
Abstract

A decade of technological advancement driven by the success of deep learning in

various tasks [1–3] is not yet supported by a theoretical framework able to capture

the features of architectures, loss functions and dynamics that make the learning

possible and in fact very fruitful [4–7]. This challenge has raised the attention of the

theoretician community in multiple areas of science. However, despite notable effort

to analytically study deep learning [8–15], there are some fundamental questions that

are yet to be addressed, for example (i) can we predict practically relevant scores like

train and generalization error of deep networks in realistic regimes? (ii) how does

information contained in real-world datasets is exploited by the network to extract

useful representations (features)?

A great part of the classic theoretical results that we have in machine learning make

use of some simple assumption on the training data distribution [16–20]. The physical

reason to make such assumption has its roots in the classical statistical mechanics

description of disordered systems, mainly spin-glass theory. A fruitful line of research

in machine learning, that inherits from disordered systems, indeed aims to compute

a partition function that is a quenched or annealed average over the training data

distribution, which is the source of the disorder, allowing to describe the performances

of the typical solution independently of the specific dataset used to train the network
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[21–23]. This analysis, although providing results that hold in full generality, suffers

some limitations, mainly (i) the assumption of simple data distributions, which is

essential to analytically compute the averaged partition function, is unrealistic when

applied to practical settings in machine learning, for example in computer vision,

where the spatial information contained in the dataset is crucial to achieve almost-

optimal generalization performance. (ii) averaging over data is very hard when dealing

with deep networks. The architectures that are amenable to this kind of study have at

most one layer of trainable parameters (i.e. the perceptron, the random features model,

and the committee machine).

In my PhD work, as is suggested by the title, I explored a complementary approach

to the one discussed above, which does not make any assumption on the struc-

ture/distribution of the training data. In this framework, I will show how to derive

explicit formulas for the training and generalization error of trained fully-connected

deep networks, shallow convolutional and locally-connected networks, in a regime

of learning, called proportional regime, that assumes the size of the dataset P to be

comparable in magnitude to the width of the hidden layers in the model Nℓ (ℓ =

1, . . . , L, L being the (finite) depth of the network). The observables that I will show

how to compute in this scenario retain an explicit dependence on the training data,

since this is never averaged out. Remarkably, it is indeed this dependence that helps to

conjecture how the network can operatively exploit the information contained in the

trainset to make informed prediction on unseen data, and how this capability is linked

to the topology of the network connections. The present work is organized as follows.

In Chapter 1, I will introduce kernel methods, the state-of the art algorithms for object

recognition before deep learning, explaining why they still retain a theoretical interest

as limiting dynamics of neural networks in a certain regime (the infinite-width limit).

A crucial link between kernel methods, wide networks and Gaussian Proccesses will
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also be explored in this chapter, in view of the forthcoming discussion.

Chapter 2 will be dedicated to a class of results on the so-called infinite-width limit of

neural networks that leverage the same data-agnostic spirit [24–32]. The infinite-width

limit is informally defined as the regime where the size of each hidden layer Nℓ is

much larger than the size of the training set P . Here, one shows that the stochastic

process that describes information flow in the deep neural network is a familiar

Gaussian process (GP), which is completely determined by a non-linear kernel KL. A

fundamental consequence of this finding is that learning in the infinite-width limit is

equivalent to kernel learning [8, 20, 33, 34] with a static kernelKL that does not evolve

during the training dynamics and is completely fixed once the network’s weights are

initialized. Notably, given the incredibly general nature of these results, GP limits can

be derived for virtually any feedforward architecture [29, 35, 36].

In Chapter 3, I will discuss the critical topic of feature learning [37–41], i.e. the

capability of deep networks to automatically detect useful representations from raw

data. This is a fundamental aspect that any minimal theory of deep learning should be

able to quantitatively address, and constitutes a limitation of the infinite-width regime,

where it is essentially absent [42]. On the contrary, I will show evidence that feature

learning occurs and is in fact essential in finite-width convolutional networks, but

is almost absent in finite-width standard scaled 1HL fully-connected networks in the

proportional regime.

In Chapter 4, I will show how this data-agnostic approach can be extended, using

the tools of physics, beyond the infinite-width limit, in particular in the proportional

regime introduced above. I will show how a statistical mechanics description is

possible in this scenario both for FC networks of arbitrary finite depth, and for shallow

networks with local connections, with and without weight sharing.

In Chapter 5, I will try and rationalize the observation made in Chapter 3, through
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the lense of the framework introduced in Chapter 4. I will show how, thanks the

mechanism of local kernel renormalization, one can effectively quantify what it means

to be "far" from the kernel regime, providing a possible mathematical description of

what it means to learn features in neural networks. Inspection of the effective action

for a simple architecture with one convolutional HL in the proportional regime, shows

a striking difference with respect to the fully-connected case: whereas the FC kernel

is just globally renormalized by a scalar parameter, the CNN kernel undergoes a local

renormalization, meaning thatmanymore free parameters are allowed to be fine-tuned

during training. This finding can be employed to highlight a simple mechanism for

feature learning that can take place in finite-width shallow CNNs, but neither in

shallow FC architectures nor in LCNs without weight sharing.
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