrates the importance of
selecting appropriate learning rates for optimal performance. Learning rates that
are too small (10−5) or too large (10−3) result in lower average rewards, while the
learning rate of 10−4 achieves better rewards and higher data rates.
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(a) DDPG total transmission rate vs ratio of distances for different ρs. E=F=18.
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Figure 4.8: DDPG total transmission rate vs ratio of distances for different ρ and
learning rate values.
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4.4 – Numerical Results

To evaluate the proficiency of our DDPG scheme, we conduct a comparison
between the total rates achieved by the DDPG scheme and the upper bound on
the system performance, as depicted in Fig. 4.9. The findings reveal that the sum-
rates produced by the DDPG closely approximate the upper bound. Although the
upper bound sum-rate calculation does not consider interference between the two
users, the difference between the upper bound sum-rates and those obtained from
the DDPG scheme decreases with the distance ratio. This is due to the decrease
in received power P k

Rx as user 1 moves farther away from IRS1 and closer to user
2. While there is no interference between the users in the upper bound calculation,
the decrease in received power diminishes the disparity between the upper bound
sum-rates and those achieved by the DDPG scheme. These results confirm that
the DDPG scheme performs adequately well, with sum-rates closely approximating
the upper bound. The decreasing difference between the upper bound and DDPG
sum-rates highlights the impact of the received power and the proximity of the
users on system performance, even in the absence of direct interference.
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Figure 4.9: Comparing DDPG total transmission rate, upper bound, ES vs
distance ratio. ρ = 0.9. E=F=4.

To further validate the effectiveness of the DDPG algorithm, We contrast the
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total rates obtained from the DDPG scheme with those achieved using the dis-
cretized ES method. The ES algorithm is utilized to compute the highest sum-rate
by finding the matrix of the optimal phase shifts. The total rate is computed for
the two users based on 1000 Monte Carlo iterations. Numerical results depicted
in Fig. 4.9 demonstrate that the DDPG algorithm’s sum-rates closely match those
obtained from the ES algorithm with the specified granularity. This confirms the
effectiveness of our DDPG scheme in achieving high-performance results that are
comparable to the optimal solution obtained from the ES algorithm, even with a
reduced number of reflecting elements.
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Chapter 5

A DRL-Based Approach for
Secure Cross-layer Design of IRS
NOMA-SWIPT Systems in IoT
Environments

In this chapter, the focus is on the third main contribution of the thesis, which
involves developing a DRL approach, specifically DDPG, to enhance the security of
an indoor IoT scenario. The objective is to achieve a secure cross-layer design for
IRS NOMA-SWIPT systems. Compared to existing literature, the main emphasis
of this chapter is on employing DDPG to find a solution for the secrecy sum-rate
maximization problem, considering the cross-layer design aspect. The primary goal
is to increase the secure sum-rate for IoTDs by determining the optimal phases for
the IRS, power allocation factors, and EH factors. These optimizations are subject
to various constraints such as the IRS unit modulus, EH factors, NOMA dynamic
power allocation factors, and packet loss factors.

To tackle this optimization problem, our work utilizes the DDPG approach,
which proves effective in finding viable solutions despite the non-convex nature of
the problem caused by the constraints of the IRS unit modulus. By employing
DDPG, the work in this chapter aims to enhance the security and performance of
the IoT system by optimizing various parameters across different layers. The use of
DRL enables intelligent decision-making and adaptation based on specific system
conditions and constraints.

5.1 System Model
An IRS-assisted NOMA-SWIPT scheme is represented in Fig. 5.1, where the

access point (AP) with directional antennas is transmitting to two legitimate IoTDs
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using a non-cooperative downlink NOMA transmission scheme. The system also
includes a passive eavesdropper, denoted as e, who attempts to intercept the trans-
mitted signal. The signal from the AP is transmitted to the IRS, which consists
of M reflecting semi-passive elements. The IRS adjusts the phase of the incom-
ing signal and reflects it toward the legitimate IoTDs. There is no direct physical
connection or link between the AP and the legitimate IoTDs. Instead, the IRS
acts as an intermediary.1 The legitimate IoTDs are divided into two clusters: the
near cluster and the far cluster, based on their respective distances from the IRS.
In this system, IoTD n is selected from the near cluster, while IoTD f is selected
from the far cluster. To ensure that the channels between the IRS and the eaves-
dropper, as well as the channels between the IRS and the legitimate IoTDs, are
uncorrelated, the distances between IoTD n and e and between IoTD f and e are
kept at least half a wavelength. The distances between the IRS and IoTD n and
between the IRS and IoTD f are denoted as dn and df , respectively. The wireless
channels in the system are modeled using Rician fading [45], [40]. Specifically, ht
represents the transmitter channel between the AP and the IRS, hn represents the
receiver channel between the IRS and IoTD n, hf represents the receiver channel
between the IRS and IoTD f , and he represents the channel between the IRS and
the eavesdropper. It’s important to note that the channel between the IRS and the
eavesdropper follows a Rician distribution, indicating a worst-case scenario with a
dominant Line-of-Sight (LOS) link in this particular channel.

ht =
√︄

κ1

κ1 + 1 h̄t +
√︄

1
κ1 + 1 h̃t, (5.1)

hn =
√︄

κ2

κ2 + 1 h̄n +
√︄

1
κ2 + 1 h̃n, (5.2)

he =
√︄

κ2

κ2 + 1 h̄e +
√︄

1
κ2 + 1 h̃e, (5.3)

hf =
√︄

κ2

κ2 + 1 h̄f +
√︄

1
κ2 + 1 h̃f . (5.4)

1The considered scenario utilizes IRS for coverage extension.
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5.1 – System Model

Figure 5.1: Downlink indoor extended coverage using IRS secure NOMA-SWIPT
network topology.

The signal transmitted from the AP can be represented as follows:

x =
√︂
αPtsn +

√︂
ᾱPtsf (5.5)

In this equation, x is a scalar representing the transmitted signal for one sample. sn
and sf denote the signals intended for IoTDs n and f , respectively, with unit power
(i.e., E[|sn|2] = 1 and E[|sf |2] = 1, where E[·] denotes the expectation function).

The power allocated to IoTD n is given by Pn = αPt, where α is the NOMA
power allocation factor for IoTD n. Similarly, the power allocated to IoTD f is
Pf = ᾱPt, where ᾱ = 1 − α is the power allocation factor for IoTD f . Here,
0 ≤ α ≤ 1 represents the power allocation factor, and Pt corresponds to the total
transmit power at the AP.

The received signals for IoTDs n and f in the frequency domain can be expressed
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as:

y1 = cncthHn ΦMhHt x+ nn, (5.6)
y2 = cfcthHf ΦMhHt x+ nf , (5.7)

In these equations, ct = (1 +dΞt
t )− 1

2 , cn = (1 +dΞn
n )− 1

2 , and cf = (1 +d
Ξf

f )− 1
2 are

channel coefficients that account for the path loss between the AP, IRS, and the
IoTDs [35], [9]. The variables dt, dn, and df represent the distances between the
AP and the IRS, the IRS and IoTD n, and the IRS and IoTD f , respectively. The
symbols Ξt, Ξn, and Ξf represent the path loss exponents. The channel between
the AP and the IRS is represented by ht ∈ C1×M , while the channels between the
IRS and IoTDs n and f are denoted by hn ∈ CM×1 and hf ∈ CM×1, respectively.
The phase shift matrix ΦM = diag(ejθ1 , ejθ2 , ..., ejθM ) represents the phase shifts
applied by the IRS elements, where θm is the phase shift of the mth element. The
phase shift matrix satisfies the unit modulus constraint |ϕm|2 = |ejθm|2 = 1 for all
m ∈ 1,2, ...,M , as the IRS reflects the signal without amplification. The terms
nn ∼ CN(0, σ2

n) and nf ∼ CN(0, σ2
f ) represent the AWGN for IoTDs n and f ,

respectively.
In this scenario, the legitimate IoTDs are considered as EH nodes. A power

splitting EH scheme is applied, where a portion of the received signal is used for
EH, and the remaining portion is used for information decoding. The received
signals after power splitting can be written as:

yn = cnct
√︂
βnhHn ΦMhHt x+ nn, (5.8)

yf = cfct
√︂
βfhHf ΦMhHt x+ nf , (5.9)

Here, βn and βf represent the power splitting factors for IoTD n and IoTD f ,
respectively. These factors determine how the incoming signal power is divided
between EH and information decoding. The terms

√
βn and

√︂
βf scale the received

signals accordingly.

5.2 Secrecy Rate Derivation
In the non-cooperative downlink NOMA scheme, IoTD f , which is the device

located farther from the IRS, decodes its signal in the presence of interference
from the nearby IoTD n. IoTD f treats the signal from IoTD n as noise without
removing it from the received signal. On the other hand, IoTD n performs SIC 2 by
removing the message intended for IoTD f and subsequently decoding its signal.
Consequently, the received SINR at IoTDs n and f can be expressed as follows:

2We assume perfect SIC.
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γn =
(︄
c2
nc

2
tβn|hHn ΦMhHt |2αPt

σ2
n

)︄
, (5.10)

γf =
(︄

c2
fc

2
tβf |hHf ΦMhHt |2ᾱPt

c2
fc

2
t |hHf ΦMhHt |2αPt + σ2

f

)︄
.

The data rates for IoTDs n and f are given by equations:

Rn = log2(1 + γn), (5.11)
Rf = log2(1 + γf ).

The achievable secrecy rate is the rate where the legitimate devices n and f can
securely communicate in the presence of e. Therefore, the achievable secrecy rate at
device n can be defined as the discrepancy between the rate of the main communica-
tion channel and the maximum rate achievable by the e. This metric quantifies the
level of secure communication for the legitimate device by considering the potential
information leakage to e. If e is interested in decoding either n’s or f ’s message,
then he will consider the signal that isn’t interested in as interference. Hence, if e
is interested in decoding n’s message only, then e’s rate will be expressed as:

Re,n = log2(1 + γe,n), (5.12)

where

γe,n =
(︄

c2
ec

2
t |hHe ΦMhHt |2αPt

c2
ec

2
t |hHe ΦMhHt |2ᾱPt + σ2

e

)︄
, (5.13)

The variable ce represents the path loss coefficient between the IRS and e, and it
is computed as ce = (1 + dΞe

e )− 1
2 . Here, de denotes the distance between the IRS

and e, and it is required that de > df to ensure that e is farther away from the IRS
than IoTD f . Ξe represents the path loss exponent.3 The term σ2

e represents the
variance of the AWGN at e. If e is interested in decoding f ’s message only, then
e’s rate will be expressed as:

Re,f = log2(1 + γe,f ), (5.14)

where

γe,f =
(︄

c2
ec

2
t |hHe ΦMhHt |2ᾱPt

c2
ec

2
t |hHe ΦMhHt |2αPt + σ2

e

)︄
, (5.15)

3Practically for Eve to be hidden from legitimate users, it has to be outside the office structure.
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The secrecy rates, Rs,n and Rs,f , for IoTDs n and f , respectively are expressed as
follows:

Rs,n ≤ [Rn −Re,n]+, (5.16)
Rs,f ≤ [Rf −Re,f ]+. (5.17)

In (5.16), and (5.17) [.]+ represent the positive part function, and it ensures
that the secrecy sum-rate is non-negative.
The total secrecy rate, Rs, is calculated by adding the secrecy rates for IoTDs n
and f , and it is upper bounded by the following equation: [3]

Rs = Rs,n +Rs,f ≤ [Rn +Rf − (Re,n +Re,f )]+ . (5.18)

Both rates (Rs,n, Rs,f ) need to satisfy the constraints given in (5.16), (5.17), re-
spectively. Additionally, the total secrecy rate, Rs, needs also to satisfy the upper
bound constraint given in (5.18).

5.3 Energy Harvesting
The signals received through the energy harvesting circuitry at both IoTDs n

and f can be expressed as follows:

υn = cnct

√︂
β̄nhHn ΦMhHt x, (5.19)

υf = cfct
√︂
β̄fhHf ΦMhHt x,

Here, β̄n = 1− βn, and β̄f = 1− βf .

υn = cnct

√︂
β̄nhHn ΦMhHt (

√︂
αPtsn +

√︂
ᾱPtsf ), (5.20)

υf = cfct
√︂
β̄fhHf ΦMhHt (

√︂
αPtsn +

√︂
ᾱPtsf ),

The harvested energy En and Ef at IoTDs n and f , respectively, can be ob-
tained by taking the squared magnitude of the received signals and considering the
efficiency factor η for RF energy conversion:

En = ηc2
nc

2
t β̄n

⃓⃓⃓⃓
hHn ΦMhHt (

√︂
αPtsn +

√︂
ᾱPtsf )

⃓⃓⃓⃓2
(5.21)

Ef = ηc2
fc

2
t β̄f

⃓⃓⃓⃓
hHf ΦMhHt (

√︂
αPtsn +

√︂
ᾱPtsf )

⃓⃓⃓⃓2
,

In these equations, 0 ≤ η ≤ 1 represents the efficiency factor of the RF energy
conversion operation at the energy harvester circuit. It indicates the efficiency of
converting the received RF signal into usable energy.
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5.4 Packet Loss
To address the cross-layer design aspect in our scenario, we aim to optimize

the network layer packet loss in addition to improving the physical layer security
(PLS), as discussed earlier. This involves maximizing the secure sum-rate while also
enhancing the packet loss performance at different layers of the system. To model
the packet loss in our wireless system, we will adopt the two-state Gilbert-Elliot
Markov channel model, as illustrated in Fig. 5.2. This model defines two states:
the bad state, representing high packet losses, and the good state, representing low
packet losses. In addition, some parameters in the model characterize the behavior
of the channel. These parameters include Ω, which is the probability of the channel
remaining in the bad state, and P , which represents the probability of transitioning
from the good state to the bad state. The steady-state probabilities of the channel
being in the bad or good state can be expressed as follows:[22]:

Figure 5.2: Gilbert-Elliot channel model.

πbad = P

1− Ω + P
, (5.22)

πgood = 1− Ω
1− Ω + P

,

where 0 < P < 1, and 0 < Ω < 1.
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In the context of IoT, IEEE standard 802.15.4, wireless communications is charac-
terized by packet loss. This standard is designed for low data rates and low-cost
wireless personal area networks (LR-WPANs). It encompasses the physical (PHY)
and medium access control (MAC) layers and serves as the foundation for many
IoT protocols, and it focuses on low-speed pervasive communication among the
devices. The network layer average packet loss probability is expressed as [23]:

Pl = eBπbad + eGπgood. (5.23)

Here, eB denotes the probability of packet error when the channel is in a bad
state, while eG represents the probability of packet error when the channel is in
a good state. To determine the values of eB and eG, we will employ the K-State
Markov chain model described in the [10]. It is important to note that the origi-
nal model was developed for the Rayleigh fading scenario, which assumes a small
distance between the transmitter (Tx) and receiver (Rx), such as in Wireless Lo-
cal Area Network (WLAN) setups. However, in our specific scenario, we extend
the analysis to incorporate the cascaded Rician fading channel case. The bit error
probabilities for a K-state channel model are expressed as [10]:

bk,n = Γk,n − Γk+1,n

γñ
, (5.24)

bk,f = Γk,f − Γk+1,f

γf̃
. (5.25)

Γk,n = exp
(︄
−Ak
γñ

)︄(︃
1− F (

√︂
2Ak)

)︃
+√︄

γñ
γñ + 1F

(︄√︄
2Akγñ + 1

γñ

)︄
, (5.26)

Γk,f = exp
(︄
−Ak
γf̃

)︄(︃
1− F (

√︂
2Ak)

)︃
+√︄

γf̃
γf̃ + 1F

(︄√︄
2Akγf̃ + 1

γf̃

)︄
. (5.27)

Hence, the packet error probabilities for IoTDs n and f can be written as follows
[10]:

ek,n = 1− (1− bk,n)L, (5.28)
ek,f = 1− (1− bk,f )L. (5.29)
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where k denotes the number of states from 0 to K, A0, . . . , AK is a partition of the
receiver SNR (R-SNR) range, Ak represents the threshold for the R-SNR range, γñ
is the mean of the R-SNR for IoTD n, and γf̃ is the mean of the R-SNR for IoTD
f , and L is the packet length.

Considering the special case of Gilbert-Elliott channel model (K = 2) and
assuming that state ‘bad’ is state 0 and state ‘good’ is state 1, taking into account
that A0 = 0, A1 is the pre-selected SNR threshold that separates good and bad
channel conditions, and A2 = ∞, the bit and packet error probabilities can be
re-written as:

e0,n = 1− (1− b0,n)L, (5.30)
e0,f = 1− (1− b0,f )L. (5.31)

e1,n = 1− (1− b1,n)L, (5.32)
e1,f = 1− (1− b1,f )L. (5.33)

b0,n = Γ0,n − Γ1,n

γñ
, (5.34)

b0,f = Γ0,f − Γ1,f

γf̃
. (5.35)

b1,n = Γ1,n − Γ2,n

γñ
, (5.36)

b1,f = Γ1,f − Γ2,f

γf̃
. (5.37)

Γ0,n = 1− F (0) +
√︄

γñ
γñ + 1F

(︄√︄
1
γñ

)︄
, (5.38)

Γ1,n = exp
(︄
−A1

γñ

)︄(︃
1− F (

√︂
2A1)

)︃
+√︄

γñ
γñ + 1F

(︄√︄
2A1γñ + 1

γñ

)︄
, (5.39)

Γ2,n =
√︄

γñ
γñ + 1 . (5.40)
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Γ0,f = 1− F (0) +
√︄

γf̃
γf̃ + 1F

(︄√︄
1
γf̃

)︄
, (5.41)

Γ1,f = exp
(︄
−A1

γf̃

)︄(︃
1− F (

√︂
2A1)

)︃
+√︄

γf̃
γf̃ + 1F

(︄√︄
2A1γf̃ + 1

γf̃

)︄
. (5.42)

Γ2,f =
√︄

γf̃
γf̃ + 1 . (5.43)

Furthermore, F (γn) corresponds to the cumulative distribution function (CDF)
of the composite channel linking the access point to IoTD n, which is hHn ΦMhHt .
Similarly, F (γf ) signifies the CDF of the composite channel connecting the access
point and IoTD f , which is hHf ΦMhHt .

The CDF of q cascaded Rician channels can be expressed as [17]:

F (z) = 1
2q

∞∑︂
ζ1=0

∞∑︂
ζ2=0

. . .
∞∑︂
ζq=0

Cqz
2(ζ1+1)

q∏︂
i=2

⎡⎣(︄ 1
2δ2
i

)︄ζ1−ζi
⎤⎦

×Gq1
1q+1

⎛⎝r−ζ1

⃓⃓⃓⃓
⃓⃓ z2

2q∏︁q
i=1 δ

2
i

⎞⎠ . (5.44)

where Cq = ∏︁q
i=1

[︃
1

ζi!δ2
i

]︃∏︁q
i=1

[︃
1

ζi!δ2
i

exp(−v2
i

2δ2
i

)( v
2
i

2δ2
i
)2ζi

]︃
, the rice factor κi = v2

i

2δ2
i
, v2

i

represents the average power in the LOS component, δ2
i represents the average

power in the non-LOS component, Gq1
1q+1 denotes the Meijer G-function, and r =

(ζ2 − ζ1, ζ3 − ζ1, . . . , ζq − ζ1,0,−ζ1 − 1).

In our system model, only two cascaded Rician channels are used, so (5.44) is
reduced to the below form:

F (z) = 1
22

∞∑︂
ζ1=0

∞∑︂
ζ2=0

C2z
2(ζ1+1)

⎡⎣(︄ 1
2δ2

2

)︄ζ1−ζ2
⎤⎦

×G21
13

⎛⎝r−ζ1

⃓⃓⃓⃓
⃓⃓ z2

22∏︁2
i=1 δ

2
i

⎞⎠ . (5.45)
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where C2 = 1
ζ1!δ2

1

1
ζ2!δ2

2
exp(−v2

1
2δ2

1
)( v

2
1

2δ2
1
)2ζ1 exp(−v2

2
2δ2

2
)( v

2
2

2δ2
2
)2ζ2 , and r = (ζ2 − ζ1,0,−ζ1 − 1).

A linear combination of cascaded Rician random variables represents the aggre-
gation of channel characteristics from the AP to the IoTDs, denoted as n and f .
Thus, it’s the summation of the cascaded Rician channels that encapsulate these
channel properties. The central limit theorem states that the sum (or average)
of a large number of independent and identically distributed random variables ap-
proaches a Gaussian (normal) distribution. In summary, if there is a large number
of cascaded Rician channels with the same K-factor and they are independent and
identically distributed, it can be expected that the distribution of their sum to be
approximately Gaussian, in accordance with the central limit theorem [32].

The means µgn of the resulting approximate gaussian distribution for IoTD n
is represented as:

µgn = E(
M∑︂
i=1

(Hni
×Hti)) =

M∑︂
i=1

(E(Hni
×Hti)) (5.46)

µgn =
M∑︂
i=1

(E(Hni
)× E(Hti))

Similarly, for the mean µgf
of the resulting approximate Gaussian distribution

for IoTD f :

µgf
= E(

M∑︂
i=1

(Hfi
×Hti)) =

M∑︂
i=1

(E(Hfi
×Hti)) (5.47)

µgf
=

M∑︂
i=1

(E(Hfi
)× E(Hti))

Here, Hti , Hni
, and, Hfi

represents the random variable for the channel response
from the AP to the IRS, IRS to IoTD n, and IRS to IoTD f respectively for the
ith channel.

Further, the variance of the resulting approximate gaussian distribution for
IoTD n can be expressed as follows:

σ2
gn

= Var(
M∑︂
i=1

(Hni
×Hti)) (5.48)

σ2
gn

=
M∑︂
i=1

(E(Hni
×Hti)2 − (E(Hni

×Hti))2)

σ2
gn

=
M∑︂
i=1

E(Hni
)2 × E(Hti)2 − (E(Hni

×Hti))2)
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Similarly, for the variance of the resulting approximate Gaussian distribution
for IoTD f :

σ2
gf

= Var(
M∑︂
i=1

(Hfi
×Hti)) (5.49)

σ2
gf

=
M∑︂
i=1

(E(Hfi
×Hti)2 − (E(Hfi

×Hti))2)

σ2
gf

=
M∑︂
i=1

E(Hfi
)2 × E(Hti)2 − (E(Hfi

×Hti))2)

Therefore, the CDF of the composite channel linking the access point to IoTDs
n and f can be expressed as [7]:

F (z) = 1
2 ×

(︄
1 + erf

(︄
z − µgn√
2× σgn

)︄)︄
(5.50)

F (z) = 1
2 ×

(︄
1 + erf

(︄
z − µgf√
2× σgf

)︄)︄
(5.51)

Through substitution, we get the following equations for IoTD n:

F

(︄√︄
1
γñ

)︄
= 1

2 ×
⎛⎝1 + erf

⎛⎝
√︂

1
γñ
− µgn√

2× σgn

⎞⎠⎞⎠ (5.52)

F (
√︂

2A1) = 1
2 ×

(︄
1 + erf

(︄√
2A1 − µgn√

2× σgn

)︄)︄
(5.53)

F

(︄√︄
2A1γñ + 1

γñ

)︄
= 1

2 ×
⎛⎝1 + erf

⎛⎝
√︂

2A1γñ+1
γñ

− µgn√
2× σgn

⎞⎠⎞⎠ (5.54)

Similarly for IoTD f :

F

(︄√︄
1
γf̃

)︄
= 1

2 ×
⎛⎝1 + erf

⎛⎝
√︂

1
γf̃
− µgf√

2× σgf

⎞⎠⎞⎠ (5.55)
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F (
√︂

2A1) = 1
2 ×

(︄
1 + erf

(︄√
2A1 − µgf√

2× σgf

)︄)︄
(5.56)

F

(︄√︄
2A1γf̃ + 1

γf̃

)︄
= 1

2 ×

⎛⎜⎜⎝1 + erf

⎛⎜⎜⎝
√︃

2A1γf̃ +1
γf̃

− µgf

√
2× σgf

⎞⎟⎟⎠
⎞⎟⎟⎠ (5.57)

After calculating the packet error probabilities e0,n, e0,f , e1,n, and e1,f in (5.30),
(5.31), (5.32) and (5.33), our objective is to reduce these probabilities, thereby
minimizing Pl as defined in (5.23).

5.5 Optimization Problem
The optimization problem in focus seeks to maximize the NOMA IoTDs n and f

secrecy sum-rate. The variables to be optimized include the phase shift matrix ΦM ,
the power splitting factors βn and βf , and the NOMA power allocation parameter
α. The goal is to increase the secrecy sum-rate’s expected value as much as possible.
The optimization problem is subject to several constraints. First, the phase shift
matrix should satisfy the unit modulus constraint, ensuring that |ϕm|2 = 1 for all
elements of the matrix. The power splitting factors and the NOMA power allocation
factor are bounded between 0 and 1. Additionally, the energy harvested at IoTDs
n and f should be greater than or equal to their respective targeted average rates
ψn and ψf . The packet loss at the network layer should not exceed the specified
thresholds ϵn and ϵf .

max
ΦM ,βn,βf ,α

: {E {Rs}} ,

s.t.|ϕm|2 = 1, ∀m ∈ {1,2, ...,M},
0 ≤ α ≤ 1,

0 ≤ βn ≤ 1,
0 ≤ βf ≤ 1,
En ≥ ψn,

Ef ≥ ψf ,

Pln ≤ ϵn

Plf ≤ ϵf

(5.58)

where ψn and ψf are the targeted average rates for the harvested energy at IoTDs
n and f , respectively, and ϵ, is the threshold that the packet loss should not exceed.
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The optimization problem in question is NP-hard due to the non-convexity caused
by the constant modulus restrictions at the IRS, as stated in references [48], [49],
[47]. To address this challenging problem, DRL is employed, specifically using the
DDPG algorithm. In this approach, the DDPG algorithm is utilized to find the
optimal values for the optimization parameters. An agent, represented by the IRS,
is trained using DRL techniques and receives feedback from the IoTDs. Based on
this feedback, the agent adjusts the phase shifts to maximize the secure sum-rate.
In the proposed system, the transmit power is initially sent from the AP to the
IoTDs. The IoTDs then estimate the rates and communicate them back to the
IRS, which acts as the DRL agent. The IRS uses this information to optimize
the phase shifts and maximize the overall secure sum-rate in the system. Through
this learning process, the system aims to achieve the highest secure sum-rate by
leveraging DRL to adapt the phase shift matrices based on the feedback received
from the IoTDs.

5.6 Deep Deterministic Policy Gradient

5.6.1 System Mapping to DDPG
In the mapping between the communication system model and the DDPG

scheme, we define the action-space, state-space, and reward to obtain a solution
for the optimization problem. Further, we explain below this mapping between the
system model and the DDPG scheme in detail:

State-space

The state-space of the DDPG at algorithm at a given timestep (τ) can be defined
as follows:

s(τ) = [E(τ−1)
n , E

(τ−1)
f , P

(τ−1)
ln

, P
(τ−1)
lf

, R(τ−1)
s ].

Here, E(τ−1)
n and E

(τ−1)
f represent the energy harvested at IoTDs n and f ,

respectively, at the previous time step (τ − 1). P (τ)
ln

and P
(τ)
lf

represent the packet
loss for IoTDs n and f , R(τ−1)

s represents the secure sum-rate at the previous time
step (τ − 1).

By including these components in the state-space, the DDPG agent has access
to the relevant information about the system, including channel conditions, pre-
vious actions, EH, packet loss, and previous secure sum-rate. This information
empowers the agent to make well-informed decisions and acquire an optimal policy
that maximizes the total transmission secure rate while simultaneously considering
the constraints imposed by the system.
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Action-space

The action-space of the DDPG algorithm at time step (τ) represents the set of
actions taken by the DRL agent. It consists of four components: α(τ), β(τ)

n , β(τ)
f ,

and Φ(τ)
M , which correspond to the NOMA power allocation factor, the EH factor

of IoTD n, the EH factor of IoTD f , and the IRS phase shift matrix, respectively.
The action-space a(τ) is defined as:

a(τ) = [α(τ), β(τ)
n , β

(τ)
f ,Φ(τ)

M ]. (5.59)

These actions describe the DRL agent’s decisions at each time step (τ). The
agent determines the NOMA power allocation factor, EH factors, and IRS phase
shift matrix values. The DRL agent’s goal is to optimize the secure sum-rate while
ensuring that the system’s limitations are met.

Reward function

In the DDPG scheme, the reward function r(τ) is a function of the current state
and action and it is defined as the maximum secrecy rate R(τ)

s achieved at timestep
(τ) that satisfies the constraints mentioned in (5.58). Hence, it is necessary to
include R(τ)

s in the reward function, along with the other constraints. The secrecy
rate represents the secure communication rate between legitimate devices in the
presence of an eavesdropper. The reward is intended to motivate the DRL agent to
maximize the secure sum-rate, which is the fundamental goal of the optimization
problem.

The reward function is given by:

rτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(τ)
s , if (5.58) holds

R(τ)
s + χ1 min(0, (ψn − E(τ)

n ))
+χ2 min(0, (ψf − E(τ)

f ))
+χ3 min(0, (ϵn − P (τ)

ln
))

+χ4 min(0, (ϵf − P (τ)
lf

)), otherwise

(5.60)

where χ1, χ2, χ3, χ4 represent the weights assigned to the discount factors associated
with each constraint if a particular constraint is violated. The reward condition
requires that the constraints mentioned in 5.58 be satisfied to ensure that the
parameters do not fall below a specified lower bound. Failure to meet the constraints
will result in a penalty to the reward, proportionate to the relevant discount factor.
These weights are crucial for optimizing the system’s performance to achieve desired
outcomes. By maximizing the reward, the DRL agent learns to make decisions that
result in higher secrecy rates and improved system performance.
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5.7 Complexity Analysis
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Figure 5.3: DDPG scheme’s complexity vs. grid-based search.

To evaluate the complexity of the DDPG algorithm, we conducted a quantitative
analysis comparing it to the complexity of the grid-based search method. The
DDPG algorithm’s complexity is explained in section 3.4 as follows:

CDDPG = S× I + H × I× O + O×A + A

The complexity of the grid-based search scheme, denoted as CGBS, can be de-
termined based on the number of IoTDs U, the number of elements for IRS as M ,
the IRS phase search steps denoted as ⌊ 2π

∆Φ⌋, the search step for the EH factors
∆βn and ∆βf , and the power allocation factor search step ∆α. The complexity of
the grid-based search scheme can then be expressed as:

CGBS = O(U× (1 + 1
∆βn

)× (1 + 1
∆βf

)× (1 + 1
∆α)× (1 + ⌊ 2π

∆Φ⌋)
M)

This formula indicates that the complexity of the grid-based search scheme is
proportional to the number of IoTDs multiplied by the number of possible combi-
nations for βn multiplied by the number of possible combinations for βf multiplied
by the number of possible combinations for α multiplied by the number of possible
phase combinations for the IRS raised to the power of the number of elements M .
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Hence, the DDPG scheme’s complexity is significantly lower than that of the
gird-based search as the number of IRS elements increases as revealed in Fig. 5.3.

5.8 Simulation Results
Drawing from the analysis and derivations we previously discussed, we proceed

to carry out simulations for our IRS NOMA-SWIPT system. Our objective is
to explore how the optimization parameters influence the performance of crucial
metrics. To facilitate a clearer comprehension of this influence, we generate plots
depicting the secure sum-rate, harvested energy, and packet loss rate. Toward the
conclusion of this section, we provide an overview of the optimized values obtained
through both the grid-based search and the DRL methodology.

5.8.1 Simulation Parameters

Table 5.1: Simulation Parameters

Simulation Parameters Values
Pt -30 dbm to 30 dbm
n0 1× 10−4 mW
mc 1000
M 12
α [0 : 1]
βn [0 : 1]
βf [0 : 1]
η 0.75
M 12
K1 10
K2 10
Ξt 2
Ξn 2
Ξf 2
Ξe 2
P 0.9
Ω 0.5
L 256

Total number of episodes 5000

To begin, we set the simulation parameters as follows. The number of IRS
reflecting elements is 12, and the number of IoTDs is 2. The channels between
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the AP and the IRS, IRS and IoTD n, IRS and IoTD f , and IRS and IoTD e are
Rician channels with a factor of K1 = K2 = 10 and a path loss exponent of 2,
the linear noise n0 is set to 1 × 10−4 mW. The default distances between the AP
and IRS, IRS and IoTD n, IRS and IoTD f , and IRS and IoTD e are 3 m, 2 m,
4 m, and 6 m, respectively. The probabilities P and Ω are both set to 0.9 and
0.5, respectively. The packet length, represented as L, equals 256. The parameters
α, βn, and βf , fall within the range of 0 to 1, and η is assigned a value of 0.75.
We perform 1000 Monte Carlo simulations to obtain the numerical results. It is
important to highlight that our solutions were implemented on a machine running
a 64-bit Windows operating system. The machine is equipped with an Intel(R)
Core(TM) i7-10510U CPU operating at 2.30GHz. Additionally, the machine has a
memory capacity of 32 GB. A summary of our simulation parameters is provided
in Table 5.1.

5.8.2 Performance Metrics Evaluation
To gain a deeper understanding of how different optimization parameters affect

our system, we have presented the performance evaluation results in the following
figures (Fig. 5.4 to Fig. 5.8). These figures illustrate the variations in our main
performance metrics, namely secure sum rate, harvested energy, and packet loss
rate, as we modify the optimization parameter.

94



5.8 – Simulation Results

-20 -10 0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

S
e
c
u
re

 S
u
m

 R
a
te

 (
b
/s

/H
z
)

(a) Secure sum-rate vs γn. βn = βf = 0.5, α = 0.2.
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(b) Secure sum-rate vs γf . βn = βf = 0.5, α = 0.2.

Figure 5.4: Secure sum-rate for IoTDs n and f .
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Secure Sum Rate

Figure 5.4 depicts the graphical representations of the secure sum-rate concern-
ing IoTDs n and f . These plots showcase how the SINR for each IoTD affects the
secure sum-rate, while maintaining constant values of βn = βf = 0.5 and α = 0.2.
In Fig. 5.4a, the secure sum-rate for IoTD n shows an increasing trend as the
SINR rises. This indicates that as the quality of the channel and the received sig-
nal strength improve, IoTD n can achieve higher secure communication rates. On
the other hand, in Fig. 5.4b, the secure sum-rate initially increases with an increas-
ing SINR for IoTD f , but after reaching a certain point (around 3 dB), γf stops
increasing with the increase of secure sum-rate. This behavior can be attributed
to the interference caused by the nearby IoTD n in the downlink NOMA scheme.
As the interference level from IoTD n increases, it occupies a significant portion
of the available channel capacity, leaving less capacity for IoTD f to transmit its
information. Consequently, the secure sum-rate for IoTD f starts to decrease due
to the increased interference and noise. Therefore, while the secure sum-rate may
increase overall due to the secure communication of IoTD n, the presence of inter-
ference limits the achievable secure rate for IoTD f . This highlights the trade-off
and interference management challenges in downlink NOMA systems, where the
performance of one IoTD can affect the performance of others in the network.
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Figure 5.5: Secure sum-rate vs Pt (dB). βn = βf = 0.5, α = 0.2, dt = 3, dn = 1 m
to 4m, df = 4m, de = 6m.

In Fig. 5.5, we can observe the total transmission secure rate plotted against
the transmit power Pt for various distance ratios between the IRS and IoTDs. The
distance ratio represents the ratio of the distance between the IRS and IoTD n to the
distance between the IRS and IoTD f . As the distance ratio increases, indicating
that IoTD n is farther from the IRS compared to IoTD f , the total transmission
secure rate decreases. This can be attributed to the fact that IoTD n experiences
a weaker channel due to the increased distance from the IRS. Consequently, the
secure rate of IoTD n decreases.
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Harvested Energy
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Figure 5.6: Harvested energy for IoTD devices n and f for various βn and βf .
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In Fig. 5.6, we analyze the EH performance of the legitimate IoTDs for different
EH factors βn and βf as a function of their respective SINRs, γn, and γf . The
EH factors represent the power split ratios for IoTDs n and f , determining the
portion of the received signal used for EH. As expected, as βn and βf decrease,
the complementary power splitting factors β̄n and β̄f increase. This implies that a
larger part of the received signal is allocated for EH whereas a smaller part is used
for signal decoding. Consequently, the energy harvested by the IoTDs increases.
The results in Fig. 5.6a demonstrate that the EH can increase by up to 10 orders of
magnitude as βn decreases from 0.9 to 0.1 (i.e., β̄n increases from 0.1 to 0.9). This
significant increase in EH is due to the higher power allocation for EH, allowing the
IoTDs to capture more energy from the received signals. Furthermore, the results
depicted in Figure 5.6b reveal that as the energy harvesting factor Ef increases, the
SINR γf also increases until a certain point. Beyond that point, increasing Ef no
longer leads to a further increase in γf . This phenomenon can be attributed to the
interference caused by IoT device n on IoT device f . As Ef continues to increase,
the interference from IoT device n becomes more significant, limiting the potential
gains in SINR for IoT device f .

Moreover, the power allocation factor α plays a significant role in determining
the energy harvested by legitimate IoTDs, as depicted in Figure 5.7, when α in-
creases, the signal power allocated to IoTD n also increases, resulting in higher
energy harvesting capabilities. It is important to note that at α = ᾱ = 0.5, more
energy is harvested from the nearby IoTD n compared to the distant IoTD f . This
disparity is due to the higher path loss experienced by the farther device, leading
to reduced received signal power and subsequently affecting energy harvesting per-
formance. These observations underscore the trade-off between power splitting for
energy harvesting and signal decoding, as well as the influence of path loss and
power allocation on the energy harvesting capabilities of legitimate IoTDs. By
optimizing the energy harvesting factors, along with the power allocation factor,
the system can enhance energy harvesting efficiency and overall performance of the
IoTDs.
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Figure 5.7: Harvested energy for IoTD devices n and f for various α.
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Packet Loss Rate
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Figure 5.8: Packet loss for IoTDs n and f .
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In Fig. 5.8, we analyze the network layer packet loss for the legitimate IoTDs
in our system as a function of their respective SINRs, γn and γf . The packet loss
represents the rate at which packets are lost or dropped during transmission, im-
pacting the quality and reliability of IoT communication. The results demonstrate
that as γn and γf increase, the packet loss in our system for the IoTDs (Pln and
Plf ) decreases accordingly. This indicates that higher SINRs result in lower packet
loss rates, enhancing the reliability of communication for legitimate IoTDs.

In Fig. 5.8a, the packet loss Pln initially exceeds the threshold ϵn at γn ≤ 16.7344
dB, indicating a high packet loss rate. However, as γn increases, the packet loss
gradually decreases until it reaches 0 (i.e., no packet loss) at γn = 28.7344 dB. This
implies that achieving higher SINRs significantly reduces the packet loss for IoTD
n and improves the reliability of its communication. Similarly, in Fig. 5.8b, it is
observed that there is packet loss Plf for γf < 1.02312 dB. However, for SINRs
γf > 1.02312 dB, all the packet loss values are below the threshold ϵf , indicating
that there is no packet loss in the system. This demonstrates that higher SINRs
for IoTD f result in more reliable and robust communication with negligible packet
loss.

5.8.3 Grid-based Search Results
Within this section, we employ a grid-based search methodology to serve as a

benchmark for evaluating the outcomes produced by the DDPG algorithm. Utiliz-
ing the grid-based search approach depicted in Fig.5.9, we address the optimization
problem in (5.58). The process begins by configuring the system parameters, fol-
lowed by establishing a search space and incremental steps for each optimization
parameter. Specifically, the search space for ΦM spans from 0 to 2 × π with an
incremental step of 2 × π/72, for α it ranges from 0 to 1 with increments of 0.01,
and for βn and βn, the range is 0 to 1 with increments of 0.1. Performance metrics
including Rs, En, Ef , Pln , and Plf are computed for each set of discretized opti-
mization parameters. Subsequently, these performance metric values are compared
against predefined thresholds. Sets of optimization parameters that satisfy all con-
straints are recorded, forming a substantial pool of such sets. From this collection,
the set generating the highest Rs is selected, accompanied by its corresponding
parameters En, Ef , Pln , and Plf .

The grid-based search methodology systematically explores all feasible combi-
nations of ΦM , βn, βf , and α within the designated search space to identify the
optimal solution. It is essential to acknowledge that although the grid-based search
guarantees locating the optimal solution within the provided search space, its ap-
plicability to our system is limited due to its high complexity, especially as the
number of IRS elements M or users increases. Consequently, the DDPG algorithm
is adopted to efficiently identify satisfactory solutions in such intricate scenarios.
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Figure 5.9: Flow chart of the grid-based simulation.
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5.8.4 DRL Results
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Figure 5.10: Convergence of the DDPG algorithm. Rewards vs. episodes.
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Figure 5.11: Secure sum rate for DRL versus grid-based search. dt = 2, dn = 1 m
to 4m, df = 4m, de = 6m.

In our numerical assessment of the proposed DDPG scheme for IRS downlink
NOMA-SWIPT systems, we aim to obtain the optimal solution for the non-convex
optimization problem described in (5.58). To accomplish this, we employ the DDPG
algorithm to find the optimum values of the IRS phase shift matrix ΦM , NOMA
power allocation factor α, and EH factors βn and βf that maximize the secrecy sum-
rate Rs while satisfying the constraints of IRS constant modulus, EH thresholds,
and packet loss thresholds.

The suggested DDPG approach utilizes a two-network actor-critic architecture,
incorporating an actor-network and a critic -network. Each network comprises four
nn.Linear layers. The actor-network receives states as input and produces actions
as output. It has two hidden layers, each of which has 128 neurons. ReLU (Rec-
tified Linear Unit) activation function is employed in the hidden layers of both
the actor-network and the critic-network. The output layer of the actor-network
utilizes the tanh(·) function, which provides higher gradients and facilitates more
substantial weight updates. Additionally, the tanh function’s output is symmetric,
aiding in faster convergence. Conversely, the critic-network takes both states and
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actions as input and estimates the expected future reward, commonly referred to
as the Q-value. The Q-value represents the expected cumulative reward achievable
by the agent when following a specific policy in a given state. The critic-network
is composed of two hidden layers, each containing 128 neurons, and utilizes the
ReLU activation function. The Adam optimizer is used to update the weights of
both the actor and critic-networks. The Adam optimizer is a popular optimization
algorithm that adapts the learning rate dynamically based on the gradients’ charac-
teristics. The reported results are obtained by averaging over 1000 iterations. The
results obtained from the DDPG algorithm demonstrate the convergence of our
scheme, as depicted in Fig. 5.10. The plot shows that the rewards increase over
time, indicating the successful learning process of the DDPG algorithm. Moreover,
Fig. 5.11 illustrates a comparison between the secure sum rates achieved using the
DDPG algorithm and those obtained via grid-based search. The findings indicate a
marginal superiority of the secure sum rate obtained through DDPG in comparison
to that of a grid-based search. This outcome can be attributed to the dissimilar
granularity between the two approaches, with the DDPG employing a continuous
scheme, while the grid-based search involves steps of 0.1 (ranging from 0 to 1) in
its search process.

Furthermore, Table 5.2 presents the optimized values for energy harvesting fac-

Table 5.2: Optimized values for the optimization parameters obtained through DRL
for Pt = 1 mw.

dt dn df de α βn βf Rs En Ef Pln Plf
2 1 4 6 0.3399 0.971 0.936 12.9751 0.1504 0.0017 1.1115e− 05 0.4531
2 1 6 7 0.1 0.37902 0.806 10.4798 3.0979 0.0015 2.9357e− 04 0.3338
2 2 5 7 0.2677 0.4745 0.8854 8.6773 0.3181 0.0017 0.0050 0.4283
2 2 6 8 0.24989 0.3719 0.7844 7.8646 0.2824 0.0015 0.0140 0.4350
3 2 5 7 0.1963 0.4293 0.5845 6.1537 0.0733 0.0015 0.0239 0.4457

Table 5.3: Optimized values for the optimization parameters obtained through grid-
based search for Pt = 1 mw.

dt dn df de α βn βf Rs En Ef Pln Plf
2 1 4 6 0.28 0.9 0.9 12.3430 0.3996 0.0024 1.6765e− 05 0.43
2 1 6 7 0.1 0.3 0.8 10.1718 3.5079 0.0013 4.0114e− 04 0.3356
2 2 5 7 0.25 0.5 0.9 8.6945 0.2979 0.0014 0.0052 0.4202
2 2 6 8 0.27 0.3 0.8 7.8366 0.3555 0.0014 0.0155 0.4427
3 2 5 7 0.19 0.5 0.6 6.2590 0.0612 0.0013 0.0301 0.4417

tors βn and βf , and power allocation factor α obtained using the DDPG algorithm.
These values are derived for a specific combination of distances (dt, dn, df , and de)
that maximizes the total secure rate for IoT devices while ensuring energy harvest-
ing levels (En and Ef ) above the thresholds for both near and far NOMA IoTDs,
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while also minimizing packet loss (Pln , and Plf ) for both IoTDs. These values are
obtained through the DDPG algorithm while satisfying the constraints defined in
the optimization problem (5.58). The DDPG algorithm allows us to find the op-
timal solution by iteratively improving the values of the optimization parameters.
By utilizing the rewards and feedback from the IoTDs, the algorithm adapts and
adjusts the parameters ΦM, βn, βf , and α to achieve the highest secure sum-rate,
provide energy to the IoTDs, and minimize their packet loss. The optimized values
obtained from the DDPG algorithm provide insights into the optimal configuration
for maximizing the performance of the system in terms of secure communication
and energy transfer. Table 5.3 provides the optimized values of βn, βf , and α
for various combinations of distances (dt, dn, df , and de) obtained through the
discretized grid-based search scheme. These optimized values aim to maximize
the total transmission sum rate for legitimate IoT devices. The main objective of
this table is to compare the secure sum rates, energy harvesting levels, and packet
loss rates achieved by the DDPG algorithm with those obtained through the ES
method. This comparison serves to demonstrate the performance of our DDPG
scheme, highlighting its close resemblance to the grid-based search method.

By utilizing both the DDPG algorithm and the grid-based search scheme, we
determine the optimal parameters that yield an approximation of the maximum
secure sum rate while adhering to the constraints outlined in the optimization
problem (5.58). This comparative analysis allows us to evaluate the effectiveness
and performance of our DDPG scheme, providing evidence of its ability to closely
approximate the results obtained through the grid-based search method.
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Chapter 6

Conclusion and Future Prospects

In this thesis, we explored the application of ML techniques in IRS and NOMA
architectures for 5G/B5G wireless communication systems. The main objectives
were to develop ML-based approaches for optimizing the performance of these sys-
tems, including maximizing the total data rate, achieving target secrecy rates, and
enhancing energy transfer capabilities.

Firstly, we concentrated on the downlink scenario of an IRS NOMA system,
to increase the total data rate of NOMA users under limited CSI availability. We
formulated the problem as a non-convex optimization problem as a result of the
constant modulus restriction and non-convex objective function. To address this
complex problem, we employed DRL techniques, specifically the DDPG algorithm.
We demonstrated that our proposed DDPG-based approach achieved high sum-
rates, surpassing OMA in terms of user count and transmit power. We also observed
the impact of imperfect SIC and found that our DDPG algorithm was robust to
imperfections and approached the upper bound of the achievable sum-rate.

Secondly, we investigated the uplink multiple access scenario in cascaded IRS
systems for short-range communications in THz networks. The main objective
was to maximize the data transmission rate of the intended user and the sum-rate
for both users. We faced non-convex optimization problems in both objectives,
making closed-form expressions intractable. To overcome these challenges, we in-
troduced sub-optimal solutions as bounding benchmarks and employed the DDPG
algorithm known for its ability to handle non-convex problems. Our DDPG-based
approach achieved higher data rates compared to the sub-optimal solutions for the
first goal and achieved comparable sum-rates to the discretized ES for the second
goal. Furthermore, we emphasized the importance of considering channel correla-
tion to improve the learning process and achieve higher data transmission rates.

Lastly, we focused on maximizing the secrecy rate of legitimate IoT nodes while
enabling energy transfer in an IRS-aided downlink secure NOMA-SWIPT scenario.
The problem of optimization involved determining optimal values for NOMA power
allocation parameters, IRS phase shift matrix, EH factors, and packet loss error
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rate. Given the non-convex nature of the problem, we utilized the DDPG technique
to search for the optimal solution. The obtained results demonstrated the effec-
tiveness of our DDPG-based optimization approach in achieving improved secrecy
rates and enhanced energy transfer capabilities in the IRS-assisted NOMA-SWIPT
system. Moreover, the outcomes obtained using the DDPG algorithm closely align
with those obtained through the ES method. This alignment demonstrates that
the DDPG algorithm can effectively approximate the results achieved by the ES
method, highlighting its capacity to handle the intricacies of the problem.

Overall, this thesis work highlighted the significance of ML, specifically DRL
techniques, in tackling non-convex optimization problems and optimizing the per-
formance of IRS and NOMA architectures in 5G and beyond wireless communi-
cation systems. By leveraging ML, we successfully achieved superior performance
under more realistic system models. We showcase the added value of these tech-
nologies in the context of IRS NOMA architectures.

6.1 Future Directions
Future research on IRS NOMA networks has several promising directions. Among

the most important potential areas are:

• Advanced resource allocation algorithms: An important area of research
is the development of sophisticated resource allocation algorithms that opti-
mize the performance of IRS NOMA networks. This includes looking into
new power allocation schemes, phase shift optimization algorithms, and user
grouping techniques to enhance both the system’s sum-rate and energy effi-
ciency.

• Security and privacy within networks that incorporate IRS NOMA:
It is vital to investigate security and privacy elements within networks that
incorporate IRS NOMA to ensure secure and private communication. Future
studies could look at techniques for mitigating security threats in systems
that utilize the IRS to assist NOMA, such as eavesdropping and jamming
assaults. Furthermore, in such networks, privacy-preserving algorithms and
authentication processes can be implemented to secure user information.

• Interference management and beamforming: Interference management
in IRS NOMA networks is a key concern. Future research should concentrate
on developing effective interference management techniques, like beamform-
ing and interference alignment, to reduce interference generated by NOMA
broadcasts and improve overall network performance.

• Integration with various emerging technologies: Investigating the in-
tegration of IRS NOMA networks with various emerging techniques can lead
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to new research avenues. Investigating the use of IRS in conjunction with
ML, artificial intelligence, or block-chain technology, for example, can lead to
novel solutions for enhanced resource allocation, security, and scalability in
wireless networks.

• Real-world implementation and experimental validation: Future re-
search endeavors could focus on real-world implementations and experimental
validations of IRS NOMA networks to gain practical insights into their vi-
ability and performance. The development of test-beds and prototypes is
recommended to assess the effectiveness of IRS NOMA approaches across
diverse environmental conditions and deployment scenarios. While imple-
menting IRS in real-time NOMA systems poses challenges such as hardware
complexity, cost, real-time signal processing, CSI acquisition, security and
privacy concerns, and the need for dynamic adaptability, addressing these
concerns through collaborative efforts is crucial for optimizing hardware, de-
veloping efficient algorithms, and ensuring regulatory compliance. Overcom-
ing these challenges is essential for unlocking the full potential of IRS NOMA
systems in enhancing wireless communication networks.

• Dynamic Intersection Analysis: Identifying and Controlling the
Crossing Point between Performance Curves in IRS NOMA and
IRS OMA Systems: Explore adaptive algorithms or optimization tech-
niques to dynamically adjust system parameters, ensuring optimal perfor-
mance at the intersection, examine the influence of various system configu-
rations on the identified crossing point, investigate the impact of IRS place-
ment, number of users, and transmit power levels on the dynamic behavior of
NOMA and OMA systems, and explore the potential of machine learning or
intelligent control mechanisms for real-time adjustment of system parameters.

• Strategic Power Allocation Analysis in NOMA and OMA Scenarios
with IRS: Investigate the trade-offs between power allocation efficiency and
spectral efficiency in both NOMA and OMA systems. Explore the impact of
power control mechanisms on overall system performance, considering user
fairness and energy efficiency.

• Exploring Hybrid NOMA-OMA Systems: Performance Evaluation
Compared to standalone NOMA and OMA Scenarios: Investigate
how a hybrid approach can leverage the benefits of both NOMA and OMA
in different communication scenarios, and examine the potential for adaptive
switching between NOMA and OMA based on real-time channel conditions
or user requirements.

In summary, the future research agenda for IRS-assisted NOMA and OMA
systems encompasses understanding their dynamic behavior, exploring adaptive
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control mechanisms, and assessing trade-offs in power allocation and system con-
figurations. Additionally, the exploration of hybrid NOMA-OMA systems presents
a promising avenue for further investigation. Moreover, in the broader scope of
IRS NOMA network research, addressing practical issues, enhancing system per-
formance, improving security and privacy, and exploring integration with emerging
technologies are crucial areas of focus. Investigating these topics will contribute
to expanding our understanding and application of IRS NOMA networks in future
wireless communication systems.
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Proof of Proposition 1 (See page 54)
The aggregate signal power received by each Txκ at Rx in (4.24) can be formu-

lated as follows:

P
(κ)
Rx = |

√︂
Lτ ,κe

−jη3hHr ΦFHH
e,fΦEhHt,κe−jηκ|2Pt.

Proof. • Perform matrix multiplication between the conjugate transpose of the
receiver channel matrix hHr and the phase shift reflection matrix of IRS2
denoted as ΦF :

[︂
hHr ΦF

]︂
=
[︂
h∗
r1, . . . , h

∗
rf , . . . , h

∗
rF

]︂
⏞ ⏟⏟ ⏞

1×F

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−jω1 0 . . . . . . . . . 0
0 e−jω2 0 . . . . . . 0
... 0 . . . . . . . . . ...
... . . . . . . e−jωf

. . . ...
... . . . . . . . . . . . . ...
0 . . . . . . . . . 0 e−jωF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

F×F[︂
hHr ΦF

]︂
=
[︂
h∗
r1e

−jω1 , . . . , h∗
rfe

−jωf , . . . , h∗
rF e

−jωF

]︂
⏞ ⏟⏟ ⏞

1×F

• Subsequently, multiply the outcome of the preceding operation by the matrix
HH
e,f :

[︂
hHr ΦFHH

ef

]︂
=
[︂
h∗
r1e

−jω1 , . . . , h∗
rfe

−jωf , . . . , h∗
rF e

−jωF

]︂
⏞ ⏟⏟ ⏞

1×F

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∗
11 h∗

21 . . . . . . . . . h
∗
E1

h∗
12 h∗

22
. . . . . . . . . h∗

E2
... . . . . . . . . . . . . ...
... . . . . . . h∗

ef
. . . ...

... . . . . . . . . . . . . ...
h∗

1F . . . . . . . . . . . . h∗
EF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

F×E
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[︂
hHr ΦFHH

ef

]︂
=
[︂∑︁F

f=1 h
∗
rfe

−jωfh∗
1f ,
∑︁F
f=1 h

∗
rfe

−jωfh∗
2f , . . . ,

∑︁F
f=1 h

∗
rfe

−jωfh∗
EF

]︂
⏞ ⏟⏟ ⏞

1×E

• Multiply the product obtained from the previous step by the phase shift
reflection matrix of IRS1, denoted as ΦE:

[︂
hHr ΦFHH

efΦE

]︂
=
[︂
hHr ΦFHH

ef

]︂
⏞ ⏟⏟ ⏞

1×E

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−jθ1 0 . . . . . . . . . 0
0 e−jθ2 0 . . . . . . 0
... 0 . . . . . . . . . ...
... . . . . . . e−jθe

. . . ...
... . . . . . . . . . . . . ...
0 . . . . . . . . . 0 e−jθE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

E×E[︂
hHr ΦFHH

efΦE

]︂
=
[︂∑︁E

e=1
∑︁F
f=1 h

∗
rfe

−jωfH∗
efe

−jθe

]︂
⏞ ⏟⏟ ⏞

1×E

• Multiply the outcome from the previous step by the conjugate transpose of
the transmitter channel matrix of user κ, represented as hHt,κ:

[︂
hHr ΦFHH

efΦEhHt,κ
]︂

=
[︂∑︁E

e=1
∑︁F
f=1 h

∗
rfe

−jωfH∗
efe

−jθe

]︂
⏞ ⏟⏟ ⏞

1×E

×

⎡⎢⎢⎢⎢⎣
h∗
t,κ,1
h∗
t,κ,2
...

h∗
t,κ,E

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

E×1

hHr ΦFHH
efΦEhHt,κ =

E∑︂
e=1

F∑︂
f=1

h∗
rfe

−jωfH∗
efe

−jθeh∗
t,κe,

hHr ΦFHH
e,fΦEhHt,κ =

E∑︂
e=1

F∑︂
f=1
|hrf |e−jϕrf e−jωf |Hef |e−jϕef e−jθe|ht,κe|e−jϕt,κe ,

hHr ΦNHH
efΦEhHt,κ =

E∑︂
e=1

F∑︂
f=1
|ht,κe||Hef ||hrf |e−j(ϕt,κe+e−jθe +e−jϕef +e−jωf +ϕrf ),

hHr ΦFHH
efΦEhHt,κ =

E∑︂
e=1

F∑︂
f=1
|ht,κe||Λe||Hef ||Λf ||hrf |e−j(ϕt,κe+θe+ϕef +ωf +ϕrf ),
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• Based on the derived outcome, we can conclude that the overall received
signal power for each Txκ at Rx can be expressed in the following manner:

P
(κ)
Rx =

⃓⃓⃓√︂
Lτ ,κe

−jη3hHr ΦFHH
efΦEhHt,κe−jηκ

⃓⃓⃓2
Pt,

=
⃓⃓⃓⃓√︂
Lτ ,κ

∑︁E
e=1

∑︁F
f=1 |ht,κe||Λe||Hef ||Λf ||hrf |e−j(φtκe

+θe+φef +ωf +φrf
+ηκ+η3)

⃓⃓⃓⃓2
Pt.
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