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Abstract

This manuscript deals with the study of epidemic inference in the framework
of Statistical Physics. Epidemics are treated as stochastic processes on graphs.
The inference task consists in a probabilistic reconstruction of a specific
epidemic cascade (so called planted) using partial and noisy knowledge of
the contact network and of individuals’ infection state. The reconstruction
process is reframed in this thesis as the computation of observables over
a high-dimensional probability distribution, known as the posterior. In the
Introduction, connections are drawn between posterior computation and Statistical
Physics. Specifically, a parallel is portrayed between inference and spin glass
theory. Special attention is given to the Nishimori conditions, which play
a central role in both Spin Glass theory and (epidemic) inference. The
computation of the epidemic posterior marginals is shown to be an NP-hard
problem (as shown in the manuscript). Thus, some approximate methods are
required. The Causal Variational Approach is introduced for this purpose.
It allows sampling without rejection from a distribution which approximates
the posterior. This method surpasses previously existing machine learning-
based techniques, as well as some Mean-Field approximations, in terms of
accuracy. An attempt to characterize the difficulty of inference tasks involves
computing theoretical bounds on algorithmic performance as functions of
epidemic parameters. This is the objective of Epidemble, introduced in Chapter
3 of this manuscript. Epidemble (Epidemic Ensemble) is a semi-analytical tool
based on the Replica Symmetric Cavity Method. This technique allows to
compute, in the limit of large-sized graphs, what a perfect (exact) algorithm
would find. In particular, Epidemble finds the values of statistical estimators
(e.g., Area Under the ROC, Minimum Mean Squared Error, Maximum Mean
Overlap) as functions of epidemic parameters such as infection rate, patient
zero density, and the quantity and quality of clinical tests. These results are
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provided in the form of phase diagrams which can be interpreted as upper
bounds to real inference alogrithms’ performances.
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Chapter 1

Introduction

Epidemics are hard-to-predict natural events characterized by an infectious
disease which transmits from an individual to another. Epidemics can cause a
wide range of damages, affecting individuals, communities, and entire societies.
The most immediate and tragic consequence is the loss of human lives, but
they can also overwhelm healthcare systems, leading to shortages of medical
personnel and hospital beds. Economically, there can be dramatic consequences
too. Businesses may suffer due to decreased productivity, disrupted supply
chains, and lower consumer confidence. Also tourism is strongly damaged as
epidemics may result in travel restrictions. The stress, fear, and uncertainty
can finally have significant psychological and mental health consequences.
In our interconnected society, diseases can easily cross borders. Studying
epidemic prevention is therefore crucial for the stability and well being of
public health systems, economy and individuals in general. The study of
epidemics involves a multidisciplinary approach, combining various scientific
methods to understand the causes, the spread, and the impacts of infectious
diseases. An example is the genomic analysis, namely the sequencing and
interpretation of the genetic material of pathogens responsible for the disease.
Understanding the genetic makeup of a pathogen aids in the development of
vaccines that are effective against diverse strains of the pathogen and which
proved to be of extreme importance in containing the COVID-19 pandemic.
Mathematical models, also, play a crucial role. They focus on how infectious
diseases spread within a population, trying to understand which are the best
solutions to mitigate epidemic outbreaks. One example is compartmental
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modeling, for which the population is divided into several compartments based
on the individuals’ disease status. The classic example is the SIR model,
which includes compartments for Susceptible (S), Infectious (I), and Recovered
(R) individuals. Agent-based models, instead, simulate the interactions of
individual agents (people) within a population, providing a rather detailed
representation of the epidemic process. Each agent follows some precise rules:
for example, an I individual can infect with certain infection probability its
S contacts. An advantage of mathematical modeling is that the results are
typically not tailored on a specific disease and some results may apply to
a large category of epidemics; models and techniques developed during the
COVID-19 pandemic might be used in the future for containing other diseases.
Mathematical approaches to epidemiology form a vast field. In this thesis, we
explore epidemics transmitted from person to person, distinguishing them from
diseases (as Dengue or Salmonella), reliant on external elements like water,
food, or mosquitoes for transmission. In the realm of epidemics among humans,
ranging from COVID-19 to influenza and HIV, the literature is immense. The
choice of epidemic modeling and inference approaches depends on the research
goal, as described in [1], where more and more structured models of epidemic
propagation are progressively introduced. There is the homogeneous hypothesis,
in which contacts among individuals have the same probability to happen. A
step in refinement is represented by mixed heterogeneous-homogeneous models,
for which the population is separated in groups of individuals based on some
common features, as the age or the job. Individuals inside the same group
have high probability to interact, while contacts among individuals belonging
to different groups are more sparse. Finally, epidemic modeling on networks
can be introduced, for which each individual has a specific set of contacts.
The approach chosen (homogeneous, mixed heterogeneous/homogeneous, fully
heterogeneous) to describe the epidemic process depends on the aim of the
study and on the available information: for example, if one has low information
on the single individual’s states and is interested in finding macroscopic laws
(as the number of infectious individuals in time), then it may be sufficient to use
a homogeneous model, which typically has the advantage of being analytically
tractable. The fully heterogeneous models are much harder to deal with, but
they allow to develop a more detailed description of the epidemic propagation
[2, 3]. Not only models, but also inference techniques depend on the aim of the
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specific research path. A guide on some of the most used inference methods
is in [4]. In this thesis we want to study epidemics under the hypothesis of
having access to single-individuals information, as the contact network and the
clinical tests. The research direction we address is to study how observations
can be used to extract information on the epidemic cascade which generated
them. Understanding this point can have practical applications in the field of
automatic contact tracing: being able to reconstruct the epidemic cascade i.e.
identifying the patient zero and the infection events) could help some targeted
testing on the individuals having the highest risk of being infected by the disease.
This would help to optimally use the limited number of available clinical tests.
Another possible application of this study is in policy making: interpreting
the available information from clinical tests can help orienting decisions of
governments. Unfortunately, reconstructing the epidemic history from clinical
tests is mathematically challenging (NP-hard), as shown in section 1.3. Physics,
however, can help developing good approximations! We are going to review two
research paths: developing new algorithms and studying information-theoretic
performance bounds. Chapter 2 is devoted to the first aim: some of the most
used algorithms are reviewed, their limitations are discussed and possible future
developments are presented. Algorithms aim to assign to each individual an
estimate of their marginal risk of being infectious, playing a crucial role in
possible mitigation of epidemic outbreaks. However, they are not enough; we
also need to understand whether the available information (contained e.g. in
clinical tests) is sufficient to reconstruct the epidemic process. Chapter 3 is
devoted to this study. The remaining part of the introduction deals with the
characterization of the epidemic inference problem: the general framework is
introduced, the hardness of the problem is quantified and the connections with
physics and Bayesian inference are portrayed.

1.1 Framework of epidemic inference

In this paragraph, we will describe the general framework of epidemic inference
adopted in this thesis. The hypothesis is that the disease (virus, bacterium,
parasite, etc.) spreads throughout the population via a network of contacts
among individuals. We model each contact between two individuals, denoted
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as i and j, who meet for a certain time interval from tstart to tend, with a
link represented by the quadruplet (i, j, tstart, tend). The set of all links among
individuals forms the dynamic contact network through which the disease
spreads. Since networks play a crucial role in the study of epidemic inference,
it is worth introducing some notions of graph theory here.

1.1.1 Graphs

A graph G = (V, E) is a mathematical structure that consists of a set V of
vertices (also called nodes) and a set E of edges (also called links or arcs).
These edges connect pairs of vertices, representing contacts between them.
There are two main types of graphs: directed graphs and undirected graphs.
In an undirected graph, the edges have no direction. This means that any edge
between two vertices represents a bidirectional connection. In a directed graph,
instead each edge has a direction. Namely, if there is an edge from vertex A
to vertex B, it does not necessarily mean there is an edge from B to A. Both
directed and undirected graphs are used in epidemic study. Graphs can be
used to model various real-world connections. In the epidemic context, they
are used to model the interaction among individuals. An important property of
graphs is related to the presence of cycles. A cycle is a path along the edge set
which starts and ends on the same vertex. Some graphs have cycles (sometimes
called loops), which means that it is possible to start from a vertex A, walk
along nodes connected by edges and end up again on A. Some other graphs,
instead, have no loops and they are called acyclic. Based on their properties,
graphs are categorized in several graph ensembles or families. Here we give
three important examples.

• A tree is an acyclic and connected graph. In simpler terms, it’s a collection
of vertices and edges where there is exactly one path between any two
vertices.

• In a random regular graph (RRG) each vertex has the same degree. The
degree of a vertex is the number of edges incident to that vertex. So in a
RRG each vertex has the same number of edges attached to it.

• The Erdős–Rényi (ER) family of graphs G(n, p) is a set of graphs with n
vertices and a random (binomial) number of edges. Each of the possible
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(
N
2

)
edges is in fact assigned to the graph with probability p. On average,

therefore, there are pN(N−1)
2 edges on a ER graph.

These graphs models are useful concepts to understand the properties of typical
networks that emerge from random processes, although they may not capture
the structural features found in more complex (realistic) contexts. In Chapter
2 we are going to mention two more specific models for epidemic contact
networks. One final yet important definition in graph theory is the one of
neighbors (or contacts) of a vertex. A neighbor j ∈ V of i ∈ V is a vertex
which is connected with an edge (i, j) ∈ E to i. The set of all the neighbors of
i is called ∂i = {j ∈ V : (i, j) ∈ E}.

Graphs in epidemic inference We use graphs to model contacts among
individuals. Each individual i is in fact associated to a vertex and each contact
(i, j) between two individuals i and j is modeled with an edge. In epidemic
inference graphs can be directed or undirected. In fact, if individual i wears
a surgical mask and individual j wears no face mask, than the contact is
protected for j but not for i. It is good in that case to model this contact
with an directional edge. Sometimes the hypothesis of symmetrical and time-
independent links is made. The epidemic disease spreads throughout the
population by jumping among linked individuals. The epidemic inference
problem aims at reconstructing the infection chain using the information
contained in the clinical tests collected by the hospitals, pharmacies, etc... Even
if we exactly knew the contact network, the epidemic inference problem would
still be extremely hard to solve. In section 1.3 we are going to show that the
problem is in fact NP-hard, even when the contact network is known.

1.1.2 SI model and some generalizations

To quantitatively dive into the description of the framework, we shall now
introduce models for epidemic propagation. At this point we are going to
introduce the discrete time SI model , the simplest one. Its generalizations are
postponed to Chapter 2.
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Fig. 1.1 The infection mechanism in the SI model. The circles represent individuals
and the black line is a link.

Discrete-time Susceptible-Infectious (SI) model. The simplest way to
model the epidemic spread over a population is to use a two-state variables
model, in which the individual can either be Susceptible (S) or Infectious (I).
Let us consider N individuals interacting at discrete times on a contact graph
G. We define xt

i ∈ {S, I} the state of an individual i ∈ {1, . . . , N} at time
t = 0, . . . , T , where T is the total number of time steps, sometimes called
horizon time. We call patient zero every individual who is infectious at time 0.
The set of all the patients zero is therefore: {i : x0

i = I ∀i = 1, . . . , N}. We
define γ the probability for an individual to be the patient zero, independently
of the others’ state. As a consequence, there are on average Nγ patients
zero. Typically, γ ∼ 1

N
. The idea is that we want to study a generic case

of epidemic spread in a sub-global population, for which it is reasonable to
have more than one patient zero. We now model the infection process: when
an individual i in the state I has an isolated contact with an individual j in
the state S, this will change its state from S to I with probability λ, as in
Figure 1.1. In the SI model it is not possible to recover: the transition I → S
is forbidden. The infection dynamics described so far is Markov. Defining
x = {xt

i,∀i = 1, . . . , N, ∀t = 1, . . . , T}, we thus have:

P (x) = P 0(x0)
T −1∏
t=0

P t+1(xt+1|xt),

where naturally xt = {xt
i,∀t = 0, . . . , T}. The patient zero probability, as

defined above, implies that each individual is the patient zero with probability
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γ independently of the others:

P 0(x0) =
N∏

i=1
p0(x0

i )

where simply p0(x0
i ) = γδx0

i ,I + (1 − γ) δx0
i ,S . For what concerns the infection

process, each individual i changes state only due to its contacts. Let us define
the set ∂i(t) = {j = 1, . . . , N : j is a contact of i at time t }, which is simply
the set of all the contacts (or neighbors in graph theory) of i at time t. In the
infection dynamics, only the neighbors1 of an individual are responsible for its
infection. This has two implications:

1. The states of two individuals at time t+ 1 are independent, conditioned
to the past:

P t+1(xt+1|xt) =
N∏

i=1
pt+1(xt+1

i |xt)

2. The t+ 1 state of an individual only depends on the state at time t of
itself and its contacts.

pt+1(xt+1
i |xt) = pt+1(xt+1

i |xt
i, x

t
∂i(t))

To compute the transition functions pt+1(xt+1
i |xt

i, x
t
∂i(t)) we observe that, if the

individual remains S at time t+ 1 it means that, among its I contacts, nobody
was able to infect it:

P (xt+1
i = S|xt

i = S, xt
∂i(t)) =

∏
j∈∂i(t)

(1 − λδxt
j ,I) (1.1)

by normalization, it is possible to find the transition S → I. The process is
therefore:

P (x) =
N∏

i=1

(
p0(x0

i )
T −1∏
t=0

p(xt+1
i |xt

i, x
t
∂i(t))

)
. (1.2)

There are generalizations to the SI model, which we quickly overview here,
postponing their precise treatment to Chapter 2.

• The Susceptible Infectious Recovered (SIR) model, allows for recovery
by introducing the R (Recovered/Removed) state. In this model an I

1actually, only the I neighbors, but it is not necessary now to specify.
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individual becomes R after a random amount of time, which depends
on a recovery probability, typically indicated with letter µ. In the SIR
model, an R individual never gets back to S or I state, so no one can
ever be infected twice.

• The SIS model, which is, like the SI, a two-state variable model. Here,
however, the I individual recovers after a random time to the state S.

• The SEIR model. It includes the E (Exposed) state, which simply
describes the case in which an individual has just been infected, but it is
still not infectious i.e. it can not infect other individuals.

• Continuous-time models. Every model defined above can be generalized
to its continuous time correspondent.

• Many other model generalizations are possible: the pre-symptomatic
state, the vaccinated state, etc... may be introduced. In this thesis,
however, we are trying to find some fundamental and general results for
epidemic inference. The aim is to identify which features impact the most
when doing inference. We will see that these are the network topology,
the value of the infection rate and the way in which clinical tests are
collected. Some other factors, as the number of states included in the
model, do not seem to impact dramatically on the performance, as shown
in section 2.4.3. For this reason, our treatment will focus on the simplest
models.

Whichever model is chosen for describing an epidemic process, we will call
x = {xt

i}
t=0,...,T
i=1,...,N the whole epidemic trajectory. Each xt

i is the epidemic state of
the individual i ∈ {1, . . . , N} (with N being the total number of individuals)
at time t. If we choose the SI model, then xt

i ∈ {S, I}; if we choose the SEIR
model, then xt

i ∈ {S, E, I,R}.

1.1.3 A Bayesian formulation: prior and posterior

Once the model is fixed, it is possible to assign a probability to each epidemic
trajectory x. This probability is usually called prior distribution or more simply
prior.

P (x) = prior distribution
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The prior is the probability that a specific epidemic cascade takes place. It
depends on the choice of the model and on the contact network. For the SI
model the prior is given in equation (1.2). A general formulation of the prior is
given later in section 2.1.4. Clinical tests, also called observations, are sources
of information that we want to use to reconstruct the epidemic cascade. They
carry information about the epidemic state of the tested individual at the
specific time in which the individual is tested. Each observation o can be
encoded in a quadruplet o = (oi, ot, os, of ), where oi is the tested individual, ot

is the time at which the test is made, os is the outcome, of is the error rate of
the test. The clinical tests, in fact, are in general non perfect. They have a
false negative and a false positive rate. For sake of simplicity we are going to
assume that the two error rates are equal to each others and both equal to of .

The set of all the clinical tests collected is the set O. Let us therefore define
the posterior distribution or posterior as:

P(x|O) = P (x)P (O|x)
P (O) (1.3)

in which the r.h.s. is the Bayes formula. The posterior function assigns a
probability to each epidemic cascade x conditioned to the observations O. Let
us analyze the three terms of the r.h.s. of the posterior distribution:

• P (x) : It is the prior distribution. As shown later, section 2.1.4, the prior
can be rewritten as a product of local factors (i.e. each factor depending
on an individual and its neighbors).

• P (O|x) : is the probability of observing O given that the epidemic
realization is x. It is called likelihood. This is a function that measures
the compatibility between observations and the considered epidemic
trajectory. Evaluating the likelihood is typically easy. In fact, the
distribution P (O|x) factorizes over the observations:

P (O|x) =
∏
o∈O

p(o|x)
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this is because the several observations are independent of each others
if the underlying epidemic state from which they are taken is known 2.
Moreover, each observation o = (oi, ot, os, of) only depends on the state
of the individual i at the testing time t:

P (O|x) =
∏

o=(oi,ot,os,of ) ∈O

p(o|xt
i)

The exact value of each p(o|xi(t)) is also known: indeed, if the false rate
is zero, this function is simply 1 when the observed state s is equal to
the actual epidemic state xi(t) and 0 when they differ. Otherwise, if the
false rate is nonzero, then:

p(o = (oi, ot, os, of )|xt
i) =

1 − of if xt
i = s

f if xt
i ̸= s

• P (O) is simply the normalization term due to the fact that the posterior
is a probability. Thus:

P (O) =
∑

x

P (x)P (O|x).

If we consider a continuous-time model, then the sum becomes an integral.
This normalization factor is the reason why making inference is difficult.
It is in fact the sum over all possible epidemic cascades. This means that
this sum has in general a number of addends which grows exponentially
with the number of individuals.

Typically, the prior distribution and the likelihood are easy to compute, i.e.
there is a polynomial algorithm which is able to assign for each configuration
x and observations set O their likelihood P (O|x) and prior P (x) values.
Computing the posterior, instead, is an NP-hard problem, as discussed in
section 1.3. Approximations are therefore needed to address the computation
and the marginalization of the posterior.

2Actually, this is an approximation. For example, one hospital might receive a batch of
flawed clinical tests. In that case the results among individuals which are tested in that same
hospital would be correlated. We are going to ignore this possibility.
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1.1.4 Inference process

Having introduced the prior, the likelihood and the posterior distributions
allows us to describe the inference process now. The goal is to reconstruct
an unknown epidemic cascade x∗, called planted, which is supposed to be a
fair sample of the prior distribution. The ideal goal of epidemic inference is to
use the available information, in the form of the observations set O, to guess
x∗. Observations are assumed to be sampled from the likelihood. It is not
possible, in general, to exactly reconstruct the precise epidemic cascade x∗ from
O: this is because many epidemic realizations are compatible with a particular
set O of observations. As a consequence, the best possible result inference
can provide is formulated by means of probabilities. Epidemic inference, thus,
aims at assigning a probability P(x|O) to each possible epidemic realization
x, conditioned to the observations O. Perfect reconstruction is achieved when
P(x|O) is peaked around x∗. However, for realistic scenarios, the distribution
might not be such. Nonetheless, studying posterior marginals, i.e. the posterior
probability for each individual to be infectious at certain times, can give huge
insights on the epidemic cascade and can open to possible studies of policies to
adopt in order to contain the epidemic process.

1.1.5 Evaluating Performance: estimators computation

To quantify the predicting power of the posterior, we now define some estimators.
We start by defining pi,t(x∗,t

i , xt
i|O) as the marginal probability of having the

planted state x∗,t
i ∈ {0, 1} and the inferred state xt

i ∈ {0, 1} of one individual
i = 1, . . . , N at a given time t ∈ {0, 1, . . . , T}. For simplicity, xt

i = 0 if the state
of individual i at time t is S and xt

i = 1 if the state is I. With this definition
we can introduce some estimators.

Maximum Mean Overlap (MMO) At a given time t, the overlap between
the planted configuration x∗,t and a configuration x̂t is calculated as follows:

Ot(x∗,t, x̂t) = 1
N

N∑
i=1

δx∗,t
i ,x̂t

i
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During the inference process, the planted configuration is unknown. The best
Bayesian estimator is obtained by assuming that x∗,t follows the posterior
distribution. The best we can do, therefore, is to compute the mean overlap
over the posterior:

MOt(x̂t) =
∑
xt

P (xt|O)Ot(xt, x̂t)

We define the Maximum Mean Overlap estimator as:

x̂t,MMO = argmaxxtMOt(x̂t)

which is achieved setting:

x̂i
t,MMO = argmaxxt

i
pi,t(xt

i|O)

The overlap Ot(x∗,t, x̂t,MMO) provides a quantitative estimation of the accuracy
of the Maximum Mean Overlap estimator.

Minimum Mean Squared Error (MMSE) The squared error (SE) at a
given time t between the planted configuration xt,∗ and an estimator x̂t is:

SEt(x∗,t, x̂t) = 1
N

N∑
i=1

(x∗,t
i − x̂i)2

Similarly to the overlap, the best Bayesian estimator for the squared error
x̂t,MMSE is the one that minimizes the squared error averaged over the posterior:

MSEt(x̂t) =
∑
xt

P (xt|O)SEt(xt, x̂t)

This is achieved by setting

x̂t,MMSE
i =

∑
xt

i

pi,t(xt
i|O)xt

i.

Notice that this is not necessarily a discrete value in {0, 1}.
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Area Under the Curve (AUC) The Area Under the Curve (AUC) is
defined as the area under the Receiver Operating Characteristic (ROC) curve
[5], which is computed as follows. At a fixed time t, the marginal probability
pi,t(xt

i = I|O) is computed for each individual. For a given threshold ρ ∈ [0, 1],
the true positive rate TPR(ρ) (respectively the false positive rate FPR(ρ)) is
the fraction of positive (respectively negative) individuals i in the planted with
pi,t(xt

i = I|O) ≥ ρ. The ROC is the parametric plot of TPR(ρ) versus FPR(ρ),
with ρ as the varying parameter. These three estimators will be used in the
following to quantify the performance of the algorithms studied.

1.1.6 Algorithms and thresholds

In Chapter 2, algorithms for epidemic inference are described. Their aim is to
approximate the marginal distributions of the posterior P(x|O). Approximations
are needed because computing the exact form of P(x|O) and its marginals is
unfeasible with a computer. The number of operations scales exponentially
with the number of individuals. Approximations allow to build algorithms
which are polynomial in time w.r.t. the total number of individuals, making
it possible to perform inference. Therefore, algorithms are a crucial tool for
epidemic containment. However, developing algorithms alone is not enough.
It is in fact necessary to understand if the information provided is sufficient.
For example, trying to reconstruct an epidemic cascade for a population of
one million individuals with only one clinical test is impossible due to lack of
information. In other words, there exists an intrinsic ignorance due to the
limited available information O. In Chapter 3, a method for quantifying such
ignorance is introduced and theoretical bounds for inference are discussed.

1.1.7 Inferring the prior distribution

So far, we have described the epidemic inference problem as the process
of computing (or at least approximating) the posterior distribution P(x|O),
assuming to know the prior distribution. Actually, this assumption is quite
heavy. The prior in fact depends on:
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1. The epidemic model: the model fixes the dynamics of the epidemic. For
example, in the SI model there exist only two states and the transition
I → S is forbidden, while in the SIS model it is allowed. Even the
number of states changes depending on the model. The prior probability
distribution therefore can only be written once the model is fixed.

2. The contact network: the probability of a particular epidemic cascade is
strongly affected by the network structure. An isolated node, for example,
is infectious with very low probability (exactly the probability of being
the patient zero).

3. The so called hyper-parameters of the model: even when the model is fixed,
there are some free parameters that describe the patient zero distribution,
the infection rate, the recovery rate etc... which drastically change the
prior distribution.

Assuming to exactly know the prior, therefore, means to assume the knowledge
of the model, the contact network and the hyper-parameters. Nonetheless,
inferring the prior from the set of observations O is a titanic goal. Typically,
the epidemic model is chosen, trying to capture the fundamental features of
the specific epidemic one is interested in studying. For example, if we want to
describe a rapid outbreak in a very short time window, an SEI model might be
sufficient because the recovery events would be so rare to impact in a negligible
way. The choice of the model is therefore gauged according to the epidemic
studied. Inferring the contact network, instead, is a very hard task. A typical
assumption in fact is to know the network. This hypothesis is quite strong and
indeed one important research path to explore is to study performance bounds
when decreasing the number of known links in the network, but this topic is not
treated in this thesis. For what concerns hyper-parameters, it is possible to infer
them from the observations O. Many methods in literature are implemented
to reconstruct hyper-parameters. Of course, as for the posterior computation,
inference of hyper-parameters is not an easy task and can be affected by lack
of information. The procedure for inferring the hyper-parameters is sketched in
the next paragraph, where connections with Statistical Physics are described.
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1.2 Connections with Statistical Physics

The epidemic inference problem has a huge overlap with Statistical Physics.
Let us consider equation (1.3):

P(x|O) = P (x)P (O|x)∑
x′ P (x′)P (O|x′) ,

in which we have substituted the expression of the denominator as the normalization
of the numerator. Defining:

H(x,O) = − log (P (x)P (O|x)) , (1.4)

the posterior becomes:

P(x|O) = e−H(x,O)∑
x′ e−H(x′,O) = e−H(x,O)

Z
. (1.5)

This is the form of the canonical probability distribution in statistical physics.
Continuing this parallelism, we can also define the free energy, a fundamental
quantity in Physics which also plays a key role in inference:

F = − logZ = − logP (O). (1.6)

The free energy quantifies the information carried by the observations. In fact,
if the observations are very selective, then the expression ∑x′ P (x′)P (O|x′) is
small because many terms of P (O|x′) in the sum are small. As a consequence
F = − logP (O) is big. On the other hand, if e.g. no observation is made,
then F = − log (∑x P (x)) = 0. We will come back to the interpretation of F
in Chapters 2 and 3. For now it is sufficient to stress that the posterior can
be re-written as a canonical probability distribution. This allows to import
some general methods like mean field [6], Monte Carlo [7], message passing
[8, 6] algorithms or variational methods [9, 10] to approximate the posterior
distribution. Each method introduces a different approximation with different
effects in terms of performance and speed of the algorithm. A more precise
treatment of algorithms is given in Chapter 2.
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1.2.1 Descending free energy to infer the prior

Typically, the prior and the likelihood distributions depends on some hyper-
parameters, as discussed in paragraph 1.1.7. These hyper-parameters are in
general not known and must be inferred. We call θ the set of all the hyper-
parameters of the prior distribution. The free energy, therefore, becomes:

F (θ) = − log
∑

x

Pθ(x)Pθ(O|x).

Inferring hyper-parameters by minimizing F is a typical procedure in practical
problems, which is sometimes called maximization of evidence [11, 12] or
maximization of type II likelihood [13, 14]. This intuitively corresponds to find
the set of parameters θ such that the observations O collected are the most
typical possible. Indeed, low free energy means that the configuration space
of trajectories compatible with the observations set has a high probability. In
other words, minimizing F (θ) means maximizing P (O|θ) with respect to θ,
namely to find the θ̃ such that O has the highest possible probability to be
collected.

1.2.2 Planted problems

The canonical distribution formalism of epidemic inference in (1.5) is actually
common to many other problems, as: time series analysis [15], machine learning
[16–19, 12, 20], error correcting code theory [21, 22, 17, 23, 24], force field
inference [25–28]. In all these problems the typical aim is to reconstruct an
original configuration x∗, usually denoted as the planted configuration or simply
planted. For example, for the error correcting codes, x∗ is a message sent in
input through a noisy channel. The corresponding (perturbed) output is O.
The aim of the receiver is to guess x∗ by computing the posterior distribution
P(x|O). In this context the output O plays the same role of the observations
O in epidemic inference. In order to compute the posterior, we suppose the
receiver to know both the coding scheme and the stochastic distortion process
played by the noise in the channel, i.e. the likelihood P (O|x). The posterior is
thus always:

P(x|O) = P (x)P (O|x)∑
x′ P (x′)P (O|x′) ,



1.2 Connections with Statistical Physics 17

which is identical to (1.3). In general, it is called Bayesian Inference the
process of reconstructing, by means of the posterior computation, a planted
configuration x∗ generated from a prior distribution P (x∗), relying on an
observation set O which is correlated to the planted by a likelihood P (O|x∗).

1.2.3 Bayes optimality and Nishimori conditions

Let us suppose to have some observations O of the hidden planted x∗. We want
to give an estimate Ā of some observable A(x∗) which depends on the stochastic
trajectory x∗. A reasonable idea is to average A(x) over the posterior:

A(x∗) ≃ ⟨A(x)⟩x∼P(x|O) = Ā(O).

The estimate Ā is therefore a random variable depending on the observations
O (which in turn depend on the planted). Its average is:

E
[
Ā(O)

]
=
∑
x∗,O

Pθ̃(O|x∗)Pθ̃(x∗)Ā(O),

where we explicitly highlighted the dependence of the prior and likelihood
on the hyper-parameters set θ̃. If the prior and the likelihood are known in
the inference process, it is said that inference is made under Bayes optimal
conditions or under Bayes optimality. In this case it is possible to write the
posterior as:

Pθ̃(x|O) = Pθ̃(O|x)Pθ̃(x)
Pθ̃(O) ,

where of course also the posterior depends on the (known) hyper-parameters of
the prior and likelihood. Therefore, we can rewrite the average of the observable
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as:

E
[
Ā(O)

]
=
∑
x∗,O

Pθ̃(x∗|O)Pθ̃(O)Ā(O) =

=
∑
x∗,O

Pθ̃(x∗|O)Pθ̃(O)
∑

x

A(x)Pθ̃(x|O) =

=
∑

x∗,O,x

Pθ̃(x∗|O)Pθ̃(O)A(x)Pθ̃(x|O) =

=
∑
O,x

Pθ̃(O)A(x)Pθ̃(x|O) =

=
∑
O,x

A(x)Pθ̃(x,O) =

=
∑

x

A(x)Pθ̃(x) =

=
∑
x∗
A(x∗)Pθ̃(x∗),

where in the second passage we wrote the definition of Ā(O) and in the last
passage we simply changed the name to an index. We end up with:

Ex∗∼P (x∗) [A(x∗)] = Ex∼P(x|O),O∼P (O|x∗),x∗∼P (x∗) [A(x)] (1.7)

which means that the average of the estimate and the average of the quantity
A(x∗) coincide. In other words, the posterior estimate coincides with the
planted observable, on average. If we consider a very large system, thus, it may
happen that at least for some observables which benefit of the self-averaging
property (the so called intensive quantities), the relation (1.7) becomes:

A(x∗) ≈ A(x),

where x∗ is sampled from the prior and x is sampled from the corresponding
posterior. At the thermodynamic limit the approximation becomes an equality
and, therefore, the planted configuration is a fair sample of the posterior.
Equation (1.7) is probably the simplest yet very instructive example of Nishimori
condition. The concept of Nishimori condition is widely diffused in literature
[29–34]. It is due to Nishimori [35, 36], who however introduced it as a result
in the disordered Ising model. This concept is in fact much more general.
The natural extended framework to define Nishimori conditions is indeed in
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Bayesian inference and is due to Iba [33]. The idea behind Nishimori conditions
is that, when they hold, averages over the posterior coincide with averages
over the prior. Note that in the computation above we made the hypothesis
of knowing the prior. What happens if we don’t? For example, when the
correct hyper-parameters θ̃ are not known we can only resort to some guessed
hyper-parameters (which can be randomly chosen of, better, inferred), which
we call θ. We have that the posterior consequently depends on θ:

Pθ(x|O) = Pθ(x)Pθ(O|x)
P (O)

Thus, the computation changes and the fourth passage of the previous computation
becomes:

E
[
Ā(O)

]
=
∑
O,x

Pθ̃(O)A(x)Pθ(x|O)

but we can’t move further because now the two hyper-parameters θ (with which
inference is done) and θ̃ (from which the planted was sampled) are different.
As a consequence, we understand that the Nishimori condition is satisfied only
when the true generation parameters are known, which is the Bayes optimality.

1.2.4 Nishimori line in the Ising spin glass

The concept of Nishimori condition actually originated from the study of spin
glasses [35]. The so called Nishimori line was introduced as a line in the
Ising spin glass model’s phase diagram. It was an extremely relevant discovery
because on this line some thermodynamic quantities (as the internal energy)
can be exactly computed ([37], Chapter 12. Spin Glasses: Constraints and
Frustration, pag 247). The derivation of these properties was obtained by
relying on a gauge invariance, which we are going to sketch here. Let us
consider an undirected graph G = (V, E). The Ising spin glass model on graph
G is defined by the Hamiltonian:

H[J ](σ) = −
∑
(i,j)

Jijσiσj

where:
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• each edge on the graph between site i ∈ V to site j ∈ V is denoted with
a couple (i, j) ∈ E ;

• J = {Jij} is the set of the random independent couplings, drawn from a
bimodal distribution:

P (Jij = 1) = 1 − p;
P (Jij = −1) = p

• the spins in the set σ = {σ1, . . . , σN} ∈ {−1,+1}N are the dynamical
variables of the model

• N is the total number of sites.

(for an introduction to the ferromagnetic and disordered Ising models we refer
the reader to [37] or to [38]). If the following substitutions are made:

σi → σisi =: σ(s)
i Jij → Jijsisj =: J (s)

ij

where s = (s1, . . . , sN) ∈ {−1, 1}N , then the Hamiltonian remains unaltered
since σ2

i = 1 ∀ i = 1, . . . , N . This gauge invariance is crucial to derive the
properties of the Nishimori line. We now define the Nishimori temperature as:

βN = 1
2 log (1 − p)

p
(1.8)

where p is defined above as the probability of sampling a −1 link. The reason
of this definition is that the thermodynamic computations becomes easy, as we
are going to see now. Due to this definition, the probability of having a link J
is:

P (J = 1)
P (J = −1) = p

1 − p
= e−2βN .

Therefore:
P (J)
P (−J) = e−2βN J .

Since the ratio of the two probabilities is fixed, we can rewrite them as:

P (J) = eβN J

n
, for J = ±1
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where n is a normalization, which we fix now:

1 = P (J = 1) + P (J = −1) = eβN J + e−βN J

n
= 2 cosh(βN)

n
.

So we have that the Nishimori condition is equivalent to:

P (J |J ∈ {−1, 1}) = eβN J

2 cosh(βN) . (1.9)

This, used altogether with the gauge invariance, simplifies the computation of
the energy, which is defined as:

U(β) = EJ

{
ZU [β, J ]
Z[β, J ]

}

where the EJ stands for the average over J and

ZU [β, J ] =
∑

σ

H[J ](σ)e−βH[J ](σ)

Z[β, J ] =
∑

σ

e−βH[J ](σ)

represent the thermal average over σ in the canonical ensemble. A crucial
observation to make here is that both ZU and Z are invariant after the gauge
transformation Jij → J

(s)
ij and σi → σ

(s)
i defined above, for every s ∈ {−1, 1}N .

Therefore, by summing all over the possible gauges s we have:

U(β) = 1
2N

∑
s

EJ(s)

{
ZU [β, J (s)]
Z[β, J (s)]

}
.

This quantity is in general extremely hard to compute for a general value of
β. However, at the the Nishimori temperature, we have a formula for the
probability distribution of the J (s), using eq (1.9) and the gauge relation:

Ps(Jij) = eβN Jijsisj

2 cosh(βN) .

Therefore, the quenched average over the J (s) must be performed w.r.t. this
measure. Observe that, if we choose no gauge transformation, i.e. s =
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(1, 1, . . . , 1) then we get back to (1.9). The internal energy is therefore:

U(βN) =
∑

s

∑
J

∏
(ij)

eβN Jijsisj

2 cosh(βN)
ZU [βN , J ]
Z[βN , J ] = .

= 1
[2 cosh(βN)]|E|

∑
J

∑
s

e
βN

∑
(ij) Jijsisj

ZU [βN , J ]
Z[βN , J ] =

= 1
[2 cosh(βN)]|E|

∑
J

Z[βN , J ]ZU [βN , J ]
Z[βN , J ] =

= 1
[2 cosh(βN)]|E|

∑
J

ZU [βN , J ],

where |E| is the number of edges because E is the edge set. The final formula
can be further simplified to:

U(βN) = − |E| tanh(βN).

(see [37]). The origin on the Nishimori condition is the spin glass theory.
However, after the discovery of many connections between physics and inference
[22, 24, 23, 21], Iba [33] derived the Nishimori result in the more general
framework of statistical inference. The result of Iba is of great importance also
because it allows to interpret the sum over the gauge configurations s, which
so far is mathematically rigorous, but a bit obscure.

Annealed VS Quenched average Without being exhaustive, it is worth
at least to mention the difference between thermal and quenched averages.
We refer the interested reader to [39, 40]. In statistical physics of disordered
systems, there are typically two sets of variables:

1. The dynamical variables: they are fast variables. In the Ising spin glass
model, they are the σ variables. The physical meaning of each σi is to be
the instantaneous magnetization of site i. These variables fluctuate at
nonzero temperature due to thermal noise. When we average over these
them, in fact, we are doing the so called thermal average.

2. The quenched variables are instead the slow ones. In the Ising spin glass
model, they are the J ’s. Their physical meaning is the interaction among
sites. These interactions may change in time due to e.g. deformation of
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the material. However, these changes should be very slow compared to
the thermal fluctuations of the dynamical variables.

The idea is that when averaging over σ we are averaging over the fast fluctuations,
so that we can consider the J ’s fixed. Once thermal averages are evaluated, we
can averaged again over the set J . The average over the slow fluctuations is
called quenched.

1.2.5 Planted spin glass

We now come back to the planted problems, with the aim of discussing one very
important implication of Nishimori conditions: replica symmetry. To do so, we
introduce the planted spin glass. This will allow us to connect the seemingly
distant Nishimori conditions in equation (1.7) to the Nishimori temperature in
equation (1.9). We will finally move to describe their implications in terms of
replica symmetry. First, we introduce the planted spin glass model, following
[34]. It is an inference problem where one wants to reconstruct a planted
configuration σ∗ = (σ∗

1, . . . , σ
∗
N) ∈ {−1, 1}N of N binary values, which is

randomly uniformly sampled from the set {−1, 1}N . The observations provided
to reconstruct the planted are in the form of an edge set built following the
scheme:

1. Take M random couples (i, j), i = 1, . . . , N and j = 1, . . . , N among the(
N
2

)
possible couples.

2. For each couple (i, j) take the product σ∗
i σ

∗
j which is 1 if σ∗

i = σ∗
j and −1

conversely. Flip it with probability ρ∗ ∈ [0, 1]. Call Jij this result.

3. Return the graph G = (V, E), where V = {1, . . . , N} and E is the
edge set of the M couples extracted in point 1. Return, also, the set
J = {Jij}(i,j)∈E .

The parameter ρ∗ is a sort of noise in the observation because it flips the result
of the product. The set J plays the role of observations set. Following the
usual Bayesian approach of (1.5), we have the posterior:

P(σ|J) = P (J |σ)P (σ)
P (J) . (1.10)
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In this posterior form, note that the noise ρ∗ is a hyper-parameter, which
we might not know in the inference process. Therefore, we call ρ∗ the true
hyper-parameter with which the J ’s were generated and we introduce ρ as
the hyper-parameter used during inference. Due to independent choice of the
couples (i, j) we have that the likelihood factorizes:

P (J |σ) =
∏
(i,j)

pij(Jij|σiσj) =

=
∏
(i,j)

[δ (Jij − σiσj) (1 − ρ) + δ (Jij + σiσj) ρ] .

The prior is uniformly random:

P (σ) = 2−NI[σ ∈ {−1, 1}N ],

so the posterior is now well defined. To map this model onto the Ising spin glass
in the canonical ensemble, we want to rewrite the likelihood in an exponential
form. So we simply rephrase ρ as:

ρ = N (β)eβ

1 − ρ = N (β)e−β

then the normalization N (β) = (2 cosh(β))−1, so

ρ = eβ/(2 cosh(β)) (1.11)

and the single factor of the likelihood becomes:

pij(Jij|σiσj) = eβJijσiσj

so:
P(σ|J) =

∏
(i,j) e

βJijσiσj

2N (2 cosh(β))M P (J)
We can evaluate P (J) as the sum of the numerator in equation (1.10) :

P (J) = Z[β, J ]
2N (2 cosh(β))M



1.2 Connections with Statistical Physics 25

where Z[β, J ] is the partition function of the Ising spin glass. The posterior is
therefore:

P(σ|J) =
∏

(i,j) e
βJijσiσj

Z[β, J ]
which would be identical to the canonical probability distribution of an Ising
spin glass model, if it wasn’t for the fact that the set J is correlated with the
planted configuration σ∗ and it is not independently sampled. However, if
we now perform the following gauge transformation (which does not alter the
posterior distribution):

Jij → Jijσ
∗
i σ

∗
j = J̃ij σi → σiσ

∗
i = σ̃i

for all σ’s and J ’s, we end up with the Ising spin glass model. This is because:

• The planted configuration is mapped to the all-spins-up configuration,
i.e. (1, . . . , 1). As a consequence, when we collect the couplings J̃ij in this
gauge we simply multiply 1 · 1 and flip it with probability ρ∗.

• Each Jij is therefore +1 if the result is not flipped and −1 if it is flipped

• Thus, each Jij is i.i.d. and it is +1 with probability 1 − ρ and −1 with
probability ρ.

Now the model, described by:

P(σ̃|J̃) =
∏

(i,j) e
βJ̃ij σ̃iσ̃j

Z[β, J̃ ]

is exactly an Ising spin glass model. The mapping from planted spin glass
to Ising spin glass is completed. To resume the steps of this mapping it was
necessary to:

1. take a planted configuration;

2. extract the couplings from the planted with a (unknown) noise ρ∗;

3. introduce the noise parameter ρ used for computing the posterior and
map it to an inverse temperature β;

4. gauge transform the resultant model.
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Now we have again an Ising spin glass model, with the advantage of interpreting
the inverse temperature β as a noise hyper-parameter. We can therefore impose
Bayes optimality by setting ρ = ρ∗. In other words, we study now the case
in which we know the correct hyper-parameter ρ∗. In this case we find the
corresponding temperature by using (1.11):

ρ∗ = eβ

eβ + e−β
= 1

1 + e−2β
.

So the inverse temperature in the Bayes optimal condition is:

β = 1
2 log ρ∗

1 − ρ∗

This is exactly the Nishimori temperature in (1.8). The statistical inference
approach, therefore, has led to a natural derivation of the Nishimori temperature.
The Nishimori line, thus, can be interpreted as the zone of the phase diagram
in which we know the prior and the likelihood distributions. This concludes the
bridge that connects the Nishimori conditions in Bayesian inference and the
Nishimori line in spin-glass theory. We can now use this bridge to characterize
the replica symmetry on the Nishimori line (some deep studies on this are
[41, 34, 42]). To (very shortly and not-at-all thoroughly3) introduce what is
replica symmetry, we say that it is a property of probability distributions in
high dimensions (like the ones we have seen so far, i.e. posterior distributions
in inference and canonical distributions in physics). When the distribution is
replica symmetric, then two things, among many others, happen. To describe
them, let us first define the overlap of two Ising configurations: the overlap q

between two configurations σ1 and σ2 is:

q = 1
N

N∑
i=1

σ1
i σ

2
i

It is a scalar product which measures how much the two configurations are
aligned. When a distribution P (σ) is replica symmetric, then:

1. If we sample two configurations σ1 and σ2 from this distribution, then
on average they will have a fixed overlap q.

3we refer the reader to the extremely clear description provided in [37], Chapter 12: What
is a glass phase? pag 252.
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Fig. 1.2 Clustering of high probability zones for a Replica Symmetry Broken
distribution. To pass from a configuration σ1 to another σ2 located in two
disconnected zones of high probability, the dynamics should visit some other
configuration σ3 of low probability. Therefore, this is very difficult to happen
and the dynamics gets trapped.

2. In a Monte Carlo simulation the dynamics encounters few (i.e. non
exponential in N) attractors.

When the distribution is replica symmetry broken, typically these two points
become false, i.e. there is no more a fixed overlap q and the dynamics gets
stuck in one of the very many attractors.

These two points might be explained pictorially with a 2 dimensional image
(keeping in mind, however, that P is a high dimensional probability distribution),
as shown in Figure 1.2. The idea is that the probability distribution has some
zones of high probability. These zones might be disconnected, meaning that
to progressively (e.g. by single spin-flips) deform one configuration σ1 to
another σ2 which are on two different zones of high probability, one has to
pass for some configuration σ3 which is not in a high probability zone. As
a consequence, the dynamics4 gets stuck in one island of high probability.
When the system becomes replica symmetry broken, the number of such islands
become exponential. For what concerns the overlap, two sampled configurations

4e.g. Monte Carlo dynamics, which typically relies on some local updates like the
Metropolis scheme [43].
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are on average in a high probability zone. If we sample two configuration of
the same island, than they have high overlap. If we sample two configurations
belonging to two different islands, they will have lower overlap. The reader
must be aware that we are hiding a lot in this discussion, for example:

• there are several ways (or steps) in which replica symmetry can be broken
(1 step, 2 steps, up to infinite replica symmetry breaking) which describe
how the zones of high probability are nested;

• there exists the dynamical replica symmetry breaking transition, a
phenomenon in which the dynamics behaves as if as the system was
Replica Symmetry Broken, but the thermodynamics is replica symmetric,
namely there is only one overlap on average.

A clear introduction to replica theory (with detailed computations) is in
[40]. For the present aim, we will simply say that if the distribution of
overlaps concentrates around a value, then the probability distribution is
replica symmetric. We are going to see now that this is exactly what happens
in the planted spin glass model.

1.2.6 Nishimori conditions & Replica Symmetry

The important result that we can finally show is that the Ising spin glass is
always replica symmetric at the Nishimori temperature, i.e. on the Nishimori
line. To do so we use the bridge with Bayesian inference. We first rewrite in a
lighter notation equation (1.7):

E[A(x∗)] = E[A(x)]

in which we (with some abuse of notation) now use the symbol E[·] for the
averages in general. The distribution over which the average is computed is
fixed by the variable name. The x∗ variable is a planted configuration, so is
distributed according to the prior. The other variable comes from the posterior.
The generalization of the first Nishimori relation to a two-variables observable
A(x, y) is also true (see [34, 44]), namely:

E[A(x∗, x)] = E[A(y, z)],
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where again, the average is performed respectively w.r.t. the prior for x∗ and the
posterior for x, y, z. This equation can be proved by direct computation, as eqn.
(1.7). Its meaning is also similar: on average, we can estimate an observable by
exchanging the planted configuration with a configuration sampled from the
posterior. However, this equation is crucial when applied to Ising spin glass:

E[A(σ∗, σ)] = E[A(σ1, σ2)].

If we set A(σ1, σ2) equal to the overlap between σ1, σ2, then the average value
of the overlap between the planted and a configuration is equal to the average
value q of the overlap between two configurations. Let us compute the first term,
remembering that, due to the gauge, the planted is simply σ∗ = (1, 1, . . . , 1):

E[A(σ∗, σ)] = E
[

1
N

∑
i

σi

]
= E

[
1
N

∑
i

σi

]

but this is simply the average over the magnetization m. So we have:

E[m] = E[q]

we can repeat this reasoning to find equations for all the moments of the
distributions of m and q, arriving to an equality between the two probability
distributions of the magnetization and the overlap:

p(m) = p(q).

Since the magnetization is a self concentrating quantity (see for example
[34]), its distribution is actually peaked on its average. As a consequence, the
distribution of overlaps is peaked on a single value. We can finally conclude that
the Ising spin glass is replica symmetric on the Nishimori line. This property
is considered to be much more general than this. The idea is that Nishimori
conditions (i.e. Bayes optimality) should always imply replica symmetry [41].

1.2.7 Nishimori conditions in epidemic inference

The study of Nishimori conditions motivates us to always infer the hyper-
parameters of a distribution. Otherwise, if we just guessed them, we risked to
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get stuck in one of the very many attractors of the replica symmetry broken
posterior. In Chapter 2, therefore, detailed description to hyper-parameter
learning is given. In Chapter 3, additionally, a more detailed analysis on the
inference phase diagram is provided for the epidemic problem. The aim of
Chapter 3 is to do for epidemic inference what we have just done for the planted
spin glass: characterizing its phase diagram. We will develop a semi-analytical
tool based on the replica symmetric cavity equations.

1.3 Epidemic inference is an NP-hard problem

Here we show that computing the posterior of the epidemic model is a NP-
hard problem. Take a population of N individuals on a graph G = (V, E),
|V | = N . Consider the time discrete SI epidemic process of T temporal steps
on graph G, described by the prior P (x), from which the planted configuration
x∗ = (x∗

1, . . . , x
∗
N) is extracted. Each x∗

i = (x1,∗
i , . . . , xT,∗

i )′ is the trajectory
of individual i, for i ∈ V . Let O be the set of all the observations on x∗. .
Let us call posterior the distribution P(x|O) which gives to each epidemic
trajectory the probability of being the planted, conditioned to the observations.
Suppose now that there exists an algorithm A which computes in polynomial
time the posterior. The algorithm takes in input the set of observations O,
the prior P , the graph G and it outputs the posterior distribution P. If such
an algorithm exists, then we can solve the Unweighted Minimum Steiner Tree
(UMST) problem in polynomial time. The UMST problem requires to find,
given a graph G = (V, E) and a subset of L ⊂ V of the vertex set, if it exists
a sub-tree H of G which connects all the vertices in L and with number of
vertices less or equal to a constant w, i.e. |H| ≤ w.

1.3.1 Intuitive explanation

It is possible to map UMST into the epidemic inference problem. Here we
suggest a non rigorous mapping. It is sufficient to take the time discrete
SI model and build the observations set by imposing that the individuals
corresponding to the vertices in L are observed I at time T . The observations
set OL built this way allows to map the epidemic problem to UMST if we set
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infection probability λ and patient zero probability γ to approach zero. In
fact, for γ → 0, the prior probability for an individual to be the patient zero
goes to zero. However, the observations force the posterior to allow for at least
one patient zero, in order to explain the I observations. Let us consider the
posterior:

P(x|O) ∝ P (O|x)P (x)

where the proportionality is w.r.t. x. The quantity P (O|x) in this context is a
hard constraint, so it is one if xT

l = I, ∀l ∈ L and it is zero otherwise. This
means that, for all the trajectories x satisfying the constraint, the posterior is
proportional to the prior: P(x|O) ∝ P (x). This will be useful to understand
which are the trajectories x having the highest posterior probability. Take in
fact, among the ones which satisfy all the constraints, the trajectory x which
has r patients zero and z infectious individuals at final time. The posterior
probability of this trajectory is P(x|O) ≈ γrλz−r. This is because there are
z − r infection events and r patients zero. If we consider the limit in which
λ → 0, γ → 0, γ

λ
→ 0, we see that the most probable trajectories are the

ones that minimize r and z − r. Since γ is infinitely smaller that λ, the most
probable trajectories are the ones that minimize r and among them the most
probable are the ones that minimize z − r. The minimum value for r is 1
because if r = 0 then no epidemic happens. So we say that the most probable
trajectories have r = 1. Any trajectory x′ with r > 1 is infinitely less probable
than a trajectory x with r = 1:

P(x|O)
P(x′|O) = λc γ

γr
= λc

γr−1 → ∞

where c ∈ Z. Among the trajectories with r = 1, the most probable are
the ones that minimize z. All the others have infinitely smaller probability
to happen. Of course, zmin ≥ |L| because there are at least |L| individuals
observed I. So far, we have concluded that the posterior distribution is nonzero
only for trajectories with one patient zero and which minimize z such that all
the constraints are satisfied. These trajectories are the solutions of UMST.
In fact, the infection chain (x0, x1, . . . , xT ) connects all the individuals in L

with the minimum number of infections in between. Using the algorithm A we
could therefore compute the posterior and sampling from it would allow us to
obtain the minimum number of solution(s) to UMST, which is an NP-complete
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problem.

1.3.2 Proof

A slightly different construction leads us to a rigorous mapping between the
UMST and the epidemic marginalization. Let us take one vertex l∈ L. We
build the observation set by stating that at time zero all individuals in V

are observed in the state S except for l, which is observed I. Due to the
observations at time zero we have that there is only one patient zero which is
the individual l. At time T > |L| all the individuals in L are observed in the
state I. This builds the observations set. We now show that this observations
set, with a proper choice of the infection parameter λ, results in a posterior
which, if marginalized, allows to solve the UMST problem. The posterior of a
configuration x which satisfies the observation constraints is:

P(x|O) = P (x)P (O|x)
P (O) = P (x,O)

P (O)

where again, the quantity P (O|x) is a hard constraint, so it is one if xT
l =

I,∀l ∈ L and it is zero otherwise. We now want to find an upper and a lower
bound to this expression. To do so, we introduce an equivalent formulation
of the epidemic spread. Let us associate to each edge e ∈ E and for each time
t = 1, . . . , T a gate Boolean variable gt

e ∈ {0, 1} which is 1 if the gate is open
and 0 if the gate is closed. If a gate is open, then the infection can pass at that
time through that edge: this means that if one I individual is connected at a
certain time to an S individual, it will infect it if and only if the gate is open.
Each gate has independent probability λ to be open. We now define z(x) as the
total number of infected individuals in the trajectory x excluding the patient
zero. Note that z(x) ∈ {0, . . . , N − 1}. Thus, there exists a minimum number
zmin = minx z(x). We now consider the probability of the following event: z(x)
specific gates are open and the other channels can be open or closed, such that
the observations constraints are satisfied. This event has probability equal to
λz(x) and it is a lower bound for P (x,O). In fact, the probability of the event
x is the sum of several possible configurations of channels among which there
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is the event just considered. Therefore:

λz(x) ≤ P (x,O)

This is valid only for x satisfying the observations constraints, i.e. for P (O|x).
For any x:

λz(x)P (O|x) ≤ P (x,O)

To find an upper bound, we define g = {gt
e}

t=0,...T −1
e∈E as a specific configuration

of the channels and n(g) as the number of open gates in the configuration g.
We notice that:

P (x) ≤
∑

g:n(g)≥z(x)
λn(g)(1 − λ)|ET |−n(g)

≤ λz(x) ∑
g:n(g)≥z(x)

(1 − λ)|ET |−n(g)

≤ λz(x) ∑
g:n(g)≥z(x)

1

≤ λz(x)∑
g

1

≤ λz(x)T |E|.

Observing that P (O|x) ∈ {0, 1} we have that P (x,O) ≤ P (x), so:

λz(x)P (O|x) ≤ P (x,O) ≤ λz(x)T |E|. (1.12)

Now we sum over x:

∑
x

P (O|x)λz(x) ≤ P (O) ≤
∑

x

λz(x)T |E|. (1.13)

The lower bound can be minored by choosing only one element of the whole
sum. In particular we choose a trajectory x such that z(x) = zmin:

∑
x

P (O|x)λz(x) ≥ λzmin
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The upper bound is:

∑
x

λz(x)T |E| = T |E|

 ∑
x:z(x)=zmin

λz(x) +
∑

x:z(x)>zmin

λz(x)


≤ T |E|λzmin#(trajectories)
= T |E|λzminTN

λzmin ≤ P (O) ≤ T |E|+Nλzmin .

We now take the logarithm:

zmin log λ ≤ logP (O) ≤ (|E| +N) log T + zmin log λ

and we divide by log λ:

zmin ≤ logP (O)
log λ ≤ (|E| +N) log T

log λ + zmin

If: ∣∣∣∣∣(|E| +N) log T
log λ

∣∣∣∣∣ < 1
2

which means:
λ < T−2(|E|+N)

then we have that:
zmin ≤ logP (O)

log λ <
1
2 + zmin

so that the integer number closest to log P (O)
log λ

is zmin. It is important to stress
that we found a bound to λ which is independent of the specific instance to infer.
This proves that being able to compute the partition function of the epidemic
problem allows to find the minimum size of the Steiner tree. Computing the
partition function is therefore at least as hard of an NP-complete problem, thus
it is NP-hard. Now we show that not only computing the partition function, but
also computing marginals is an NP-hard problem. This is a simple consequence
of the computations just shown. Intuitively, we have just proved that the
epidemic posterior for λ < T−2(|E|+N) is dominated by the configurations x with
z(x) = zmin. This implies that if we compute the total number of infectious
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individuals (which corresponds to the sum of the marginals of being infectious
at final time), we should have a number close to zmin + 1, i.e. the patient zero
plus the infected individuals. In formulae

N∑
i=1

pi(xT
i = I|O) ≈ zmin + 1

Therefore, computing the marginals allows to solve the UMST. Let us now
make this argument rigorous. Using (1.12) and (1.13) we have:

λz(x)P (O|x)
T |E|+Nλzmin

≤ P (x|O) ≤ λz(x)T |E|

λzmin
.

We focus now only on the upper bound in order to estimate the probability of
having z(x) > zmin:

∑
x:z(x)>zmin

P (x|O) ≤
∑

x:z(x)>zmin

λz(x)T |E|

λzmin

≤ λ
∑

x:z(x)>zmin

T |E|

≤ λT |E|+N

<
1
N
.

For
λT |E|+N <

1
N
,

which corresponds to
λ <

1
T |E|+NN

,

we have: ∑
x:z(x)>zmin

P (x|O) < 1
N
. (1.14)
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We use this to estimate
∣∣∣∑N

i=1 pi(xT
i = I|O) − zmin

∣∣∣. First we rewrite the term:

N∑
i=1

pi(xT
i = I|O) =

N∑
i=1

∑
x

P(x|O)δxT
i ,I

=
∑

x

P(x|O)
N∑

i=1
δxT

i ,I

=
∑

x

(z(x) + 1)P(x|O)

= (zmin + 1)
∑

x:z(x)=zmin

P(x|O) +
∑

x:z(x)>zmin

(z(x) + 1)P(x|O).

Where we used that z(x) + 1 = ∑N
i=1 δxT

i ,I . Now we use (1.14) on the second
addend of the sum to have:

N∑
i=1

pi(xT
i = I|O) <(zmin + 1) + (zmax + 1) 1

N
(1.15)

=(zmin + 1) + 1. (1.16)

Thus, the integer part of ∑N
i=1 pi(xT

i = I|O) is zmin. We have therefore
proved that being able to compute the marginals for λ < T−|E|−NN allows
to find the UMST. Exactly computing the epidemic marginals is an NP-
hard problem. However, we can prove something more: even accurately
approximating epidemic marginals is NP-hard. Let us suppose to be able to
compute each epidemic marginal with an error ε > 0:

p̂i(xT
i = I|O) = pi(xT

i = I|O) ± ε

then, let us choose λ < T−|E|−N(δN)−1, where δ > 1. Using equation (1.16):

N∑
i=1

p̂i(xT
i = I|O) < (zmin + 1) + 1

δ
±Nε.

1
δ

+Nε ≤ 1

Therefore, approximating the marginals with an error ε <
(
1 − 1

δ

)
N−1 is again

an NP-hard problem because it would still allow to find zmin.



Chapter 2

Inference of the single instance

This Chapter is devoted to algorithms which approximate the posterior distribution
at fixed single instance. This means that we are interested in reconstructing a
hidden fixed planted x∗, which represents an epidemic trajectory propagated
along a given contact graph G. We hypothesize to have a given set of
observations O from x∗. The aim is to use the information contained in
the graph G and in the observations O to reconstruct the hidden epidemic
instance x∗, by approximately computing marginals of the posterior distribution
P(x|O). In the first section of this chapter we introduce the prior distributions
of several epidemic models. Then we move to the study of algorithms used to
approximate the posterior. We present the Causal Variational Approach (CVA),
a method devised to efficiently sample from the posterior and we compare its
performance to other existing algorithms, showing its superiority. Finally we
discuss, using the Causal Variational Approach, a possible simplification rule
for the epidemic inference problem, a result that we call model reduction.

2.1 Models

Agent-based models play a pivotal role in epidemic literature, as evidenced
by their widespread use in studies such as [45–47]. These models serve as
fundamental tools for capturing the epidemic spread within a network. In
the introduction, we delved into the discrete-time Susceptible Infectious (SI)
model. This section expands on our exploration by presenting more general
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models and highlighting their significance in the context of inference. The
underlying concept is that the broader and more comprehensive the model, the
more finely it describes the dynamics of the epidemic process. However, it is
noteworthy that a simpler model may exhibit a similar cascade description
compared to a more complex counterpart. In such instances, opting for the
simpler model proves advantageous for two compelling reasons: first, the coding
of the inference algorithm is more straightforward; second, the parameter space
is smaller, rendering it more intuitive for interpretation. In the following
section we introduce the prior distribution of SI, SEIR, SIS models for discrete
and continuous time dynamics, both in the usual markovian and in the non-
markovian case. We subsequently move to the description of network models.
The reader who wants to skip the precise mathematical details of each model
can directly move to section 2.1.4 in which a general equation which describes
priors is introduced.

2.1.1 SEIR discrete-time model

The Susceptible-Exposed-Infectious-Recovered model takes into account four
possible states in which an individual can be:

1. S: the individual has never been infected. It is therefore not able to
infect anyone. It can be infected, with probability λ, by an I individual
if there is a contact between the two. If an S individual gets infected, it
becomes Exposed (E)

2. E: the individual has been infected recently. In this state the individual
is still not infectious, so it can not infect any other. At the same time,
it has been infected so it can not be infected again. Every time step it
might undergo the transition E → I with probability ν.

3. I: the individual is infectious, so it can infect S individuals (with
probability λ) in contact with it. Every time step, it can recover with
probability µ.

4. R: the individual is recovered (or removed, i.e. dead). It can not infect
nor be infected. It does not undergo any transition: an R individual
always remain R.
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While writing this list of states, we have introduced not only the four states
characterizing the model, but also some transition probabilities. The infection
probability λ was already introduced in the SI model. Here we have introduced
the latency probability ν to pass from E to I and the recovery probability µ
to pass from I to R. Given the nature of the transitions in time, the future
state only depends on the present. The probability of the process is therefore
markovian:

P (x) = P (x0)
T −1∏
t=0

P (xt+1|xt) (2.1)

where x = {xt
i,∀i = 1, . . . , N, ∀t = 0, . . . , T} is the complete epidemic cascade

and xt = {xt
i,∀i = 1, . . . , N} is the state of all the individuals at fixed time t.

The terms in equation (2.1) factorize: the initial time term can be rewritten as:

P (x0) =
N∏

i=1
p(x0

i )

because every individual is the patient zero independently with the same
probability, where p0(x0

i ) = γδx0
i ,I + (1 − γ) δx0

i ,S (see section 1.1.2 for more
details). The transition term P (xt+1|xt) , as in the SI model case, factorizes
because the individuals’ states at time t+1 are independent, conditioned to the
state at time t. Moreover, as in the SI model, the transition of an individual i
between times t and t + 1 is only due to its neighbors ∂i(t). This is because
the transition S → E depends on the contacts and the other transitions only
depend on the single individual (i.e. they are independent of the neighbors).
This implies that:

P (x) =
N∏

i=1

(
p0(x0

i )
T −1∏
t=0

pt+1(xt+1
i |xt

i, x
t
∂i(t))

)
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which is formally identical to (1.2), but in this case the transition rates are
different:

pt+1(xt+1
i = S|xt

i = S, xt
∂i(t)) =

∏
j∈∂i

(1 − λδxt
j ,I)

pt+1(xt+1
i = E|xt

i = S, xt
∂i(t)) = 1 −

∏
j∈∂i

(1 − λδxt
j ,I)

pt+1(xt+1
i = E|xt

i = E) = 1 − ν

pt+1(xt+1
i = I|xt

i = E) = ν

pt+1(xt+1
i = I|xt

i = I) = 1 − µ

pt+1(xt+1
i = R|xt

i = I) = µ.

In which we wrote the nonzero probability transition rates. The other transitions
are zero because the only allowed ones are S →E → I → R.

2.1.2 Recurrence: SIS model

The SI and SEIR models have in common that each individual can only
be affected once by the infection phenomenon. This is because there is no
possibility for an individual to jump again to the S state. A model is said to be
recurrent if we allow such a possibility. The simplest example is the SIS model.
The model is again markovian, with a probability distribution which is always:

P (x) =
N∏

i=1

(
p0(x0

i )
T −1∏
t=0

p(xt+1
i |xt

i, x
t
∂i(t))

)

where the transition probabilities are:

p(xt+1
i = S|xt

i = S, xt
∂i(t)) =

∏
j∈∂i

(1 − λδxt
j ,I)

p(xt+1
i = I|xt

i = S, xt
∂i(t)) = 1 −

∏
j∈∂i

(1 − λδxt
j ,I)

p(xt+1
i = I|xt

i = I) = 1 − µ

p(xt+1
i = S|xt

i = I) = µ

For the recovery probability µ = 0 we come back to the SI model.
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2.1.3 From discrete to continuous time models

The epidemics spread continuously in time. However, if one particular epidemic
spreads with an approximately fixed timescale ∆t, then it is possible to coarse
grain a continuous time model in epochs of time ∆t. For example, for the
case of COVID-19, the discrete-time epidemic description may be adopted by
setting the epoch ∆t to one day. For a discrete time epidemic which starts at
time 0 and ends at time T :

x =


x0

1 x1
1 · · · xT

1
... ... . . . ...
x0

N x1
N · · · xT

N

 .

For continuous time models, x can no longer be represented as a matrix because
it becomes a continuous function along the rows (which might be parametrized
depending on the specific model). The representation used so far is therefore
not usable in the continuous-time case. However, it is possible to introduce
a new notation which works both in the discrete and in the continuous time
models. Take for example the SI model. To fully characterize the trajectory
of an individual i it is sufficient to specify its infection time tIi . There is
therefore, a map from the representation (x0

i , x
1
i , . . . , x

T
i ) to a real number tIi .

For example, the trajectory (S,S,S, I, I, I, . . . , I) is mapped onto tIi = 3
because the individual gets infectious at time 3. The trajectory in which the
individual never gets infected is conventionally mapped at T + 1:

xi = (S,S, . . . ,S) → tIi = T + 1

For the SEIR model the mapping can be done in the same way. We just need
to introduce three transition times, which respectively correspond to the times
when the individual gets exposed, infectious and recovered.

(x0
i , x

1
i , . . . , x

T
i ) → (tEi , tIi , tRi ).

We can, therefore, define ti as the tuple which encodes the transition times of
a single individual i. For the SI model ti = tIi and for SEIR ti = (tEi , tIi , tRi ).
We finally define t = {ti,∀i = 1, . . . , N}. Now we have a notation to encode a
continuous-time epidemic trajectory. To write down the probability distribution
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we do a continuous time limit. Notice that for the SIS model the number of
possible transition times is infinite. It is therefore not possible to deal with it
using this approach. In this thesis, inference in the SIS model is not treated,
but we refer the interested reader to [48].

Continuous-time SI model

We provide here all the details for the SI model computation, under the
hypothesis of a time-independent contact network. The generalizations follow
the very same procedure and will be dealt with later on. More details can be
found in [9]. We first introduce a time set Tδt = {0, δt, 2δt, 3δt, . . . , T}, which
depends on δt ∈ R+ (it will be sent to zero). We then rewrite equation (1.2) :

P (x) =
N∏

i=1

p0(x0
i )
∏

t∈Tδt

∏
j∈∂i

p(xt+δt
i |xt

i, x
t
∂i)


by plugging the transition probabilities of the SI model, eq (1.1), we have:

P (x) =
N∏

i=1

p0(x0
i )

∏
j∈∂i

tI
i −2δt∏

t=tI
j +δt

(1 − λ)


1 −

∏
j∈∂i

(
1 − λδ

x
tI
i

j −δt,I

)


where we simply substituted the S → S transition for all the time steps in
which i does not get infected (until time tIi ) and the S → I transition at time
tIi . The notation ∏tI

i −2δt

t=tI
j +δt

means that t ∈ Tδt and tIj + δt ≤ t ≤ tIi − 2δt. We
multiply now the two products and write p0(x0

i ) explicitly :

P (t) =
N∏

i=1

δtI
i ,0γ + (1 − δtI

i ,0)(1 − γ)

∏
j∈∂i

tI
i −2δt∏

t=tI
j +δt

(1 − λ) −
∏

j∈∂i

tI
i −δt∏

t=tI
j +δt

(1 − λ)




(2.2)
so that everything is written as a function of t and the dependency on x is
eliminated. Notice that the infection probability should scale as the number of
time steps; otherwise the epidemic dynamic would be trivial (either all or no
individuals infected). Since the number of time-steps is |Tδt| = T/δt, then the
infection probability scales as λ = λ̃δt. We now rewrite the products over time
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using the identity a = elog a:

∏
j∈∂i

tI
i −2δt∏

t=tI
j +δt

(1 − λ̃δt) =
∏

j∈∂i

e

∑tI
i

−2δt

t=tI
j

+δt
log(1−λ̃δt)

≃

=
∏

j∈∂i

e
−λ̃
∑tI

i
−2δt

t=tI
j

+δt
(δt+O(δt2))

= (2.3)

=
∏

j∈∂i

e
−λ̃(tI

i −δt−tI
j )+

+O(δt)
.

Where we introduced:

(a)+ =

a if a > 0
0 if a ≤ 0

to substitute the value of the sum. We now notice that in the distribution P (t)
there is the difference of the two products, which can be manipulated:∏

j∈∂i

tI
i −2δt∏

t=tI
j +δt

(1 − λ) −
∏

j∈∂i

tI
i −2δt∏

t=tI
j +δt

(1 − λ)

 =

=
∏

j∈∂i

e
−λ̃(tI

i −δt−tI
j )+ −

∏
j∈∂i

e
−λ̃(tI

i −tI
j )+

 ≃

= −δt d
d(δt)

∏
j∈∂i

e
−λ̃(tI

i +δt−tI
j )+

 ∣∣∣∣∣
δt=0

+O(δt2).

We see that the entire probability distribution has a scaling leading term of δt.
Plugging the manipulation into (2.2) and evaluating the limit δt → 0:

F (t) =

 ∏
i:tI

i =0
γ


 ∏

i:tI
i >0

(1 − γ) d
d(δt)

−
∏

j∈∂i

e
−λ̃(tI

i +δt−tI
j )+

 ∣∣∣∣∣
δt=0



where we defined the density distribution F (t) = dN (P (t))
d(δt)N

∣∣∣∣∣
δt=0

. We also separated

the contributions of patients zero from the others. The last passage is to compute
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the derivative:

d
d(δt)

∏
j∈∂i

e
−λ̃(tI

i +δt−tI
j )+

 =

= d
d(δt)

(
e

−λ̃
∑

j∈∂i(tI
i +δt−tI

j )+

)
=

= − λ̃
∑
k∈∂i

θ(tIi − tIj )e−
∑

j∈∂i
λ̃(tI

i +δt−tI
j )+ .

Where

θ(t) =

1 if t > 0
0 if t ≤ 0

The continuous-time SI model prior density distribution is thus:

F (t) =


 ∏

i:tI
i =0

γ


 ∏

i:tI
i >0

(1 − γ)λ̃
∑

k∈∂i

θ(tIi − tIk)
 ∏

j∈∂i

e
−λ̃(tI

i −tI
j )+




Notice that the term ∑
k∈∂i θ(tIi − tIk) ensures that there is at least one patient

zero. If it was not the case, in fact, there would be an individual i for which tIi
is the minimum infection time and tIi > 0. The term ∑

k∈∂i θ(tIi − tIk) would
then be zero, vanishing the product. We now have a physical interpretation to
the term λ̃, which is the infection rate.

Continuous SEIR model

Generalizing to the SEIR model is straightforward. It is sufficient to evaluate
the continuous time also for each of the transitions. For example, the additional
term due to latency is in the form:

ν
tI
i −δt∏
t=tE

i

(1 − ν) = ν̃δt
tI
i −δt∏
t=tE

i

(1 − δtν̃) =

= ν̃δte−ν̃(tI
i −tE

i )+O(δt).
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The density distribution is:

F (t) =

 ∏
i:tI

i =0
γ

[ ∏
i:tI

i >0

(1 − γ)λ̃
∑

k∈∂i

θ(tEi − tIj )
 ∏

j∈∂i

e
−λ̃(tE

i −tI
j )+

×

× ν̃e−ν̃(tI
i −tE

i )µ̃e−ν̃(tR
i −tI

i )
]
.

2.1.4 Time varying contact network

If the contact network changes in time, it is possible to generalize the above
equations by introducing a time varying infection probability λt

ij , which is equal
to λ during the contact time-interval and is equal to zero when for all the times
t in which i and j are not in contact with each others. Since we have a generic
interaction which is time and edge dependent, we need to keep an integral in
equation (2.3):

∏
j∈∂i

e
−
∑tI

i
−δt

t=tI
j

λ̃t
jiδt

→
∏

j∈∂i:tI
j <tI

i

e
−
´ tI

i
−δt

tI
j

λ̃ji(t)dt

=:
∏

j∈∂i:tI
j <tI

i

e−(Λji(tI
i −δt)−Λji(tI

j ))

where the function Λji is a primitive of λ̃ji. The quantity λ̃ji(t) is the non
constant infection rate. Notice that:

• The infection rate is a non negative function of time: λ̃ji(t) ≥ 0

• The infection rate is not normalized:
´

dtλ̃ji(t) ̸= 1. In fact, for a constant
rate, this integral is infinity.

• Differently from the time-constant case, the non constant rate gives rise
to an unnormalized infection probability. Take the PDF for an individual
i to get infected from j at time t:

f(t) = λ̃ji(t)e−
´ t

0 duλ̃ji(u)

This quantity is not normalized. Which means that :

F (∞) :=
ˆ ∞

0
f(t)dt ≤ 1.
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While for constant rates the equality holds, for non constant rates (which
for example decrease strongly over time), the total integral of this improper
PDF can be less than 1. This intuitively corresponds to rates which do
not guarantee an infection over time. In reality, actually, this can happen:
two individuals in contact (one in the I and the other in the S state)
might never pass the infection one to the other! The infectiousness of the
I individual decreases indeed after some days. If after the first days the
infection does not happen, then it becomes extremely unlikely to have it
later. This phenomenology is instead impossible in the (unrealistic) case
of constant rate (sooner or later the infection will take place!). When
normalizing the f(t) for non constant rates, thus, we always have to keep
in mind that there is a probability 1 − F (∞) to have no infection.

Now that we have generalized to a non constant rate in time, what follows
is identical to the derivation in the case of constant network, but for sake of
completeness we repeat here the computations in this more general case. We
proceed step by step for the SI model case. The generalized form of equation
(2.3) is:

∏
j∈∂i:tI

j <tI
i

tI
i −δt∏
t=tI

j

(1 − λt
ji) −

∏
j∈∂i:tI

j <tI
i

tI
i∏

t=tI
j

(
1 − λt

ji

)
=

δt→0
−−→

∏
j∈∂i:tI

j <tI
i

e−(Λji(tI
i −δt)−Λji(tI

j )) −
∏

j∈∂i:tI
j <tI

i

e−(Λji(tI
i )−Λji(tI

j )) =

= − δt
d

d(δt)
∏

j∈∂i:tI
j <tI

i

e−(Λji(tI
i +δt)−Λji(tI

j ))
∣∣∣∣∣
δt=0

=

=δt
∏

j∈∂i:tI
j <tI

i

e−(Λji(tI
i +δt)−Λji(tI

j )) ∑
j∈∂i:tI

j <tI
i

dΛji(tIi + δt)
d(δt) =

=δte
−
∑

j∈∂i:tI
j

<tI
i
(Λji(tI

i −δt)−Λji(tI
j )) ∑

j∈∂i:tI
j <tI

i

λ̃ji(tIi ) =

=δte
−
∑

j∈∂i:tI
j

<tI
i
(Λji(tI

i −δt)−Λji(tI
j )) ∑

j∈∂i

θ(tIi − tIj )λ̃ji(tIi ).
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The final form of the distribution is therefore:

F (t) =


 ∏

i:tI
i =0

γ


 ∏

i:tI
i >0

(1 − γ)e
−
∑

j∈∂i:tI
j

<tI
i
(Λji(tI

i )−Λji(tI
j )) ∑

j∈∂i

θ(tIi − tIj )λ̃ji(tIi )


 .

(2.4)
Having introduced a time and edge-dependent function λ̃ij(t) actually allows
to treat the general case of non homogeneous and non constant infection rates.
This last form is therefore very general and allows to describe, e.g., the non
Markov models which are introduced in the next paragraph.

Non-Markov models

So far we have described only Markov processes, in which the infection state
of the population only depends on the immediate past state. In other words,
there is no memory in the models we have described. The reason is that all
the rates (infection, latency, recovery) introduced so far are constant in time.
In real epidemic scenarios, actually, it seems more meaningful to introduce an
infection rate which changes during time after the infection. More precisely, let
i ∈ {1, . . . , N} be an individual who gets infected at time tIi . In the standard
SI model individual i would infect its contacts with probability λ from time tIi
forever on. This is quite an unrealistic description of the epidemic transmission,
which is expected to be very low the first hours after the infection, increase
during time until it reaches a peak and finally decrease to zero. The SEIR
model is an approximation of this phenomenology. However, it is possible and
sometimes convenient to maintain a two variable model and generalize instead
the infection rate. We introduce here the non-markovian infection rate, which
changes over time after the infection:

λij(t) = λ(t− tIi ) with λ(t < 0) = 0.

This definition is both valid for discrete and continuous time models and means
that the infection probability from i to one contact j ∈ ∂i at time t is equal to
a function which depends only on time passed after the infection event. This
definition is rather tricky, so we make her some remarks. The outgoing infection
rate just defined is:



48 Inference of the single instance

• asymmetric: λij(t) = λ(t− tIi ) ̸= λ(t− tIj ) = λji(t).

• homogeneous among the contacts, i.e. λij(t) does not depend by any
means on the contact j;

• explicitly independent of the source individual, i.e. λij(t) does not depend
explicitly on i. The dependence is only in the infection time. So, e.g. the
infection rate of an individual i with tIi = 3 at time t = 6 is equal to the
infection rate of an individual j with tIj = 23 at time τ = 26 because:

λ6
ik = λ(t− tIi ) = λ(3) = λ(τ − tIj ) = λ26

jm

for j ∈ ∂i and m ∈ ∂j

The infection rate just defined makes the stochastic process non-markovian.
To see this, we can think in the discrete time case. If we want to know the
transition probabilities of the population infection state from time t − 1 to
time t we need to know all the infection rates {λ(t − 1 − tIi ),∀i = 1, . . . , N},
which however depend on the infection times of all the individuals, which can
be determined only knowing the history of the dynamics. Let us write the
explicit prior for the non-Markov SI model in the discrete and continuous case.
For the discrete case the form is identical to (1.2) with the transitions rates
that change from (1.1) to:

P (xt+1
i = S|xt

i = S, xt
∂i(t)) =

∏
j∈∂i(t)

(1 − λ(t− tIj ))

For the continuous time model we use the general form of equation (2.4)
substituting the functional form of the rate. We simply have to compute the
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difference of the primitives Λji(tIi − δt) − Λji(tIj ) in this specific case, which is:

Λji(tIi ) − Λji(tIj ) =
tI
iˆ

tI
j

λ̃ji(t)dt =

=
tI
iˆ

tI
j

λ(t− tIj )dt =

tI
i −tI

jˆ

0

λ(u)du =

= Λ(tIi − tIj ).

Where Λ is the primitive of λ. The prior for the continuous time non-markovian
SI model is therefore:

F (t) =
N∏

i=1


 ∏

i:tI
i =0

γ


 ∏

i:tI
i >0

(1 − γ)e−
∑

j∈∂i
Λ(tI

i −tI
j ) ∑

j∈∂i

λ(tIi − tIj )




This closes the description of the epidemic models used in this thesis. We
compact the results into a more general equation in the next paragraph.

Modeling some network ignorance

If the contact network is partially known, there may happen that some
individuals who only had registered contacts with S people, end up being
infected by some I individual which is not registered in the contact graph.
To model such an ignorance, a self-infection α is typically introduced. The
self infection α is defined as the probability for an isolated S individual to
get infected in one time step. The transition probability in the discrete time
models is therefore:

P (xt+1
i = S|xt

i = S, x∂i(t)) = (1 − α)
∏

j∈∂i(t)
(1 − λδxt

j ,I).

Passing to continuous limit is straightforward: it is sufficient to consider the
self-infection of i as the infection rate of another individual, always in the I
state, attached to i . For the SI non-markovian model, for example, the final
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form is:

F (t) =
N∏

i=1


 ∏

i:tI
i =0

γ


 ∏

i:tI
i >0

(1 − γ)e−αtI
i −
∑

j∈∂i
Λ(tI

i −tI
j )

α +
∑
j∈∂i

λ(tIi − tIj )




A compact notation

It is now useful to write down an equation which summarizes the prior
distributions seen so far (time discrete, continuous, SI, SEIR, constant and
non-constant network). The best notation relies on the transition times
t = (t1, . . . , tN), because they describe both the discrete and the continuous-
time models. We recall here that each transition time ti is the set of the times
at which individual i changes its state. By direct comparison with each model
described so far, we can see that a general form for the priors is:

P (t) =
N∏

i=1
ψ(ti, t∂i) (2.5)

where ψ differs depending on the model and t∂i = {tj,∀j ∈ ∂i}. We are going
to use P to both express a probability distribution for discrete time case and a
probability density function for the continuous time case. For example, take
the SI model at discrete time and fixed contact network, equation (1.2):

P (x) =
N∏

i=1
p0(x0

i )
T −1∏
t=0

p(xt+1
i |xt

i, x
t
∂i) =

=
N∏

i=1
p0(x0

i )
(

ti−2∏
t=0

p(xt+1
i = S|xt

i = S, xt
∂i)
)
p(xtI

i
i = I|xtI

i −1
i = S, xt

∂i) =

=
N∏

i=1

p0(x0
i )
tI

i −2∏
t=0

∏
j∈∂i

(1 − λδxt
j ,I)

1 −
∏

j∈∂i

(1 − λδ
x

tI
i

−1
j ,I

)


=
N∏

i=1

p0(x0
i )
tI

i −2∏
t=0

∏
j∈∂i

(
1 − λθ(t− tIj )

)1 −
∏

j∈∂i

(
1 − λδ(tIi − 1 − tIj )

) ,
where in the third passage we have substituted the transition probability in
equation (1.1) and in the fourth passage we rephrased the x state with the
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infection time notation by introducing the theta function

θ(t) =

1 t > 0
0 t ≤ 0

.

We clearly see, thus, that for this model we have, comparing with equation
(2.5):

ψ(tIi , tI∂i) = p0(x0
i )
tI

i −2∏
t=0

∏
j∈∂i

(
1 − λθ(t− tIj )

)1 −
∏

j∈∂i

(
1 − λδ(tIi − 1 − tIj )

) .
(2.6)

Equation (2.5) tells us that the prior distribution factorizes over local functions,
each one depending on a central individual and its neighbors. Note that:

• The factor is normalized. In the discrete case: ∑ti
ψ(ti, t∂i) = 1. In the

continuous case there would be an integral. To see this, we notice that
ψ(ti, t∂i) = p(x0

i )∏t p
t+1(xt+1

i |xt
i, x

t
∂i). Summing over ti at fixed t∂i means

to sum over all possible i trajectories.

• ψ(ti, t∂i) ̸= p(ti|t∂i). Indeed, the conditioned distribution of ti at fixed t∂i

is:

p(ti, t∂i)
p(t∂i)

= 1
p(t∂i)

∑
t\(ti,t∂i)

P (t) =

= 1
p(t∂i)

∑
t\(ti,t∂i)

∏
j

ψ(tj, t∂j).

The more compact notation just introduced is useful to describe the algorithms
in a more general framework. Before doing so, we quickly explain how networks
and observations are simulated and modeled.

Observation modeling

A clinical test is the observation in the epidemic inference problem and can be
modeled as a 4-uple o = (os, oi, ot, of) where os is the state (which depending
on the model can be S,E,I,R) found by the clinical test, oi = 1, . . . , N is the
tested individual, ot is the time at which test o is done and of is the noise (i.e.
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false positive/negative rate). The set of all the observations is O. To simulate
and observation o, it is sufficient to randomly draw an individual oi from the
planted x∗ and evaluate its state x∗

oi,ot
at a randomly drawn time ot. Then

this result is corrupted with probability of to obtain os. The likelihood is the
probability of observing O conditioned on the trajectory t. The observations
o ∈ O are independent of each others, conditioned to the epidemic trajectory.
In other words:

P (O|t) =
∏
o∈O

p(o|t)

each observation o, in turn, depends on the whole epidemic trajectory only
through the individual oi corresponding to that observation. The likelihood
can be written as:

P (O|t) =
∏
o∈O

p(o|toi
)

Each factor of the likelihood is the probability of observing the state os at time
ot, given the epidemic state toi

:

p(o|toi
) = of

(
1 − δos,xos

oi

)
+ (1 − of )δos,xos

oi

which means that the probability of observing the incorrect state os for the
individual oi is equal to the false rate of , while the probability to observe the
correct state, os = xos

oi
of the individual oi is one minus the false rate. Since

the likelihood factorizes over observations, we can group the observations over
the same individual:

P (O|t) =
N∏

i=1

∏
o∈O:oi=i

p(o|ti) =

=:
N∏

i=1
p({o}oi=i|ti),

where the last passage is a definition. Since the prior can be written in the
form (2.5), we have that:

P (t|O) = P (t)P (O|t)
P (O) =

=
∏N

i=1 ψ(ti, t∂i)p({o}oi=i|ti)∑
t′
∏N

i=1 ψ(t′i, t′∂i)p({o}oi=i|t′i)
. (2.7)
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As already mentioned in equation (1.4), the posterior can be rewritten in a
canonical ensemble form, by defining H(t) = − logP (t)P (O|t). We thus have
that the Hamiltonian is a sum of local terms, namely:

H(t) = −
∑

i

log (ψ(ti, t∂i)p({o}oi=i|ti)) .

This form is useful to discuss some approximations as the mean field method,
section 2.2.1.

Network modeling

Epidemics propagate along networks of individuals who interact with each other
in a rather complex way. For example, there are more sociable individuals, jobs
that require connecting with many people, and there might be a correlation
between a person’s job and their interests. Therefore, the typical places where
an artist goes during their free time might be different from those visited
by a gym instructor. This complexity is studied by network theorists, who
also provide models to simulate contact graphs. To give four examples of
very simple (though quite unrealistic) network models, we consider the tree,
the random regular, the Erdős–Rényi (which are all introduced in section
1.1.1) and the proximity networks. The latter is defined, in 2 dimensions, as
follows: individuals are assigned uniformly random an x and y coordinate,
(x, y) ∈ [0, 1] × [0, 1]. A radius 0 ≤ R ≤ 1 is fixed and the Euclidean distance
between two individuals i of coordinates (xi, yi) and j with coordinates (xj, yj)
is defined as dij =

√
(xi − xj)2 + (yi − yj)2. Each individual i ∈ {1, . . . , N} is

linked to all the individuals j such that dij ≤ R. In other words: ∂i = {j ∈
{1, . . . , N} : dij ≤ R}. This model accounts for an interaction which spreads
in fixed dimensions (2 in this case, in general D if we distribute the points
in D dimensions), which is not realistic because individuals might fly among
cities and countries, take the car to move throughout the neighborhoods, meet
people from other cities. None of the above network models is complex enough
to describe a realistic network for epidemic spread. It is important to test
the inference algorithms on complicated and realistic graphs. Otherwise, we
might overestimate the predictive power of some methods. For example, we
are going to introduce later on the Belief Propagation, which works optimally
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if the contact network has a tree structure. Therefore, if we tested it on a tree
network, it would show extraordinarily good performance. However, realistic
contact networks have loops. To have a fair estimate of the performances on
real-like scenarios, we have to use the most realistic models available. We
are thus going to introduce now two network models which we use later as
benchmarks to test the inference algorithms that will be introduced in the next
sections of this chapter.

• OpenABM-Covid19 : it firstly appeared in [49]. The contact graph is the
superposition of densely connected graphs representing interactions within
households and a sparser network mirroring occupation relationships. A
random time-varying network is additionally used to model contacts in
public transportation, transient social gatherings, etc. The number of
interactions through the random network is extracted from a negative
binomial distribution to allow for rare super-spreading events. Memberships
to both fixed and dynamic graphs are determined by the age of individuals,
e.g. children live with adults, elderly people have fewer interactions than
other age groups, etc.

• Space-temporal model from geolocation data: this model has been developed
in [50]. Individuals are assigned to households that are localized in
an urban area according to the actual population density. Using the
available geo-location data, other venues as schools, research institutes,
bars, bus stops, workplaces and supermarkets are similarly displaced in
the map. Individuals can visit a number of locations with a probability
that decreases as the household-target distance increases. The duration
of contacts between individuals concurrently visiting the same venue
is assumed to be known and gathered by contact tracing smartphone
applications. Some interesting and realistic features naturally arise from
this contact dynamics, such as the presence of super-spreaders.

These two models seem to integrate the difficulties of the Erdős–Rényi and
proximity graphs. They take in fact into account the correlation between
the probability of having a link between two individuals and their euclidean
distance. They include however many long range interactions due to work
reasons, schools or recreational activities. These two models allow to generate
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networks that are used later to test the performance of the algorithms. It is
now the time to explain such algorithms.

2.2 Variational methods

Variational approaches are widely used for several applications including
machine learning and computational biology [51–54]. They rely on the minimization
(respectively maximization) of a functional which quantifies the error (resp. the
quality) of an approximating function. The name comes from the calculus of
variations, which is typically used to stabilize this functional. In this context,
we are going to study strategies for minimizing the Kullback-Leibler (KL)
divergence, introduced in [55]. Given two probability distributions P and Q,
defined on a domain X , the KL divergence between Q and P is:

DKL(Q||P) =
ˆ

x∈X
Q(x) log Q(x)

P(x)dx =
〈

log Q(x)
P(x)

〉
x∼Q

.

This quantity is always positive and benefits of the triangular inequality. It
is zero if and only if P = Q (almost everywhere). It is therefore similar
to a distance between two probabilities except for the fact that it is non-
symmetric with respect to inversion of P and Q (see [53]). It is thus a pseudo
distance. It can be used in the context of inference to measure how much an
approximation Q is able to reproduce the posterior P. In particular, let us
suppose that we want to approximate a posterior distribution P : X → [0, 1].
If one defines a family of approximating functions Qω which depend on a
continuous parameter ω = (ω1, ω2, . . . , ωm), with ω ∈ Ω ⊂ Rm, it is possible to
optimize the KL divergence DKL(Qω||P) between Qω and the posterior P with
respect to the set ω in order to find the optimal approximating function Qω̃,
for ω̃ = arg minΩ DKL(Qω||P). If the family {Qω}ω∈Ω contains the function
P, then the minimization of the KL divergence leads to the exact posterior
because the KL divergence is zero if and only if the two functions are equal to
each others. In general, the functional form of the posterior is unknown and
P /∈ {Qω}ω∈Ω. Therefore, the optimal Qω̃ is only an approximation. To find
Qω̃, one typically sets the gradient ∂ωQω = 0 in order to find some fixed point
equations. Sometimes, however, the functional form of Qω does not allow to
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find such equations and one must resort to a gradient descent. To practically
see how the variational method works we now show an application to find a
mean field approximation of the posterior.

2.2.1 The (too) naive mean field method

In this subsection we try to approximate the discrete time SI model posterior
with a variational mean field (MF) approach. This approach produces a bad
approximation for the posterior. However, it is instructive to understand
the procedure in order to build stronger methods, as the Causal Variational
Approach, section 2.3. Let P(x|O) be the posterior distribution of an epidemic
model which is too hard to compute exactly. We can try to approximate its
marginals by means of a mean field approximation, which means that we choose
a family of functions completely factorized over the individuals:

Qω(x) =
N∏

i=1
qωi

i (ti)

Each ωi is in turn a set of parameters. For example, for a time discrete SI model,
the parameter ωi = (ω0

i , . . . , ω
T
i ) controls each value of the marginal distribution

qωi
i (tIi ). Notice that we are using the equivalent notation of infection times t,

defined in section 2.1.3, interchangeably with the trajectory notation x. They
are equivalent so this is totally harmless. We now have to optimize over the
N × T matrix:

q =


q

ω0
1

1 . . . q
ωT

1
1

... . . . ...
q

ω0
N

N . . . q
ωT

N
N

 ,

where each value of the matrix is defined as qωt
i

i := qωi
i (tIi = t). The notation

might appear a cumbersome, but the idea behind is simply that we are
optimizing over all the possible values each marginal can take in time1. The
optimal mean field approximation is then found by minimizing the divergence

1A short-hand notation would be to optimize over qi(tIi ) for all i = 1, . . . , N and for all
tIi = 0, . . . , T . It could then be written that the optimal approximating function is given
by δDKL(Q||P)

δqi(tI
i

) = 0. However, this notation may lead to confusion when applied to more
complex approximating families that are going to be introduced later on.
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between the approximating function and the posterior:

DKL(Qω||P) =
〈

log Qω(x)
P(x|O)

〉
x∼Q

= .

=
〈

log
∏

i q
ωi
i (tIi )

P(t|O)

〉
t∼Q

=

=
N∑

i=1

〈
log qωi

i (tIi )
〉

t∼Q
− ⟨log P(t|O)⟩t∼Q =

=
N∑

i=1

〈
log qωi

i (tIi )
〉

t∼Q
− ⟨logP (t)P (O|t)⟩t∼Q + ⟨logP (O)⟩t∼Q =

=
N∑

i=1

〈
log qωi

i (tIi )
〉

t∼Q
− ⟨logP (t)P (O|t)⟩t∼Q + logP (O) =

= −S[Qω] + U [Qω] + logP (O).

We defined, in the last passage, the entropy of the distribution S and the energy
U . The reason why U is called energy is due to the analogy between Bayesian
inference and statistical physics, equation (1.5): the product of likelihood and
prior can be seen as the exponential of a Hamiltonian. We now optimize over
Qω to find a fixed point equation:

0 = ∂DKL(Qω||P)
∂ωt

j

= log qωj

j (t) + ∂U [Qω]
∂ωt

j

the derivative of logP (O) vanishes because it does not depend on ω. Since each
marginal is normalized, we have to impose the constraint that ∑T

tI
i =0 q

ωi
i (tIi ) = 1,

for all individuals i. This simply means that we have to add a Lagrange
multiplier αi for each of the individuals. When we derive this term too we end
up with:

0 = log qωj

j (t) + ∂U [Qω]
∂ωt

j

−
∂
(∑

i αi
∑

tI
i
qωi

i (tIi )
)

∂ωt
j

=

= log qωj

j (t) + ∂U [Qω]
∂ωt

j

− αj.

The fixed point equation is therefore:

q
ωj

j (t) = αje
− ∂U [Qω ]

∂ωt
j .
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where each αj is fixed by imposing the normalization condition:

αj = 1∑
t e

− ∂U [Qω ]
∂ωt

j

.

This is a rather elegant equation that however is hiding a huge fundamental
problem which makes this mean field approach useless for the epidemic context.
As the equation suggests, in fact, the computation of mean field marginals has
been reduced to compute the derivatives of the energy. The problem is that
the energy is, for many choices of ω, infinite! The energy is finite only for very
non-physical values of ω. This implies that the equation above is only a formal
solution to the marginalization problem. To see why the energy diverges, we
simply compute it.

U = − ⟨logP (t)P (O|t)⟩t∼Q =

= − ⟨logP (t)⟩t∼Q − log ⟨P (O|t)⟩t∼Q .

The divergent term is due to the prior, so we study that one:

⟨logP (t)⟩t∼Q =
〈

log
∏

i

ψ(tIi , tI∂i)
〉

t∼Q
=

=
∑

i

〈
logψ(tIi , tI∂i)

〉
t∼Q

.

The divergent terms are the
〈
logψ(tIi , tI∂i)

〉
. This is due to the fact that the

function ψ(tIi , tI∂i) is zero for some values of tIi , tI∂i due to causal constraints. In
fact, ψ must be zero all the times that 0 < tIi < minj∈∂i{tIj }, because i can
get infected either because one contact infected it, or because i is the patient
zero. In other words, if there is an infection event which can not be justified
because all the contacts are susceptible, then the transition is impossible2.
The problem of the mean field approximation is that, in general, it is not
able to capture correlations among individuals (the approximation is in fact
fully factorized). As a consequence, the average contains terms of the form

2as stated in paragraph 2.1.4, the transition could be explained by introducing some
self-infection, which models some network ignorance. In this case the MF method would work.
We would like, however to build a method which performs better and better if information
increases. For the MF method instead, we have quite the opposite, i.e. the method works
only if our ignorance on the network is high!
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qi(tIi )∏j∈∂i qj(tIj ) log 0, which diverge. The only way to avoid these infinities
is to impose the probability distribution to be 0 every time the transition is
0. This, however, forces the marginals of each individual i = 1, . . . , N to be
nonzero only for tIi = 0, T + 1, i.e. patient zero or not infected at all. This
polarization of the solution is due to the causal constraints and leads to the
conclusion that this variational mean field approximation does not work for
epidemic inference.

2.3 The Causal Variational Approach

Part of this section is from [9]. When an approximation does not work there
is at least one way to go on: trying to build a better approximation! The
standard naive mean field procedure fails because of hard causal constraints
which introduce strong correlations, impossible to be captured by the MF
method. In other words, the prior distribution has constraints due to the fact
that every time an individual changes state from S to I there must be at least
one infectious contact which caused the infection:

p(xt+1
i = I|xt

i = S, x∂i = {S,S, . . . ,S}) = 0

in the infection time notation, equation (2.5): ψ(tIi , tI∂i) = 0 if {tj ≥ ti,∀j ∈ ∂i}.
One path to follow is to enrich the family of approximating functions: we need
an approximation that includes some correlation. In particular, the family of
functions Qω must respect all the causal constraints imposed by the infection
dynamics. At the same time, these approximating functions must be easy to
compute, otherwise it would be meaningless to approximate the posterior P with
a function Qω̃ which we are not able to compute in polynomial time. Actually,
there exists a functional form which respects both the requirements. That is the
prior, which naturally respects all the constraints (actually the constraints come
from the prior) and it is hypothesized to be polynomially computable. An idea
is thus to build a family of approximating functions Qω which are functionally
identical to the prior. By minimizing the KL divergence DKL(Qω||P) w.r.t.
ω ∈ Ω, we would find the best prior-like function approximating the posterior.
A way to build a family {Qω} from the prior P is to allow the transition rates
of the prior to be a free parameter to optimize later. For example, if the prior
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has a constant infection probability of λ = 0.2, which enters P through the
functions ψ, we can build a family of approximating functions Qλ which are
identical to P but for the fact that λ is a free parameter and is not fixed to
0.2. We can even generalize it further, by allowing the infection rate to be
heterogeneous in the graph λ → {λij}N

i,j=1, so to build a much richer family
Q{λij}N

i,j=1 . We can also modify the other rates (latency, recovery, patient zero
probability) or introduce new rates to build the approximating {Qω} family3.
In general, we approximate the posterior using a generalized prior distribution.
This is exactly the idea of the Causal Variational Approach [9], whose name
comes from the fact that is a variational method which respects all the causal
constraints of the prior distribution by definition. In the next section we build
more organically the approximating family of functions for some specific models.
Then we discuss how to minimize the KL divergence (which is a bit more tricky
then in the naive MF case). Finally, we test the method against other existing
ones.

2.3.1 CVA for epidemic models: the approximating functions

In this section we are going to describe the Causal Variational Approach (CVA)
for the epidemic models. Let Pθ be the prior of an epidemic model, in which
we explicitly wrote the dependence on the so called hyper-parameters, namely
the patient zero probability, the infection, latency and recovery probabilities
(or rates) depending on which model we choose, by writing the symbol θ. We
know from equation (2.5) that the prior can be expressed as:

Pθ(t) =
N∏

i=1
ψθ(ti, t∂i)

The function ψθ contains the hyper-parameters of the chosen model. Let x∗ (or
t∗ in the equivalent transition time notation) be the planted configuration (i.e.
the unknown epidemic we want to infer) and O be the set of all the observations
taken from x∗. Let the posterior be the probability distribution

Pθ(t|O) = Pθ(t)Pθ(O|t)
Pθ(O) .

3the family should be built to contain the prior: there should exist an ωp such that
Qωp = P
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The Causal Variational Approach family of approximating functions for the
posterior P is defined as:

Qω(t) =
∏

i

qωi(ti, t∂i)

where the functional form of qωi is identical to ψθ except for the fact that each
hyper-parameter is substituted by a set of inference parameters which we are
going to introduce now for each model.

2.3.2 Markov SI and SEIR models

We now treat the CVA approximation for continuous and discrete-time markovian
models. A special paragraph is instead dedicated to non-markovian models,
which can also be easily treated with CVA, but are more tricky and need a
small generalization, as shown later on. If the model is markovian, the prior’s
parameters to generalize are:

• Patient zero probability γ. We generalize this by introducing the set
of probabilities {γi}N

i=1. They approximate each individual’s posterior
probability of being the zero patient. When decreasing the KL divergence
between the CVA approximation and the posterior, thus, we should end
up, if the observation set is sufficiently informative, to a set {γ̃i}N

i=1 such
that:

x∗
i (t = 0) = I ⇐⇒ γ̃i is high, ∀i = 1, . . . , N.

• Infection probability (rate) λ. We could generalize it by introducing a
set {λt

ij}
0≤t<T
(i,j)∈E , each one representing the posterior probability (or rate

in the continuous time models) to have infection along the edge (i, j)
at time t. However, a slightly lighter parametrization is used in CVA,
which simplifies the computations when minimizing of the KL divergence.
The idea is to introduce a set of parameters {λt

i}
0≤t<T
i=1,...,N which represents

the incoming infection probability: λt
i is the probability (rate for the

continuous case) for the individual i to be infected by one of its infectious
neighbors. In other words, we are parametrizing the incoming infection
probability to be homogeneous along the contacts: λt

ji = λt
i,∀j ∈ ∂i.

This should work because it allows to satisfy observations. For example,
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consider for an SI model an individual i observed susceptible at time
τ1 and infectious at time τ2 > τ1. The CVA must assign γi = 0 and
λt<τ1

i = 0 because the observation at time τ1 imposed i to be S until τ1.
The observation at time τ2, however, witnesses an infection event, which
happened between τ1 and τ2. CVA thus sets λτ1<t<τ2

i > 0 in order to allow
the individual i to be infected by one of its contacts. Notice that λt

i can
be interpreted as an infection susceptibility of the individual i at time t.
For the discrete time case, therefore, we can parametrize the posterior
infection probability with the set {λt

i}
t=0,...,T −1
i=1,...,N of N×T elements. For the

continuous case, instead, we would have an infinite amount of parameters
due to the infinite number of time steps. We therefore parametrize again
each λt

i with a Gaussian function of 3 parameteres: peak, mean and
standard deviation:

λt
i = λi,pe

−
(

t−λi,m
λi,s

)2

where λi,p, λi,m, λi,s control respectively the peak, the mean and the width
of the infection rate.

• Self-infection: it plays an important role in inference. It has been
introduced as a parameter to compensate for graph ignorance. It is
very useful to use it as a CVA parameter also when the network is
completely known. In fact, it allows to justify infection events witnessed
by observations which can not be easily explained by tuning the infection
probabilities {λt

i}
0≤t<T
i=1,...,N . We thus introduce a set of parameters {αt

i}
0≤t<T
i=1,...,N ,

which can be thought as the posterior self-infection. As for the infection,
in the discrete time case we have N × T parameters. For the continuous
time case we instead have the 3N parameters {αi,p, αi,m, αi,s} which are
related to the self infection by:

αt
i = αi,pe

−
(

t−αi,m
αi,s

)2

• Latency: to apply CVA to the SEIR model we also need to generalize the
latency probabilities (rates). This is done very similarly to the previous
parameters described, by introducing a set {νt

i }
0≤t≤T
i=1,...,N which represents

the posterior latency distributions of each individual. Also in this case
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we re-parametrize the time dependency of the rates using a Gaussian
distribution of parameters: νi,p, νi,m, νi,s

• Recovery: the generalization for the recovery probability is formally
identical to the latency. For the continuous time case, we have Gaussian
functions with parameters µi,p, µi,m, µi,s.

This is how the approximating CVA family of functions Qω for the markovian
case are built. Notice that the number of parameters scales linearly with N .
The optimization process of those parameters is described later on in this
section. We first introduce the approximating functions for the non-markovian
case.

Generalization of CVA for non-Markov models

When the infection rate is non constant and depends on the infection time of
the individual, see section 2.1.4, the parametrization described above does not
work well. Indeed, the CVA infection rate introduced earlier can be thought
as the susceptibility to infection, while the non-markovian infection rate, as
explained in paragraph 2.1.4, is an outgoing infectiousness. To be as clear
as possible, we add a subscript to the CVA infection rates and to the prior
non-markovian infection rates, which become respectively λt

i,IN and λOUT(t− tIi )
for each individual i = 1, . . . , N . The resulting infection rate along the edge
(i → j) is defined as:

λt
ij := λOUT(t− tIi )λt

j,IN.

The CVA parameters, therefore, are unaltered with respect to the markovian
case. Their interpretation changes. For the markovian case they are the
approximate posterior infection rates. In the non markovian case, instead, they
are multiplied to the prior non constant infection rate to have the total resulting
rate λt

ij. To recap, to each individual i corresponds a set of parameters ωi

which is well defined for each of the models:

• SI, discrete time: ωi = (γi, {αt
i}T −1

t=0 , {λt
i,IN}T −1

t=0 )

• SEIR, discrete time: ωi = (γi, {αt
i}T −1

t=0 , {λt
i,IN}T −1

t=0 , {νt
i }T −1

t=0 , {µt
i}T −1

t=0 )

• SI, continuous time: ωi = (γi, αi,p, αi,m, αi,s, λi,p, λi,m, λi,s)
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• SEIR, continuous time:

ωi = (γi, αi,p, αi,m, αi,s, λi,p, λi,m, λi,s, νi,p, νi,m, νi,s, µi,p, µi,m, µi,s)

both for the Markov and for the non-Markov models.

2.3.3 Minimizing the CVA KL divergence

Now that the family of CVA approximating functions has been built, it is
necessary to look for the best approximation belonging to that family. This
is achieved by minimizing the KL divergence DKL(Qω||P) with respect to
ω = (ω1, . . . , ωN ), where each ωi is the set of parameters defined above for each
model. The Kullback-Leibler divergence is:

DKL(Qω||P) =
ˆ

dtQω(t) log Qω(t)
P(t) .

The derivative of the divergence w.r.t. a generic parameter ωr
i is:

∂DKL(Qω||P)
∂ωr

i

=
ˆ

dt∂Qω(t)
∂ωr

i

log Qω(t)
P(t|O) +

ˆ
dtQω(t)∂ log Qω(t)

∂ωr
i

.

Let us focus on the second addend of the l.h.s.
ˆ

dtQω(t)∂ log Qω(t)
∂ωr

i

=
ˆ

dtQω(t) 1
Qω(t)

∂Qω(t)
∂ωr

i

=

=
ˆ

dt∂Qω(t)
∂ωr

i

=

= ∂

∂ωr
i

ˆ
dtQω(t) =

= ∂

∂ωr
i

1 = 0.
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This implies that the derivative of the divergence is:

∂DKL(Qω||P)
∂ωr

i

=
ˆ

dt∂Qω(t)
∂ωr

i

log Qω(t)
P(t|O) =

=
ˆ

dt∂Qω(t)
∂ωr

i

log Qω(t)
P (t)P (O|t) +

ˆ
dt∂Qω(t)

∂ωr
i

logP (O) =

=
ˆ

dt∂Qω(t)
∂ωr

i

log Qω(t)
P (t)P (O|t) +

�������������

logP (O) ∂

∂ωr
i

ˆ
dtQω(t) =

=
ˆ

dt∂Qω(t)
∂ωr

i

log Qω(t)
P (t)P (O|t) ,

where we have cancelled the last addend because the integral of the Qω gives 1
due to normalization. Now the equation of the derivative is tractable. We have
in fact eliminated the partition function P (O) which is too hard to compute.
To further manipulate this formula we multiply and divide by Qω(t):

∂DKL(Qω||P)
∂ωr

i

=
ˆ

dtQ
ω(t)

Qω(t)
∂Qω(t)
∂ωr

i

log Qω(t)
P (t)P (O|t) =

=
ˆ

dtQω(t)∂log Qω(t)
∂ωr

i

log Qω(t)
P (t)P (O|t) =

=
〈

log Qω(t)
P (t)P (O|t)

∂log Qω(t)
∂ωr

i

〉
t∼Qω

.

The function Qω is by definition identical in form to the prior:

Qω(t) =
∏

i

qωi(ti, t∂i),

which implies that:

∂DKL(Qω||P)
∂ωr

i

=
〈

log Qω(t)
P (t)P (O|t)

∂

∂ωr
i

∑
j

logqωj (tj, t∂j)
〉

t∼Qω

=

=
〈

log Qω(t)
P (t)P (O|t)

∂

∂ωr
i

logqωi(ti, t∂i)
〉

t∼Qω

. (2.8)

We have therefore a form which, at fixed ω, is the average of polynomially-
computable functions. This means that at fixed epidemic trajectory t and at
fixed values of parameters ω, the quantity inside can be numerically evaluated.
To compute the average we need to sample t from Qω. This can be efficiently
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Algorithm 1 Sampling from time discrete SI model
Input: The parameters set ω, the contact graph G, the horizon time T .

• Initialize a N × T matrix x, to interpret as the state of each individual
at each time. Initialize the matrix completely equal to S

• for i = 1 : N

– set x0
i =S with probability 1 − γi and x0

i = I with probability γi

• for t = 1 : T ; for i = 1, . . . , N

– if xt−1
i = S

∗ for j ∈ ∂i

· if xt−1
j = I then set xt

i = I with probability λt−1
i .

∗ set xt
i = I with self-infection probability αt−1

i .

∗ else set xt
i = I

• Return x

achieved because sampling from Qω is as easy as sampling from the prior, due
to their identical functional forms. We are now going to describe the sampling
process. Later, we show how to minimize the KL divergence using a gradient
descent procedure.

Sampling the trajectory

The form of the CVA approximating functions allows to efficiently sample from
them. They represent indeed the prior stochastic processes, with the only
difference of having other hyper-parameters. For example, for the SI time-
discrete model, it is sufficient to follow the procedure described in Algorithm
1, in which we first sample the patients zero independently with probabilities
{γi}i∈V . Then we simulate, in a loop over time, the infection and self infection
process for all the S individuals. Notice that there is a probability of ∏i (1 − γi)
for the time-zero configuration to be populated only by S individuals. To avoid
this possibility we must sample the zero-time configuration from Algorithm
2, which forces at least one individual to be the patient zero. To see how the
algorithm work, call npz the number of patients zero. The idea is to sample
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Algorithm 2 Sampling at least one patient zero.
Input: The parameters set ω, the contact graph G, the configuration x.

• for i = 1 : N

– set x0
i =I with probability γi/

(
1 −∏

j≥i(1 − γj)
)
; otherwise to S

– if x0
i = I then break the loop

• for k = i+ 1 : N (i.e. for the remaining population)

– set x0
i =I with probability γi; otherwise to S

from P (x0
i = I|npz > 0). We can compute this function:

P (x0
i = I|npz > 0) = P (x0

i = I, npz > 0)
P (npz > 0) =

= P (x0
i = I)

P (npz > 0) =

= γi

1 −∏
j(1 − γj)

.

To sample recursively from this probability distribution, we start from individual
1:

P (x0
1 = I|npz > 0) = γ1

1 −∏
j(1 − γj)

Say that we sample the individual 1 to be S at time zero from the distribution
P (x0

1 = I|npz > 0). Now for the individual 2 we want to sample from:

P (x0
2 = I|npz > 0, x0

1 = S) = P (x0
2 = I|x0

1 = S)
P (npz > 0|x0

1 = S) =

= P (x0
2 = I)

1 −∏
i≥2(1 − γi)

=

= γ2

1 −∏
i≥2(1 − γi)

.

Applying recursively this reasoning leads to Algorithm 2. An optimization
and generalization of Algorithm 1 is possible by using a Gillespie simulation,
described in detail in Algorithm 3 for the more general case of the non-Markov
SI model. The idea is to store the tentative infection times of all the individuals
in a queue t = (tI1 , . . . , tIN), and update them recursively until their value
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Algorithm 3 The Gillespie algorithm for continuous time sampling. An
example for non-Markov SI model.
Input: The parameters set ω, the contact graph G, the horizon time T .

• Initialize a queue t

• Sample all the patients zero, tIi = 0, using Algorithm 2

• for i = 1 : N such that tIi > 0

– Extract a value of self infection time from the distribution {αt
i}t∈R+

and set it equal to tIi

• Loop over the increasingly sorted queue t

– Take the element tIi coming from the sorted queue
– for j ∈ ∂i

∗ Extract the tentative infection time ti→j from the distribution
{λt

ij}t∈R+ = {λOUT(t− tIi )λt
i,IN}t∈R+

∗ if ti→j < tIj then update setting tIj = ti→j

∗ Remove i from the queue and and save tIi as the infection time
of i.
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is correctly sampled. To this end, the first step consists in sampling all the
patients zero by means of Algorithm 2. Secondly, self-infection events are
sampled from the self-infection distribution {αt

i}t∈R+ . Finally, contagion events
are sampled by extracting from the queue the individual j corresponding to
the minimum infection time: j = arg mini∈{1,...,N} t

I
i . If an individual i tries to

infect another individual j at time ti→j , then j updates its infection time by
taking the minimum between ti→j and its current value of tIj . This way the
list is updated recursively. We describe an efficient procedure to sample from
continuous distributions (as the self-infection rate {αt

i}t∈R+ , the infection rate,
the recovery and latency rates) in Appendix A.

Gradient descent

Once the sampling process is implemented, it is possible to numerically estimate
the averages with respect to the CVA function. In particular, the derivative
of DKL(Qω|P) in equation (2.8) can be computed. To optimize the Kullback-
Leibler divergence, a gradient descent procedure can be implemented. The
standard gradient descent would require to compute the partial derivative w.r.t.
all the parameters and change each parameter of a small fraction ε of the
opposite of the gradient:

ωk,r+1
i = ωk,r

i − ε
∂DKL(Qω||P)

∂ωr
i

where the superscripts r and r + 1 stand for the iteration of the update. The
quantity ε is a real number named learning rate. This procedure in principle
leads to a minimum of the KL divergence. It is known, however, that directly
descending the gradient might not be the fastest way to optimize a function
[56–59]. In this context that is due to the existence of several scales for each
derivative. Thus, the scale-free technique of the Sign Descender [59, 58] is
preferred:

ωk,r+1
i = ωk,r

i − ε
∣∣∣ωk,r

i

∣∣∣ sign
(
∂DKL(Qω||P)

∂ωr
i

)

The interpretation of this technique is to change each parameter by a fraction
ε of its current value, opposite to the sign of the derivative. Iterating this
procedure it is possible to optimize the KL divergence.
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CVA Free energy

In order to estimate if the KL divergence is actually decreasing, we can compute
the variational free energy:

F [ω] = U [ω] − S[ω]

= −
ˆ

dtQω(t) logP (t)P (O|t) +
ˆ

dtQω(t) log Qω(t) =

=
ˆ

dtQω(t) log Qω(t)
P (t)P (O|t) =

= DKL(Qω(t)||P (t)P (O|t)).

This quantity is closely related by the divergence with the posterior:

F [ω] = DKL(Qω||P) − logP (O).

Notice that the variational free energy can be computed numerically because
it does not require to evaluate logP (O). Once the iterative updating scheme
has reached convergence (i.e. the variational free energy does not decrease
further and starts oscillating), the optimization process can be stopped. A set
of parameters ω̃ is the approximate minimum point of the KL divergence. If
we hypothesize that the CVA approach gives a good estimate of the posterior,
namely Qω̃ ≈ P , then variational free energy computed at ω̃ gives an estimate
of the free energy F = − logP (O) defined in equation (1.6):

F [ω̃] = DKL(Qω̃||P) − logP (O) ≈
≈ DKL(P||P) − logP (O)
= − logP (O) = F.

Marginalization

Once the KL is optimized, i.e. the parameters set ω̃ is obtained, marginalizing
is simple. It is sufficient to sample a set of M trajectories (t1, . . . , tM) from
the CVA distribution Qω̃. Then we can treat each tm as a sample from the
posterior. Computing marginals simply consists to make histograms with these
samples. Example: to compute the average infection time of individual i we
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take the M samples and sample average their i_th component:

〈
tIi
〉

= 1
M

M∑
m=1

(tm)I
i ,

where (tm)I
i is the infection time of the individual i for the m_th sample.

Hard to soft constraints

When working with hard constraints, logarithms can be infinite due to some
zeros. For the MF case, these log 0’s were pathological and related to causal
correlations which the mean field method is not able to capture. For CVA,
instead, they are only apparent problems which can actually be cured by
introducing very small parameters to smooth the constraints. If we look at
DKL(Qω||P), indeed, we see that there is a logP (O|x), which is log 0 if there is
no false rate and x violates some constraints of O. It is sufficient to introduce a
small false rate, (order 10−5) to completely cure the problem, without reasonably
affecting the performance of CVA.

Parallelization

The minimization of the KL divergence reduces to sampling. This process can
be done in parallel. Each CPU can sample a configuration and compute the
quantity inside the average of equation (2.8). Then it is sufficient to average
over the CPUs to find the final result. As a consequence, the CVA algorithm
can be run in parallel.

Variance Reduction

To accelerate the optimization process it is also possible to resort to the variance
reduction technique from reinforcement learning [60–62], which simply consists
in modifying equation (2.8) by subtracting the term

〈
log Qω(t)

P (t)P (O|t)

〉 〈
∂

∂ωr
i
logqωi(ti, t∂i)

〉
,
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which is zero because:〈
∂

∂ωr
i

logqωi(ti, t∂i)
〉

=
〈

∂

∂ωr
i

logQω(t)
〉

=

=
ˆ

dt
�
�

��Qω(t)
Qω(t)

∂Qω(t)
∂ωr

i

=

= ∂

∂ωr
i

ˆ
dtQω(t) = 0.

The derivative of the KL can thus be rewritten as:

∂DKL(Qω||P)
∂ωr

i

=
〈(

log Qω(t)
P (t)P (O|t) −

〈
log Qω(t)

P (t)P (O|t)

〉)
∂

∂ωr
i

logqωi(ti, t∂i)
〉

t∼Qω

=

=
〈(

log Qω(t)
P (t)P (O|t) − F [ω]

)
∂

∂ωr
i

logqωi(ti, t∂i)
〉

t∼Qω

.

This typically makes convergence easier in the update process.

Hyper-parameters inference

An interesting problem in epidemic inference is to reconstruct the hyper-
parameters of the prior distribution, which are typically indicated using the
letter θ. To do so, one typically takes the free energy and descends it, as
described in section 1.2.1. It is important to notice that the approximate CVA
distributions may contain some hyper-parameter of the prior. For example, in
the non-markovian case, the approximating posterior rate λt

ij is the product
of a CVA parameter λt

j,IN and the prior hyper-parameter λOUT(t − tIi ). It is
more correct in this case, therefore, to write the approximating functions as Qω

θ ,
where θ is the set of hyper-parameters. This allows us to understand that both
the posterior and its CVA approximation depend on the prior hyper-parameters
θ. For this paragraph, therefore, we are going to explicitly write the dependence
on the hyper-parameters θ as a subscript of the distributions. What we want
to minimize w.r.t. θ and ω is:

F [ω](θ) = DKL(Qω
θ (t)||Pθ(t)P (O|t)).

Taking the derivative w.r.t. a generic CVA parameter ωr
i brings to eq. (2.8).

The derivative w.r.t a generic hyper-parameter θk is very similar, but some
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contributions from the prior do not vanish:

∂

∂θk

F [ω](θ) = ∂

∂θk

ˆ
dtQω

θ (t) log Qω
θ(t)

Pθ(t)Pθ(O|t) =

=
ˆ

dt
(
∂

∂θk

Qω
θ (t)

)
log Qω

θ(t)
Pθ(t)Pθ(O|t) +

(((((((((((((((((((ˆ
dtQω

θ (t) ∂

∂θk

log Qω
θ(t)+

−
ˆ

dtQω
θ (t) ∂

∂θk

logPθ(t)Pθ(O|t) =

=
ˆ

dt
(
∂

∂θk

Qω
θ (t)

)
log Qω

θ(t)
Pθ(t)Pθ(O|t) −

ˆ
dtQω

θ (t) ∂

∂θk

logPθ(t)Pθ(O|t) =

=
〈

log Qω
θ (t)

Pθ(t)Pθ(O|t)
∂ logQω

θ (t)
∂θk

− ∂ logPθ(t)Pθ(O|t)
∂θk

〉
,

where the vanishing term has already been studied for the gradient descent
above. Now we have a first term which is identical in form (and treated
accordingly) to the derivative w.r.t. the CVA parameters. The second term is
new and represents the rate of change of the prior process due to a modification
of the hyper-parameters.

2.3.4 Warm up. CVA for Conditioned Random Walk

Before diving into applications of the Causal Variational Approach to epidemic
inference, we test it to the conditioned random walk in 1D. This is a toy model
which can even be solved exactly. Nonetheless, it is useful to characterize
the CVA by applying it to this simpler problem, before moving to epidemics.
We define the random walk in 1D as the time-discrete stochastic process
characterized by the presence of a walker jumping at each step to the right or
to the left with equal probability4. Calling x = (x0, x1, . . . , xT ) a trajectory, we
have:

P (x) =
T −1∏
t=0

p(x
t+1 = xt + 1)

p(xt+1 = xt − 1)
=

=
T −1∏
t=0


1
2
1
2

= 1
2T

4this model can be generalized to multiple dimensions and to a biased version in which
the walker has some preferential directions[63].
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Fig. 2.1 Conditioned Random Walk. On the left (a), the random walk distribution.
Each trajectory has the same probability. In the center (b), the walls are added and
the effect is to select only some trajectories, plotted in black. All the trajectories
that hit the walls (i.e. visit prohibited zones of the space-time) are discarded and
plotted in red. On the write (c), the Causal Variational Approach reconstruction of
the marginal probability of the walker to visit each particular zone of the space at
fixed time. Figure taken from [9]

where x0 is conventionally set to 0 and going to the left or the right means
respectively decreasing or increasing of 1 unit, as in Figure 2.1 (a). Each xt ∈
{−T,−T + 1, . . . , 0, . . . , T − 1, T}. Every trajectory has the same probability.
From this process we can define the conditioned random walk by introducing
a set of constraints in space and time: we constrain the walker not to visit
certain zones of the space in certain periods of time. We can represent these
constraints as walls in the 2D space-time, as in Figure 2.1 (b). . The original
distribution might assign probability to the set of trajectories which violate the
constraints. Let us define W = {w1, w2, . . . , wT } the set of all the constraints
(or walls). Each wt ⊂ R is a set in the 1D space that the walker can not visit5

at time t; in other words: xt /∈ wt,∀t = 0, . . . , T . We define the conditioned
random walk as the distribution probability P(x|W) to have a trajectory which
satisfies the constraints. Using Bayes’ law:

P(x|W) = P (x)P (W|x)∑
x′ P (x′)P (W|x′) =

= P (W|x)∑
x′ P (W|x′) ,

where
P (W|x) =

T∏
t=1

I[xt /∈ wt]

5in this notation, wt = ∅ means that no constraint is present at time t.
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and where we simplified the constant P (x) = 1/2T . We can think the walls as
the result of observations. In fact, let us suppose that we had a detector which
observed the walker with a precision which allows only to discard the zones in
W . In that case we can define the set O = {o1, . . . , oT } as the complementary of
W , i.e. ot = {−T,−T + 1, . . . , 0, . . . , T − 1, T} \wt. This allows us to interpret
the conditioned random walk as an inference problem. Before seeing the CVA
approximation of this problem, we describe its exact solution. We will then
compare some marginals of CVA to the exact ones.

Exact solution to marginalization of the conditioned RW

We define the probability column:

p =



p−T

...
p0
...
pT


where each element pi represents the probability of having the walker in the
position i, for i ∈ {−T, . . . , T}. Notice that ∑i pi = 1. Now we define the
transition probability matrix:

A =


0 1

2 0 . . .
1
2 0 1

2
0 1

2 0
... . . .


which is an off diagonal matrix with elements representing the transition
probabilities. The evolution in time is:

pt+1 = Apt = A2pt−1 = . . . At+1p0
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where p0 is by definition concentrated on the origin, because it is the probability
of a walker to be in a certain position at initial time:

p0 =



0
...
1
...
0


Notice that the time evolution A preserves the normalization of the probability
column. The unconditioned random walk marginals can be therefore computed
by evaluating the probability column at fixed time and place:

pt
i =

(
Atp0

)
i

When walls are added, the transition matrices are substituted by new matrices
that are zero on the forbidden transitions. For each wall wt ∈ W at time t we
substitute A with a matrix Bwt such that the elements are:

(Bwt)ij =

Aij if j /∈ wt

0 if j ∈ wt

Notice that these new transition rates do not preserve the normalization. We
have to normalize manually.

pt
i =

(∑T
j=−T

(∏T −1
k=t Bwk

ei

)
j

) (∏t−1
k=0 Bwk

p0
)

i∑T
j=−T

∏T −1
k=0 Bwk

p0
i

where ei is the column which is zero everywhere except for the i_th element
which is 1. Let us interpret this formula: to compute the marginal we evolved
from the zero time state until time t, by multiplying the new transition matrices∏t−1

k=0 Bwk
to the initial time probability column p0. We evaluated the result at

position i. That quantity is the probability for the walker to arrive at time t to
position i. The walker, however, might hit some walls at future times k > t.
The posterior conditioned probability must take it into account by evaluating
the probability for a walker that at time t is in position i to survive, i.e. not to
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hit any walls. We therefore evolve a walker which starts at time t at position i,
represented with the probability column ei, until the end of the walk and we
sum all over the possible final positions, in order to compute the probability to
survive. We normalize everything by the probability for a walker starting at
the origin to survive.

Comparison with Causal Variational Approach

The CVA simply treats the conditioned random walk as an inference problem,
where the prior is the random walk distribution P (x), the observations O are
the complementary of the walls W and the approximating family of functions
is again a random walk with some parameters generalization. Instead of having
all the transitions identical to 1/2, we set them to be dependent on time and
space. We have a set ω = {ωt

i}
t=0,...T
i=−T,...T of parameters which reproduce the

random walk by setting them all to 1/2. For simplicity, we define each ωt
i to

be the probability to jump to the right if the walker is on site i at time t. The
CVA approximating function is thus defined as:

Qω(x1, x2, . . . , xT ) =
T −1∏
t=0

ω
t
xt if xt+1 = xt + 1

1 − ωt
xt if xt+1 = xt − 1

=

=:
T −1∏
t=0

q(xt+1, xt;ωt
xt).

Sampling from Qω is trivial because it is a heterogeneous random walk. This
allows to compute (and descend) the gradient of the divergence DKL(Qω|P) :

∂DKL(Qω|P)
∂ωs

i

=
〈

T −1∑
t=0

∂ log (q(xt+1, xt;ωt
xt))

∂ωs
i

〉
x∼Qω

=

=
〈

T −1∑
t=0

1
q(xt+1, xt;ωt

xt)
∂q(xt+1, xt;ωt

xt)
∂ωs

i

〉
x∼Qω

=

=
〈

T −1∑
t=0

δxt,iδt,s
1

q(xs+1, xs;ωs
i )
∂q(xs+1, i;ωs

i )
∂ωs

i

〉
x∼Qω

.

this allows to find the best ω̃ and to compute the approximate marginal
posteriors, which are compared to the exact ones in Figure 2.2. In this simple
2D case (1D of space + 1D of time) it is possible to visualize the CVA parameters,
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Fig. 2.2 The comparison between exact marginals and CVA approximation shows
good agreement. The horizontal axis represents the space and the vertical axis the
marginal probability for a walker to visit that zone at fixed time. The total walking
time is equal to 40 and the walls are the same of Figure 2.1. Figure taken from [9]

which are represented in Figure 2.3 For the epidemic case the dimension of the
space is too high and does not allow such a simple graphical representation.
The epidemic case is, moreover, very interesting since it does not admit an
exact solution computed in polynomial time.

2.4 Results for the Causal Variational Approach

This results section is partially based on the published paper [9]

We use now the CVA for studying epidemic inference. First, we test the validity
of this approximation against other existing methods for the case of an SI model.
To do so, we use the network simulators described in paragraph 2.1.4. We will
see that CVA is robust and is the top performing method. We then test the
ability of CVA to infer the hyper-parameters, by computing and descending the
free energy landscape of the posterior distribution as a function of the hyper-
parameters. Finally, we use CVA to conjecture a general result on epidemic
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Fig. 2.3 The CVA parameters after the descent phase. Left: Each pixel represents the
probability to jump up. A bright pixel signals therefore a high rate of going down, a
black pixel means that the walker will jump probably up and blue means that CVA
did not move the parameter from the initial 1/2 value. Right: three trajectories
sampled from CVA distribution and superposed to the parameters. The total walking
time is equal to 40 and the walls are the same of Figure 2.1. Figure taken from [9]

models, which we name model reduction: we show that it is almost equivalent
to use SEIR or SI model to infer a hidden planted configuration which was
generated with the SEIR model. This result suggests that the complexity of
the model should not play a crucial role in inference performance.

2.4.1 Results on synthetic networks

In this first part of the results section we compare CVA to other existing
methods in literature.

Other methods for inference

This section provides a list of the other inferential techniques whose performances
are compared with those of Causal Variational Approach.

1. Sib. This method is based on a Belief Propagation approach to epidemic
spreading processes [8, 6]. It is thoroughly introduced in Chapter 3, where
its generalization to an ensemble method is introduced and used to derive
general properties of the posterior. Sib performs well when epidemic
models are on random contact networks, while it may suffer from the
presence of loops in the graph.
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2. Backward-time Mean Field heuristic . This method is based on a heuristic
way to deal with observations from clinical tests and on a Mean Field
approximation (different to the one introduced in 2.2.1) of the prior
distribution, which is considered to be factorized over nodes at fixed
time. An advantage of this method relies on its simplicity and small
computational cost; however, it typically shows poorer performance with
respect to the other methods. We refer to [6] for additional details about
the Mean Field approximation. The heuristic scheme is instead discussed
in the next point.

3. Backward-time heuristic (with sampling) – The MF method developed in
[6] and described above relies, in addition to the MF ansatz for the prior
distribution, on a heuristic way to deal with observations: it assumes that
if an individual is tested I at time t, this means that it became positive
at time t− τ , with τ properly tuned (with the strength that performance
seem approximately independent of τ). It is natural to wonder about the
performance of this heuristic, regardless of the MF approximation. In [9],
therefore, the MF estimation of marginal probabilities is substituted by
sampling trajectories forward in time. As shown later on, this method
performs almost the same of its MF correspondent. Therefore, the
heuristic seems to be the limiting factor in the performance of the method.

4. Monte Carlo. Since epidemic trajectories can be fully described in terms
of the infection time vector t, the Markov Chain Monte Carlo (MCMC)
in [9] defines dynamics on these continuous variables that eventually
converge to a stationary distribution (i.e. the posterior P). At each
step of the MCMC, a node i is randomly selected and a new value of
its infection time, denoted with t̂Ii , is proposed, by drawing it from
a probability K(t̂Ii |tIi ). The initial condition for the Markov Chain is
sampled from the prior distribution P . To diminish the effect of initial
equilibration time an initial number of steps is typically required to let
the MC forget the initial condition and sample efficiently the posterior
distribution.

5. Soft-Margin. The Soft-Margin estimator is described in [64]. For the
comparison with CVA the method is adapted by sampling from the
prior probability distribution P (x) and weighting each sample with the
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observation likelihood P (O|x), for which a small artificial false rate
is added with the aim of softening the constraints, resulting in an
improvement of the method’s performance. The Soft-Margin technique
is asymptotically exact (except for the small false rate). However, when
the population size grows, the probability to sample a trajectory x

which satisfies the observation constraints P (O|x) dramatically decreases.
Therefore the method is too slow for large population sizes.

Two of the aforementioned methods (Monte Carlo, and Soft-Margin) are
asymptotically exact. This means that, if run for a sufficient amount of
time, they provide the exact posterior. In order to have a fair comparison, the
run-time of CVA, MCMC and Soft-Margin is approximately the same. Notice
that while CVA and Soft-Margin are parallel algorithms, MCMC can only be
used sequentially.

Results on Proximity graphs

We start by describing performance on small proximity graphs (see section
2.1.4 for their definition) of N = 50 individuals. To accumulate statistics,
several graphs are simulated and for each one a planted epidemic trajectory x∗

sampled from the prior P (x). Then from each planted x∗ several observation
sets On1 ⊂ On2 ⊂ On3 ⊂ On4 ⊂ . . . are built with increasing number of
observations: nk is the number of observations in the k-th observation set. Each
method approximates then the posterior marginals of P(x|Ok). Observations
are noiseless, i.e. no false rate, and performed on a randomly chosen fraction
of the population at a fixed time, which for the present case is the horizon
time T . The AUC at initial time (which quantifies the ability of a method to
reconstruct the patient-zero, see section 1.1.5) and at the final time (the so
called risk assessment) are shown in Figure 2.4 as functions of the number nk of
observations available. As expected, in both cases the average performance of
the methods improve when the number of observations increases. In particular,
the soft-margin method is expected to converge to the exact results for this
type of experiment when the number N of individuals is small. The results
obtained with CVA are very close (and closer than any other technique) to
those obtained by means of Soft Margin (denoted with the world soft), even in
the regime with only a few observations.
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Fig. 2.4 Study of Area under the ROC (AUC) as a function of the number of
observations at horizon time T and initial time 0, respectively in panel (a) and panel
(b). The simulated contact graph is a proximity network with average connectivity
2.2/N . For both simulations in panels (a) and (b), the total number of individuals
is N = 50, the probability of being the patient zero is set to γ = 1/N , and the
infection rate is λ = 0.1 . For each epidemic realization, inference is performed for
an increasing number of noiseless observations (here the false rate is 0) at time T .
Thick lines and shaded areas indicate the averages and the standard errors computed
over 40 instances. Figure taken from [9]

Open ABM and StEM networks

To further investigate the performances of CVA against the other techniques,
two realistic dynamic contact network instances are considered, one generated
using the spatio-temporal epidemic model (StEM) in [50] and the other using the
discrete-time OpenABM model in [49] (see section 2.1.4). Epidemic realizations
are generated using a continuous-time SI model on these contact graphs. For all
different methods (CVA, Sib, Soft-Marg, and MCMC) the corresponding AUCs
are shown as functions of time (in days), in Figure 2.5 (a), (c) and (b), (d) for
OpenABM and the StEM respectively. Two different observation protocols are
adopted in this comparison:

1. Observations times are randomly scattered with uniform distribution
in the interval [1, T ]. Moreover, observations are biased towards tested-
positive outcomes to mimic a realistic scenario where symptomatic, which
are a subset of the infected individuals, are more likely to be tested than
susceptible ones.
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Fig. 2.5 A comparison of performances: Causal Variational Approach (CVA), Belief
Propagation (sib) and SoftMargin (soft), and MCMC (MC) are compared by studying
the AUC associated with the prediction of the infected individuals as a function of
time on several instances of dynamic contact network generated using the OpenABM
(in panel (a) N = 2000 , in (c) N = 1000) and the StEM (panels (b) and (d)) for
N = 904 . The infection rate is set to λ = 0.15 for the latter and λ = 0.02 for
the former. Observations’ false rate is zero in both cases. For panels (c) and (d),
observations are performed at the last time of the dynamics, i.e. the horizon time T .
For the results in panels (a) and (b), observation times are extracted uniformly in
the range [1, T ]; at each observation time, infected nodes are observed with a biased
probability equal to 1.1nI(t)/Nwhere nI(t) is the number of infectious individuals
at time t and N is the total number of individuals. The total number of observations
is nobs = 0.1N for OpenABM and n = 100 for the StEM. Figure taken from [9]

2. Observations are performed at the horizon time T with no bias due to
sympthoms.

Panels (a) and (b) are associated with the observations scattered in time, while
panels (c) and (d) correspond to observations at the last time only. In panel
(a) simulations are run for N = 2000, while in panel (c) the total number of
individuals is N = 1000. It is easy to see that, in panels (a) and (c), CVA
(blue dots) is the best-performing method in terms of AUC. Only MCMC (pink
triangles) reaches comparable AUC around t = T . The results achieved by
Belief Propagation (Sib) are similar to those produced by CVA when the size of
the graph is N = 1000 (panel (c)). However, for N = 2000, they significantly
deteriorate (panel (a)). For the instances generated according to StEM, the
comparison reveals that CVA achieves the largest values of the AUC at all times
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and Belief Propagation (sib, orange squares) performs comparably only at the
horizon time. MCMC approaches CVA performances in the last time epochs,
while it is not able to predict the zero patient. Indeed, the AUC associated with
MCMC predictions for all parametrizations is slightly larger than 0.5 (which
correspond to random guess) for t < 5 when observations are performed at the
horizon time.

2.4.2 Results on hyper-parameter inference

A crucial task in epidemic inference is to estimate the hyper-parameters. It
is in fact usual to have no prior information on the e.g. infection rate and
recovery rate. In this paragraph we aim to visualize the process of parameters
inference made by CVA (see section 2.3.3). To do so, we take an SI model
with patient zero and infection probability respectively fixed to γ∗ and λ∗ and
generate a planted trajectory x∗, from which we take some observations O. We
then explore the entire space of hyper-parameters Θ = {(γ, λ) ∈ [0, 1] × [0, 1]}:
for each couple γ, λ we find the CVA approximation of the posterior and its
corresponding free energy. We end up with a free energy landscape as in Figure
2.6. If the approximation of the free energy is good, then the minimum of the
landscape should coincide, or at least be near to the correct hyper-parameter
couple γ∗, λ∗. In formulae, for each (γ, λ) we minimize the approximating family
of CVA functions {Qω

(γ,λ)}, obtaining Qω̃
(γ,λ), then we find the corresponding

free energy F [ω̃](γ, λ) = DKL(Qω̃
(γ,λ)(t)||P(γ,λ)(t)P (O|t)) and we plot it. On the

same plot we pin the hyper-parameter couple (γ∗, λ∗) from which O has been
generated. Of course, the actual method for CVA to infer the hyper-parameters
is much faster than reconstructing the whole free energy landscape, as described
in paragraph 2.3.3: CVA simply descends the KL simultaneously w.r.t. its
parameters ω and the hyper-parameters θ = (γ, λ). To visualize and test the
efficacy of this procedure, we start from some different initial conditions (γ0, λ0)
and for each initial condition we perform and plot the descent: in few steps it
reaches the minimum zone, which corresponds to the correct hyper-parameters
couple (γ∗, λ∗). We conclude that CVA simultaneous descent of the parameters
and hyper-parameters is effective. Being able to infer hyper-parameters is
a crucial task, not only for practical applications, but also for theoretical
developments, as described in the next paragraph.
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Fig. 2.6 Heat map of the free energy landscape as a function of the hyper-parameters
of the generative SI model. The experiment is performed on a proximity graph with
N = 50 individuals and density ρ = 2/N ; the epidemic model is characterized by
patient zero probability γ∗ = 1/N and infection rate λ∗ = 0.1, shown here as a green
star. We perform a large number of observations (nobs = 2N) at uniformly randomly
distributed times. The lowest values of this free energy landscape are concentrated
around the exact hyper-parameters couple (γ∗, λ∗). The oriented paths (white arrows)
represent the gradient descent dynamics of the algorithm in the hyper-parameters
space, starting from three different initial conditions (γ0, λ0). Figure taken from [9]
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2.4.3 Model reduction

Inference of hyper-parameters is now used to show a result which hints at a
possible simplification in the epidemic inference problem: the model reduction,
i.e. the possibility to use simple models to infer dynamics generated by more
complicated models. In particular, the planted trajectories in this numerical
experiment are generated with a SEIR model and they are inferred using two
different prior models:

• a non-Markov SI model;

• a SEIR model.

If model reduction holds, then the results obtained by means of SI and SEIR
inference should be similar to each others. The results in Figure 2.7 represent
four different kinds of possible tests of the model reduction conjecture. All
of them have in common the idea to use a SEIR model with a fixed set θ∗

of hyper-parameters to generate the planted x∗, from a set O is extracted.
Then two estimations are made, one based on the SI model CVA and one with
the SEIR model CVA. None of them have access to θ∗. In both cases, thus,
the hyper-parameters have to be inferred. The SI model CVA infers some
effective hyper-parameters θ̃SI. The SEIR model CVA infers a set θ̃SEIR . The
model reduction conjecture claims that the effective hyper-parameters θ̃SI and
θ̃SEIR should reproduce approximately the same dynamics. To test this, four
experiments are reported here:

1. The number of observations nobs is a small fraction of the population,
nobs = N/10. In this regime, represented in panel (a), the SEIR posterior,
namely the CVA approximate posterior Qω̃

θ∗ , corresponding to the hyper-
parameters θ∗ is strictly the best performing, as expected. This means
that the number of observations is not sufficient to fully reconstruct
the prior. Interestingly, the performance (measured with AUC over
time) of the CVA approximations which do not have access to the hyper-
parameters, namely Qω̃SI

θSI
for the SI and Qω̃SEIR

θSI
for the SEIR, are similar!

This experiment goes therefore in the direction of the model reduction.

2. The number of observation is high: nobs = N/2. The hyper-parameter-
inferring approximations perform equally to the CVA SEIR distribution
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Qω̃
θ∗ . Also in this case the SI and SEIR solutions perform the same. See

panel (b)

3. The average number of infectious individuals over time can also be studied.
This number is a quantity which depends on the prior distribution P θ.
Therefore, it strongly depends on the hyper-parameters. The correct
average number of infectious individuals corresponds to θ∗, which is
labeled in the plot as the SEIR prior. In panel (c) an observation set
is taken in order to be typical, i.e. the number of observed infectious
individuals over time is proportional to the number infectious individuals
of the planted x∗. In this case, both the SI and the SEIR hyper-parameters-
inferring methods reproduce results comparable with the correct SEIR
prior.

4. In panel (d), the previous experiment is repeated. This time, however,
the observations set is biased, namely in this set there is a much higher
fraction of infectious individuals than in the planted. The two prior-
inferring methods both fail to reproduce the correct result for the average
number of infectious individuals. However, also this result is in the
direction of the model reduction because they both reproduce the same
incorrect number of infected individuals over time.

Of course, this is only a preliminary result which should be refined by e.g.
analyzing a comparison between SI model and very complex models as the open
ABM in [49]. Moreover, the tests performed so far are on single instances with
CVA, which is an approximate algorithm. A more solid result would require to
analyze the exact posterior for each possible graph, planted configuration and
observation. This is a bit far away from the technical possibilities we have at
the moment. However, a first step into classifying general posterior properties
is the topic of Chapter 3.
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Fig. 2.7 Test of model reduction from a SEIR to an SI model. The numerical
experiments are made on a proximity graph with N = 100 individuals and density
ρ = 2.2/N . The observed epidemic realizations are generated using a SEIR model
with γ∗ = 1/N , λ∗ = 0.3 (panels (a) and (b) and (c)) and λ∗ = 0.15 (panel (d)),
latency delay ν∗ = 0.5 and recovery delay µ∗ = 0.1 . In panel (a) the AUC is plotted
as a function of time and the number of observations is nobs = N/10. In panel (b)
the number is nobs = N/2. In both panels (a) and (b) the three different inferred
posterior CVA distributions are compared: the SEIR CVA posterior with correct
hyper-parameters (green diamonds), the SEIR CVA posterior with inferred hyper-
parameters (blue circles) and a SI CVA posterior with inferred hyper-parameters
(red squares). Shaded areas represent the error around the average value, computed
using 22 instances. In panels (c) and (d) the average fraction of infectious individuals
as a function of time estimated using the correct SEIR prior model (green diamonds),
a SEIR prior with the inferred hyper-parameters (blue circles), and a SI prior model
with the inferred hyper-parameters (red squares). The regimes shown correspond to
unbiased observations (panel (c) λ = 0.3), and to observations preferentially sampled
from large outbreaks (panel (d), λ = 0.15). The black curves represent the average
number of infectious of the planted trajectory. Shaded areas represent the standard
error computed from 40 realizations of the dynamics. Figure taken from [9]



Chapter 3

Thermodynamic ensemble
results

So far, we have studied the inference problem at a single instance level. This
means that we had a fixed contact graph G, a fixed planted configuration t∗ and
a fixed observations set O. The aim was to reconstruct t∗ by approximating the
posterior distribution. This chapter provides theoretical information bounds
to reconstruction, characterizing the epidemic regimes which are harder/easier
to infer. It is obvious that increasing the number (or decreasing the noise)
of observations always improves the quality of inference, but it is less clear
is the relation between inference quality and e.g. infection rate, patient zero
probability, network density. To answer these questions we need to find average
results (we don’t want our claims to be dependent on a particular network or a
specific epidemic trajectory). However, naively averaging over all the (infinite!)
set of graphs, planted trajectories and observations is unfeasible. We need to:

• average over specific sets or ensembles of graphs, e.g. random regular
graphs, Erdős–Rényi, etc...

• resort to finer techniques which allow to average over infinite sets.

The technique used is the replica symmetric cavity method [65, 66], introduced
later on (section 3.1.6) as an ensemble version of the belief propagation (BP)
algorithm (see for example [37], Belief Propagation, page 291). This chapter
starts introducing BP in general, as a method for (approximately) compute
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marginals of high-dimensional probability distributions. We illustrate an
application of BP to single instance inference, introducing sib [8], an algorithm
for risk assessment and patient zero reconstruction based on BP. The aim of
this Chapter is to present an ensemble generalization of sib, which we call
here epidemble (epidemic ensemble) [44], an algorithm based on the replica
symmetric cavity method and aimed at studying ensemble properties of the
posterior marginals.

3.1 Belief Propagation

We now give a brief overview of Belief Propagation (BP), mainly following [37],
[34] and [67]. Consider the problem of computing marginals of a probability
distribution P : X → [0, 1] of the form:

P (x) = 1
Z

M∏
a=1

ψa(xa), (3.1)

where x = (x1, . . . , xN) ∈ X and xa is the subset of (x1, . . . , xN) which the
function ψa depends on. This functional form includes equation (2.7), by setting
x = t, xa = ti, t∂i , M = N . This is thus a more general form w.r.t. epidemic
posterior and can be interpreted graphically as a factor graph.

3.1.1 Factor Graph

It is possible to associate a graph to probability distributions as the one in
equation (3.1): it is called factor graph and it is a bipartite graph, i.e. its
vertices belong to two disjoint sets and the edges only connect vertices of one
set with vertices of the other. To build the factor graph corresponding to
equation (3.1), take all the functions {ψa, a = 1, . . . ,M} and draw a square
vertex for each one. Label the square which corresponds to the function ψa

with the letter a. Then, draw a circular vertex for each of the coordinates
{xi, i = 1, . . . , N} of the domain variable x. We have now M squares and
N circles. Now, connect each square a to the circles corresponding to the
arguments of ψa. The factor graph is built, see Figure 3.1. The square vertices
are called function nodes, while the circular vertices are the variable nodes.
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Fig. 3.1 Construction of the factor graph. Left: for each function ψa a square vertex
(function node) a is drawn. At each variable xi is associated a circular vertex (variable
node). Right: a small example of factor graph, in which ψa = ψa(xi, xj , xk), ψb =
ψb(xi, xj) and ψc = ψc(xk).

Finally, we define the neighborhood ∂a of the function node a as the set of
variable nodes attached to a, i.e.

∂a = {i ∈ {1, . . . , N} : xi is an argument of ψa}.

Similarly, we define:

∂i = {a ∈ {1, . . . ,M} : ψa contains i as an argument}

3.1.2 BP update equations

Suppose we want to compute marginals of the distribution in equation (3.1). If
the functions {ψa, a = 1, . . . ,M} are such that the associated factor graph has
no loops, then it is possible to build an algorithm which exactly marginalizes the
distribution. The idea is that, if no loop is present, then the process of cutting
one edge separates the graph in two disjoints sub-graphs. This implies that two
variable nodes i, j attached to the same function node a become independent if
we remove the factor a, as shown in Figure 3.2. Identically, removing a variable
node separates the function nodes attached to it. We define, for a couple of
nodes node η, ζ, regardless of being function or variable nodes, the sub-graph :

S(ζ)
η = {(i, a) connected to η,∀ i ∈ {1, . . . , N},∀ a ∈ {1, . . . ,M} if ζ is removed}
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Fig. 3.2 Removing a node from the tree factor graph separates it in disjoint sub-
graphs. Left: removing a function node separates the nodes of ∂a. In this illustration
we represented i, j and their attached sub-graphs Si and Sj . The black dots represent
the other nodes in ∂a. The sub-graphs attached to the nodes in ∂a are separated if
a is removed. Right: if a node xi is removed, then the factors attached to it separate
and their attached sub-graphs become disjoint.

Fig. 3.3 BP message from i to a. The cavity is made by removing factor a.

We write S(ζ)
η = (V (ζ)

η , F (ζ)
η ), where V (ζ)

η and F (ζ)
η are respectively the set of

variable nodes and the set of function nodes in the sub-graph S(ζ)
η . Now we

can derive the Belief propagation equations. We define for each edge (i, a) the
quantity νi→a(xi) as the marginal distribution of xi in the factor graph from
which a is removed. The quantity νi→a(xi) is called cavity marginal because it
has been defined by removing a node (namely by generating a cavity). To have
an expression for the cavity marginal, we marginalize the distribution obtained
by removing the function node a from equation (3.1). The cavity marginal
νi→a(xi) is thus:

νi→a(xi) ∝
∑
x\xi

∏
b∈{1,...M}\a

ψb(xb).

Where the proportionality symbol is w.r.t. xi. Looking at Figure 3.3, we
understand that removing a separates the sub-graph S(i)

a attached to a from
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Fig. 3.4 The BP function-to-variable message from b to i. The cavity is made by
removing all the factors but b attached to xi.

the rest of the graph. Therefore, the sum over all the variable nodes in S(i)
a

does not depend on xi and it is just a proportionality term. We have:

νi→a(xi) ∝
∏

b∈∂i\a

∑
{xj}

j∈V
(i)
b

ψb(xb)
∏

c∈F
(i)
b

ψc(xc)

in which we switched the sum with the product because the sets S(i)
b for b ∈ ∂i\a

are disjoint due to the absence of loops. Defining:

ν̂b→i(xi) ∝
∑

{xj}
j∈V

(i)
b

ψb(xb)
∏

c∈F
(i)
b

ψc(xc), (3.2)

we have:
νi→a(xi) = 1

zi→a

∏
b∈∂i\a

ν̂b→i(xi). (3.3)

This is the first BP equation. The distribution ν̂b→i(xi), as written in equation
(3.2), is exactly equal to the marginal distribution of xi if the node xi was
attached only to b. Also the quantity ν̂b→i(xi), therefore, can be interpreted as
a cavity marginal: this time the cavity is made by removing all the function
nodes but b attached to xi. To distinguish between the sets of cavity marginals
{νi→a}a∈∂i

i=1,...,N and {ν̂a→i}a∈∂i
i=1,...,N we respectively call them variable-to-function

messages and function-to-variable messages. To rewrite the expression of
ν̂b→i(xi) only in terms of local 1 functions, we take its definition we rearrange

1i.e. involving only nodes attached to b
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products and sums keeping in mind the graphical interpretation in Figure 3.4:

ν̂b→i(xi) ∝
∑

xb\xi

ψb(xb)
∏

j∈∂b

∑
{xj}

j∈S
(b)
j

∏
c∈F

(b)
j

ψc(xc).

The equation might appear messy, but if we compare it with Figure 3.4 we
see that the first sum in the equation is over the first layer of variables xb \ xi;
then, for each variable j in this layer we sum over the sub-graph attached to it.
This sum is the marginal of each xj (for j ∈ ∂b) if we remove the factor b from
the graph. Thus, by definition of variable-to-function messages:

ν̂b→i(xi) = 1
zb→i

∑
xb\xi

ψb(xb)
∏

j∈∂b

νj→b(xj). (3.4)

This is the second BP equation. In equations (3.3) and (3.4) we have eliminated
the proportionality symbol by defining the normalization constants:

zi→a =
∑
xi

∏
b∈∂i\a

ν̂b→i(xi)

zb→i =
∑
xb

ψb(xb)
∏

j∈∂b

νj→b(xj),

which are simply obtained by summing over xi the numerator. The system of
equations (3.3) and (3.4) defines the update rule for BP: we can initialize the
messages {νi→a}a∈∂i

i=1,...,N and {ν̂a→i}a∈∂i
i=1,...,N , e.g. to constant distributions and

then iterate equations (3.3) and (3.4) until a fixed point is found. From the
fixed point messages, as shown in the net paragraph, it is possible to compute
marginals of the distribution (3.1). For a tree, this fixed point is always reached
and it is exact [37], i.e. all the marginals computed with BP are the exact
marginals of equation (3.1).

3.1.3 Marginals

The BP scheme allows to compute marginals as functions of the messages. For
example, to compute the marginal distribution of the node xi, i.e. pi(xi) =∑

x\xi
P (x), we can add a foo function node ãi to the original factor graph by

attaching it to the only variable xi. The marginal of pi(xi) is then equal to the
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variable-to-function message νi→ãi
(xi). In fact, this is the marginal of xi after

the removal of the foo node ãi, which is exactly what we are looking for. In
conclusion:

pi(xi) =
∑
x\xi

P (x) =

= 1
zi

∏
a∈∂i

ν̂a→i(xi)

and we can forget about the foo function node ãi. Note that we defined

zi =
∑
xi

∏
a∈∂i

ν̂a→i(xi)

Similarly, it is possible to compute the joint marginal of several variables [37].
An important example, which we use for the computation of energy, is the joint
marginal of the variables ∂a attached to a function node a:

p∂a(xa) = 1
za

ψa(xa)
∏

i∈∂a

νi→a(xi),

where:

za =
∑
xa

ψa(xa)
∏

i∈∂a

νi→a(xi).

The Belief Propagation scheme is a useful tool to compute marginals. In the
next paragraph we are going to estimate thermodynamic quantities using the
BP algorithm. Being able to evaluate the free energy, for example, is of extreme
importance for inferring the hyper-parameters.

3.1.4 BP estimation of thermodynamic quantities

We are now going to compute the BP equations for energy, entropy and free
energy.
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Energy The energy of a probability distribution of the form of equation (3.1)
can be expressed by first defining an Hamiltonian. We rewrite equation (3.1):

P (x) = 1
Z

exp
(

M∑
a=1

logψa(xa)
)

then, in analogy with canonical formalism in statistical physics (see equation
(1.5)), we define the Hamiltonian as:

H(x) = −
M∑

a=1
logψa(xa)

The internal energy can be defined as the average of the Hamiltonian:

U = −
M∑

a=1

∑
xa

p∂a(xa) logψa(xa) =

= −
M∑

a=1

1
za

∑
xa

ψa(xa)
∏

i∈∂a

νi→a(xi) logψa(xa).

This is the BP estimate of the internal energy, which for a tree is exact.

Entropy The entropy of the probability distribution in eq. (3.1) is:

S = −
∑

x

P (x) logP (x).

For a tree, there exists an exact formula for the distribution P (x) in terms of
the local marginals, which is very useful for computing the entropy:

P (x) =
M∏

a=1
p∂a(xa)

N∏
i=1

pi(xi)1−|∂i|. (3.5)

This can be proved by induction on the number M of function nodes. If M = 1,
then there is only one function node, so x = xa:

P (xa) = p∂a(xa)
∏

i∈∂a

pi(xi)1−1 = p∂a(xa)

which is a tautology. Assuming the formula to be correct for M function nodes,
we try to compute it for M + 1 function nodes. The idea is that, since the
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Fig. 3.5 The node a which is connected to only one node xi which has degree greater
than one. x̃ is the set of all the variable nodes except for ∂a \ i (i.e. the variable
nodes in the dashed ellipse).

graph is a tree, there must exist at least one function node a (located at the
border of the tree, see Figure 3.5) which is connected at most to one variable
node i which has degree greater than 1. We call x̃ = x \ {xj}∂a\i the vector of
all the variable nodes in the sub-graph i ∪ S

(a)
i induced by eliminating a. We

can write the probability of the whole graph by separating the terms coming
from ∂a \ i from the others:

P (x) = P(x̃)P(x \ x̃|x̃) = P(x̃)P({xj}∂a\i|x̃).

Where we are using the symbol P to indistinctly express marginals or conditioned
probabilities of P . The meaning of each term is determined by the variables’
names. Now we notice that the variables in ∂a \ i depend on x̃ only through xi:

P (x) = P(x̃)P({xj}∂a\i|xi) =

= P(x̃)P({xj}∂a\i, xi)
P(xi)

= (3.6)

= P(x̃)P(xa)
P(xi)

= P(x̃)p∂a(xa)
pi(xi)

.

We now compute P(x̃). Notice that P(x̃) = ∑
xa\xi

P (x). It is possible to
represent P(x̃) as a factor graph which is very similar to the one of P (x). It is
sufficient to define ϕa(xi) = ∑

xa\xi
ψa(xa). This is a function node attached
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to xi only. Therefore, we can then merge ϕa(xi) to another function node
c ∈ ∂i \ a, by simply defining ϕc(xc) = ϕa(xi)ψc(xc). The factor graph of P(x̃)
is therefore obtained from the one of P by:

• erasing the function node a and the variable nodes ∂a \ i ;

• substituting a function node ψc (c chosen from ∂i \ a) with the function
node ϕc.

The function P(x̃) is therefore now expressed with M function nodes, so we
can use the induction hypothesis:

P(x̃) = pi(xi)1−(|∂i|−1)

 b ̸=a∏
b=1,...M+1

p∂b(xb)
j ̸=i∏

j=1,...,N

pj(xj)1−|∂j|

 =

= pi(xi)2−|∂i|

 b̸=a∏
b=1,...M+1

p∂b(xb)
j ̸=i∏

j=1,...,N

pj(xj)1−|∂j|

 .
Using equation (3.6) we prove the thesis. Finally, we can write the equation
for entropy:

S = −
M∑

a=1

∑
xa

p∂a(xa) log p∂a(xa) −
N∑

i=1
(1 − |∂i|)

∑
xi

pi(xi) log pi(xi).

3.1.5 Loopy BP

All the results provided so far for the Belief Propagation algorithm are obtained
under the hypothesis that the factor graph is a tree. However, it is possible to
use the BP scheme for all the factor graphs: it is sufficient to define a couple
of messages νi→a and ν̂a→i for each edge (i, a) in the factor graph and update
the sets {νi→a}(i,a) and {ν̂a→i}(i,a) using equations (3.3) and (3.4). This scheme
is called loopy belief propagation, due to the fact that non-tree factor graphs
contain loops. In general, loopy BP is an approximate scheme which might
not provide the exact solution. However, in some cases the approximation is
very good. An example is in the epidemic case, where even when loops are
present BP is among the top performing methods (see Figures 2.4 and 2.5).
For a generic factor graph, we can mimic equation (3.5) and define the Bethe
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un-normalized probability:

P̂ (x) =
M∏

a=1
b∂a(xa)

N∏
i=1

bi(xi)1−|∂i|

where the letter b stands for the beliefs, i.e. the BP approximate marginals.

b∂a(xa) = 1
za

ψa(xa)
∏

i∈∂a

νi→a(xi)

bi(xi) = 1
zi

∏
a∈∂i

ν̂a→i(xi)

Beliefs are the approximations of the exact marginals of P (x), respectively
p∂a and pi. For tree factor graphs p∂a = b∂a and pi = bi, but when loops are
present, the beliefs are only approximations of the marginals. It is remarkable,
however, that the Bethe probability distribution just defined is related to the
exact joint [67] by a proportionality relation:

P̂ (x) =
M∏

a=1

(
b∂a(xa)∏
i∈∂a bi(xi)

)
N∏

i=1
bi(xi) =

=
M∏

a=1

( 1
za
ψa(xa)∏i∈∂a νi→a(xi)∏
i∈∂a

1
zi

∏
b∈∂i ν̂b→i(xi)

)
N∏

i=1

1
zi

∏
a∈∂i

ν̂a→i(xi) =

= ZP (x)
M∏

a=1

( 1
za

∏
i∈∂a νi→a(xi)∏

i∈∂a
1
zi

∏
b∈∂i\a ν̂b→i(xi)

)
N∏

i=1

1
zi

=

= ZP (x)
M∏

a=1

( 1
za((((((((∏

i∈∂a νi→a(xi)∏
i∈∂a

zi→a

zi �����νi→a(xi)

)
N∏

i=1

1
zi

=

= ZP (x)
(

M∏
a=1

1
za

) M∏
a=1

∏
i∈∂a

zi

zi→a

( N∏
i=1

1
zi

)
=

= Z∏
a za

∏
(a,i)

zi→a

zi

∏
i zi

P (x) =

= Z

ZBethe
P (x).

This results is valid for a generic factor graph and states that the Bethe
distribution is:

• non normalized;
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• proportional the exact joint distribution.

The quantity:

FBethe = − logZBethe = −
∑

a

log za −
∑
(a,i)

log zi→a

zi

−
∑

i

log zi (3.7)

is called Bethe free energy. For a tree, the Bethe free energy coincides with the
free energy F = − logZ. Notice that the term zi→a

zi
can be rewritten. In fact:

zi =
∑
xi

∏
b∈∂i

ν̂a→i(xi) =
∑
xi

ν̂a→i(xi)
∏

b∈∂i\a

ν̂b→i(xi) =

=
∑
xi

ν̂a→i(xi)zi→aνi→a(xi)

So we have that:
zi

zi→a

=
∑
xi

ν̂a→i(xi)νi→a(xi) =: zia

Notice that these passages are only valid at fixed points because in these
manipulations we are using BP iterations as if they were identities. We can
therefore rewrite the Bethe free energy in a form which is more useful for the
epidemic problem:

FBethe = − logZBethe = −
∑

a

log za +
∑
(a,i)

log zia −
∑

i

log zi. (3.8)

3.1.6 Generalization to the Ensemble: Cavity Method

The BP equations described so far consist in an iterative scheme aimed at
marginalizing a fixed probability distribution P (x). However, in physics and
inference, one is sometimes interested in studying averages over an ensemble
of distributions {PJ(x)}J∈J , in which J is a random vector. In physics, for
example, J may be the set of the ferromagnetic and antiferromagnetic couplings
of an amorphous material. Each piece of material corresponds to a certain
fixed configuration J of couplings. Averaging over J , therefore, enables to find
general properties of the material, regardless of the specific piece considered.
The single piece of material in physics corresponds to the single instance in
inference. For example, the quantity corresponding to J in inference is the
triplet G, τ,O of contact graph, planted configuration and observations set.
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The variable J is called disorder in the physicists’ language and the average
over J is called average over disorder or ensemble average. It is possible to
extend the Belief Propagation algorithm to compute ensemble averages with
the so called replica symmetric cavity method ([37], Probabilistic analysis, pag.
321). This scheme is computationally similar to BP, but conceptually different:
at fixed J , the BP equations can be iterated until convergence of messages
{νi→a}(i,a) , {ν̂a→i}(i,a). Those messages depend on the value of J (which enters
the BP equations through the function nodes), so we now explicitly call them
{ν(J)

i→a}(i,a) , {ν̂(J)
a→i}(i,a). However, we observe that each message νi→a (or ν̂a→i)

at fixed J explicitly depends only on a sub-vector J i→a (respectively Ja→i) of
the disorder: we can therefore rewrite the set of messages as {ν(Ji→a)

i→a }(i,a) ,
{ν̂(Ja→i)

a→i }(i,a). The idea of the replica symmetric cavity method for averaging
over J is to extract a disorder instance J i→a (respectively Ja→i) altogether
with every update of the BP message νi→a (respectively ν̂a→i). The central
hypothesis of the method is that this process converges to a fixed distribution
Ψ(ν, ν̂) of messages. To understand where this hypothesis comes from, we can
think of running BP on an infinite graph. At the fixed point the distribution
of messages Ψ(ν, ν̂) remains unaltered if we keep BP running. Of course, it
is impossible to effectively run BP on an infinite graph, so the cavity method
resorts on finding a fixed point of the distribution of messages Ψ(ν, ν̂). We can
imagine one iteration of the cavity method as a single BP update of one message
in the infinite graph. A way to implement this method numerically is to use
the so called population dynamics technique. This consists in approximating
the distribution Ψ(ν, ν̂) with a histogram of messages. Typically, a number n
is fixed, which is called the population size; n function-to-variable {ν̂i}n

i=1 and
n variable-to-function {νi}n

i=1 messages are initialized. Then the BP scheme
is used altogether with the ensemble sampling. For example, to update the
variable-to-function message νk, the replica symmetric cavity method requires
to:

1. Extract the number dres of entering messages. This number is called
residual degree and is the number of incoming function-to-node messages
needed to update νk. If we call (i, a) the edge on which the variable-to-
function message νk lays, then the residual degree is |∂i \ a|. If the degree
distribution of a graph is known, then the residual degree distribution is
also known, see Appendix B.
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2. Take dres function-to-variable messages in {ν̂i}n
i=1

3. Extract the sub-vector Jk which enters the BP equation for νk.

4. Use the BP equation to update νk.

When the empirical distribution of messages converges, the messages can be
used to evaluate ensemble properties. For example, to compute the one-point
marginal b, it is sufficient to average among a population of believes, namely:

1. extract the degree d of a randomly chosen node from the degree distribution;

2. extract d function-to-variable messages from the converged set {ν̂i}n
i=1;

3. extract the sub-vector J1 of disorder needed to compute a single belief ;

4. compute the corresponding BP belief bJ1

5. repeat for m ∝ n times

6. average among the m beliefs: b(x) = 1
M

∑m
k=1 b

Jk(x).

Notice that the cavity method relies on two crucial hypothesis: the independence
of the entries of each J and the replica symmetric assumption. The first
hypothesis is used during the update: we should, for every update, sample an
entire single instance of disorder J . This is however unfeasible, due to the fact
that when the system is at thermodynamic limit J has infinite coordinates.
However, hypothesizing independence among the entries of J , we can extract
only the sub-vector J i→a which enters the BP update equation. If the disorder
is correlated, this procedure is no longer valid and the cavity method can not be
used. In epidemics, the role of J is played by the graph and planted trajectory
t∗, which is a vector of random infection times. These times are correlated by
the underlying stochastic dynamics which generated them. It is therefore not
possible to apply the cavity method immediately and it is necessary to build
a machinery to map the disorder onto a larger space of independent entries,
as explained in section 3.3.1. The second hypothesis is the replica symmetry.
For updating, e.g., a function-to-variable message, we first have to extract the
incoming variable-to-function messages in order to run BP. This extraction
is made randomly uniform on the set {νi}n

i=1. This means that each message



3.2 Sib: the BP Application to Epidemics 103

is equivalent to the others and no correlation among messages is considered.
This equivalence among messages is the replica symmetric hypothesis. There
are methods that generalize the cavity to the 1RSB phase, but we refer the
reader to [37], The 1RSB cavity method. pag. 429. The replica symmetric
cavity method, together with population dynamics, is the tool which we are
going to use in the epidemic problem. In replica symmetric regimes, we expect
the method to provide exact results (except for the numerical approximation
due to the finite size of the population) for all the graph ensembles having
no short loops, i.e. the only cycles allowed must diverge with the graph size.
Before entering the details, it is useful and pedagogical to talk about Sib, the
application of the BP scheme to epidemic inference at fixed instance.

3.2 Sib: the BP Application to Epidemics

The algorithm which applies BP to epidemic inference is called Sib [8, 6].
Some results of Sib are presented, in comparison with the Causal Variational
Approach, in section 2.4. Sib has proved to be one of the top performing
methods in epidemic Bayesian inference. In this thesis, we are only going to
give a brief introduction to the method, referring the reader to [8, 6] for the
results and the details .

3.2.1 Effective loops in factor graph

The idea behind Sib is simple. We take the epidemic posterior and we rewrite
it in the form of a factor graph, then we run BP. However, there are some
difficulties which arise when we build the graph and some refinements must be
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Fig. 3.6 The naive factor graph construction in paragraph 3.2.1 introduces loops in
the factor graph corresponding to a tree contact network.

done. Let us start by writing the epidemic posterior (see section 2.1.4):

P(t|O) = 1
P (O)P (t)P (O|t) =

= 1
P (O)

(
N∏

i=1
ψ(ti, t∂i)

)(∏
o∈O

p(o|toi
)
)

=

= 1
P (O)

N∏
i=1

ψ(ti, t∂i)
∏

o∈O:oi=i

p(o|ti)
 =

= 1
P (O)

N∏
i=1

Ψi(ti, t∂i), (3.9)

where we defined

Ψi(ti, t∂i) = ψ(ti, t∂i)
∏

o∈O:oi=i

p(o|ti) (3.10)

and {o}i = {o : oi = i}. We have a distribution which is the product of
local factors, as in eqn (3.1). In this case, the number of variable nodes N
coincides with the number of function nodes. One is tempted to take this
distribution and immediately use BP. To do so, it is sufficient to associate a
function node for each of the factors Ψi and to associate a variable node for
each ti, with i = 1, . . . , N . Then, one simply connects each function to its
variables. However, this is not a good strategy. In fact, as shown in Figure
3.6, a tree contact network is mapped onto a loopy factor graph. This implies
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Fig. 3.7 The construction of tree factor graphs as in Sib. Left: the original contact
network is a tree. Center: the central idea for building a tree factor graph is
to associate to each link (i, j) a variable node ti, tj . However, this construction
introduces the variable ti in more nodes. This makes no sense, since different variable
nodes should represent different variables. In general, a variable tj in this scheme is
introduced |∂j| times. Right: the definitive construction of the factor graph. The
problem of introducing the same variable in more nodes is solved by the definition of
copies: for each individual i are defined |∂i| copies of its dynamic state, one for each
link. This way different nodes correspond to different variables. However, since we
want all the copies t(j)

i to have the same value for each j ∈ ∂i, we also introduce the
variable ti which is attached only to Ψi, which we redefined by including the hard
constraint

∏
j∈∂i δti,t

(j)
i

.

that BP would provide inexact results even if the contact graph is a tree. This
limitation can be overcome by a more clever construction, described in [8]: the
idea is to build the factor graph by associating to each individual i the function
node Ψi and at each edge (i, j) the variable node made by the couple (ti, tj).
In other words, we have enlarged the variable nodes’ domain, as in Figure 3.7,
center. Having associated a variable node to each edge allows to eliminate the
loops of the previous construction. This way, a tree contact network is mapped
onto a tree factor graph. As a consequence, the BP algorithm is at least exact
for tree contact networks. However, we are still not able to run BP for this
factor graph. In fact, we developed the method in the previous sections under
the hypothesis that each variable node represented a different variable. In this
case, instead, the variable nodes (ti, tk) and (ti, tl) have the trajectory variable
ti in common. Therefore, we still have to modify a bit the construction of the
factor graph. We need to define, for each individual i (i.e. for each function
node Ψi) a set of copies {t(j)

i , j ∈ ∂i}. Every copy represents the trajectory of
i. For the link (i, j), the node is defined as the couple (t(j)

i , t
(i)
j ). This way, we

have that different nodes are made by different variables. BP can be run. Still,
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there is a problem: we want all the copies to have the same value. We need
to introduce a constraint for each of the Ψi. To do so, we attach to each Ψi

a new variable node ti. Now Ψi is a function of (ti, {t
(j)
i }j∈∂i, {t(i)j }j∈∂i). The

first arguments, ti, {t
(j)
i }j∈∂i, all represent the same trajectory. We therefore

multiply each Ψi for the constraint that all the copies must be equal to ti:

ϕi(ti, {t
(j)
i }j∈∂i, {t(i)j }j∈∂i) = Ψi(ti, {t

(j)
i }j∈∂i, {t(i)j }j∈∂i)

∏
j∈∂i

δ
ti,t

(j)
i
. (3.11)

There is a little abuse of notation here. In fact, as defined in equation (3.9),
the function Ψi does depend only on ti, t∂i. We instead used the same symbol
Ψi for a function of the copies ti, {t

(j)
i }j∈∂i, {t(i)j }j∈∂i. However, the effect of

the copies is simply to substitute the variable t(j)
i to the variable ti when the

link i, j is taken into account. We temporally changed symbol to ϕi when we
added the constraints. However, it is easy to get lost only looking at equations.
To effectively run BP, it is necessary to have the graphical counterpart in
mind (Figure 3.7, Right). When looking at figures, it becomes clear what
are exactly the arguments of each function node. To avoid introducing new
symbols, therefore, we are going to keep calling Ψi the function nodes with the
constraints on the copies.

3.2.2 BP equations for epidemic model

The factor graph for the epidemic model has two different kinds of variable nodes:
the couple-trajectory and the single-trajectory nodes. The single-trajectory
nodes all have degree one because they are attached only to their corresponding
function node, while the couple-trajectory ones all have degree 2. Distinguishing
the two nodes types allows to reduce the set of message passing BP equations.
Looking at Figure 3.7, Right, we write down the BP equations. Let’s start with
variable-to-function messages, equation (3.3).

ν(k,i)→Ψi
(t(i)k , t

(k)
i ) = ν̂Ψk→(k,i)(t(i)k , t

(k)
i ) (3.12)

νk→Ψk
(tk) ∝ 1 (3.13)
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these first two equations are trivial due to the degree of the variable nodes.
The function-to-variable messages are nontrivial:

ν̂Ψi→(k,i)(t(k)
i , t

(i)
k ) ∝

∑
{t

(i)
j ,t

(j)
i }j∈∂i\k

Ψi(ti, {t
(j)
i }j∈∂i, t

(i)
∂i )

∏
j∈∂i\k

ν(j,i)→Ψi
(t(i)j , t

(k)
i )

(3.14)

ν̂Ψi→i(t(k)
i ) ∝

∑
{t

(i)
j ,t

(j)
i }j∈∂i

Ψi(ti, {t
(j)
i }j∈∂i, t

(i)
∂i )

∏
j∈∂i

ν(j,i)→Ψi
(t(i)j , t

(k)
i ).

(3.15)

Notice that in equation (3.14) there is also the message νi→Ψi
(ti) in the product,

but it was not written because it is a constant of proportionality, as stated
in equation (3.13). In principle we have now four equations for updating the
messages and we want to find a fixed point. In fact, we can reduce the number of
update equations to one. Indeed, equation (3.13) does not update the messages.
Moreover, equation (3.12) can be plugged into equations (3.14) and (3.15):

ν̂Ψi→(k,i)(t(k)
i , t

(i)
k ) ∝

∑
{t

(i)
j ,t

(j)
i }j∈∂i\k

Ψi(ti, {t
(j)
i }j∈∂i, t

(i)
∂i )

∏
j∈∂i\k

ν̂Ψj→(j,i)(t(i)j , t
(k)
i )

(3.16)

ν̂Ψi→i(t(k)
i ) ∝

∑
{t

(i)
j ,t

(j)
i }j∈∂i

Ψi(ti, {t
(j)
i }j∈∂i, t

(i)
∂i )

∏
j∈∂i

ν̂Ψj→(j,i)(t(i)j , t
(k)
i ).

(3.17)

So we have only two update equations, but we don’t really need to solve them
both: equation (3.16) is a relation among the set of messages {ν̂Ψi→(k,i)}i=1,...,N

k∈∂i

and does not depend on the set {ν̂Ψi→i}i=1,...,N . Iterating equation (3.16) until
convergence leads to fixed point cavity marginals. To compute marginals, we
observe that the messages in enq (3.17) are the marginals, because there is
no cavity in considering that Ψi is the only factor of i. The Sib algorithm
works by finding the fixed point of eqn (3.16). In the original paper [8],
some optimizations are made to increase the velocity of computation of the
updates. We refer the interested reader to the paper. Moreover, some similar
optimizations are discussed in the next section for the cavity method.
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3.3 Cavity method application to Epidemic

Being able to reconstruct the epidemic posterior is a crucial task. However,
sometimes the available information (e.g. the number or the quality of the
clinical tests) might not be enough to make reasonable predictions. In that
case, it is meaningless to run any inference algorithm (as CVA or Sib). It is
therefore desirable to develop a method which might predict the feasibility
of inference for each epidemic regime. In this section we study Epidemble,
a method that quantifies information bounds, identifying the regimes where
inference is possible. The method computes the expected values of the most
used statistical estimators (e.g. AUC, MME, MMO) as functions of the epidemic
hyper-parameters. In order to evaluate such expected values, the method works
at the thermodynamic limit, namely for the total number N of individuals
that goes to infinity. This is achieved by means of the replica symmetric cavity
method. Epidemble is therefore the ensemble version of the Sib algorithm,
section 3.2. However, passing from the single instance to the ensemble algorithm
is nontrivial, due to correlations in the planted times, which make impossible
to directly apply the population dynamics technique to the problem. This issue
and its solution are described in the next section, where Epidemble method is
presented.

3.3.1 The disorder is correlated

This entire section is devoted to the SI model2, so we are going to lighten a
bit the notation: to express the infection time of an individual i we will write
ti instead of tIi , forgetting about the superscript I. An epidemic trajectory
is therefore t = (t1, . . . , tN) and this notation is adopted interchangeably
with x = {xt

i,∀i = 1, . . . , N, ∀t = 1, . . . , T}. The cavity method assumes
independence of the entries of disorder: to update a message, in fact, the sub-
vector of the disorder needed to compute the BP update is sampled. Disorder,
however, is correlated in the epidemic problem. To see this, let us distinguish
among the two sources of random disorder: the graph G and the planted

2because all the difficulties are already present in the SI model. It is in fact quite simple to
generalize to SIR and SEIR model the cavity method described in this section, see subsection
3.4.9
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time, which we indicate now with the letter τ . The disorder due to graph is
independent: to update the message, we sample each degree independently of
the other according to the degree distribution, as described in section 3.1.6 .
The entries of the planted, instead, are not independent of each others. This
impedes a possible direct application of the cavity method to the Sib equation
(3.16).

3.3.2 Failure of cavity method for correlated disorder

To see where the cavity method breaks down, let us simplify the treatment by
supposing that every individual is observed at time T without noise (false rate).
We start from equation (3.16) for the SI model and try to build the (naive)
ensemble version from it:

ν̂Ψi→(k,i)(t(k)
i , t

(i)
k ) = 1

zΨi→k

∑
{t

(i)
j ,t

(j)
i }j∈∂i\k

Ψi(ti, {t
(j)
i }j∈∂i, t

(i)
∂i )

∏
j∈∂i\k

ν̂Ψj→(j,i)(t(i)j , t
(k)
i )

Notice that Ψi(ti, {t(j)
i }j∈∂i, t

(i)
∂i ) by definition in equation (3.10) depends on the

observation on the individual i, which is for hypothesis noiseless and at final
time. To implement the cavity method we would be tempted to initialize a
population of messages {ν̂k}n

k=1 and to design the following update algorithm:

1. Extract an entry j ∈ {1, . . . , n} with the aim of updating ν̂j.

2. Extract the number d− 1 from the residual degree distribution.

3. Extract d− 1 random messages from {ν̂k}n
k=1

4. Extract the infection time τj and the observation from it: o = (os, oi, ot, of ),
where os = Sδτj ,T +1 + I(1 − δτj ,T +1), oi = j, ot = T , of = 0.

5. Update νj with the Sib BP equation (3.16).

This algorithm is not possible to run due to passage 4. The extraction of τj can
be done only extracting the whole stochastic process of epidemic spread. In
other words, the components of τ are correlated by the dynamic. This simple
version of the cavity method is therefore not doable.



110 Thermodynamic ensemble results

3.3.3 Enlarging the disorder space to make it independent

We need to represent the planted trajectory (planted disorder) by means of a
set of independent random variables. To do so we have to look at a deeper
level in the stochastic prior process. There is a way to generate an epidemic
cascade by sampling a set of independent variables. We describe it now for
a finite single instance, so to write new BP equations which admit a cavity
extension. To represent the planted τ with independent disorder, it is sufficient
to sample for each node i = 1, . . . , N its time-zero state x0

i ∈ {0, 1}, a boolean
variable which states if the individual is a patient zero (0 = S, 1 = I), and
for each edge (i, j) ∈ E , a couple sij and sji of infection delays. Each sij is a
number representing the time needed for the individual i, from the moment it is
infectious, to infect j in the absence of any other neighbor. For example, if the
infection time of i is τi, then if x0

j = 0 and ∂j = {i}, it is true that τj = τi + sij .
In general, an individual k is either a patient zero or has an infection time
which is the minimum among the tentative infection times from its neighbors:

τk = (1 − x0
k) min

j∈∂k
{τj + sjk}. (3.18)

If we extract all the {x0
i }i=1,...,N , {sij}j∈∂i

i=1...,N then there exists one unique
trajectory associated to them3, which satisfies equation (3.18) for all k =
1 . . . , N and can be numerically obtained by Algorithm 4. Notice now that all
the variables {x0

i }i=1,...,N , {sij}j∈∂i
i=1...,N are independent from each others: each

x0
i is sampled from p(x) = δx,0(1 − γ) + δx,1γ; each sij is sampled from the

probability that an infectious individual i infects a susceptible individual j:
p(s) = λ(1 − λ)s. We therefore have a set of random independent variables
which can be used to represent the planted τ . We can therefore set the planted
disorder to D = {x0

i }i=1,...,N , {sij}j∈∂i
i=1...,N . The probability of having a trajectory

τ given the disorder set D = {x0
i }i=1,...,N , {sij}j∈∂i

i=1...,N is a deterministic function
3the converse is not true: we might have that the same epidemic trajectory corresponds

to different extractions of delays.



3.3 Cavity method application to Epidemic 111

Algorithm 4 Building the trajectory from the patient zero states and the
infection delays
Input: {x0

i }i=1,...,N , {sij}j∈∂i
i=1...,N and the contact graph G.

Output: the planted τ .

• Initialize a queue τ q = (τ q
1 , . . . , τ

q
N ) and a vector of times τ = (τ1, . . . , τN ).

• Set τ q
i = 0 if x0

i = 1 for each i = 1, . . . , N .

• Loop over time t = 0, . . . , T

– Loop over the queue tq by entering from its minimum value τ q
k

∗ Set τk = τ q
k

∗ Infect the neighbors of k: set τ q
j = min(τ q

j , τ
q
k + skj) for all

j ∈ ∂k

∗ Remove τk

• Return τ .

which factorizes over local contributions:

P (τ |D) =
N∏

i=1
I
[
τi = x0

i min
j∈∂i

{τj + sji}
]

= (3.19)

=
N∏

i=1
ψ∗(τi, τ∂i|x0

i , {sji}j∈∂i).

Where we defined

ψ∗(τi, τ∂i|x0
i , {sji}j∈∂i) = I

[
τi = x0

i min
j∈∂i

{τj + sji}
]
. (3.20)

We now write the BP equations for the joint distribution P(τ ,O, t|D). Since
this joint only depends on independent disorder (graph disorder and planted
disorder D), it will be possible to extend BP to replica symmetric cavity
method.

3.3.4 Factor graph for the enlarged distribution

To summarize, even though the posterior at fixed disorder (network and planted)
is a product of local factors (eqn.(3.9)), the cavity method is not implementable
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because the entries of the planted are correlated. A way to circumvent this
problem is to pass to the time-zero and delays representation of the planted
trajectory, D = {x0

i }i=1,...,N , {sij}j∈∂i
i=1...,N . This allows to work with independent

disorder. The price to pay is to enlarge the domain of the distribution studied:
instead of the posterior, we have to study the joint P(τ ,O, t|D), which is:

P (τ ,O, t|D) = P (τ |D)P (O|τ ,D)P(t|O, τ ,D) (3.21)
= P (τ |D)P (O|τ ,D)P(t|O) = (3.22)

= 1
P (O)P (τ |D)P (O|τ ,D)P (O|t)P (t). (3.23)

Where equation (3.21) is the definition of conditional probability and the
passage to eqn.(3.22) is due to the fact that the posterior does not depend
on the disorder: during the inference process, the information on the planted
is all contained in the observation set O. This passage is a definition: we
define the inference process by claiming that the posterior has no access to the
information on the trajectory except from the observations. Finally, equation
(3.23) is obtained from the previous line by using Bayes’ law on the posterior.
Each factor in equation (3.23) corresponds to one of the three steps of the
process:

1. sampling the planted from the disorder using P (τ |D), which is a deterministic
process since the disorder fixes the trajectory, equation (3.19);

2. sampling the observations from the planted and the disorder via P (O|τ ,D).

3. sampling a configuration from the posterior P(t|O).

Let us discuss the observation term P (O|τ ,D). It is a function of the only
planted trajectory in the case of all noiseless observations at final time:

P (O|τ ,D) =
∏
o∈O

I
[
os =

(
Sδτoi ,T +1 + I(1 − δτoi ,T +1)

)]
= P (O|τ). (3.24)

We recall here that each observation o is represented by a 4uple o = (oi, os, ot, of ),
where oi is the individual tested, os is the observed state, ot is the time at
which the test is made, of is the false rate (see subsection 2.1.4. If all the
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observations are noiseless and made at time T , then we have ot = T and of = 0
for all o ∈ O. To deal with a generic number of observations, with nonzero
false rate (which however we suppose to be constant: of = f, ∀o ∈ O) and
random observation times, it is necessary to introduce new disorder variables:

• the total number of observations per individual {ni
o}N

i=1. Each individual
i is observed ni

o times. We therefore have that the observation set O has∑N
i=1 n

i
o elements.

• the error bits set {εo}o∈O. Each εo ∈ {0, 1} is a boolean variable that
states if the observation o is corrupted or not. Each εo is independent of
the other sources of disorder and it is drawn from the bimodal probability
p(ε) = fδε,1 + (1 − f)δε,0, where f is the false rate.

• the observation times {to}o∈O. Each observation time to simply represents
the time at which observation o is made.

Notice that these new variables are independent of each others. By defining
the observation disorder set as

Do =
{
{εo, to}o∈O, {ni

o}N
i=1

}
The probability of observations O given the planted τ and the observation
disorder Do is again a deterministic function:

P (O|τ ,Do) =
∏
o∈O

I [os = flip (SI[τoi
> to] + II[τoi

≤ to], εo)] =

=
∏
o∈O

p∗(o|τoi
, εo, to)

where:

flip(S, ε) =

I ε = 1
S ε = 0

flip(I, ε) =

S ε = 1
I ε = 0

.

The equation simply generalizes eqn.(3.24) by considering generic observation
times and flipping the result of the observations according to the disorder bits.
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Also the joint in equation (3.23) depends now on the observation disorder:

P (τ ,O, t|D,Do) = 1
P (O)P (τ |D)P (O|τ ,Do)P (O|t)P (t). (3.25)

Notice that at fixed Do and τ , the observation set is fixed. But it is also
true that at fixed D the planted τ is fixed. At fixed D and Do, therefore, the
observation set O is fixed. We can therefore sum the joint distribution in eqn.
(3.23) over O obtaining:

P (τ , t|D,Do) = 1
P (O∗)P (τ |D)P (O∗|t)P (t), (3.26)

where O∗ is the only observation set such that P (O∗|τ ,Do) = 1. Let us define
Z(D,Do) := P (O∗) and

ξ(t, τ ; Do) : = P (O∗|t) =
N∏

i=1

∏
o∈O∗:oi=i

p(o|ti)p∗(o|τi, εo, to)

Where we simply wrote the likelihood expression for the observation set
O∗,which is fixed by the planted τ and the observation disorder Do. The
first factor p∗(o|τi, εo, to) ensures that the observation is sampled consistently
with the prior and the disorder. The second term comes from the likelihood
and weights each infection time with the observation. With these definitions,
equation (3.26) becomes:

P (τ , t|D,Do) = 1
Z(D,Do)

P (τ |D)ξ(t, τ ; Do)P (t)

Notice that the observation term ξ couples the planted and inferred times.
Substituting the definition of each term inside the joint, we obtain the factorized
form:

P (τ , t|D,Do) = 1
Z(D,Do)

N∏
i=1

ψ∗(τi, τ∂i|x0
i , {sji}j∈∂i)ξi(τi, ti|{εo, to}oi=i)ψi(ti, t∂i).

(3.27)
Where we defined the observation factor ξi as:

ξi(τi, ti|{εo, to}oi=i) =
∏

o∈O:oi=i

p∗(o|τi, εo, to)p(o|ti)
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Fig. 3.8 The factor graph representation of the joint distribution in equation (3.28),
which corresponds to the joint (3.27) in which loops have been removed by introducing
copies. Left: a tree-like network of individuals i, j, k, l,m, n. Right: the corresponding
factor graph

We have a factor graph form, as in equation (3.1), which can be treated similarly
to equation (3.9) in Sib. The main difference is that we now have that the
dynamical variables are both the inferred t and the planted τ . We therefore
have to define super-variable nodes containing couples of planted and inferred
times. Similarly to the single-instance case, the factor graph associated to
equation (3.27) contains loops even if the underlying contact network is acyclic.
Therefore, copies of the infection times (both planted and inferred) must be
introduced. We therefore use the same idea of Sib by placing a function node
Ψi for each individual i ∈ {1, . . . , N}; for each edge (i, j) we place instead a
super-variable node Tij := (τ (j)

i , τ
(i)
j , t

(j)
i , t

(i)
j ), as shown in Figure 3.8. Adding

the constraints that the copies of the same infection time must be equal to
each others, the joint distribution in equation (3.27) becomes:

P ({Tij}(ij)∈E |D,Do) = 1
Z(D,Do)

=
N∏

i=1
Ψi({Til}l∈∂i|Di), (3.28)

where Di = {{εo, to}o:oi=i, {sli}l∈∂i, x
0
i } and each factor is:

Ψi({Til}l∈∂i|Di) = ξ(τ (j)
i , t

(j)
i |{εo, to}oi=i)ψ∗(τ (j)

i , τ
(i)
∂i |{sli}l∈∂i, x

0
i )×

× ψ(t(j)
i , t

(i)
∂i )

∏
l∈∂i

δ
t
(j)
i ,t

(l)
i
δ

τ
(j)
i ,τ

(l)
i

(3.29)

Now we finally have a factor graph on which BP equations can run.
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Fig. 3.9 BP messages for the joint factor graph.

3.3.5 Cavity messages for the enlarged distribution

With the help of Figure 3.9, the BP update equations are:

ν̂Ψi→(i,j)(Tij) = 1
zi→j

∑
{Tki}k∈∂i\j

Ψi({Til}l∈∂i|Di)
∏

k∈∂i\j

ν(k,i)→Ψi
(Tki)

ν(i,j)→Ψj
(Tij) = ν̂Ψi→(i,j)(Tij)

which reduce to:

ν̂Ψi→(i,j)(Tij) = 1
zi→j

∑
{Tki}k∈∂i\j

Ψi({Til}l∈∂i|Di)
∏

k∈∂i\j

ν̂Ψk→(k,i)(Tki). (3.30)

If we call T the horizon time (the total number of time-steps in the epidemic
process), then each message is defined over a domain of O(T 4) values. We
expect, therefore, the BP algorithm to scale with a fourth power w.r.t. total
time. This performance can be optimized to O(T 2), as shown in the Appendix
D and in [44]. Equation (3.30) is the analogous of the Sib equation (3.14), with
the remarkable difference that this allows to build the ensemble counterpart by
means of cavity equations. It is sufficient to extract a sub-vector of disorder (in
particular: a message to update in the population, its residual degree dres, the
time zero state x0

i , the set of incoming delays {sli}l∈∂i, the corruption bits and
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Algorithm 5 Replica symmetric cavity method update using population
dynamics.
Input: degree distribution p(d), infection probability λ, patient zero probability
γ, population {ν̂i}n

i=1 of size n, false rate f .
Output: nothing, the Algorithm updates one message of the population.

• Extract i ∈ {1, . . . , n} uniformly random, this is the index of the message
ν̂i that will be updated.

• Extract, from the residual distribution of p(d), the residual degree dres ∼
pres(dres), see Appendix B

• Extract, from the population, dres incoming messages and call them
{νk}k∈∂i\j

• Set the initial state x0
i = 1 with probability γ, otherwise set x0

i = 0.

• Extract dres independent incoming delays s1, . . . , sdres , sampled from
p(s) = λ(1 − λ)s−1.

• Extract a random number of observations nobs on individual i.

• for o ∈ nobs:

– extract a uniform random observation time to ∈ {0, . . . , T}.
– extract a corruption bit εo = 1 with probability f .

• Now equation (3.30) can be computed. Use it to update ν̂i.

the observation times {εo, to}o∈O, which we remark here are all independent of
each others), as explained in Algorithm 5.

3.3.6 Marginal computation

The computation of marginals from the messages is a crucial task. For example,
it allows to check the convergence of the algorithm: suppose we have, after k
sweeps4, that the population is {ν̂(k)

i }n
i=1. To compute the marginals, we just

4a sweep is defined as an update of the population, so n message updates form a sweep.
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Algorithm 6 Computing the average marginal
Input: degree distribution p(d), infection probability λ, patient zero probability
γ, population {ν̂i}n

i=1 of size n, false rate f .
Output: the average marginal.

• Initialize the average marginal m as a matrix of zeros with the size of
T × T .

• for i = 1, . . . , n

– Extract the degree d from the degree distribution p(d),
– take d messages from the population
– extract one incoming infection delays for each of the d messages
– extract one time-zero state x0

i

– extract a number of observations, the observation times, the error
bit

– use equation (3.31) to compute the belief b(ti, τi) for each ti and τi

– m(ti, τi)+ = b(ti, τi)/n

• Return m

have to extract the disorder and use the BP expression for the beliefs:

b(ti, τi) = 1
zi

∑
{Til}l∈∂i

Ψi({Til}l∈∂i|Di)
∏
l∈∂i

δ
ti,t

(l)
i
δ

τi,τ
(l)
i
ν̂Ψl→(l,i)(Tli). (3.31)

By averaging over the disorder, the average belief is found, as described in
Algorithm 6. Once the average marginal m(ti, τi) is found, we can compute for
example the fraction of prior infectious individuals:

n∗
I(t) =

∑
τi≤t

∑
ti

m(ti, τi) =
∑
τi≤t

m∗(τi).

This function should converge (apart from fluctuations of the order 1/
√
n due

to the finite population size n) to a fixed function when the cavity method
converges in population. Computing marginals is therefore a good way to
build a convergence criterion. Notice that the posterior number of infectious
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individuals,
nP

I (t) =
∑
τi

∑
ti≤t

m(ti, τi) =
∑
ti≤t

m(ti),

must be equal to the prior number n∗
I(t) under the Bayes optimal conditions.

This is a direct consequence of the Nishimori conditions, section 1.2.6.

3.3.7 Bethe free energy computation

Using equation (3.8):

FBethe = − logZBethe = −
∑

a

log za +
∑
(a,i)

log zia −
∑

i

log zi =

= −
∑

i

log zΨi
+ 1

2
∑

i,j∈∂i

log zij,

we can compute the Bethe free energy. Recall the definitions of each term:

za =
∑
xa

ψa(xa)
∏

i∈∂a

νi→a(xi)

zia =
∑
xi

ν̂a→i(xi)νi→a(xi)

zi =
∑
xi

∏
a∈∂i

ν̂a→i(xi)

In our framework, each variable node is only attached to two function nodes
by construction. Moreover, each function node corresponds to one individual
and each variable node corresponds to an edge in the contact network. The
three quantities above become:

zΨi
=

∑
{Tji }j∈∂i

Ψi({Tij}j∈∂i)
∏

j∈∂i

ν̂Ψj→(i,j)(Tij)

z(i,j)Ψi
=
∑
Tij

ν̂Ψi→(i,j)(Tij)ν(i,j)→Ψi
(Tij)

z(i,j) =
∑
Tij

ν̂Ψj→(i,j)(Tij)ν̂Ψi→(i,j)(Tij) =
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Notice that the second and the third term for our problem become identical:
using the BP equation for the third term:

z(i,j) =
∑
Tij

ν̂Ψj→(i,j)(Tij)ν̂Ψi→(i,j)(Tij) =

=
∑
Tij

ν(i,j)→Ψi
(Tij)ν̂Ψi→(i,j)(Tij) =

= z(i,j)Ψi

The Bethe free energy is therefore transformed to:

FBethe = −
∑

i

log zΨi
+ 2

∑
(i,j)

log z(i,j) −
∑
(i,j)

log z(i,j)

= −
∑

i

log zΨi
+
∑
(i,j)

log z(i,j) =

= −
∑

i

log zΨi
+ 1

2
∑

i,j∈∂i

log z(i,j).

This formula is used to compute the Bethe free energy in the Epidemble
algorithm. The free energy is useful for several reasons:

1. it quantifies how informative observations are. In fact, the Bethe free
energy is an approximation5 of the free energy, F = − logP (O), which
is big when P (O) = ∑

t P (t,O) = ∑
t P (t)P (O|t) is small. Thus, the

quantity P (O) is the sum of trajectories (weighted with their prior
probability) which are compatible with the observation constraints O.
The smaller this sum, the more the observation set is reducing the space
of possible trajectories.

2. it allows to perform hyper-parameters inference. The Bethe free energy is
in fact a function of the hyper parameters, so it can be descended to infer
them. In the results section, we are going to show some results obtained
by inferring the patient zero probability γ, the infection probability λ

and also the false rate of of observations. To infer the parameter γ, the
Expectation Maximization method is used, see Appendix C. The other

5exact for the graphs studied in the following results section if the posterior is replica
symmetric.
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parameters are inferred by means of a standard gradient descent on the
Bethe free energy.

3. it can be used, in addition to marginals, to check convergence.

3.4 Results

This results section is partially based on the published paper [44].

In this section we discuss results obtained with the Epidemble algorithm.
Initially, we characterize estimators under Bayes optimal conditions. Quantifying
hardness of inference is, in fact, a nontrivial problem: some estimators might
give discordant predictions about hardness. For example, we will see that AUC
is low in some regimes where maximum mean overlap (MMO) is high. It is
therefore very useful to study the behavior of several estimators, which give us
a more complete description of hardness in inference. Analyzing the results, in
fact, we will be able to comment about the origin of such differences. Another
point analyzed in this section is the consistency between the ensemble and the
single instance algorithm (Sib). We are going to compare the cavity method
predictions on the estimators with the Sib results obtained on large graphs
with the same degree distribution. Subsequently, we deal with the analysis
of a particular regime (high infection λ and low patient zero probability γ),
for which the posterior shows symptoms of replica symmetry breaking. We
present a conjecture about possible replica symmetry breaking under Bayes
optimal conditions. Then we move out of Bayes optimality, we study what
happens if we make inference with mismatched hyper-parameters (i.e. different
from the prior’s). In this case replica symmetry breaking is found, as expected.
Learning the hyper-parameters by means of the expectation maximization
method (Appendix C), allows to recover replica symmetry. The convergence
criterion of Epidemble is on the marginals, which must not fluctuate more than
the square root of size of the population. If convergence criterion is not reached,
the algorithm stops after a fixed number of sweeps (typically the population
size is set to n ∼ 104 and the total number of sweeps to 200). Convergence is
almost always reached (unless in the special case in which there is suspected
RSB) when the prior is known (or inferred), except for the rather interesting
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and unexpected regime which shows symptoms of replica symmetry breaking,
which is discussed later on. The algorithm shows non-convergence zones, as
expected, also when the prior hyper-parameters are not known and we enter
the replica symmetry broken phase.

3.4.1 Statistical estimators in Bayes-Optimal case

In the Bayes optimal case the hyper-parameters of the prior are known. Under
this condition we start by characterizing the Minimum Mean Squared Error
(MMSE), the Maximum Mean Overlap (MMO), the Area Under the ROC
(AUC) (see section 1.1.5 for their definition) and the Bethe free energy (Fe)
associated with the posterior distribution, computed in section 3.3.7. Notice
that, in the ensemble case, computing the ROC is impossible because it would
require to evaluate and order the (infinite) list of individual probabilities of
being infectious. However, the area under the curve (AUC) can be interpreted as
the probability that, given one positive individual i and one negative individual
j, their posterior marginal probabilities allow distinguishing which is positive
and which is negative. In other words,

AUC(t) = P
[
Pi(xt

i = I|O) > Pj(xt
j = I|O)

∣∣∣∣x∗,t
i = I, x∗,t

j = S
]
.

This allows us to compute the AUC in the ensemble case. In Figure 3.10, the
fraction of unobserved individuals (dilution) was fixed to dil = 0.5 (half of
the individuals are observed). All the observations were made at final time
T = 8. The 2D space explored is that of the patient zero probability and
infection, (γ, λ). MMSE, MMO and AUC are shown at three different times
(initial time t = 0, intermediate time t = 4 and final time t = T = 8). We can
see that MMSE and MMO show the same behavior at all times. For very low
infection probability λ, and patient zero probability γ, we see that MMSE is
low while MMO and AUC are high, meaning that information contained in the
inferred posterior distribution allows to recover the planted configuration with
good accuracy. In this regime, in fact, patients zero are few and infect rarely.
Thus, they are on average surrounded by a small neighborhood of infectious
individuals and well-separated from the other patients zero, making inference
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task easy. For high values of patient zero probability γ and infection λ, instead,
the population becomes completely infectious in few time steps. Also in this
regime, all the estimators show great performance for intermediate (t = 4)
and final time (t = T = 8), because the posterior marginals assign to every
individual a probability 1 of being infectious. The hard task is to retrieve the
patient zero. At t = 0, indeed, MMSE (respectively MMO) is low (resp. high)
for high values of γ. However, this does not mean that inference performance
is good. Indeed for large γ, the majority of individuals are patients zero, and
the other individuals are likely to be infected before the observation time T .
Therefore, the observations are (almost) all positive, making it impossible to
distinguish the patients zero from the ones infected at later time. Thus, MMSE
at time t = 0 is low because the marginal posteriors give high probability of
being infectious at t = 0, independently of the transmission rate λ. However,
the (few) non-patients zero remain undetected. A quantity that is sensible to
this problem is the AUC, which at time t = 0 has in fact a different behavior to
the other estimators, signaling hardness of inference. Another (slightly) different
quantity is the AUC evaluated only on non observed individuals. When many
observations are made, the AUC is dominated by the observed individuals.
Thus, evaluating AUC only on non observed individuals (AUCNO) can be a
useful tool to quantify the prediction power of the algorithm on unobserved
individuals. To see the difference between AUC and AUCNO, we fix the patient
zero probability γ = 0.1, and show in Figure 3.11 these two estimators as
functions of the infection probability λ and the observations dilution dil (i.e.
the fraction of unobserved individuals). We see that the two estimators behave
differently, for example at the intermediate time t = 4, for low dilution (i.e.
many observations) and low transmission rate λ. In this regime there are only
few infectious individuals observed (because γ and λ are low). While AUC is
close to 1, AUCNO is low, indicating that it is actually hard to find who are
the unobserved infectious individuals.

3.4.2 Check of consistency with large single instances

It is natural to wonder whether ensemble results are consistent with large finite-
size single instances. To check this point, we see Figure 3.12, where results on
large sized (N = 30000) instances, obtained by means of Sib algorithm, are
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Fig. 3.10 Several statistical estimators (first row: MMSE, second row: MMO, third
row: AUC) quantifying the hardness of epidemic inference, as a function of patient
zero probability γ and infection probability λ. Each column corresponds to three
different times at which the quantities are computed (from left to right: initial time
t = 0, intermediate time t = 4, and final time t = T = 8). The three estimators
display the same behavior, except for the initial time, when AUC is able to capture
for high values of λ and γ that observations are not informative enough. Notice
that MMSE quantifies the error in inferring individual’s states, so it has a flipped
behavior with respect to the other quantities (MMO and AUC are high when inference
performance is good). These results were obtained for ER graph ensemble with
average degree 3. Figure taken from [44].
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Fig. 3.11 A comparison between AUC evaluated on all individuals (AUC, first row)
VS AUC evaluated only on unobserved individuals (AUCNO, second row). The
two estimators have a very similar but not identical behavior. In particular, at low
dilution (many observations) the AUCNO is systematically smaller than the AUC.
In fact, the AUC in this regime is dominated by observed individuals. These results
are for ER graph ensemble, with average degree 3. We remark here that AUC is not
0.5 for dilution equal to 1. In fact, ER graphs are heterogeneous (with a Poisson
law degree distribution). This implies that some information about the infection
probability of each node is contained in the graph itself. For example, the most
connected nodes have highest probability of being infected. This allows to achieve
some reconstruction also without any observation (dil = 1). Figure taken from [44]
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Fig. 3.12 The comparison between Sibyl algorithm (BP) for a single instance of
N = 300 (triangles), N = 3000 (dots), and N = 30000 (squares) individuals, and
the replica symmetric cavity method results obtained in the thermodynamic limit
by means of population dynamics (black solid line). The plots show the MMSE at
intermediate time t = 6, as function of the number of infectious at final time T = 8,
which is a function of infection parameters γ and λ. For this plot the patient zero
probability is fixed at γ = 0.15. The first row represents the MMSE for Random
Regular graphs (degree 3) while the second row is for Erdős–Rényi (ER) with average
degree 3. Each column, instead, is associated with a value of observations dilution
dil: the first column is for dil=0 (all observed) while the second is for dil=0.5. There
is very good agreement, that increases with the size of the the single instance contact
graph.Figure taken from [44]
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compared with Epidemble. The MMSE is computed both for the ensemble
and the large single instance case and the comparison shows almost perfect
consistency.

3.4.3 Ensemble Bethe free energy

All the estimators described so far are time-dependent. The Bethe Free Energy,
section 3.3.7, quantifies how much information is in the observations set O and
it is a single number at fixed hyper-paramters. The plots in Figure 3.13 show
the Bethe free energy for two different frameworks (analyzed in the previous
results sections):

• at fixed observation dilution dil and varying γ, λ

• at fixed γ varying (dil, λ) .

The free energy is 0 for dil=1 (no observation), as expected. However, it is
close to 0 in other cases too, e.g. for high values of infection probability λ. For
those values, the infection indeed spreads very fast. As a consequence, at final
time all the individuals are infectious. Thus, since the observations are only
collected at final time T , they do not carry any valuable information on the
planted trajectory: they will always find individuals in the state I. In other
words, all the trajectories of the prior end up at time T in the state for which all
individuals are infectious. Note, however, that inference is easy in this regime,
as it can be checked comparing Figure 3.13 with Figures 3.10 and 3.11. In this
regime, although observations are not informative, the prior is concentrated
on few trajectories (the ones compatible with all individuals being I at times
t = 4 and t = 8), making inference trivial. The interesting (and hard) regimes
are at intermediate values of γ and λ and for non-zero dilution. In this regime
the prior is not concentrated on few trajectories, making inference a non-trivial
task.
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Fig. 3.13 Free energy profile for two different regimes: on the left panel as a function
of patient zero probability γ and infection probability λ, at fixed dilution dil = 0.5;
on the right panel as a function of observations dilution dil and λ, at fixed patient
zero probability γ = 0.1. The black part of the plot corresponds to the regimes in
which observations bring no information, i.e. F ≃ 0. This happens obviously at dil=1
because no observation is collected. However, the free energy can be zero also for
dil < 1. Indeed, when the infection probability λ is high enough, all the individuals
are almost surely I at final time. Observations, which are only made at final time,
carry no information in those cases. Only in the intermediate regimes, i.e. when the
number of I and S individuals are comparable with each others, observations are
informative. In this regime the free energy is non-zero and inference is non trivial.
The graph ensemble analyzed here is Erdős–Rényi with average degree 3. Figure
taken from [44].
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3.4.4 More on graph ensembles

The analysis shown so far has been conducted on Erdős–Rényi graphs. To
study how inference tasks are affected by the graph structure, we now compare
results on three ensembles:

1. the Random Regular (RR) ensemble;

2. the Erdős–Rényi (ER) ensemble;

3. a truncated fat tailed (FT) ensemble of graphs, with the degree distribution
p(d) = 1

Z
1

d2+a
for d ∈ [dmin, dmax] and p(d) = 0 if d /∈ [dmin, dmax]. The

quantity Z is the normalization of the distribution and the parameter a
can be fixed by fixing the average degree.

The third graph ensemble is interesting because it presents highly connected
nodes, while still being handled by Belief Propagation (BP), since the distribution
of the degree is truncated to a finite maximum value dmax. In Figure 3.14 (first
row), the Minimum Mean Squared Error (MMSE) at time t = 6 is shown for the
three graph ensembles. The average degree is fixed to 3 in all three cases. This
allows to compare the effects of changing the ensemble. The predictions are
thus sensible to the ensemble of graphs chosen. Highly connected nodes, in fact,
play a crucial role in changing inference hardness in some regimes. This pushes
us to look at applications of the method to a more realistic family of graphs.
Before doing so, we briefly discuss the effect of noise in the observations.

Noise in observations. When noise affects observations, the inference
results get typically worse. This can be seen in Figure 3.14(second row),
where the AUC is shown as a function of observations dilution and noise (false
rate, fr). For false rate equal to 0.5, observations carry no information, since
they are wrong half of the time. This is identical to have no observations,
i.e. dilution dil = 1. For intermediate values, we see that increasing false rate
and/or dilution always leads to worse inference, as expected.

Application to a real network. We show here how Epidemble predictions
on the infinite size limit can be applied to more realistic random ensembles.



130 Thermodynamic ensemble results

Fig. 3.14 Comparing feasibility of inference for several graph ensembles and for
nonzero observation noise. First row: the plots show the MMSE at time t = 6, with
observations collected at final time T = 8, as functions of the patient zero probability
γ and the infection probability λ. The three plots are (from left to right) for Random
Regular (RR), Erdős–Rényi (ER) and Fat Tailed (FT) graph ensembles. The average
degree is fixed to 3 for these three ensembles examined. It can be seen that the
profiles share similarities, but the more the degree distribution widens (from RR to
ER to FT), the flatter is the MMSE. This is due to high-degree nodes: for example,
in RR ensemble all nodes have the same degree, so we see that inference is more
difficult at low values of γ and high values of λ. In this region, the presence of highly
connected nodes simplifies inference because they (and their neighbors) will probably
be infectious at time t = 6. The dashed lines correspond to the cases studied in
Figure 3.12 at dilution 0.5. The only difference is on the y-axis, which represents
λ in this and the fraction of infectious for Figure 3.12. Second row: the AUC as a
function of observations’ dilution dil and false rate (fr). The AUC decreases with fr
and dil. The false positive and negative rates are always assumed to be the same.
The patient zero probability is fixed to γ = 0.03 and the infection probability is
λ = 0.03. The ensemble graph is Random Regular with degree 11. Figure taken from
[44].}



3.4 Results 131

Fig. 3.15 An application of the cavity method to a real network. First row: ensemble
predictions for AUC at time 0,4,8. Second row: results obtained on the real network
using Sib. Ensemble predictions and Sib (BP) results are near to each others. Some
differences can be however noticed for low values of the infection probability λ, where
Sib shows higher performance. An explanation should be related to the fact that at
a single instance level the observations O are more informative than in the ensemble
case: if one individual is observed in the state S, then the infection cascade did
not pass through it. Therefore, correlations among its neighboring individuals drop
down due to the S observation, which factually cuts the network. This reasoning
does not subsist in the ensemble case, where the network is not fixed. Therefore, we
expect lower AUC in the regimes where S observations are more frequent, thus at
low infection probability. For this plot, the value of the patient zero probability is
fixed at γ = 0.2 and there is no noise in observations, which are all at time T = 8.
Figure taken from [44].
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Given a real finite network, we consider the configuration model ensemble with
the same degree distribution of the network. Using cavity method, it is thus
possible to approximately find the expected value of each estimator in the
thermodynamic limit. This procedure is now applied to a network of sexual
contacts from the data repository [68]. The ensemble results are compared with
results on the single instance obtained with Sib in Figure 3.15. The first row
shows the ensemble predictions, while the second shows single-instance results
obtained with Sib. Phase diagrams show the AUC at initial, intermediate and
final time as function of the infection probability and the observation dilution
in the Bayes Optimal regime. The agreement between the two results is good,
implying that the quality of inference performance in this setup depends mostly
on the degree distribution, which is a global characteristic of the network.

3.4.5 RSB under Bayes optimality?

A surprising behavior of the Belief Propagation equations was firstly observed
in [69] for single instances at small values of γ. In fact, even in the Bayes
optimal conditions, BP stops to converge. This breakdown is present also in
the thermodynamic limit for the cavity method. This lack of convergence,
therefore, seems to be related to a rather profound reason. To understand what
is happening, we simplify now the framework by setting the infection probability
λ to 1 and by observing all the individuals at final time. This regime is the
one studied in Figure 3.16. The black dots represent the number of iterations
needed for the cavity method (implemented using population dynamics) to
converge. Around γ = γ̃ = 0.013 the algorithm stops converging. An intuitive
explanation is the following: for γ around γ̃ at final time many individuals are
observed infectious (I) and a small (but extensive) part is observed susceptible
(S). Since λ = 1, the sole non-deterministic part of the process is the initial
state, so the inference problem reduces to guess the position of the patients
zero. The S individuals not only signal that they were not infected during the
epidemic process, but also that any patients zero must be at distance > T .
For example, for a RR graph, a S observation excludes the sphere centered
in the S-observed individual with d(d − 1)T −1 individuals. For γ around γ̃

these spheres touch and intersect, so that the group of individuals eligible to be
the patients zero gets separated in clusters. In Figure 3.17 a 2D plot possible
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Fig. 3.16 Convergence time for replica symmetric cavity, belief propagation and Monte
Carlo methods compared with the number of clusters of possible patients zero in a
RR graph with degree 3. Convergence of the three methods breaks down at around
γ̃ ≃ 0.013. The black dots represent the number of iterations for the cavity method
(implemented by means of population dynamics) to reach convergence, normalized
by the total number of iterations allowed. The continuous squared-marked lines
represent the fraction of successful Monte Carlo runs, for several sizes (N, 2N, 4N ,
with N = 5000). Convergence is conjectured to be lost due to a Replica Symmetry
Breaking transition: the space in which a patient zero can be placed in the posterior
becomes clustered (as explained in Figure 3.17). To support this conjecture, it is
plotted the fraction of connected components (number of connected components
divided by total number of individuals) of individuals that could be the patients
zero. This number, as expected, grows sharply in the interval in which BP ceases to
converge. The failure of convergence arises when the number of disconnected zones
to place the patient zero (continue, blue line) becomes higher to the actual fraction
of patients zero (dotted, blue line). This suggests that when the number of zones in
which a patient zero might be placed becomes larger than the number of patients
zero, then the problem gets hard, as illustrated in Figure 3.17. Figure taken from
[44].
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Fig. 3.17 A 2D plot to visualize the geometric change undergone by the configuration
space that could explain why cavity method and Monte Carlo schemes stop to
converge. In this plot, obtained by simulating epidemic spreading in a 2 dimensional
lattice, two scenarios are compared. To the right, γ is higher, namely there are more
patients zero (green dots). This implies that the number of infectious (green, red and
gray dots) is higher, so the number of S-observed individuals (no dots) is smaller.
The patients zero can not be too close to the S-observed individuals because the
infection probability is 1, so the observation constraint would be violated. The red
dots represent all the individuals which might be the patient zero according to the
observations (i.e. individuals tested I and not too close to S-observed individuals).
When the number of patients zero is lower, (left) the number of S-observed individuals
increases. So the number of possible zones to accommodate patients zero (green plus
red dots) reduces and gets clustered. This could result in several separated states of
the posterior, each one corresponding to a possible combination of placements for
patients zero. Figure taken from [44].
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explanation of the phenomenon is given. When the number of S observations
is sufficiently high, due to the fact that there are few patients zero, the space
in which patients zero could physically be gets fragmented. To check that
this is what actually happens in a Random Regular graph, a single instance
was initialized and an epidemic was simulated. The number of connected
components in which a patient zero could be present without violating the S
observations is plotted in Figure 3.16. This number sharply increases in the
decreasing γ direction, around γ̃, i.e. when the algorithm stops converging.
Further evidence of a phase transition is given by Monte-Carlo dynamics, whose
convergence time is also shown in Figure 3.16. The MC was designed in [44] as
follows:

1. The planted τ (ground truth) configuration is sampled from the single
instance prior.

2. Observations O are collected from τ . The observation protocol is set
to observe all the individuals at the final time T (without observation
noise).

3. A Metropolis-Hasting Monte Carlo simulation was started in order to
sample a configuration satisfying all the observations. To do so, a
configuration t ̸= τ (the planted τ is unknown in the inference process)
is sampled from the prior distribution. The initialization configuration
typically does not satisfy the observations, which are taken from τ . So
the following MC move is made:

(a) An individual is randomly selected and change its time-zero state
is changed by sampling the I state with probability γ (and the S
state with probability (1 − γ)).

(b) The initial state configuration is evolved (deterministically, since the
infection probability is λ = 1). The configuration at final time is
then checked to be consistent with the observations. If that happens,
that MC has converged to an acceptable configuration...

(c) ...otherwise the energy is computed as: U = −∑N
i=1 log p(oi|ti) where

each oi is the observation on the ith individual. In principle p(oi|ti)
should be either 0 (when the configuration does not satisfy the
observations) or 1 (when the observation is satisfied). In order to
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Fig. 3.18 Replica symmetric cavity method’s convergence breakdown outside
Nishimori conditions. Keeping fixed λ∗ = 0.3 and the parameters γ∗ = γI = 0.03,
while instead moving the inference parameter 0 < λI < 0.8 and the dilution between
0 and 1 we see that for high values of λI the algorithm does not converge and provides
nonphysical results for the Bethe free energy. Figure taken from [44].

avoid infinite energy barriers, a small artificial noise in observations
is dded, which is reduced during the Monte Carlo simulation by
means of an annealing procedure. In other words, the energy is just
a penalization for each broken constraint.

4. At each step, the move in the space of initial states described above is
made. The move is accepted by following a standard Metropolis scheme.
The MC stops when the configuration satisfies all constraints.

For each value of γ the MC scheme was repeated 60 times. In Figure 3.16
the fraction of runs in which the MC algorithm was able to reach convergence
is shown. We clearly see that this quantity drops down around γ̃ . Due to
the failure of BP equations (for finite and infinite graph), the explosion of
possible patient zero zones and the failure of the Monte Carlo scheme, Replica
Symmetry Breaking transition is conjectured to arise around γ̃.

3.4.6 Departing from Bayes-optimal conditions

It is established that when inference is performed without knowing the prior
distribution hyper-parameters, it is possible to observe a Replica Symmetry
Breaking (RSB) phase transition, which can manifest with a convergence failure
of the replica symmetric cavity method algorithm. This is exactly what we
see in Figure 3.18. For this plot, the star was used (∗) to label the prior
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hyper-parameters (with which the planted was generated), e.g. λ∗ is the true
infection probability, while the superscript I , which stands for inference, was
used to denote the hyper-parameters used in the posterior distribution. For
example, λI is the infection probability used by the algorithm in the inference
process. For this plot γ∗ = γI (so the algorithm knows the exact value of patient
zero probability) and only the infection probability is studied outside Bayes
optimality. The free energy landscape is shown as a function of the inference
hyper-parameter infection probability λI and the observations dilution dil.
There exists a hyper-parameters zone in which the number of sweeps reaches
the maximum allowed number (which was set to 100). In that zone, the
estimators show an oscillating behavior. This suggests a breakdown of the
algorithm validity, which may be caused by a RSB phase transition. Thus, when
the prior hyper-parameters are not known, some difficulties arise in epidemic
inference due to breakdown of convergence. A good strategy to avoid this is to
infer the prior parameters, as shown in the next paragraph.

3.4.7 Inferring prior hyper-parameters

By approximately minimizing the Bethe free energy, the prior parameters are
inferred: for the patient zero probability γ the Expectation Maximization (EM)
method is used, Appendix C. For the infection probability λ, instead, a gradient
descent (GD) on the free energy is numerically performed using auto derivation.
Inference is studied in the same conditions of Figure 3.10. In Figure 3.19 the
results computed by inferring the prior parameters are compared with their
correspondent in the Bayes optimal case, i.e. the ones in Figure 3.10 (first
row) and Figure 3.13(left). The prior parameters are learned by minimizing
the Bethe free energy, which agrees almost perfectly with the optimal one.
There is a strong agreement also for other estimators, as the MMSE, which are
plotted at time t = 4. To actually see how well the prior hyper-parameters are
inferred, we can see them plotted as functions of their planted correspondent
quantities in Figure 3.20. It is again important to compare the results of prior
parameters inference with the single instance results on finite graphs. Indeed,
the inference results shown so far are for infinitely large graphs. The number of
observations is therefore infinite too. It is then crucial to see whether for finite
size graphs (and finite information) it is possible to achieve comparable results
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Fig. 3.19 A comparison between estimators (MMMSE and free energy) when prior’s
hyper-parameters are known (first column) VS when they are not known and learned
(second column). The quantities are represented as functions of the planted parameters
γ∗ and λ∗. In the first row the MMSE at intermediate time (t = 4) is shown: on the
left there is the optimal Bayes result, the same of Figure 3.10, while on the right
there is the result obtained when λI and γI are learned. On the second row the same
comparison (i.e. Bayes optimality on the left and hyper-parameters’ learning on the
right) is made for the Bethe free energy. In both cases (MMSE and free energy) the
initial conditions for the hyper-parameters were set to λI = 0.5 and γI = 0.5. The
results are for the Erdős–Rényi ensemble with average degree of 3. Observations are
all collected at final time T = 8. Figure taken from [44].
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Fig. 3.20 The inferred prior parameters an function of their respective planted
quantities. The plot is obtained at zero dilution (all individual observed) and for
(uniformly) scattered observations in time. In the left panel, patient zero parameter
γI is plotted as a function of γ∗ for several values of λ∗. The right panel’s lines
are instead the values of the infection λI as function of λ∗ for different values of γ∗.
Figure taken from [44].

Fig. 3.21 Inference dynamics of ensemble code (cavity method implemented by means
of population dynamics) compared with the single instance result, obtained running
the Belief Propagation (BP) algorithm (Sib) on a contact network of N = 10000
nodes. The plot shows the gradient descent in free energy with respect to the two
parameters γI and λI which respectively represent the patient zero and the infection
probabilities. . The results are for Erdős–Rényi (ER) graphs with average degree 3.
All the individuals are observed at final time. Figure taken from [44].
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to the ensemble. In Figure 3.21 we see that this is the case. A comparison
between cavity method and the single instance code is made by analyzing the
gradient descent steps on the hyper-parameters. The plot shows that the values
inferred by the single instance algorithm are very close to the true ones.

3.4.8 The role of symptoms in inference

In realistic contexts, observations are not collected uniformly random from
the population. This is because infectious individuals might manifest some
symptoms, which push them to test themselves. The probability of being
observed is therefore typically higher for I than for S. A first consequence
is that the real fraction of infectious individuals is lower than the fraction of
observed I individuals. This must be taken into account in inference. To do so,
let us call p+, the probability for an infected individual to be symptomatic. We
assume that all infectious symptomatic individuals are tested. All the other
individuals are instead tested at random with probability pr. From this, the
probability for an infectious individual to be tested I is:

P (tested, positive|I) = (1 − fr)(p+ + pr(1 − p+))

and similarly:

P (tested, negative|I) = fr(p+ + pr(1 − p+))

For susceptible states S:

P (tested, positive|S) = prfr
P (tested, negative|S) = pr(1 − fr)

The no-symptoms case is recovered for p+ = 0. We want to see what happens if
we neglect the existence of symptoms, i.e. if we infer setting pI

+ = 0, where pI
+

is the inference parameter used to account for symptoms. In Figure 3.22 (left
panel), we see a substantial overestimation of the infection when the observation
bias due to symptoms is neglected. On the right panel, we see that the AUC
is systematically higher when the bias is included. We finally see that when
the bias p+ is inferred by minimizing the free energy (by means of a numerical
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Fig. 3.22 Considering (and inferring) bias in observation due to symptoms allows
to recover Nishimori conditions and improves inference performance. All the
symptomatic individuals are assumed to be tested. The probability for an infectious
individual of being symptomatic was set to p+ = 0.5. Asymptomatic individuals can
also be tested. For this plot, the probability for a general individual to be randomly
selected for a test was set to pr = 0.04. The left plot shows the estimated fraction of
infected individuals over time. Considering the bias in the inference process allows
to reconstruct this function. On the right plot there is the comparison of AUC
when the bias is considered VS when it is neglected. Considering (or inferring) the
bias systematically makes the AUC higher. The patient zero probability was set
to γ = 0.03 and the infection probability to λ = 0.25. The observations are all
performed at time T = 8. Figure taken from [44].
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gradient descent), the results are very close to the optimal ones. This process
allows to include the unknown bias without affecting performance.

3.4.9 Generalization to SIR and SEIR

The importance of Epidemble is that it allows to use replica symmetric cavity
equations for a problem which shows correlated quenched disorder. The method
is therefore presented for the simplest epidemic model (SI), in order to facilitate
the explanation of the idea. We describe now, in the framework of the SIR
model, a general strategy which can be used to generalize Epidemble to richer
epidemic models (SIR and SEIR). After that, we introduce a parametrization
that, for the SIR model, allows to maintain the same number of variables of
the SI case in the Belief Propagation algorithm.

General strategy

The idea consists to simply increase the number of trajectory variables. While
the SI model trajectory needs only one number per individual to be described,
the infection time, the SIR trajectory needs two numbers: the infection and
the recovery times. Then, we can rewrite for the SIR case equation (3.19).
Defining τ = {τI

i , τ
R
i }i=1,...,N and D = {x0

i }, {sij, sji}, {ri}:

P (τ |D) =
∏
i∈V

ψ∗(τ I
i , τ

R
i , τ

I
∂i, τ

R
∂i, x

0
i , {sji}j∈∂i, ri)

where the set of recovery delays {ri}i=1,...,N represent the time interval in
which the individual is in the I state. Each ψ∗ in the SIR model has to take
into account that an individual j ∈ ∂i can only infect the individual i before
recovering.

ψ∗ = I
[
τI

i = δx0
i ,S min

j∈∂i
f(τI

j + sji, τ
R
j )
]
I
[
τR

i = τI
i + ri

]
where

f(τ, τR) =

τ if τ < τR

T if τ > τR
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Fig. 3.23 The super-variable for the SIR model includes copies of the planted and
inferred recovery time. Figure taken from [44].

The function f ensures that j can not infect i if j has already recovered. The
planted trajectory at fixed quenched disorder is now described. The other terms
of equation (3.26) are almost identical to the SI case and are discussed for SIR
and SEIR in section 2.1.4. We have that equation (3.26), is formally unaltered:

P (τ ,O, t|D,Do) = 1
P (O)P (τ |D)P (O|τ ,Do)P (O|t)P (t)

The variables’ and the disorder’s domains are however enlarged. The factor
graph associated to this equation, as in the SI case, contains loops. Therefore,
it is necessary to introduce the usual copies of the infection and the recovery
times, exactly as for the SI model. To implement the cavity method it is
therefore necessary to define each super-variable Tij by including the recovery
(planted and inferred) times, as shown in Figure 3.23. The BP equations can
now be run, with messages that however depend on more variables with respect
to the SI case. This generalization can be made also for the SEIR model, simply
introducing an the exposure time tEi (as discussed in section 2.1.4), an exposure
delay ei distributed according to ζ(ei) for each i = 1, . . . , N and generalizing
ψ∗ by imposing that the infection can not happen during the exposure time
interval.
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An efficient parametrization for the SIR model

For the SIR model it is possible to obtain an optimized extension of the
Epidemble method, which has messages of the same size w.r.t. the SI case. It
is sufficient to switch from the infection times to transmission times Instead of
using copies of the infection time {τI,(j)

i }j∈∂i
i∈V , it is convenient to describe the

epidemic trajectory with the infection transmission times {τij}j∈∂i
i=1,...,N . Each tij

is the time at which i tries to infect its contact j. To actually know the infection
time of j it is therefore necessary to take the minimum of the transmissions:
\begin{equation}

τ I
j = min

i∈∂j
{τij}. (3.32)

The scheme consists therefore to work with {τij}j∈∂i
i=1,...,N , {τI

i }i=1,...,N and {τR
i }i=1,...,N .

After the new messages converge, the infection variables are found with
equation 3.32. We now show that with this parametrization no copies of the
recovery time have to be introduced, allowing to have a lighter representation
for the planted SIR trajectory. We define the new super-variable as τ =
{τij}j∈∂i

i=1,...,N , {τ I
i }i=1,...,N , {τR

i }i=1,...,N and we have:

P (τ |{x0
i }, {sij, sji}, {ri}) =

∏
(i,j)

ψ∗(τij, τ
I
i , τ

R
i , {tki}k∈∂i, τ

R
∂i, x

0
i , sij, ri)

and each factor is:

ψ∗ = I
[
τij = f

(
δx0

i ,S min
k∈∂i\j

{τki} + sij, τ
R
i

)]
I
[
τR

i = τI
i + ri

]
I
[
τI

i = min
k∈∂i

{τki}
]
.

(3.33)
The factor graph equation associated to this construction is therefore:

P (t, τ |D,Do) =
∏

i

ξ(tIi , tRi , τI
i , τ

R
i ; {εo, to}oi=i)×

×
∏

j∈∂i

(
ψ∗(τij, τ

I
i , τ

R
i , {τki}k∈∂i\j, τ

R
∂i, x

0
i , sij, ri)ψ(tij, tIi , tRi , {tki}k∈∂i\j, t

R
∂i)
)
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Fig. 3.24 The factor graph for the SIR model using the transmission delay
representation. Figure taken from [44].

Where the factors ψ can be obtained by tracing the ψ∗ with respect to the
disorder:

ψ(tij, tIi , tRi , {tki}k∈∂i\j, t
R
∂i) =

∑
x0

i ,sij ,ri

ω(sij)(γδx0
i ,I + (1 − γ)δx0

i ,S)µ(ri)×

× ψ∗(tij, tIi , tRi , {tki}k∈∂i\j, t
R
∂i, x

0
i , sij, ri),

where ω(s) and µ(r) are the two (geometric) distributions of the infection delay
and recovery delay. The factor graph associated to this equation, differently
from equation (3.27), does not contain any loop (see Figure (3.24)) when the
underlying contact graph is acyclic, so it is straightforward to implement BP
equations on it. Moreover, since the recovery times and the infection times are
on leaves (nodes attached only to one factor), they can be traced out, so that
the BP equations only involve a number of variables which is the same of the
SI case. Note that still the BP equations will be a bit slower than the SI case
due to the different nature of the factors (equation (3.33)), which are slower to
compute.



Chapter 4

Conclusions and Future
perspectives

This work provides an introduction to algorithms and thresholds in epidemic
inference on networks. The aim of such studies is to clarify whether and how
the available information can be used to reconstruct (and hopefully contain) the
epidemic outbreak. Probably, the most immediate message that can be learned
from this thesis is that such an aim is far from being reached: even when the
contact network is fully known there are huge difficulties in reconstructing the
epidemic history. The posterior is hard to compute and can even show signals
of replica symmetry breaking out of Bayes optimality. We have conducted an
analysis of single-instance and ensemble algorithms. Both research directions
present numerous unsolved questions.

4.1 Single Instance Algorithms

Regarding single-instance algorithms, a significant challenge lies in finding
methods that are fast, robust, privacy-preserving, parallel, distributed and high-
performing. The methods discussed in Chapter 2 all exhibit some limitations in
these aspects. For instance, the Causal Variational Approach fails to maintain
privacy. Specifically, to execute CVA, the complete observation set must be
supplied. An ideal privacy-preserving algorithm, on the other hand, should
reconstruct the infection state of an individual solely based on information
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about the individual and their direct contacts. Mean field methods, on this
hand, are promising (see the MF heuristic at page 80). A possible approach
to find new algorithms is to apply techniques from inference, as Expectation
Propagation, which could be used to develop new mean field-like methods. This
is more quantitatively explained in the next paragraph.

4.1.1 A possible remedy for the infinities in KL divergence

One issue when dealing with the Mean Field approach for epidemics (see section
2.2.1) is that the KL divergence between the mean field approximation and the
posterior can be infinite. The KL between the approximation QMF and the
posterior P is indeed:

DKL(QMF||P) =
∑

t

QMF(t) log QMF(t)
P(t)

And this quantity is infinite if it exists a t such that P(t) = 0 and QMF(t) > 0.
Being QMF factorized over individuals, the KL is finite only if QMF excludes
every infection phenomenon, namely each individual is either a patient zero or
is never infected. We solved this issue by changing the family of approximating
functions to QCVA, introducing the Causal Variational Approach (section
2.3). However, there is another way to get around the infinities of the MF
approximation. If we change the optimization function to:

DKL(P||QMF) =
∑

t

P(t) log P(t)
QMF(t)

we can see that the MF approximation exactly reproduces the marginals. If we
indeed write QMF(t) = ∏

i qi(ti), then:

DKL(P||QMF) =
∑

t

∑
i

P(t) log P(t)
qi(ti)

.

Optimizing the KL gives:

αj = δDKL(P||QMF)
δqj (̂tj)

=
∑
t\tj

P(t)
qj (̂tj)
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where αj is the Lagrange multiplier due to the normalization of the probability
qj. We therefore have:

αjqj (̂tj) =
∑
t\tj

P(t)

and the Lagrange multiplier is easily fixed by imposing normalization:

αj

∑
t̂j

qj (̂tj) =
∑

t

P(t) = 1

which implies:
αj = 1.

We end up having:
qj(tj) =

∑
t\tj

P(t)

which means that each marginal is the exact one! Optimizing the DKL(P||QMF)
is, however, unfeasible because we should be able to sample from P , which is
exactly the starting point. However, methods like Expectation Propagation
allow to studying some approximate optimization functions of DKL(P||QMF)
and might turn out to be useful for developing new Mean Field schemes.

4.2 Ensemble study

The exploration of the ensemble problem has only just begun with Epidemble,
offering ample opportunities for advancements. For instance, one key aspect
is addressing graph ignorance, which might be studied by separating the
planted graph, used to extract the planted configuration, from a graph used
to make inference. The graphs would coincide under Bayes optimality. To
model graph ignorance, we might remove random links from the original true
contact network and introduce a self-infection parameter (see section 2.1.4).
Additionally, studying in detail the convergence breakdown of the BP equations
under Bayes optimality can be an interesting path which might even lead to a
better understanding of the Nishimori conditions.
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Appendix A

Extracting a random variable
from a continuous distribution

When dealing with sampling, it is almost always necessary to sample a variable
from a 1D probability distribution f : R → [0, 1]. The inverse cumulative
method consists in computing the cumulative of f :

P(t < τ) = F (τ) =
τˆ

−∞

f(s)ds

and to sample a number r uniformly from 0 to 1. This number r can be thought
as a random value of the cumulative function. We then look what is the value
τ ∗ for which the cumulative assumes the value of r and that is a sample from
f .

r ∼ Unif(0, 1)
r = F (τ ∗)
τ ∗ = F−1(r).

Now we can apply this to extract e.g. the tentative time at which an individual
tries to infect another. If the infection rate from i to j at time t is λij(t), then
the density probability for i to infect j is:

ρ(t|ti) = λij(t)e−
´ t

ti
λij(s)ds
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We want to sample from ρ, so we compute the cumulative:

R(t|ti) =
tˆ

ti

ρ(u)du =

=
tˆ

ti

λij(u)e−
´ u

ti
λij(s)dsdu =

=
tˆ

ti

−∂e
−
´ u

ti
λij(s)ds

∂u
du =

= e
−
´ u

ti
λij(s)ds

∣∣∣∣∣
ti

t

= 1 − e
−
´ t

ti
λij(s)ds

and we set it to a random uniform number from 0 to 1:

r = 1 − e
−
´ t

ti
λij(s)ds

log r = −
tˆ

ti

λij(s)ds = −Λij(t) + Λij(ti)

Λij(t) = Λij(ti) − log r
t = Λ−1

ij (Λij(ti) − log r)

and t is now a fair sample of the infection distribution ρ.



Appendix B

Sampling from the residual
distribution

If p(d) is the degree distribution of the graph, we want to compute the residual
degree distribution pres. The residual degree of an edge (i, j) ∈ E , where
i, j ∈ V , is the number of edges of i except for (i, j):

dres(i, j) = |∂i \ j|

The residual degree is distributed differently to the degree. In fact, while the
latter is the probability of picking a node with d edges attached to it, the former
is the probability to randomly pick an edge attached to a node with degree
dres + 1. A high-degree node is more likely to be picked if we uniformly pick an
edge. In particular, the probability to pick a node with degree d attached to a
randomly picked edge is proportional to dp(d). The residual degree distribution
is therefore:

pres(dres) = (dres + 1)p(dres + 1)
Z
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Where Z = ∑
d>1 dp(d) is the normalization. Thus, for random regular graph

with degree d:

pres(dres) =
(dres + 1)δdres+1,d

Z
=

= d

Z
δdres,d−1 =

= 1
Z ′ δdres,d−1 =

= p(d− 1)

where we canceled the constants with the normalization, obtaining Z ′. For the
RR graph we actually have that the residual degree distribution coincides with
the degree (minus one) distribution. This is true because randomly picking an
edge coincides with randomly picking a node. This is not true in general. For
the Erdős–Rényi graph, with average degree d̂:

pres(dres) = (dres + 1)d̂dres+1e−d̂

Z(dres + 1)! =

= d̂drese−d̂

(dres)!
d̂

Z
=

= d̂drese−d̂

(dres)!
1
Z ′ =

= p(dres).

It is remarkably true that for the ER graph the residual degree distribution
and the degree distribution coincide.



Appendix C

Expectation Maximization

Expectation Maximization (EM) method is an iterative scheme which allows
to approximately descend the free energy. Each iteration is separated in two
steps:

1. At fixed BP messages, the update for γ at kth iteration is:

γk = arg max
γ

⟨logP (t, O|γ)⟩{ν}k
, (C.1)

where {ν}k is a shorthand notation for the set of all BP messages at
kthiteration.

2. At fixed γk, the messages are updated with BP equations.

Equation (C.1) can be explained from the definition of the variational free
energy:

F [Q](γ) := − ⟨logP (t,O|γ)⟩Q + ⟨logQ(t)⟩Q

The posterior distribution P(t|O; γ) is the distribution Q which minimizes F .
If we evaluate averages with fixed BP messages, then the dependency of F on
γ is only on the first addend (the log-likelihood) of the right hand side. Then
the optimization on γ reduces to equation (C.1). To actually optimize the
log-likelihood term we set to zero the first derivative of equation (C.1) w.r.t. γ.
We have, at the kth iteration: \begin{equation}

γk = 1
N

∑
i∈V

pI,k
i (ti = 0|O) (C.2)
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Where pI,k
i (ti = 0|O) is the posterior probability at kth iteration of individual

i to be the patient zero. Expectation Maximization for γ therefore reduces
to simply update γI with equation (C.2) at every sweep of BP update on the
population.



Appendix D

Optimization of Epidemble
message passing scheme

Let us now work on the optimization of the BP equations for Epidemble. The
BP equations are:

ν̂Ψi→(i,j)(Tij) = 1
zi→j

∑
{Tki}k∈∂i\j

Ψi({Til}l∈∂i|Di)
∏

k∈∂i\j

ν(k,i)→Ψi
(Tki)

ν(i,j)→Ψj
(Tij) = ν̂Ψi→(i,j)(Tij)

The second equation is due to the fact that node (i, j) only has two functions
attached, Ψi and Ψj. Now we notice that the messages are functions defined
over a domain of O (T 4) variables. In fact recall that Tij = (τi, τj, ti, tj). So
for the population dynamics scheme we need to store O(nT 4) numbers to
implement the scheme and and perform the same number of computations to
actually do one sweep. We can optimize this. It is sufficient to express the
factor Ψi explicitly in the message. The factor Ψi is a product of a contribution
coming from the planted trajectory distribution, i.e. P (τ |D) a contribution
coming from the inferred trajectory posterior distribution, i.e. P (t)P (O|t) and
a contribution which couples planted and inferred coming from the observations,
P (O|τ ,Do). In particular, the exact definition of Ψi is given in equation (3.29),
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that we write here:

Ψi({Til}l∈∂i|Di) = ξ(τ (j)
i , t

(j)
i |{εo, to}oi=i)ψ∗(τ (j)

i , τ
(i)
∂i |{sli}l∈∂i, x

0
i )×

× ψ(t(j)
i , t

(i)
∂i )

∏
l∈∂i

δ
t
(j)
i ,t

(l)
i
δ

τ
(j)
i ,τ

(l)
i

Let us start with the constraint that all the copies of the times must be equal to
each others, ∏l∈∂i δt

(j)
i ,t

(l)
i
δ

τ
(j)
i ,τ

(l)
i

. We can simply eliminate the superscript and
remove the constraint. We then recall ξ(τ (j)

i , t
(j)
i |{εo, to}oi=i) =: ξτi

ti
to shorten

notation. Now we have to work on the product ψ∗ψ. This can be rewritten as
a sum of six simpler terms. The reason is that ψ∗ is the sum of three terms
and ψ is the sum of two terms. Starting from ψ∗, namely equation (3.20):

ψ∗(τi, τ∂i|x0
i , {sji}j∈∂i) = I

[
τi = x0

i min
j∈∂i

{τj + sji}
]

=

= δx0
i ,Iδτi,0 + δx0

i ,S
∏

j∈∂i

I[τi ≤ τj + sji] − δx0
i ,S

∏
j∈∂i

I[τi < τj + sji],

where we simply rewrote the minimum (to be the minimum it means that at
least there is a j such that τi = τj + sji). Now we write the formula for ψ, see
equation (2.6):

ψ(ti, t∂i) =
∏

j∈∂i

(1 − λ)(tj−ti−1)+ −
∏

j∈∂i

(1 − λ)(tj−ti)+

where (a)+ = aθ(a) and θ is the Heaviside theta. We can see therefore that the
product ψ∗ξτi

ti
ψ is a sum of 6 terms, quite similar among each others:

Ψi({Til}l∈∂i|Di) =
δx0

i ,Iδτi,0 + δx0
i ,S

∏
j∈∂i

I[τi ≤ τj + sji] − δx0
i ,S

∏
j∈∂i

I[τi < τj + sji]


× ξτi
ti

∏
j∈∂i

(1 − λ)(tj−ti−1)+ −
∏

j∈∂i

(1 − λ)(tj−ti)+

 =

= ξτi
ti

6∑
α=1

Cα(x0
i , τi, τ∂i, ti, t∂i)
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the good thing about this decomposition is that each of the six terms Cα can
be written as a product over the neighbors ∂i:

Ψi({Til}l∈∂i|Di) = ξτi
ti

6∑
α=1

∏
k∈∂i

Ck
α(x0

i , τi, τk, ti, tk)

now we can rewrite BP equations:

ν̂Ψi→(i,j)(Tij) ∝
∑

{Tki}k∈∂i\j

ξτi
ti

6∑
α=1

∏
k∈∂i

Ck
α(x0

i , τi, τk, ti, tk)
∏

k∈∂i\j

ν(k,i)→Ψi
(Tki)

= ξτi
ti

6∑
α=1

(
Cj

α(x0
i , τi, τj, ti, tj)×

×
∏

k∈∂i\j

∑
Tki

Ck
α(x0

i , τi, τk, ti, tk)ν(k,i)→Ψi
(Tki)

)
.

So now the sum over {Tki}k∈∂i\j enters the product. We can further optimize
the computation by analyzing Ck

α(x0
i , τi, τk, ti, tk). The dependence on τk and

tk are the ones on which we are interested in. Notice in fact that actually
Ck

α does not depend on τk but only on sign(τk − τi + ski). Indeed, all of the
three addends in the ψ∗ depend on τk only through sign(τk − τi + ski). We now
call σki = 1 + sign(τk − τi + ski) and we have a variable which takes values in
{0, 1, 2}. We now redefine the quantity Ck

α(x0
i , τi, σki, ti, tk) as a function of σki,

so that the BP message is:

ν̂Ψi→(i,j)(Tij) ∝ξτi
ti

6∑
α=1

(
Cj

α(x0
i , τi, σji, ti, tj)×

×
∏

k∈∂i\j

∑
Tki

Ck
α(x0

i , τi, σki, ti, tk)ν(k,i)→Ψi
(Tki)

)
,

Looking at the BP equation, we see that it is possible to compress the messages.
Since the variable τk only appears in the messages, we can actually substitute
it with the variable σki. Defining:

mΨi→(i,j)(τi, σ, ti, tj) := ν̂Ψi→(i,j)(τi, 1 + sign(τk − τi + ski), ti, tj) (D.1)
m(k,i)→Ψi

(τk, σ, ti, tk) :=
∑
τk

ν(k,i)→Ψi
(Tki)I[σ = 1 + sign(τk − τi + ski)] (D.2)
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we have:

mΨi→(i,j)(τi, σ, ti, tj) ∝ ξτi
ti

6∑
α=1

(
Cj

α(x0
i , τi, σji, ti, tj)×

×
∏

k∈∂i\j

∑
τi,ti,tk

2∑
σ′=0

Ck
α(x0

i , τi, σ
′, ti, tk)m(k,i)→Ψi

(τk, σ, ti, tk)
)
.

We can simplify further by noticing that the factor ψ only depends on tk only
through (1 − λ)(tk−ti−1)+ or (1 − λ)(tk−ti)+ . So, each Ck

α can be rewritten with
their explicit dependence on tk:

Ck
α(x0

i , τi, σ
′, ti, tk) =: (1 − λ)(tk−ti−bα)+ck

α(x0
i , τi, σ

′, ti)

where bα ∈ {0, 1}. Defining:

µ(k,i)→Ψi
(τk, σ, ti, bα) :=

∑
tk

(1 − λ)(tk−ti−bα)+m(k,i)→Ψi
(τk, σ, ti, tk), (D.3)

we have the BP equation:

mΨi→(i,j)(τi, σ, ti, tj) ∝ ξτi
ti

6∑
α=1

(
Cj

α(x0
i , τi, σji, ti, tj)× (D.4)

×
∏

k∈∂i\j

∑
τi,ti

2∑
σ′=0

ck
α(x0

i , τi, σ
′, ti)µ(k,i)→Ψi

(τk, σ
′, ti, bα)

)
.

We have compressed the messages. The message µ has O(T 2) variables. So we
choose to save this in the population dynamics scheme in order to have O(nT 2)
numbers to store, which is a great improvement from O(nT 4). Now we have to
relate the message µ with the message m to close the scheme. We simply have
to use definitions. From eqn. (D.3):

µ(k,i)→Ψi
(τk, σ, ti, bα) =

∑
tk

(1 − λ)(tk−ti−bα)+m(k,i)→Ψi
(τk, σ, ti, tk)
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we use eqn (D.2):

µ(k,i)→Ψi
(τk, σ, ti, bα) =

∑
tk

(1 − λ)(tk−ti−bα)+×

×
∑
τk

ν(k,i)→Ψi
(Tki)I[1 + sign(τk − τi + ski) = σ]

=
∑
tk,τk

(1 − λ)(tk−ti−bα)+νΨk→(k,i)(τk, τi, tk, ti)I[σki = σ]

where we used for the second passage the original BP equation and the short
notation σki = 1 + sign(τk − τi + ski). We also explicitly wrote Tki = τk, τi, tk, ti.
Now we finally use eqn. (D.1):

µ(k,i)→Ψi
(τk, σ, ti, bα) =

∑
tk,τk

(1 − λ)(tk−ti−bα)+mΨk→(k,i)(τk, σik, tk, ti)I[σki = σ]

(D.5)
where σik = 1 + sign(τi − τk + sik). Now we have two equations that allow
to relate the sets of messages µ and m. It is convenient to keep in memory
only the µ messages, because each µ message only needs O(T 2) numbers to be
represented. Each iteration one computes the O(T 3) numbers which represent
the message m by extracting random messages µ from the population and using
equation (D.4). Once the m is computed, equation (D.5) allows to compute
the new µ to put in the population.
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