
Doctoral Dissertation
Doctoral Program in Electrical, electronics and Communications Engineering

(36thcycle)

Merging Passive and Active
Measurements: Machine Learning

for Network Monitoring

Gianluca Perna

Supervisor:
Prof. Michela Meo, Ph.D

Doctoral Examination Committee:
Pedro Casas, Ph.D, Austrian Institute of Technology, Vienna
Matteo Varvello, Ph.D, Nokia Bell Labs, New Jersey
Anna Brunström, Ph.D, Karlstad University, Sweden
Fulvio Giovanni Ottavio Risso, Ph.D., Politecnico di Torino, Turin
Daniele Apiletti, Ph.D, Politecnico di Torino, Turin

ii

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Gianluca Perna
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

First and foremost, I would like to begin this long list of acknowledgments by
mentioning my tutor and mentor, Michela Meo. Your immense technical expertise,
support over the years, advice, kindness, and calmness in facing every situation have
been fundamental parts of my journey. I am grateful to have known you, and I feel
extremely fortunate to have been able to follow this path with you. Equally important
is Marco Mellia, a wonderful, charismatic, and engaging person; together, you both
have never ceased to support and encourage young people. You and Michela are
truly remarkable individuals.

To Pedro Casas and Matteo Varvello, I had the pleasure of meeting you around
the world, listening to your presentations, and learning from your work. You are
extremely knowledgeable individuals, and I am happy to have had you as reviewers
of my work. Your dedication, competence, and commitment in evaluating my work
have been invaluable contributions to its overall improvement. Your observations
and advice have been crucial in elevating the quality of my research. Thank you
wholeheartedly for your invaluable contribution and professionalism. Yet, thanks
to Daniele Apiletti, Anna Brunström and Fulvio Risso, for agreeing to serve on my
committee. I am honored to be able to share my work with experts of your caliber.

Martino Trevisan and Idilio Drago, perhaps you are the people with whom I have
shared the most in these years, thanks also to the Cloud Management experience
that brought us together. I believe it is now well known even by the walls of our
offices how much esteem and affection I have for you both. You are individuals
with extraordinary technical knowledge and dedication, beyond common, you have
enriched me immensely both professionally and personally. There are no words to
express the enormous gratitude I feel towards you both, thank you from the bottom
of my heart.

v

Danilo Giordano and Luca Vassio, two pillars of SmartData, thank you for always
being present, for being not only colleagues but also friends. For always having the
right advice at the right moment. You have made my stay in SmartData better, you
are valuable resources and people. A huge thank you also to professors Maurizio
Matteo Munafò and Paolo Garza, we have worked so much together over the years
and I am happy to have been able to share much of my academic journey with you.

Dena Markudova, my doctorate may not have started without you. Known for a
thesis, then colleagues, and now in search of our place in the world. You have been
my first colleague, first friend, first advisor; you have been a fundamental piece in
my doctorate, your laughter has cheered us up in moments of discouragement. You
are a precious friend, and above all, a talented researcher, I wish you all the best.

To all members of SmartData, Daniel, Francesca, Matteo, Luca G., Rodolfo,
Tailai, PHIL, Luciano, Francesco, Giordano, Nikhil, and all those I have probably
forgotten, you are excellent colleagues, great friends, poor trashball players with
whom I have shared many adventures. Never lose the enthusiasm that unites you;
you are a force of nature, and I wish you all the best!

To lifelong friends Federico, Alfredo, Giulio, Stefano, and Gianluca Z., grown
up together in a small provincial town, now adults, many of you fathers. I can tell
you that the time spent with you was magnificent, you have brightened my days, we
laughed, played, and joked together, and yet, we got angry together, I would repeat
every single moment spent with you. I hope the future holds only the best for all of
you.

To friends found by chance at university and never separated, Alessio, Federico,
Gianmarco, and Riccardo, for you, neither words nor praise are needed, there is only
one letter to describe the immense bond that binds us: J.

To my family and to those watching over us from above, life has not always
been kind, but you have given me the strength to reach this milestone. There is no
sufficient way to thank the family; you have done so much, perhaps too much. I am
proud of the teachings I have received from you, and I am proud of the people you
are, I could not have imagined a better family. Thank you very much.

Finally, the most important thanks go to Chiara, my girlfriend, the person with
whom I have shared everything; you are the cornerstone of my life. You have always
been by my side, supporting me in all my choices, bearing with me, listening to

vi

me, and helping me. Infinite thanks would not be enough for you. You are among
the best people I have ever met, always kind and helpful to everyone; people like
you make this planet a better place. I am proud of the person you are; you are truly
special, may life only give us the best.

Abstract

In an era where the internet permeates every facet of life, from essential services to
daily entertainment, the need for a deep understanding and efficient management
of its infrastructure is undeniable. This thesis delves into how the fusion of Ma-
chine Learning (ML) with active and passive network monitoring techniques can
significantly enhance the robustness and reliability of network infrastructures. By
focusing on distinct but interconnected domains such as Cloud Gaming, the HTTP/3
protocol, Geostationary Earth Orbit (GEO) Satellite Communication (SatCom), and
Real-Time Communication (RTC) traffic, we offer insights into optimizing network
performance for a variety of internet applications.

Our research begins with an in-depth analysis of Cloud Gaming platforms,
including Google Stadia, NVIDIA GeForce Now, and PlayStation Now. We examine
their unique network requirements, protocol usage, and the challenges of delivering
high-quality gaming experiences also over mobile networks.

Turning our attention to the HTTP/3 protocol, we evaluate its adoption trends
and operational benefits. Our findings highlight HTTP/3’s role in enhancing web
browsing experiences through reduced latency and improved efficiency, particularly
in mobile environments. However, we also identify the protocol’s varied performance
across different hosting setups and its limitations in scenarios with high packet loss,
underscoring the complexity of its deployment.

A further advancement in our research is the creation of Retina, software tool
tailored to simplify the feature extraction process for analyzing SRTP traffic, which is
widely used in videoconferencing applications. Retina streamlines the extraction of
comprehensive features from SRTP streams, laying the groundwork for the creation
of a Machine Learning (ML) model. We showcase consequently the application of
this ML model, which excels at predicting the type of multimedia content transmitted
within an SRTP flow. Furthermore, we explore the potential to adapt this model

viii

to similar scenarios by employing transfer learning techniques, demonstrating its
versatility and applicability.

To wrap up our research, we delve into the Satellite Communication (SatCom)
domain, where we are granted the unique opportunity to analyze the entirety of traffic
managed by a SatCom provider. Our initial efforts focus on conducting an extensive
measurement and performance campaign, during which we examine the dynamics
of traffic over different months. This comprehensive analysis provides insight into
how traffic patterns evolve over time in different countries. Following this, we
develop a system aimed at estimating the Web Quality of Experience (QoE) for
SatCom operators, leveraging both active and passive measurements. This innovative
system confronts the complexities introduced by Performance Enhancing Proxies
(PEPs) and the ever-changing nature of web content. Utilizing Machine Learning
(ML) algorithms to process the extracted features, we establish correlations between
network characteristics and key QoE metrics, such as SpeedIndex and OnLoad. This
approach highlights the critical role of ongoing adaptation in ML models to maintain
consistent performance in the face of network variability.

Contents

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Thesis Outline . 3

1.2 List of Publications . 5

1.3 Open Source - Code and Dataset 7

2 Background and Motivation 8

2.1 Active and Passive Measurements 8

2.2 Real-Time Transport Protocol . 11

2.3 Evolution and History of HTTP 14

2.4 Metrics of QoS and QoE in Networking 17

2.5 General Testbed Setup . 20

3 Cloud Gaming Measurements 23

3.1 Motivation . 23

3.2 Related Work . 24

3.3 Measurement Collection . 26

3.4 Results . 28

x Contents

3.4.1 Employed Protocols . 29

3.4.2 Network Testing . 30

3.4.3 Multimedia Streaming . 32

3.4.4 Network Workload . 33

3.4.5 Cloud Gaming under Mobile Networks 36

3.4.6 Location of Gaming Machines 39

3.5 Takeaways . 40

4 HTTP/3 - QUIC Measurements 43

4.1 Motivation . 43

4.2 Related Work . 46

4.3 Datasets and Performance Metrics 47

4.3.1 HTTP/3 Adoption . 47

4.3.2 HTTP/3 Performance . 48

4.3.3 Performance Metrics . 51

4.4 Dissecting HTTP/3 Adoption . 52

4.4.1 Websites Supporting HTTP/3 52

4.4.2 Content Served over HTTP/3 55

4.5 Web Browsing Performance . 56

4.5.1 HTTP/3 Performance by Provider 59

4.5.2 Page Characteristics . 60

4.5.3 Performance for Mobile Users 62

4.6 Performance of Adaptive Video Streaming 65

4.6.1 Metrics . 65

4.6.2 Results . 66

4.7 Takeaways . 68

Contents xi

5 Satellite Network Measurements 71

5.1 Motivation . 71

5.2 Related Work . 73

5.3 Measurement Setup and Methodology 74

5.3.1 The SatCom Network . 75

5.3.2 Passive Measurements . 77

5.3.3 Ethical Aspects . 79

5.4 Dataset Processing and Overview 80

5.4.1 Data Enrichment and Aggregation 80

5.4.2 Dataset Overview . 82

5.5 How much Customers Consume 83

5.6 What Customers Consume . 87

5.7 Which Performance Consumers Get 89

5.7.1 Satellite RTT Analysis . 89

5.7.2 Ground RTT Analysis . 92

5.7.3 DNS Performance . 94

5.7.4 Implications on Server Selection Policies of CDNs and DNS
Resolvers . 95

5.7.5 Throughput Analysis . 97

5.8 Takeaways . 98

6 Retina: An open-source tool for features extraction 100

6.1 Motivation . 100

6.2 Related Work . 101

6.3 System Overview . 101

6.3.1 Inputs and Configuration 102

6.3.2 System Core . 103

xii Contents

6.3.3 Outputs . 106

6.4 System Design Assets . 107

6.5 Publications Enabled by the Software 107

6.6 Takeaways . 108

7 Machine Learning for QoE in Real-Time Communication 109

7.1 Motivation . 109

7.2 Related Work . 111

7.3 Deployment Scenarios . 114

7.4 Dataset . 117

7.4.1 Data Collection . 117

7.4.2 Characterization and Challenges 120

7.5 Methodology . 121

7.6 Experimental Results . 128

7.6.1 Classification Performance 128

7.6.2 Parameter Sensitivity . 130

7.6.3 Training Set Size . 131

7.6.4 Feature Analysis . 133

7.6.5 Error Analysis . 134

7.6.6 Model Transfer to other Applications 135

7.7 Takeaways . 137

8 Machine Learning for QoE in Satellite Communication 139

8.1 Motivation . 139

8.2 Related Work . 141

8.3 System Design . 142

8.3.1 Problem Statement . 142

Contents xiii

8.3.2 Test Agent Design . 143

8.3.3 Feature Engineering . 145

8.3.4 ML Pipeline . 147

8.4 Experimental Results . 149

8.4.1 Per-Website Model Performance 149

8.4.2 One vs Many Models . 151

8.4.3 Temporal Stability . 153

8.4.4 Feature and Algorithm Impact 154

8.5 Takeaways . 156

9 Conclusions 158

9.1 Machine Learning for Networks: Personal Considerations 158

References 161

List of Figures

2.1 RTP header . 12

2.2 RTC Session Setup . 13

2.3 Non Persistent vs Persistent Connection 15

2.4 Head of Line Blocking TCP . 16

2.5 HTTP/2 vs HTTP/3 . 16

2.6 General Testbed Setup . 20

3.1 Testbed used for the experimental campaigns. 27

3.2 Examples of temporal evolution of bitrate for three gaming sessions. 33

3.3 Cumulative distribution of the video bitrate, for different quality
video levels. 34

3.4 Bitrate distribution with different artificial packet loss. 36

3.5 Estimated resolution of Stadia sessions on mobile networks. 38

3.6 Example of quality-level reduction in Stadia in terms of frame rate
and video resolution subsequent to packet losses. 39

4.1 Percentage of websites in HTTPArchive that announce support to
HTTP/3, separately by IETF draft (HTTPArchive dataset). 53

4.2 Server in HTTP response (December 2020) (HTTPArchive dataset). 54

4.3 Share of objects/volume served using HTTP/3 on enabled websites
(BrowserTime-Web dataset). 54

List of Figures xv

4.4 Share of objects/volume served on HTTP/3, separately by provider
(BrowserTime-Web dataset). 55

4.5 onLoad (top) and SpeedIndex (bottom) with extra latency, separately
for HTTP/1.1, HTTP/2 and HTTP/3 (BrowserTime-Web dataset). . . 57

4.6 H3 Delta on different scenarios. onLoad (top) and SpeedIndex (bot-
tom). Negative values indicate that HTTP/3 is faster (BrowserTime-
Web dataset). 58

4.7 onLoad H3 Delta by website provider for scenarios with extra-
latency and bandwidth limit (BrowserTime-Web dataset). 60

4.8 Visit characteristics vs. H3 Delta class (normalized values,
BrowserTime-Web dataset). 60

4.9 Web Browsing Performance of Mobile Users, separately by user
device type and emulated network (BrowserTime-Mobile dataset). . 63

4.10 onLoad time with emulated 4G good network (BrowserTime-Mobile
dataset). 64

4.11 Median Speedup per network condition (BrowserTime-Video dataset). 67

4.12 Distribution of chunks resolution with limited bandwidth
(BrowserTime-Video dataset). 68

4.13 Example sessions with 2 Mbit/s bandwidth (BrowserTime-Video
dataset). 69

5.1 Methodology for the estimation of the Satellite Segment RTT. . . . 78

5.2 Per country breakdown of traffic volume and user base. 81

5.3 Protocol share per country. 83

5.4 Daily trends per country. 84

5.5 Distribution of daily volume per customer in different countries.
Notice the log scale on both axes. 85

5.6 Heatmap of the service popularity in different countries. 87

5.7 Boxplot of the daily volume consumption per customer when access-
ing different service category. 88

xvi List of Figures

5.8 Satellite RTT computed from TLS handshake. 90

5.9 Ground segment RTT computed as the average RTT in each TCP
flow. Legend details the median. 92

5.10 Adoption and median response time of DNS resolvers. 93

5.11 Download speeds per customer. 96

6.1 Retina architecture. 102

6.2 Aggregation process and some of the statistics computed by Retina. 104

6.3 Example plot of the stream bitrate in a call. 104

7.1 Example of RTC-aware traffic management. 113

7.2 Deployment scenarios benefiting from our classification system. . . 116

7.3 Distribution of traffic characteristics for Webex (top) and Jitsi (bot-
tom), separately for media stream type. 118

7.4 Overview of the training and classification pipeline. 121

7.5 Features derived from packets. 123

7.6 Graph representing the correlation between features. The color
indicates the feature set, the shape whether the feature is kept after
feature selection and the distance represents the correlation. 125

7.7 Mean F1 score when varying the number of features. The vertical
lines indicate the final number of features. 126

7.8 Confusion matrices when using a Decision Tree classifier and 1s
time bins. 129

7.9 Performance of the four algorithms for different time bins. 130

7.10 Learning curve: Relationship between the number of training sam-
ples and the F1-score. 131

7.11 Feature importance comparison between Webex and Jitsi. 132

7.12 CCDF of percentage of errors per stream. 136

7.13 Classification performance using first N samples per stream. 136

List of Figures xvii

7.14 Classification performance varying the target domain. 137

8.1 Test Agent and Passive Meter deployment scenario. 142

8.2 BoxPlot OnLoad vs SpeedIndex 145

8.3 Detection of Related Flows and corresponding features. 148

8.4 Performance on different websites, measured using R2 Score and
MAPE. 149

8.5 Scaterplots representing predicted and real OnLoad values for two
websites. 151

8.6 Prediction performance for onLoad in different scenarios. 151

8.7 Prediction performance for OnLoad of pornhub.com with different
training strategies. 152

8.8 Prediction performance for OnLoad with a different number of features.154

8.9 Comparision of prediction performance for onLoad, using one model
per site. 155

List of Tables

1.1 Open source resources of the thesis 7

3.1 Overview of the measurement campaign. 28

3.2 Protocol usage for different gaming session components. 30

3.3 Gaming servers characterization. 39

4.1 Description of the employed datasets. 47

4.2 Network configurations used in the experiments. 48

4.3 Summary of the takeaways from BrowserTime-Video 65

4.4 Mean number of downscale per experiment. 68

5.1 TCP/UDP traffic breakdown by protocols. 81

5.2 Average ground segment RTT per country and DNS resolver. 94

6.1 Example command and Retina log for an RTC stream. The last three
columns are derived from the application logs. 106

7.1 Experiment summary . 114

7.2 Dataset summary . 119

8.1 List of 25 most important features according to RFE. 154

Chapter 1

Introduction

In the modern era, it is hard to imagine life without the Internet. More than half of
the global population is connected1. Digital networks, much like the human nervous
system, play a crucial role in our communication, work, and entertainment, enabling
the constant flow of data between individuals, systems, and applications.

However, extensive networks necessitate astute management and active surveil-
lance to ensure their smooth and reliable operation. The importance of meticulous
network monitoring cannot be underestimated, as it provides a critical window into
the health and performance of the networks themselves. This raises the question:
how are these invaluable insights obtained? And this is where active and passive
measurements combined with Machine Learning models find application.

Active measurements involve generating specific test signals, such as data packets
or more in general guided experiments, and closely observing/measuring their re-
sponses. This proactive approach is similar to a doctor evaluating the body’s reaction
to medication. Passive measurements, on the other hand, rely on observing traffic
without actively interfering. This approach is similar to diagnosing a clinical picture
based on visible symptoms and signs. Through both active and passive monitoring,
we can detect and mitigate congestion, preempt service disruptions, and optimize
resource allocation. Yet, in an increasingly complex and interconnected world, the
volume of data produced by networks often surpasses our human analysis capacity.

1As of October 2023, there were 5.3 billion internet users worldwide, which amounted to 65.7%
of the global population.

2 Introduction

This is where artificial intelligence, particularly Machine Learning, comes into
play. Applying Machine Learning algorithms to network data analysis can unveil
hidden patterns and trends, offering deeper insights into user Quality of Service and
Experience (QoS-QoE) and network performance. Through predictive models, we
can anticipate anomalies and emerging issues, proactively acting to ensure more
reliable and high-performing networks.

This thesis aims to show how the combination of active and passive measurements
with Machine Learning contributes to developing models for rapid network analysis
and monitoring. This work stems from a collaboration with two industry leaders,
Cisco Systems Inc. and Eutelsat. We explore various scenarios and address different
issues within the broader context of network monitoring. Working synergistically
with these companies, we focused on developing new models for active network
traffic monitoring based on Machine Learning.

Our initial focus was on video conferencing applications, in particular, the aim
was to establish a comprehensive framework for assessing the Quality of Experience
(QoE) of users involved in Real-Time Communication (RTC) applications. By
analyzing extensive amounts of RTP traffic, we developed a Machine Learning
model capable of categorizing the content of encrypted RTP streams into various
media types. Consequently, the project resulted in the publication of several papers,
some of which will be discussed in this thesis, particularly in Chapters 6 through 7.

Subsequently, our focus shifted towards other projects, with an emphasis on the
intricacies of satellite operations. Here, the utilization of both active and passive net-
work measurements assumed a more complex role. While still dealing with network
statistics, the satellite environment, characterized by its high latency, significantly
complicated all analyses. In this context, our aim was to develop a model capable
of assessing user navigation quality using web browser-generated traffic. Despite
previous efforts in this area, it became evident that the satellite domain had remained
relatively unexplored. Our research endeavors sought to address this gap, presenting
an initial exploration into this network scenario as detailed in Chapters 5-8.

1.1 Thesis Outline 3

1.1 Thesis Outline

In this section, we outline the thesis structure and the main contributions of each
chapter.

In Chapter 2, we discuss all the essential technical knowledge required to engage
with the content of this thesis. This includes an explanation of the differences
between active and passive measurements, along with an exploration of network
protocols such as RTP and HTTP/3. We also delve into the rationale and motivations
driving this thesis, as well as its unique contributions.

In Chapter 3, we discuss the work concerning network monitoring and mea-
surements for Cloud Gaming applications. In recent years, these applications have
gained significant popularity, facilitated by the widespread availability of broadband
connections, allowing a wide audience to make use of such services. We analyze
the type of protocol employed by the main providers, as well as the minimum and
maximum requirements needed to fully enjoy these services.

In Chapter 4, we delve into the comprehensive role of the new Hypertext Transfer
Protocol 3 (HTTP/3). HTTP/3, along with its predecessors HTTP/2 and HTTP/1,
is used to access the majority of services on the Internet, ranging from websites to
social networks and collaborative platforms. We present an extensive measurement
study of HTTP/3 adoption and performance to quantify the advantages ushered in by
HTTP/3 in various scenarios, including browsing, mobile usage, and adaptive video
streaming.

In Chapter 5, we present the first large-scale passive characterization of a global
GEO Satellite Communication (SatCom) Internet access solution. Through passive
instrumentation of the satellite ground station, we observe traffic from tens of
thousands of customers in more than 20 countries in Europe and Africa. This allows
us to characterize different Internet usage habits in various scenarios and to observe
the impact of SatCom technology on performance.

Chapter 6 introduces Retina, an open-source tool designed for the versatile
analysis of Real-Time Communication (RTC) traffic. By providing raw captures
of RTC traffic, Retina generates a range of logs and graphs based on user-defined
parameters. Among these is a log detailing traffic statistics on a per-second basis,
which serves as input for the Machine Learning algorithms discussed in Chapter 7.

4 Introduction

Chapter 7 introduces a Machine Learning classifier that leverages statistical
attributes derived from the traffic data generated by Retina (Chapter 6). This classifier
is designed to distinguish RTP streams based on the type of media content they
transport, such as audio, video, screen sharing, and more. It operates on one-second
traffic segments as input, and in addition to standard media, it can also identify
various video qualities and error correction streams.

Chapter 8 delves into the nature of connections in a SatCom scenario already
presented in Chapter 5, with a particular focus on assessing Quality of Experience
(QoE) in browsing through Machine Learning in the satellite scenario. This inves-
tigation involves the utilization of three months’ worth of both active and passive
data. The active probe is positioned upstream of the satellite apparatus, before the
ground receiving antenna. Passive data is collected on the segment connecting the
operator’s DataCenter to the Internet using the Tstat software. The goal is to develop
a Machine Learning model capable of predicting QoE metrics in browsing, such as
OnLoad or SpeedIndex, with the aim of bridging the worlds of active and passive
measurements thanks to Machine Learning. Additionally, we examine the critical
aspects of the model, such as its long-term adaptability, and present solutions to
address these challenges.

1.2 List of Publications 5

1.2 List of Publications

In this section, we outline the papers published during the PhD, dividing them into
two subsets: those relevant for the thesis and additional works.

Publications described in the thesis:

1. A Network Analysis on Cloud Gaming: Stadia, GeForce Now and PSNow,
Andrea Di Domenico; Gianluca Perna; Martino Trevisan; Luca Vassio; Danilo
Giordano; (2021) In: NetworkChapter 3: journal version

2. A first look at HTTP/3 adoption and performance, Gianluca, Perna; Mar-
tino, Trevisan; Danilo, Giordano; Idilio, Drago; (2022) In: Computer Commu-
nications Chapter 4: journal version

3. When Satellite is All You Have: Watching the Internet from 550 Ms, Daniel
Perdices; Gianluca Perna; Martino Trevisan; Danilo Giordano; Marco Mellia;
(2022) In: Proceedings of the 22nd ACM Internet Measurement Conference
(IMC) Chapter 5: conference version

4. Retina: An open-source tool for flexible analysis of RTC traffic, Perna,
Gianluca; Markudova, Dena; Trevisan, Martino; Garza, Paolo; Meo, Michela;
Munafò, Maurizio, (2022) In: Computer Networks 202 - Chapter 6

5. Online Classification of RTC Traffic, Perna, Gianluca; Markudova, Dena;
Trevisan, Martino; Garza, Paolo; Meo, Michela; Munafò, Maurizio; Carofiglio,
Giovanna, (2020) In: 2020 IEEE 18th Annual Consumer Communications and
Networking Conference (CCNC) - Chapter 7: conference version

6. Real-Time Classification of Real-Time Communications, Perna, Gianluca;
Markudova, Dena; Trevisan, Martino; Garza, Paolo; Meo, Michela; Munafo,
Maurizio; Carofiglio, Giovanna, (2022) In: IEEE Transactions on Network
and Service Management - Chapter 7: journal version

7. Monitoring Web QoE in Satellite Networks from Passive Measurements,
Gianluca Perna; Martino Trevisan; Danilo Giordano; Marco Mellia; Daniel
Perdices; (2023) In: 2023 IEEE Consumer Communications and Networking
Conference 2023 - Conference (CCNC) Chapter 8: conference version

6 Introduction

Other published works:

1. Where did my packet go? Real-time prediction of losses in networks,
Tailai Song, Dena Markudova, Gianluca Perna, Michela Meo; In: IEEE 2023
International Conference on Communications (ICC), conference version

2. BitFormer: Transformer-based Neural Network for Bitrate Prediction
in Real-Time Communications, Tailai Song; Gianluca Perna; Michela Meo;
Paolo Garza; Maurizio Matteo Munafò; In: IEEE 2023 Consumer Communi-
cations and Networking Conference (CCNC), conference version

3. Realistic Testing of RTC Applications under Mobile Networks, Gianluca,
Perna; Martino, Trevisan; Danilo, Giordano; (2020) In: Proceedings of the
16th International Conference on Emerging Networking EXperiments and
Technologies (CoNEXT)

4. Packet Loss in Real-Time Communications: Can ML Tame its Unpre-
dictable Nature?, Tailai Song; Gianluca Perna; Paolo Garza; Michela Meo;
Maurizio Matteo Munafò; (Submitted to review stage), journal version

My career in the Networking field has been enriched by valuable collaborations
with key industry players, including globally renowned companies like Cisco. These
partnerships have provided me with a unique opportunity to share and contribute to
significant research projects. Throughout these experiences, I have had the privilege
to work with exceptional colleagues, sharing a common vision and implementing a
synergistic approach to teamwork. In my consistent dedication, I have always played
a pivotal role, successfully balancing technical and theoretical aspects, thereby ensur-
ing a meaningful contribution to the achieved results and the resulting publications.

1.3 Open Source - Code and Dataset 7

1.3 Open Source - Code and Dataset

In line with our commitment to open science, a significant portion of our work, in-
cluding datasets and tools, is publicly available. Throughout the chapters, references
for accessing this material are provided, and a summarized version is presented in
Table 1.1.

Collecting data in research projects is complex, requiring significant time, au-
tomation, and meticulous processing and storage. Thanks to the open-sourcing of
code and datasets, sometimes this step can be accelerated, offering several tangible
benefits. Firstly, it allows fellow researchers to replicate and verify findings, thereby
accelerating the pace of scientific discovery. Additionally, it facilitates the reuse of
existing resources, saving time and resources that would otherwise be spent reinvent-
ing the wheel. Moreover, open access to code and datasets promotes educational
opportunities, enabling students and aspiring researchers to learn from real-world
examples and contribute to ongoing projects. As data emerges as the driving force of
the century, accessibility further empowers technology development.

In conclusion, while acknowledging the occasional constraints imposed by pro-
prietary considerations, researchers must remain steadfast in their commitment to
open science. By making conscientious efforts to publish code and datasets, we
contribute to a more inclusive, collaborative, and impactful scientific ecosystem,
ultimately advancing the frontiers of knowledge for the betterment of society.

Chapter Open Resource Link
3: Cloud Gaming https://zenodo.org/records/5509243
4: HTTP/3 Benchmark https://github.com/SmartData-Polito/h3-benchmark
5: SatCom Characterization https://github.com/SmartData-Polito/errant
6: Retina https://github.com/GianlucaPoliTo/Retina
6: Retina https://hub.docker.com/r/gianlucapolito/retina
7: RTC Classification https://smartdata.polito.it/rtc-classification/

Table 1.1 Open source resources of the thesis

https://zenodo.org/records/5509243
https://github.com/SmartData-Polito/h3-benchmark
https://github.com/SmartData-Polito/errant
https://github.com/GianlucaPoliTo/Retina
https://hub.docker.com/r/gianlucapolito/retina
https://smartdata.polito.it/rtc-classification/

Chapter 2

Background and Motivation

This chapter provides an in-depth examination of the literature regarding network
analysis, active and passive measurements, and an inspection of detailed protocols
such as RTP and HTTP/3. We will then see how machine learning can be employed
to design a traffic monitoring or classification system, based on the data collected.
We will describe the best-practices for setting up a testbed, focusing on the most
widely used technologies now; next, we will analyze the benefits and critical issues
in a data collection campaign.

2.1 Active and Passive Measurements

Since ancient times measuring quantities has been a human need, we measure weight,
length forces, in fact we measure anything that can be measured, and the Internet
is no exception. The Internet is a network of networks, each macro network is an
Autonomous System (AS), and these are interconnected with each other and talk to
each other, with a complex routing protocol called Border Gateway Protocol (BGP)1.
The Internet, as we know it today, was not initially envisioned in its current form.
Its success and adoption unfolded gradually, thanks to the development of software,
protocols, and standards. Similar to urban infrastructure, long-term perspectives
were often lacking in its early stages. This lack of foresight is evident in events
like the unexpected exhaustion of IPv4 addresses, which few had foreseen. The
Internet’s evolution has been marked by rapid and sometimes chaotic growth. In

1BGP was developed at Stanford University, in the United States, in 1989.

2.1 Active and Passive Measurements 9

response, organizations like the Internet Engineering Task Force (IETF) emerged to
standardize its use. They navigate complexities, such as adapting new protocols to
existing infrastructure, exemplified by the transition to IPv6.

Understanding the Internet’s behavior can be challenging, which is why moni-
toring its performance and stability is of vital importance. What makes the Internet
unique is its dynamic and ever-evolving nature. Measurements provide the necessary
framework to understand how data travels through this intricate maze of connections.
They allow us to assess congestion, latency, and the reliability of connections in
real-time, crucial elements to ensure a seamless and uninterrupted user experience.
Furthermore, anomaly detection is essential for identifying out-of-the-ordinary be-
havior, which could indicate security issues or malfunctions in the network. Thanks
to these measurements, it is possible to intervene promptly, preventing potential
crises or more severe problems. In addition to ensuring optimal operation, measure-
ments provide valuable insights into how users utilize the network. Every interaction,
every click, every download is captured and analyzed. This approach, known as user
profiling, plays a crucial role in understanding what attracts users, which services
are in higher demand, and how to enhance the offering. Ultimately, this information
not only enables the provision of more targeted services but also helps businesses
develop more effective marketing strategies, generating a positive impact on revenue
and customer satisfaction. Furthermore, we cannot underestimate the importance of
measurements in the realm of online security. The network is constantly exposed to
external threats, such as cyberattacks and fraud attempts. Measurements allow for
the rapid identification of these events, implementing the necessary countermeasure-
ments to safeguard data integrity and user privacy. Without this level of vigilance
and proactive response, the Internet would be much more vulnerable to attacks and
intrusions. Consider also the significant impact of energy consumption on Internet
operations. In an era where sustainability and green initiatives take center stage,
monitoring becomes crucial in this context as well. It allows us to identify areas of
resource wastage and enhance overall efficiency. The Internet, a voracious consumer
of energy and data2, accounts for approximately 2.5% of global electricity consump-
tion. Projections indicate that this demand is set to double by 2030, underscoring the
substantial resources required to maintain its operations.

2According to a recent study regarding Energy Consumption of the Internet this accounts for about
2.5% of all global electricity consumed. In addition, it is estimated that the energy demand of the
Internet will double by 2030

https://thundersaidenergy.com/2023/04/20/what-is-the-energy-consumption-of-the-internet

10 Background and Motivation

After this introduction to the Internet measurement, we can now address another
important question: what is the difference between active and passive measurements,
and what are they used for?

Active measurements involve direct action by the experimenter on the network.
For example, performing a ping to assess the RTT to a server or using a speedtest
to determine the available upload and download bandwidth. In short, active mea-
surements include all actions taken by the experimenter with the goal of obtaining
value estimates. Passive measurements, in contrast, operate in the reverse way. This
technique involves capturing and analyzing live network traffic, or traffic statistics,
at a specific point in the network without interact directly with it.

Going deeper, active monitoring can and should be employed to provide a 360-
degree, real-time view of service and network (QoS) conditions. Through proactive
use, these tools can provide us with early warning of performance degradation,
potentially even before the customer is aware of it. In addition, by having this level
of visibility into most, if not all, services in the network, automated troubleshooting
tools can quickly triage impacted services and identify hotspots or common cause
elements to ensure that the most critical problems are addressed first. A practical
example would be the use of a monitoring tool in a datacenter such as Zabbix3, which
among other functions offers the ability to perform ping tests at regular instants of
time, on all machines in the datacenter, to check their functionality.

Passive monitoring serves a multifaceted role, exemplifying its versatility in both
cybersecurity and operational realms. This methodology plays a pivotal role in post-
event analysis by effectively identifying root causes and malicious traffic instances.
Leveraging historical traffic profiles, it discerns anomalies such as Distributed De-
nial of Service (DDoS) attacks or high retransmission activity, facilitating prompt
response strategies. Additionally, passive monitoring offers invaluable insights into
customer usage patterns and application performance, enabling carriers to directly
monitor Quality of Experience (QoE). This granular data empowers the develop-
ment of tailored service packages, informs strategic network and system upgrades,
and uncovers new service opportunities. For instance, within content distribution
networks like Netflix, passive monitoring discerns popular content by geographic
region, thereby guiding informed data placement strategies to optimize user experi-
ence [1] [2].

3https://www.zabbix.com/

https://www.zabbix.com/

2.2 Real-Time Transport Protocol 11

In conclusion, it is crucial to understand that both active and passive monitoring
play a critical role in network infrastructure analysis and data analysis, but above all
that the two types of monitoring are a powerful tool when used together.

2.2 Real-Time Transport Protocol

To facilitate the reading of the thesis, in this section we provide an overview of the
most common protocols used in Real Time Communication (RTC) applications and
the difference between native applications (e.g., Webex Teams) and browser-based
platforms (e.g., Jitsi Meet).

Despite the broad landscape of protocols used on the Internet, this section will
provide specific details on Real-Time Transport Protocol (RTP) protocol [3] that will
be frequently discussed in subsequent chapters, in particular in Chapter 3, Chapter 6
and Chapter 7.

Media streaming. RTP is used to transport multimedia content in real time. In the
ISO/OSI structure, we imagine the transport layer divided into two parts: below we
find UDP/TCP, while above we place RTP. This is because although RTP is designed
for transporting multimedia data, it makes use of UDP for actual data delivery.

Why the choice of UDP? To understand the reasons behind this choice, it is
useful to analyze the use cases. RTP, as mentioned, is employed in real-time data
transmission scenarios, such as video conferencing, cloud-gaming, and real-time
streaming. In these scenarios, the user values an immediate response over perfect in-
formation integrity. Think, for example, of a video call: if a packet were lost, waiting
for its retransmission before playout would lead to significant delays, compromising
the real-time experience.

For transporting multimedia content, RTP extends the capabilities of UDP by
introducing the concept of a multimedia stream. Usually, there is an RTP stream
for each type of active media (such as audio or video). However, there are cases
where the service provider uses a central server to manipulate and recombine the
streams into one, adapting the quality or codecs, and sends it to the receivers as a
single stream. This represents a more specific case that will not be addressed here.

12 Background and Motivation

Fig. 2.1 RTP header

Let us analyze the RTP header, as shown in Figure 2.1, for a more detailed
description of some of the fields.

• SSRC (Synchronization Source): Identifies the synchronization source of
the session, unique for each RTP stream.

• PT (Payload Type): Specifies the encoding format of the data contained in
the RTP packet.

• Timestamp: Indicates when the audio or video sample was taken.

• Sequence Number: Incremental numbering of packets to assist the receiver
in reordering them.

• CCSRC (Contributing Source): List of sources that contributed to composing
an RTP packet.

Thus, among RTP’s main functions, the use of timestamping stands out, which
allows audio and video data streams to be properly synchronized during transmis-
sion. This timestamping facilitates the proper playback of received media elements,
ensuring smooth and synchronized streaming. In addition, RTP implements a packet
numbering mechanism, which makes it possible to detect the loss of data or its re-
ception out of sequence. This is especially crucial in contexts where transmission
reliability is paramount, such as in video conferencing or VoIP calls. In parallel, RTP
works in synergy with another protocol, called RTP Control Protocol (RTCP). RTCP
takes on the task of monitoring Quality of Service (QoS) during real-time data trans-
mission. This means that RTCP collects information about network performance,

2.2 Real-Time Transport Protocol 13

such as delay, packet loss and congestion, and provides this data to communication
participants in order to perform Transmission Adaptation4.

STUN
server

Signaling
server

TURN
server

You are y.y.y.y

Offer SDP

Who am
 I?

You are
 x.x.x.x

Who am I?

Offer SDP

Answer SDP Answer SDP

ICE Candidate A ICE Candidate A

ICE Candidate B ICE Candidate B

Media data

Fig. 2.2 RTC Session Setup

Session Setup. In order to start a media session, it is necessary for the endpoints
to be able to communicate with each other, especially in the case of peer-to-peer
communication between participants. This is complicated by the presence of NATs,
firewalls and middleboxes in general. To ensure connectivity, applications often
use the STUN protocol [4] for NAT detection and TURN [5] to relay the traffic
through a server with a public IP address. ICE [6] combines STUN and TURN into
a single technique. RFC 7983 [7] defines a simple mechanism for multiplexing RTP,
STUN, and other protocols on the same UDP flow. An example of session setup in
Real-Time communication is reported in Figure 2.2

WebRTC. The above protocols need to be carefully coordinated to have a working
RTC application. To facilitate the development of new applications, WebRTC [8] is
a set of high level and standardized APIs that can be used in browsers and mobile
applications for video and audio communication. WebRTC was launched in 2011
and is currently supported by most browsers. It represents the standard way for RTC

4Participants can adjust transmission parameters to improve quality

14 Background and Motivation

applications to run via web if we exclude application-specific plugins. WebRTC
provides programming interfaces to establish media sessions, organizing the use of
the RTP, RTCP, STUN, TURN and DTLS protocols.

RTC Applications Under Study. In our study that will be presented in detail
in Chapter 7, we focus on two RTC applications: (i) Cisco Webex Teams and
(ii) Jitsi Meet. Webex Teams (or Webex for short) is a business-oriented service that
offers paid plans for enterprises and institutions that require video call service. It
is available as a standalone application for PC and mobile devices, but it can also
be used through browsers that support the WebRTC standard. Jitsi Meet (or Jitsi
for short) is a free of charge RTC application that provides a simple browser-based
user interface for WebRTC-compliant browsers. It is fully open-source, and it is
possible to run a private Jitsi server or rely on the public service available online.
Both applications use RTP for streaming multimedia content along with STUN and
TURN for session establishment. They support audio and video communication
and allow users to share their screens with other participants. Moreover, they adopt
the Selective Forwarding Unit (SFU) approach [9], where participants send their
multimedia content to a central server. The server then forwards the data, deciding
which stream to send to each participant. Although the choice of different RTC
applications (e.g., Zoom or Microsoft Teams) would be possible, we opted for Webex
and Jitsi, which allow us to easily gather the classification ground truth, as we will
illustrate in Section 7.4. For other popular applications, we could not find such a
convenient way to collect the needed information.

For the rest of the thesis, we use the following definition for RTP flow:
(IPsrc, IPdst, PrtSrc, PrtDst, SSRC, PT).

2.3 Evolution and History of HTTP

The Hypertext Transfer Protocol, known as HTTP, is the foundation of communica-
tion on the Web. It defines how clients, such as Web browsers, and servers exchange
information. In the ISO/OSI framework, HTTP operates at the application layer
(layer 7) in synergy with the TCP transport protocol, which acts at the transport layer
(layer 4).

2.3 Evolution and History of HTTP 15

HTTP’s ancestor, HTTP/0.9, was introduced in 1991 and allowed only the transfer
of text-type data. However, this limitation highlighted the need for a more advanced
version. In 1996, HTTP/1.0 was introduced. This version allows the transfer of a
variety of media, but still has a significant drawback: it can send only one object
per connection, without persistence. This implies that each request to a new object
requires the opening of a new TCP connection, resulting in a significant expenditure
of time and resources, since 2 RTTs will be required to get the data stream: 1 RTT for
opening the connection and another for initiating the transfer as shown in Figure 2.3.

Fig. 2.3 Non Persistent vs Persistent Connection

In 1997, HTTP/1.1 [10] was released, introducing the concept of connection
persistent, allowing multiple requests to share the same TCP connection, reusing the
same socket, as depicted in Figure 2.3. In terms of scalability, this innovation is a
significant advantage because the RTT for opening the connection occurs only for
the first object, while the others are requested in the queue on the same socket.

Despite the implementation of persistent connections, HTTP/1.1 still faces a
problem, known as "Head of Line Blocking" (HOL). This concept, can be explained
by considering the principle of a TCP connection between client and server, i.e, as
a direct thread through which one piece of information can travel at a time, in an
orderly and sequential manner, as shown in Figure 2.4. If a packet is lost en route
between the client and the server, this can block the connection. TCP, being of a
lower level than HTTP, does not understand the details of the HTTP protocol and
treats data as a stream of bytes. Therefore, if a packet is lost, the protocol waits for
retransmission before proceeding.

HTTP/2 [11, 12], introduced in 2015, addressed "Head of Line Blocking" (HOL)
by introducing "multiplexing," where the server and client can exchange multiple

16 Background and Motivation

Fig. 2.4 Head of Line Blocking TCP

streams of data within the same connection. Each stream is identified by a unique
identifier, allowing for parallel processing of requests and responses. This means
that even if one resource is delayed or blocked, it won’t prevent other resources from
being transmitted, thus eliminating the bottleneck effect caused by HOL. Although
HOL was resolved at the HTTP level with this mechanism, it persisted at the TCP
level due to its sequential nature as reported in Figure 2.4.

This inefficiency of TCP for modern browsing led Google engineers to develop
an alternative called QUIC (Quick UDP Internet Connection), which now makes up
about 40% of Internet traffic.

Fig. 2.5 HTTP/2 vs HTTP/3

2.4 Metrics of QoS and QoE in Networking 17

Key features of QUIC include replacing the transport layer with UDP and imple-
menting native transport of TLS+HTTP. This strategic shift addresses the problem
of HOL at layer 4, as UDP doesn’t mandate ordered delivery. Additionally, the en-
tire control and retransmission mechanism, formerly managed by TCP at the kernel
level, is now executed in user-space. This architectural adjustment offers a signifi-
cant advantage in agility, allowing the protocol to be modified without necessitating
intervention in the OS kernel, thereby simplifying the adoption and diffusion of the
protocol and facilitating customization to develop tailored alternatives.

QUIC natively uses and supports TLS 1.3 [13], the latest iteration of the TLS
protocol. In TLS 1.3 has been introduced the zero round trip time (O-RTT) connec-
tion resumption. This operational mode allows a client to commence transmitting
application data, such as HTTP requests, without waiting for the TLS handshake
to finalize as shown in Figure 2.5 (c). The fundamental concept behind 0-RTT con-
nection resumption is that if the client and server had previously established a TLS
connection between them, they can utilize cached information from that session to
initiate a new one without the necessity of renegotiating the connection parameters
from scratch. QUIC brings a significant advantage by consolidating the transport and
cryptographic handshakes into one, thereby eliminating a complete round-trip from
the typical connection establishment process. This innovation not only trims the
handshake duration but goes a step further, achieving a true 0-RTT connection setup.

2.4 Metrics of QoS and QoE in Networking

Quality of Service (QoS) metrics in networking are key parameters used to evaluate
and ensure the level of performance and reliability of a network. These quantitative
measurements include indicators such as latency, packet loss, bandwidth and jitter,
providing an objective assessment of data transmission performance. Latency, for
example, indicates the delay in sending and receiving packets, while packet loss
indicates the percentage of data that does not reach its destination. QoS is essential to
ensure that time-sensitive applications, such as video conferencing or online gaming,
run smoothly and without interruption. Optimizing these metrics allows to deliver a
superior user experience and ensure that the network can handle varying traffic loads
efficiently. Let’s look in detail at what the most popular QoS metrics are.

18 Background and Motivation

• Round-Trip Time (RTT): Indicates the time it takes for a data packet to
travel from sender to receiver and back again. It can affect applications such
as online games.

• Packet Loss: Indicates the percentage of packets that do not reach their
destination. Too much packet loss can cause delays and deterioration of
communication quality.

• Jitter: Represents the variation of latency over time. High jitter can cause
jitters or interruptions in communications, especially in time-sensitive applica-
tions.

• Bandwidth: Represents the amount of data that can be transmitted over a
connection in a given time interval. High bandwidth is crucial to ensure a
good user experience, especially in challenging environments such as Cloud
Gaming.

• Throughput: Represents the actual amount of data that can be transmitted
between sender and receiver. It may be less than the nominal bandwidth due
to various factors.

All of the above metrics are QoS measurements, and they can all be obtained
directly from the flows or packets transited in the network. For example, you can
measure RTT using the ping command to different anchors5 but also packet loss, or
you can measure bandwidth using software such as speed-test, which allows you to
open a TCP flow to a server trying to maximize the data sent per second. Jitter, on
the other hand, can be estimated by extracting the time series of arrival values from
the pcap file, calculating the variance on interarrival times. In short, for each of the
metrics above there is a direct way to derive the quality measure.

The move from QoS to QoE marks a major shift in the evaluation and optimiza-
tion of communications networks and services. This is happening because it has
been recognized that even if a network is well managed technically, this does not
guarantee a high-quality user experience.

An example clarifies this idea: imagine a perfectly paved road with clear signage
and smooth traffic, representing a network with good QoS. However, if cars have

5They are servers whose location you know that respond to the ping thus giving us the round-trip
time information

2.4 Metrics of QoS and QoE in Networking 19

uncomfortable seats or unintuitive controls, the driving experience will be less
pleasant for the driver. This explains the key point: the quality of the user interface,
along with other factors, is critical in the total user experience, regardless of the
robustness of the QoS.

Therefore, QoE becomes crucial. It combines the evaluation of technical network
performance with subjective user feedback, providing a complete and accurate view
of the quality of experience. For example, if a VoIP call has low latency (indicating
good QoS), but the voice is distorted or unclear, the user will still perceive a low-
quality experience.

Thus, attention to QoE is a natural step in the evolution of network design and
management. It recognizes that user-perceived quality is as important as the technical
performance of the network, and that to offer truly excellent service, both aspects
must be considered in a balanced and synergistic way.

Examples of QoE metrics may include:

• MOS (Mean Opinion Score): A Mean Opinion Score quantifies the overall
quality of an event or experience based on human judgment. In the realm of
telecommunications, it specifically evaluates the quality of voice and video
sessions.

Typically assessed on a scale ranging from 1 (poor) to 5 (outstanding), Mean
Opinion Scores represent the average of various individual parameters scored
by human evaluators. While initially these scores originated from surveys
conducted by expert observers, contemporary MOS is frequently generated
through an Objective Measurement Method that approximates human assess-
ments.

• SpeedIndex: The SpeedIndex measurements a user’s perception of the speed
at which a web page loads. This metric takes into account the time it takes to
make the main content of a page visible, rather than the complete loading of all
elements. A lower value indicates faster loading and a better user experience.

• OnLoad: OnLoad indicates the time when all elements of a web page have
been fully loaded in the user’s browser environment. A page that loads quickly
contributes to a smoother user experience, avoiding delays and frustration.

20 Background and Motivation

• Time to First Byte (TTFB): This metric measurements the time between
requesting a web page and receiving the first response byte from the server. A
low TTFB indicates that the server responds quickly to requests, which can
improve the user experience.

• Time to Interactive (TTI): This metric measurements the time it takes for a
web page to become interactive, which is when the user can begin to interact
with the content on the page. A low TTI indicates that the page becomes
interactive quickly, which can improve the user experience.

2.5 General Testbed Setup

Browsertime
+

Ping
+

Speedtest
+ Network Provider Boundary Router

Internet

Fig. 2.6 General Testbed Setup

In this last section of the chapter, we present the guidelines that conducted the
creation of our network testbeds. We will outline the most commonly used software,
providing a generic model that can later be customized and adapted as needed.

Throughout the course of this thesis, the primary focus of the utilized testbeds
has been on the collection of Quality of Experience (QoE) metrics, aimed at devel-
oping Machine Learning models capable of predicting these indicators. Notably,
OnLoad and SpeedIndex are key measurements attainable through various methods,
particularly via web browsers such as Google Chrome. By analyzing the .HAR file6,
which comprehensively records web request times, responses, and wait durations,
these metrics can be extracted.

In pursuit of scalability, manual collection of thousands of browsing sessions
proves impractical. Hence, a high degree of automation becomes essential. Fortu-
nately, numerous tools have been developed over the years to emulate web browsing
activities. Among them, Browsertime7 stands out as one of the most reliable options

6https://toolbox.googleapps.com/apps/har_analyzer/?lang=it
7https://hub.docker.com/r/sitespeedio/browsertime/

https://toolbox.googleapps.com/apps/har_analyzer/?lang=it
https://hub.docker.com/r/sitespeedio/browsertime/

2.5 General Testbed Setup 21

available. This software, accessible through Docker, offers exceptional versatility,
making it compatible with a diverse array of operating systems, including Linux,
Mac, and Windows. A standout characteristic of this tool is its exceptional configura-
bility. It not only facilitates browsing web pages while capturing both QoE metrics8

and comprehensive .HAR file, but also offers the capability to integrate external
Selenium-based configuration files. This feature empowers users to automate inter-
actions within the web page, enabling tasks such as accessing forms or clicking on
specific elements.

In Figure 2.6, we illustrate a typical Testbed setup, featuring a test machine
connected to the internet via the operator under analysis. Various services are
activated on the test machine to perform both active and passive measurements.
Active measurements can include for instance periodic pinging towards known nodes
to monitor connection status, along with bandwidth data collection every 15 minutes
through a cronjob. Additionally, a continuously active script facilitates web page
navigation through Browsertime. The selection of web pages to visit depends on the
specific analysis context. Initially, sites providing insights into the top 100 visited
domains in a particular region may be considered, although this list can be tailored
to meet specific requirements. Recognizing the variability of services is crucial as
they may vary depending on the analysis nature.

In a robust testbed configuration, it’s essential to ensure measurements reflect real-
world conditions, such as accepting cookies in case of browsing activity, mirroring
typical user behavior on the internet. Users commonly accept cookies during their
initial visit, and subsequent sessions are tied to these accepted cookies until expiration
or clearance. It’s also vital not to limit measurements solely to homepage interactions,
as users frequently navigate deeper into websites like Amazon, YouTube, or news
sites. Although this complexity may extend the data collection process, it ensures
collected data accurately represents real user activity.

A key aspect of the testbed is passively intercepting network traffic from a
strategic vantage point. This vantage point provides an advantageous position for
observing network traffic, typically where traffic can be sniffed as it traverses the
network cable, included the traffic generated by the active probe. In our scenarios,
the passive analysis probe is always placed on the outgoing link of the boundary

8The HAR file generated as output by Browsertime is natively enriched with QoE metrics such as
SpeedIndex and OnLoad, effectively making the collection of metrics simplified.

22 Background and Motivation

router of the provider, so that we can have total view on the transiting data. It is clear
that this could pose privacy risks, because if not properly handled it could be easily
traced back to the users who visited certain domains, but the software we use in this
thesis: Tstat, is created in such a way as to anonymize IPs while still respecting the
network masks. It is not possible in any way to reverse the IPs in the tstat logs to the
real IPs. The data collected passively at this vantage point serves multiple purposes.
Firstly, it is utilized in conjunction with data from active measurements to construct
the model. Additionally, it acts as an evaluation tool to gauge the applicability of a
model in a given scenario. Identifying the browsing streams associated with a specific
internet search activity remains a partially unresolved challenge. While it’s feasible
to isolate a user’s information using their IP address, there’s no guarantee that all
data generated by the user pertains to the activity being analyzed. For instance, a
user might simultaneously stream music from Spotify, browse the web, and have
applications running updates in the background. Isolating only the browsing streams
presents a challenging task, which is addressed using a greedy approach as detailed
in the work discussed in Chapter 8.

Chapter 3

Cloud Gaming Measurements

3.1 Motivation

In this chapter, we will introduce and explain our work in the field of Cloud Gaming
taken from our journal: A Network Analysis on Cloud Gaming: Stadia, GeForce
Now and PSNow, published in MDPI [14].

First of all, let’s begin by clarifying what this technology is: cloud gaming [15]
[16] is a class of services that promises to revolutionize the video game market.
It allows the user to play a video game with minimal equipment while utilizing a
remote server for the actual execution. The multimedia content is streamed through
the network from the server to the user.

From the description provided, it can be imagined that this type of service
requires very stringent specifications, such as low latency and large bandwidth, to
function properly. Our contribution has been to investigate the emergence of these
technologies, particularly those provided by three different operators: Google1, Sony,
and NVIDIA.

In our work, we study cloud gaming services from the network point of view. We
collect more than 200 packet traces under different application settings and network
conditions, ranging from a broadband network to poor mobile network conditions,
for three cloud gaming services, namely Stadia from Google, GeForce from NVIDIA,
and PS Now from Sony. We analyze the employed protocols and the workload they

1The project Google Stadia has been terminated in 18th January 2023

24 Cloud Gaming Measurements

impose on the network. We find that GeForce and Stadia use the RTP protocol [17] to
stream the multimedia content, with the latter relying on the standard WebRTC APIs
[18]. Depending on the network and video quality, they result in bandwidth-hungry
services consuming up to 45 Mbit/s. PS Now, instead, uses only undocumented
protocols and never exceeds 13 Mbit/s. 4G mobile networks can often sustain these
loads, while traditional 3G connections struggle [19]. The systems quickly react to
deteriorated network conditions, and packet losses up to 5% do not cause a reduction
in resolution.

The remainder of the chapter is organized as follows. Section 3.2 present the
related work. Section 3.3 describes our experimental setup, while Section 3.4
illustrates the findings we obtain analyzing the packet traces. Finally, Section 3.5
concludes the chapter, summarizing the lesson learned and the takeaways.

To let other researchers replicate and extend our results, we release sample packet
traces available at [20]

3.2 Related Work

In parallel to our work, several studies have delved deeper into Cloud Gaming
technology. In particular, [21] and [22] conducted detailed parallel analyses of
Cloud Gaming service features, examining the structures of these services in various
network scenarios. These studies provide valuable insights into the underlying
architecture and protocols, largely corroborating the results obtained in our work
while adding further details. From their work, it is confirmed that different games
exhibit distinct traffic characteristics such as packet size, inter-packet times, and load.
The adoption of the modern VP9 codec [23] is not significantly more efficient than
its predecessor, H264 , in terms of traffic load. Stadia consistently strives to maintain
output at 1080p and 60fps even when network conditions do not allow it, resorting
to 720p only as a last resort.

In addition to these studies, other research efforts have focused on various aspects
of cloud gaming technology. For example, authors in [24] delved into the study
of cloud gaming platforms and optimization techniques. At the same time, several
works provided general frameworks and guidelines for deploying cloud gaming
services from the technical [16, 25] and business [26] points of view.

3.2 Related Work 25

Metzger et al. [27] introduce the technical aspects of video games, focusing on
Quality of Service (QoS) and Quality of Experience (QoE) [28]. They define QoE as
the perceived quality of a service, incorporating subjective opinions. They distinguish
QoE from objective QoS metrics and User Experience (UX). The authors discuss
video game QoS metrics, which measure player interactions like task completion
times and high scores. These metrics, also known as application layer QoS factors,
pertain directly to the game itself. However, the relationship between application
layer QoS and QoE is not fully understood, lacking models to correlate specific
metrics with QoE. They present a taxonomy of factors influencing a video game’s
QoS and QoE. This taxonomy encompasses aspects from players, games, game
clients, game servers, and networks. Due to cloud gaming, the game client is divided
into local and remote factors. These factors are categorized into subjective/context,
technical/system, and networking aspects.

Meng et al. [29] explored optimization strategies specifically in the context of
Wi-Fi networks, with the goal of improving the delivery of Cloud Gaming services
on these wireless networks. Their work illustrates how even a low probability of
experiencing very high RTT in the network can lead to instability issues in cloud
gaming [30]. In particular, the authors conducted an in-depth analysis of a widely
used online live streaming platform with millions of daily active users. Their findings,
revealed intriguing insights into network performance. Specifically, they noted that
while the median Round-Trip Time (RTT) for wireless users, including both WiFi
and cellular connections, was impressively below 100 ms (on par with Ethernet
users), the 99 th percentile tail latency spiked to approximately 400 ms. Also other
works inspect the importance of an high RTT in cloud gaming scenario [31] [32]
[33], this significant latency spike at the 99th percentile implies that users of Real-
Time Communication (RTC) applications may experience a delayed video frame
approximately once every 100 frames, equating to once every 5 seconds for a 20
frames-per-second stream. Such delays can have a substantial impact on the overall
user experience. Moreover, the authors’ detailed measurements exposed a concerning
trend: wireless users experienced a notable increase in video rebuffering—almost
twice as much as their Ethernet-connected counterparts. This highlights a critical area
where improvements are needed to enhance the overall quality of user experience on
the platform. The researchers have developed Zhuge, an in-AP solution designed
to reduce tail latency in real-time communication (RTC) applications on wireless
networks.

26 Cloud Gaming Measurements

Marchal et al. [34] leveraged the emulation of network traffic conditions to under-
stand the behavior of Cloud Gaming services. They generated synthetic conditions
of jitter, packet loss, and bandwidth to study the impact on video codec and audio
adaptation. Subsequently, they delved into the behavior of applications in a real
network scenario, focusing in particular on the Orange network in 2022.

Graff et al. [35] focused on the efficient identification of Cloud Gaming traffic at
the edge network. They proposed models based on decision trees that achieved an ac-
curacy of 98.5% in detecting Cloud Gaming traffic, demonstrating their applicability
in realistic scenarios.

Ky et al. [36] conducted a comprehensive evaluation of eight unsupervised
Machine Learning models applied to anomaly detection in Cloud Gaming sessions.
They examined the robustness of these models to data contamination and evaluated
their performance in various scenarios.

3.3 Measurement Collection

In this section, we describe our experimental testbed and the dataset we collect. We
focus on three cloud gaming services, namely Stadia, GeForce Now, and PS Now,
on which we created standard accounts that we use for our experiments. We deploy
a testbed using three gaming devices: A PC running Windows with a 4K screen, an
Android smartphone, and the dedicated Stadia dongle.

All devices are connected to the Internet through a Linux gateway equipped with
two 1 Gbit/s Ethernet network interfaces and a 300 Mbit/s WiFi 802.11ac wireless
card. The Windows PC is connected to the gateway on the first Ethernet card, while
the Android smartphone and the Stadia dongle are connected via WiFi. The gateway
uses the second Ethernet interface as an upstream link to the Internet, provided
by a 1 Gbit/s Fiber-To-The-Home subscription located in Turin, Italy. Figure 3.1
sketches our testbed. Stadia runs via the Chrome browser on the Windows PC and
its mobile application on the Android phone (we used version 2.13). Moreover, we
perform additional experiments using the dedicated Chromecast Ultra dongle, which
allows the user to play and connect it to a screen. GeForce Now runs from a specific
application in both cases (version 1.0.9 for PC and 5.27.28247374 for Android),
while PS Now only works from the PC application (version 11.0.2 was used).

3.3 Measurement Collection 27

Internet

Linux
Gateway

Windows PC

Android
Smartphone

Stadia
Dongle

Traffic
Shaping

Fig. 3.1 Testbed used for the experimental campaigns.

We play the three services making gaming sessions approximately 5-10 minutes
long and capturing all the network traffic the devices exchange with the Internet. We
seek reliable results by playing a broad spectrum of videogames on all platforms,
from first-person shooters to racing and adventure – e.g., Sniper Elite 4, Destiny,
Grid, and Tomb Raider.

With this testbed, we perform five different experimental campaigns, summarized
in Table 3.1. Firstly, we run different gaming sessions for each platform using the
Windows PC, the smartphone and the dongle (when possible). Secondly, we run
different gaming sessions by using the Windows PC and by manually configuring
the applications to stream video with different quality levels. This option is available
on Stadia and GeForce Now. Thirdly, only for GeForce Now, we instrument the
Windows application to use one of the 14 available data centres by tuning the server
location application setting. Next, we artificially impair the network in terms of
bandwidth and latency and packet loss to study the behavior of the applications under
different network conditions. To this end, we run the tc-netem tool on the Linux
gateway to progressively decrease the available bandwidth from 100 to 5 Mbit/s,
impose additional latency from 10 to 300 ms, or 1-10% packet loss. For Stadia and
GeForce Now, we replicate all the experiments using both the PC and the smartphone.
Moreover, we perform all experiments also with the Stadia dongle. Finally, we take
Stadia as a case study to understand the behaviour with different mobiles networks.
To this end, we perform different gaming sessions with the PC and emulated on the
Linux gateway different mobile networks using ERRANT [37]. ERRANT is a state-
of-the-art network emulator which imposes realistic network conditions based on a
large-scale measurement campaign under operational mobile networks. ERRANT

28 Cloud Gaming Measurements

Table 3.1 Overview of the measurement campaign.

Application PC
Smart-
phone

Don-
gle

Quality
levels

Server
location

Traffic
shaping

Mobile
Networks

Total
tests

Stadia ✓ ✓ ✓ 3 ✓ ✓ 94
Geforce Now ✓ ✓ 2 ✓ ✓ 71
PS Now ✓ ✓ 60

can reproduce the variability of conditions intrinsically rooted in mobile networks
due to different operators, Radio Access Technologies (RATs) (i.e., 3G or 4G), signal
quality (e.g., bad quality due to weak signal). ERRANT comes with 32 network
profiles describing the typical network conditions observed in different European
operators under 3G and 4G. We also use the ERRANT speedtest training dataset to
study the possibility of using Stadia on different conditions under mobile networks.

In total, we collect 225 packet traces, summing to 390 GB of data. We share
with the research community a sample of these traces from the three services at [20].
Then, we analyze the traffic traces using the Wireshark packet analyzer.2 We also
use Tstat [38], a passive meter, to obtain flow-level logs summarizing the observed
TCP/UDP flows. Finally, we use the Chrome debugging console to study Stadia and
the disk log files for GeForce Now.

3.4 Results

We now illustrate the findings we obtain from the analysis of the collected network
traces. We first show which network protocols each service employs for streaming
and signalling (e.g., user’s commands) and analyze in detail the different approaches
used for audio and video transmission. We then provide quantitative figures on the
volume of traffic the services generate at different video quality levels and study the
impact of mobile network scenarios. Finally, we study the contacted servers in terms
of Autonomous Systems (ASs), RTT distance and discuss how the infrastructures
are organized.

2https://www.wireshark.org/.

https://www.wireshark.org/

3.4 Results 29

3.4.1 Employed Protocols

In this section, we describe the protocols used by the three cloud gaming providers
to stream multimedia content and transmit control data for, e.g., session setup and
users’ commands. Table 3.2 provides an overview of the protocols we observe, as
well as the employed codecs.

Stadia: The service from Google uses the most standard protocol mix as it relies on
WebRTC [8]. In few words, WebRTC is a set of standard application programming
interfaces (APIs) that allow real-time communication from browsers and mobile
applications. It establishes sessions using the Datagram Transport Layer Security
(DTLS) protocol for key exchange. The multimedia connection between client and
server is set up using Interactive Connectivity Establishment (ICE), which in turn
relies on the Session Traversal Utilities for Network Address Translators (STUN)
and the Traversal Using Relays around NAT (TURN) protocols for NAT (Network
Address Translator) traversal. We find that Stadia uses WebRTC with no substantial
modifications, both from the browser and mobile application. The traffic captures
using the dedicated dongle device (Chromecast) confirm that the observed traffic is
consistently compatible with WebRTC. When the multimedia session begins, the
client starts a normal WebRTC peer connection towards the server, creating a UDP
flow in which DTLS, STUN and RTP are multiplexed according to the RFC 7893 [7].
RTP is used for multimedia streaming, while DTLS carries the user’s input. We
also observe packets of the Real-Time Control Protocol (RTCP) [39, 40], used to
exchange out-of-band statistics between the sender and the receiver of a multimedia
stream. The RTCP payload is encrypted to enhance users’ privacy, preventing the
in-network devices from using it for Quality of Service monitoring.

GeForce Now: It adopts a different approach. The server is first contacted using
the TLS (over TCP) protocol to set up the session. Interestingly, the Client Hello
messages contain the Server Name Indication extension, which allows us to infer the
server hostname (see Section 3.4.6 for details). Then, the client opens multiple UDP
channels directly, without relying on the standard session establishment protocols
(ICE, STUN and TURN). Only the first packet from the client contains an undocu-
mented hello message. Each inbound flow then carries a standard RTP stream. The
client sends the user commands on a dedicated UDP flow using an undocumented
protocol. All flows use fixed ports on the client-side, in the range 49003-49006,

30 Cloud Gaming Measurements

Table 3.2 Protocol usage for different gaming session components.

Stadia GeForce Now PS Now
Streaming RTP (and RTCP) RTP Custom (UDP)
Player’s input DTLS Custom (UDP) Custom (UDP)
Session setup DTLS, STUN TLS Custom (UDP)
Network Testing RTP Iperf-like Custom (UDP)
Video Codec H.264, VP9 H.264 -

while they vary on the server-side. Here, we do not observe the presence of the
RTCP protocol.

PS Now: This service adopts a completely custom approach, with no standard in-
clear header. The client opens a UDP connection towards the server without relying
on any documented protocol, and, as such, we can only analyze the raw payload
of packets. Still, complex manual work allowed us to catch at least the high-level
encapsulation schema that we briefly describe here. The first byte of the packet is
used to multiplex multiple data channels. The channel 0 is used for signalling and
user’s commands, while 2 and 3 are used for multimedia streaming from the server.
This is confirmed by the plausible packet size and inter-arrival distributions and
allows us to infer which kind of multimedia content is carried on each channel, as
we illustrate in Section 3.4.3.

3.4.2 Network Testing

All three services have built-in functionalities to probe the network between the
client and (multiple) gaming server machines to determine if the conditions are
sufficient for a stable gaming session. In few words, the client applications perform
a speed test-like measurement to estimate the network delay and bandwidth. We
notice that the network testing is not performed consistently on each session startup,
but the applications tend to re-probe the network only after a variation of the client
IP address.

Stadia performs a speed test based on RTP packets carried over a session estab-
lished using the standard WebRTC APIs for the multimedia streams. The server
(not necessarily the same used for the subsequent gaming session) sends 5-6 MB of
data to the client, resulting in a UDP session 5-60 seconds long, depending on the

3.4 Results 31

network conditions. The RTP packets are large-sized, around 1200 bytes on average,
but we cannot inspect their payload since it is encrypted.

GeForce Now uses a schema similar to the one used in the popular tool Iperf3,
in which the client sets up a network test over a UDP channel on the server port
5001 (the same port used by Iperf). The first few packets carry JSON-encoded
structures to set up the test. In case the test includes a latency measure, the last flow
packets indicate the measured RTT samples. In case the test is only for bandwidth,
we observe a stream of large-sized UDP packets lasting 5-10 seconds. Again, the
testing server is different from the one used for the subsequent gaming session. The
inspection of the JSON messages allows us to understand that the client probes the
latency towards multiple alternative measurement servers.

PS Now adopts a fully-custom approach again. At the beginning of each gaming
session, the client performs a few-seconds long bandwidth test using a custom or
fully encrypted protocol running over UDP. We cannot infer any information from
the packets, for which we only observe that they all have size 1468 bytes. The test
is performed towards a server different from the one used for the proper gaming
streaming session. We note similar additional streams consisting of few packets
toward a handful of other servers that we conjecture are used to probe the latency
towards more endpoints.

Privacy concerns: While analyzing the GeForce Now network testing mechanism,
we notice that the client-side control packets used to set up the test expose the user
to a severe privacy concern [41]. The user ID is sent in clear into the UDP packet,
allowing an eavesdropper to uniquely identify a user even if she changes her IP
address or is roaming on another network. We compared the user ID to the user
account number that we obtained on the NVIDIA website profile management page,
and they match, confirming that the identifier is uniquely associated with the account.
Following the best practices for these cases, we signalled the issue to NVIDIA before
making our work public, which plans to resolve it on one of the following updates.

3https://iperf.fr/, accessed October 2021.

https://iperf.fr/

32 Cloud Gaming Measurements

3.4.3 Multimedia Streaming

We now analyze how the three services stream the multimedia content (audio and
video) from the gaming server to the client. In the case of Stadia and GeForce Now,
we will provide figures extrapolated inspecting the RTP headers, while for PS Now
we can separate the different streams by looking at the first byte of the UDP payload
as mentioned in the previous section. In the last row of Table 3.2 we report the
employed video codecs as we extract from the browser/application log files. The
widespread H.264 codec is used by both GeForce Now and Stadia, employing the
newer VP9 if the device supports it. For PS Now, we could not obtain any information
about the codecs.

Stadia relies on the WebRTC APIs, and, as such, the multimedia streaming
follows its general principles. A single UDP flow carries multiple RTP streams
identified by different Source Stream Identifiers (SSRC). A stream is dedicated to the
video, while another one to the audio track. We also find a third flow used for video
retransmission, as we confirm using the Chrome debug console.4 During most of the
session, it is almost inactive. At certain moments the flow becomes suddenly active,
carrying large packets containing video content. Moreover, this behaviour co-occurs
with packet losses and bitrate adaptations on the video stream, as we expect for a
video retransmission feature.

GeForce Now again relies on RTP for multimedia streaming, as described in the
previous section. Differently from Stadia, it uses separate UDP flows for the different
multimedia tracks, whose client-side port numbers can be used to distinguish the
content as NVIDIA publicly declares.5 On port 49005, a UDP flow carries a single
RTP stream for the inbound video. The audio is contained in a UDP flow on port
49003, in which we find two RTP streams active at the same time.

Regarding PS Now, we cannot find any header belonging to publicly documented
protocols. However, the inspection of several packet captures allows us to infer
the encapsulation schema used by the application. A single UDP flow carries all
multimedia streams. To multiplex the streams, the first byte of the UDP payload
indicates the channel number, followed by a 16-bit long sequence number. Channel

4The associated RTP stream is found to have mimeType video/rtx.
5https://nvidia.custhelp.com/app/answers/detail/a_id/4504/~/

how-can-i-reduce-lag-or-improve-streaming-quality-when-using-geforce-now,
accessed October 2021.

https://nvidia.custhelp.com/app/answers/detail/a_id/4504/~/how-can-i-reduce-lag-or-improve-streaming-quality-when-using-geforce-now
https://nvidia.custhelp.com/app/answers/detail/a_id/4504/~/how-can-i-reduce-lag-or-improve-streaming-quality-when-using-geforce-now

3.4 Results 33

0 100 200 300 400 500 600 700 800

Time [s]

0

10

20

30

B
it

ra
te

[M
b

it
/s

]

RTX Audio Video

(a) Stadia (1080p).

0 100 200 300 400 500 600 700 800

Time [s]

0

10

20

30

40

B
it

ra
te

[M
b

it
/s

]

Video Audio

(b) GeForce Now (1080p).

0 100 200 300 400 500 600 700 800

Time [s]

0

5

10

15

B
it

ra
te

[M
b

it
/
s]

Video Audio RTX/FEC

(c) PS Now.

Fig. 3.2 Examples of temporal evolution of bitrate for three gaming sessions.

2 carries the video stream, as we can conclude by looking at packets’ packet size
and inter-arrival time. Channel 3 carries the audio track as the packets are small and
fixed-sized (250 B) and arrive at a constant pace of one every 20 ms. We also find
channel 0, especially at the beginning of the flow, which we conjecture is used for
signalling. Finally, channel 12 seldom becomes active, especially in correspondence
of large packet losses. As such, we conjecture that it is used for video retransmission
or some form of forwarding error correction (FEC), similarly to the Stadia approach.

3.4.4 Network Workload

We now focus on the workload imposed on the network by users playing on cloud
gaming services. We start our analysis with Figure 3.2, in which we show the evo-
lution of a gaming session of around 10 minutes for each service. We made the
corresponding packet traces available to the community at [20]. The picture reports
the bitrate of the inbound traffic, due almost exclusively to the video multimedia
stream. We first notice that Stadia (Figure 3.2a) has a constant bitrate, while for
GeForce Now and PS Now (Figures 3.2b and Figure 3.2c respectively) it is consider-

34 Cloud Gaming Measurements

0 10 20 30 40 50 60

Bitrate [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

720p

1080p

4k

(a) Stadia.

0 10 20 30 40 50

Bitrate [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

540p

720p

1080p

(b) GeForce Now.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Bitrate [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) PS Now

Fig. 3.3 Cumulative distribution of the video bitrate, for different quality video levels.

ably more variable. Especially for GeForce Now, we can root this in the different
video codecs, as we describe later in this section. Indeed, the application logs con-
firm that the variations in the bitrate are not caused by resolution adjustments or
codec substitution. Looking at Stadia, the role of the video retransmission stream
(green dashed line) is clear, which becomes active in correspondence of impairments
in the main video stream (solid red line). We notice a very similar behaviour in
PS Now, which allows us to conjecture the presence of an analogous mechanism.

We summarize the network workload showing in Figure 3.3 the empirical cu-
mulative distribution function of the video bitrate that we observe. For Stadia and
GeForce Now, we report separate distributions for different video resolutions thanks
to Chrome debug console and application logs, respectively. For PS Now, we only
report the overall distribution as we cannot extract any statistics from the client app.

3.4 Results 35

As mentioned before, Stadia exhibits a rather constant bitrate (Figure 3.3a). The
service allows three streaming resolutions, namely 720p, 1080p and 4K (2160p),
whose average bitrate is 11, 29 and 44 Mbit/s respectively. This is consistent with
what is declared in documentation.6 Stadia employs both H.264 and VP9 video
codecs, with 4K streaming using uniquely VP9.

Different is the picture for GeForce Now, shown in Figure 3.3b. The service
allows several video resolutions, both in 16:9 and 16:10 aspect ratios. Here, we
report the bitrate of the lowest (720p) and the highest (1080p) resolutions available
for the 16:9 aspect ratio. Moreover, we show the 540p resolution, which is only
adopted automatically in case of bad network conditions, that we trigger imposing a
bandwidth limit on the testing machine. The figure shows that the bitrate has large
variability, especially for 720p and 1080p. On median, 720p (1080p) consumes 15
(20) Mbit/s, which is consistent with what is declared on the system requirements
of the service.7 However, the interquartile ranges (IQRs) are in the order of 15
Mbit/s, much more than the 2-3 Mbit/s IQRs observed in Stadia. The bitrate reaches
peaks of more than 30 and 40 Mbit/s for 720p and 1080p, respectively. Without
access to the unencrypted raw video stream, we conjecture that GeForce Now makes
a highly-dynamic use of the H.264 compression parameters to adapt to different
video characteristics (static/dynamic scenes) and network conditions. Indeed, our
experiments with limited bandwidth show that, for example, GeForce Now can
sustain a 1080p video stream also with less than 15 Mbit/s available bandwidth
without dropping the frame rate, likely adjusting the H.264 compression parameters.

Finally, Figure 3.3c shows the bitrate distribution for PS Now. Given the lack
of application settings or debug information, we only show the overall distribution
of the bitrate. The online documentation recommends a minimum bandwidth of 5
Mbit/s and states that video streaming has a 720p resolution. However, we observe
the bitrate reaching up to 13 Mbit/s, with a consistent variability. Interestingly, when
we impose a 10 Mbit/s or lower bandwidth limitation on the network, the bitrate
adapts consequently (see the peak in the distribution at 5 Mbit/s). However, we
cannot link it with a resolution lower than 720p.

We now study the impact of packet losses on cloud gaming, focusing on Stadia
as a case study. As described in Section 3.3, we run experiments in which we enforce

6https://support.google.com/stadia/answer/9607891, accessed October 2021.
7https://www.nvidia.com/it-it/geforce-now/system-reqs/, accessed October 2021.

https://support.google.com/stadia/answer/9607891
https://www.nvidia.com/it-it/geforce-now/system-reqs/

36 Cloud Gaming Measurements

0 5 10 15 20 25 30

Bitrate [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0% loss

1% loss

5% loss

10% loss

Fig. 3.4 Bitrate distribution with different artificial packet loss.

artificial packet loss via the tc-netem tool, ranging from 1% to 10%. We then study
how the application reacts to these scenarios, focusing on the sending video bitrate
and quality level. In Figure 3.4, we show the distribution of bitrate for experiments
with 1, 5 and 10% packet loss and report the bitrate of sessions with no packet loss
as a reference (solid red line). We notice that a packet loss of 1 and 5% (blue and
green dashed lines, respectively) does not cause significant bitrate variations. Indeed,
the bitrate reaches 30 Mbit/s, and we notice the game is running at 1080p most of the
time, with some 720p periods. We notice a constant activity on the retransmission
stream, used to recover lost packets. Different is the case with 10% packet loss
(yellow dashed line). In this case, Stadia keeps the video resolution at 720p most of
the time, and, as such, the bitrate is limited to 10 Mbit/s. We notice a high activity
again on the retransmission stream, which, however, is not deemed sufficient to go
for higher video resolutions. In a few cases, 1080p is achieved, but for short 5-10
second periods. In all the cases, the games were still playable and enjoyable, as
reported by the volunteers.

3.4.5 Cloud Gaming under Mobile Networks

We now investigate the case of mobile networks to understand to what extent cloud
gaming is feasible and what is the reached quality level. Moreover, we are interested
in understanding the impact of variable network conditions and how applications
react to network impairments. Here, we focus on Stadia, which stream video content
at fixed bitrates, requiring strict bandwidth constraints.

3.4 Results 37

We first build on a large-scale measurement campaign run on our previous
work [37], to study to what extent current mobile networks are ready to sustain the
load and offer suitable conditions for cloud gaming. The dataset we use includes
more than 100k speed test measurements from 20 nodes/locations equipped with
SIM cards of 4 operators, located in 2 distinct countries (Norway and Sweden). Each
experiment measured latency, downlink, and uplink capacity using multiple TCP
connections towards a testing server located in the same country. Moreover, the
dataset indicates physical-layer properties such as Radio Access Technology (3G
or 4G) and signal strength. The measurement campaign spans the entire 2018 and
includes experiments on different hours of the day and days of the week. We use the
dataset to understand how a Stadia cloud gaming session would have performed with
the measured network characteristics. This is possible thanks to the steady network
usage of Stadia, where different video resolutions utilize almost fixed bandwidth.
As such, given the network conditions measured on the speedtest measurements, we
consider running Stadia feasible if there is at least 10 Mbit/s available bandwidth. In
case available bandwidth is in [10−30)Mbit/s, we conclude that a user could only
reach a video resolution of 720p. When bandwidth is in the range [30−44)Mbit/s,
a better 1080p video could be transmitted, while more than 44 Mbit/s allow the user
to receive a 4K quality video properly.

Figure 3.5 shows the reached video quality levels, offering a breakdown on 3G
and 4G and different signal qualities as measured by the node’s radio equipment.8

The figure shows how a poor 3G link does not allow using Stadia in most cases,
as the available bandwidth is below 10 Mbit/s. The picture changes with medium
signal quality, where using Stadia is possible most of the time, with the lowest 720p
resolution. An excellent 3G connection allows higher resolution in less than 10%
of cases. With 4G, the network generally offers higher bandwidth, and 1080p and
4K are possible, especially when good signal quality. Indeed, 4G links with high
signal strength can sustain Stadia 4K streaming 40% of the cases, and only 38% of
the times the client is limited to 720p.

Next, we study the capability of the gaming platforms to offer a good gaming
session and cope with different mobile network conditions. To this end, we use the
PC to run a gaming session and track different quality metrics about the frame rate,
expressed in Frames Per Second (FPS), the packet loss, and the video resolution

8The measured Received signal strength indication (RSSI) is mapped to quality levels as recom-
mended at https://wiki.teltonika.lt/view/Mobile_Signal_Strength_Recommendations.

https://wiki.teltonika.lt/view/Mobile_Signal_Strength_Recommendations.

38 Cloud Gaming Measurements

3G
(bad)

3G
(m

edium)

3G
(good)

4G
(bad)

4G
(m

edium)

4G
(good)

0

20

40

60

80

100

S
h

ar
e

of
S

es
si

on
s

[%
]

Not Feasible

720p

1080p

4K

Fig. 3.5 Estimated resolution of Stadia sessions on mobile networks.

quality experienced during the gaming sessions. We focus on Stadia as a case study
since it is available on many devices.

To study the gaming session in a controlled mobile network environment, we em-
ulate different mobile network conditions on the Linux gateway by using ERRANT.
In detail, we perform experiments by using a 4G good network profile as, currently,
it is the best quality and most widespread network, and with a 3G good network pro-
file as it is the lowest quality profile showing enough bandwidth to support a gaming
session. To reproduce the mobile network variability, we set ERRANT to resample
the network condition every 10 seconds, i.e., we pick and apply new constraints for
the download rate, upload rate, and latency from the selected profile.

Figure 3.6 reports an example of the frame rate (right y-axis), the packet loss
(left y-axis), and the video resolution quality when a sudden change happened during
a gaming session while using the 4G good profile. Interestingly, we experienced
stable performance for most gaming sessions with no packet loss, 60 FPS, and 1080p
resolution. Only when ERRANT picks a download bandwidth below 10 Mbit/s, we
experience, for a short time, a reduction in frame rate and resolution down to 20 FPS
and 720p, respectively, with a seldom increase of the packet loss. Interestingly,
the Stadia platform can quickly react and adapt itself by reaching a frame rate of
60 FPS and resolution at 720p, rising again to 1080p as soon as a better bandwidth
is available. With a 3G good network profile, instead, we could not run an entire
gaming session as the network variability introduced by the mobile network caused
the game to stop suddenly. This shows how the promising benefits of these solutions

3.4 Results 39

0 5 10 15 20 25 30 35

Time [s]

25

50

75

100

125

F
ra

m
e

R
a
te

[F
P

S
]

720p

1080p

0

2

4

6

8

P
ac

ke
t

L
os

s
[%

]

Fig. 3.6 Example of quality-level reduction in Stadia in terms of frame rate and video
resolution subsequent to packet losses.

Table 3.3 Gaming servers characterization.

Servers Subnets ASNs Owner
Stadia 74 22 15169 Google

GeForce Now 37 23
11414,
20347,
50889

NVIDIA

PS Now 36 2 33353 Sony

currently have limitations that could be overcome with the increasing popularity of
fast mobile network technologies – 4G and, in particular, 5G.

3.4.6 Location of Gaming Machines

This section provides a preliminary investigation of the cloud gaming infrastructure
regarding the number and location of game servers and employed domains, as
observed from our location. This can be useful to identify cloud gaming traffic for,
e.g., traffic engineering or content filtering.

We first focus on the remote gaming machines, analyzing the server IP addresses
the client applications contact, summarized in Table 3.3. Indeed, after the initial
setup phase, the client exchanges traffic (almost) uniquely with a single server where
the gaming is likely executed.9 Considering Stadia, at each session, we contacted
a different server – i.e., we performed 74 sessions and reached 74 different server

9We cannot infer if the server IP address acts as an ingress load balancer or reverse proxy.

40 Cloud Gaming Measurements

IPs. They lay on 22 subnets /24, all belonging to the Google 15129 AS.10 Different
is the case for GeForce Now and PS Now, for which in roughly 50% of the cases
we contacted a server IP we had already observed. GeForce Now servers lay on 23
subnets belonging to three different ASes, all controlled by NVIDIA. Remind that
we used all the 14 available NVIDIA data centres in our experimental campaign by
instrumenting the client application. Finally, all 36 server IPs for PS Now belong
to only 2 subnets /24 from the 33353 Sony AS. In terms of latency, additional
ping measures show that Stadia and PS Now servers are 6-8 ms away from our
location while Central European GeForce Now in the order of 15-20 ms. However, we
cannot link this to the service quality or infrastructure deployment since we perform
measurements from a single vantage point. We did not qualitatively observe a
significant lag between users’ commands and game response without traffic shaping.

Finally, we analyze the domains that the applications contact during the gaming
sessions. We extract them by inspecting the client’s Domain Name System (DNS)
queries before opening a new connection and extracting the Server Name Indication
(SNI) field from the Transport Layer Security Security (TLS) Client Hello messages.
In the case of Stadia, we only find stadia.google.com as domain-specific to this
service. Indeed, the client application contacts a dozen of other domains, but those
are shared with all Google services (e.g., gstatic.com and googleapis.com), and,
as such, not specific of Stadia. Regarding GeForce Now, the application contacts the
general nvidia.com domain as well as the more specific nvidiagrid.net. Finally,
PS Now relies on the playstation .com and .net domains and their sub-domains,
which are, thus, not specific to the PS Now service. Interestingly, GeForce Now is
the only service that uses domains to identify gaming machines, using subdomains
of cloudmatchbeta.nvidiagrid.net. Indeed, for the other services, the domains
we find are associated uniquely to the control servers – used for login, static resources,
etc. – while gaming machines are contacted without a prior DNS resolution.

3.5 Takeaways

This chapter has presented a detailed analysis of network protocols and traffic
characteristics for three predominant cloud gaming services: Google Stadia, NVIDIA

10We map an IP address to the corresponding AS using an updated RIB from http://www.
routeviews.org/.

http://www.routeviews.org/
http://www.routeviews.org/

3.5 Takeaways 41

GeForce Now, and PlayStation Now (PS Now). The key findings from this analysis
are summarized as follows:

• Protocol Usage: Google Stadia extensively utilizes WebRTC, incorporating
standard APIs for real-time communication, including DTLS, ICE, STUN, and
TURN for session setup and multimedia streaming. NVIDIA GeForce Now, in
contrast, employs TLS for session setup and RTP for streaming, diverging from
standard session establishment protocols. PlayStation Now adopts a distinctive
approach with a fully-custom protocol that lacks standard in-clear headers.

• Network Testing: Each service has developed its own methodology for
network testing. Stadia uses an RTP-based speed test, GeForce Now employs
an Iperf-like mechanism, and PS Now utilizes a custom UDP protocol. Notably,
GeForce Now’s implementation reveals a privacy concern where user IDs are
transmitted unencrypted.

• Multimedia Streaming and Codecs: For streaming, Stadia and GeForce
Now utilize RTP, with Stadia additionally employing RTCP for out-of-band
statistics. PS Now follows a unique route with a custom streaming protocol.
Regarding codecs, Stadia alternates between H.264 and VP9, GeForce Now
uses H.264, while the codecs for PS Now remain undisclosed.

• Network Workload and Bitrate Variability: Stadia maintains a rela-
tively constant bitrate, contrasting with the significant variability observed in
GeForce Now and PS Now. Stadia’s ability to adjust resolution in response to
packet loss ensures sustained playability under various network conditions.

• Cloud Gaming on Mobile Networks: The feasibility and quality of cloud
gaming on mobile networks are highly dependent on network conditions. For
instance, Stadia necessitates a minimum of 10 Mbit/s for 720p quality, scaling
upwards for higher resolutions. The performance is markedly improved on 4G
networks compared to 3G.

• Infrastructure and Server Locations: The gaming servers for each service
are primarily located within their respective corporate AS. A unique aspect of
GeForce Now is its identification of gaming machines via DNS domain names,
a feature not observed in Stadia and PS Now.

42 Cloud Gaming Measurements

In summary, this comprehensive analysis uncovers varied approaches in protocol
usage, network testing, and multimedia streaming across the examined cloud gaming
services. While Stadia and GeForce Now lean towards more standardized protocols,
PS Now embarks on a path of complete customization. The observed variability in
bitrate and the adaptive nature of these services to network conditions are pivotal,
particularly in mobile network environments. Additionally, the study brings to
light potential privacy issues and the diverse strategies employed in infrastructure
deployment across these services.

Chapter 4

HTTP/3 - QUIC Measurements

4.1 Motivation

In this chapter, we present the evolution of HTTP protocol towards the modern
HTTP/3 based on QUIC, this chapter is mostly based on our paper: A first look at
HTTP/3 adoption and performance, published in Computer Communications [42].

The Hypertext Transfer Protocol (HTTP) is used to access the vast majority of
services on the Internet, from websites to social networks and collaborative platforms.
HTTP was born in the early 90s, and its first version (HTTP 1.1) was standardized
in 1997 [10]. It was not until 2014 that the second version (HTTP/2 [11]) was stan-
dardized, including significant changes to the protocol’s framing mechanisms [12].
HTTP/3 is the third version of HTTP and is currently in the final standardization
phase at the IETF [43]. HTTP/3 promises performance benefits and security im-
provements over HTTP/2. One major change is that HTTP/3 replaces TCP as the
transport layer in favor of QUIC, a UDP-based transport protocol originally proposed
by Google and currently an IETF standard [44]. In addition, HTTP/3 introduces a
more effective header compression mechanism and uses TLS 1.3 [13] (or higher) to
improve security.

HTTP/3 is expected to take the place of HTTP/2 in the next few years, and some
of the leading Internet companies have already announced plans to support it starting

44 HTTP/3 - QUIC Measurements

in 2020, such as CloudFlare CDN1 and Facebook.2However, very few works [45, 46]
have examined HTTP/3 deployments. More importantly, the impact of the protocol
on Web performance has not been widely measured yet. Such efforts are important
to externally validate the benefits of the protocol, which have only been evaluated by
the few service providers that have deployed it.

In our work, we fill this gap by conducting a large-scale measurement study of
HTTP/3 adoption and performance. We first rely on the HTTPArchive dataset3 to
examine the extent to which the Web ecosystem has adopted HTTP/3. Then, we run
additional campaigns to measure the benefits introduced by HTTP/3. Considering
websites using different versions of the HTTP protocol, we measure various metrics
known to indicate user Quality of Experience (QoE). Finally, we emulate differ-
ent network conditions on the network path to assess whether, and to what extent,
HTTP/3 improves performance in different scenarios. Please note that the measure-
ments are conducted without considering whether the congestion control algorithm
employed by a given server is consistent across all three protocols. This is due to the
fact that such information is often not ascertainable a priori and because the choice
of algorithm remains at the discretion of the individual configuring the server. How-
ever, our primary focus is to determine whether, for the domains under analysis, the
respective protocol implementations exhibit substantial differences, enabling us to
discern if one service outperforms the others. It’s important to emphasize that, at this
point, one of the contributing factors to potential performance improvements could
be attributed to the choice of congestion control at the server side. Additionally, it’s
crucial to note that QUIC, in particular, is designed with flexibility, allowing for the
development and testing of alternative solutions beyond the conventional congestion
control algorithms integrated into kernel systems.

Using the open source HTTPArchive dataset, we find thousands of websites
that support HTTP/3. Initially, we download the dataset using the gsutil CLI4.
Subsequently, we process the data, searching for rows containing the "alt-svc"
field. Domains identified with "alt-svc quic" or "alt svc h3-*" values are considered
HTTP/3 websites. Most of them are hosted by a handful of Internet hypergiants,
i.e., Facebook, Google, and Cloudflare. We then automatically visit websites that

1https://blog.cloudflare.com/http3-the-past-present-and-future/
2https://engineering.fb.com/2020/10/21/networking-traffic/

how-facebook-is-bringing-quic-to-billions/
3https://httparchive.org/
4https://cloud.google.com/storage/docs/gsutil?hl=it

https://blog.cloudflare.com/http3-the-past-present-and-future/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://httparchive.org/
https://cloud.google.com/storage/docs/gsutil?hl=it

4.1 Motivation 45

support HTTP/3 using the different HTTP versions and under different network
conditions to measure performance in terms of QoE-related metrics. We visit a
total of 14707 websites while emulating artificial latency, packet loss and limited
bandwidth. We perform 2647260 visits over a one-month period to determine the
benefits of HTTP/3 for normal web browsing activities. We then supplement the
analysis with additional ad-hoc campaigns to measure specific aspects, such as to
examine mobile browsing scenarios and video streaming usage.

We find that the benefits of HTTP/3 only emerge under certain network conditions
and vary significantly across websites. Our main results are:

• Google, Facebook, and Cloudflare are the early adopters of HTTP/3 and host
almost the totality of currently websites supporting HTTP/3.

• The majority of web page objects in websites that support HTTP/3 are still
hosted on third-party servers that do not support HTTP/3.

• In current deployments HTTP/3 brings significant performance benefits in
high latency scenarios and limited benefits in very low bandwidth ones.

• As expected, sites that require fewer connections to load objects benefit the
most.

• The benefits of HTTP/3 are significant in mobile scenarios, such as for users
browsing from smartphones and tablets.

• Performance gains largely depend on the infrastructure hosting the website,
possibly due to optimizations on the server side.

• Adaptive video streaming services do not seem to benefit from HTTP/3 in
terms of key QoE-related metrics.

Finally, to ease reproducibility of our results and enable additional measurement
campaigns, the scripts used to set up and run our experiments are now available on
GitHub.5

The chapter is organized as follows: Section 4.2 illustrates related work. Sec-
tion 4.3 presents our datasets and data collection methodology. Section 4.4.1 illus-
trates our results on HTTP/3 adoption, while Section 4.5 and Section 4.6 evaluate

5https://github.com/SmartData-Polito/h3-benchmark

https://github.com/SmartData-Polito/h3-benchmark

46 HTTP/3 - QUIC Measurements

the performance of HTTP/3 in web browsing and video streaming, respectively.
Section 4.7 concludes the chapter.

4.2 Related Work

Given its recent conception, few works have addressed HTTP/3. Saif et al. [45]
conduct experiments where they control both the client and the server when accessing
a single web page. They study the impact of delay, packet loss, and throughput on
HTTP/3 performance without finding major effects. In contrast, we conduct a large-
scale measurement campaign that controls only the client and examines thousands
of HTTP/3 websites in production. This setup allows us to consider both real-world
network conditions and server implementations.

Marx et al. [46] compare 15 HTTP/3 implementations and find great heterogene-
ity in how congestion control, prioritization, and packetization work. They perform
single file downloads without providing large scale measurements in the wild, which
we provide here. Cloudflare benchmarks its own HTTP/3 implementation in draft 27
in [47] and finds that it is 1−4% slower than HTTP/2. However, their experiments
are limited to the website blog.cloudflare.com. Guillen et al. [48] propose a con-
trol algorithm for adaptive streaming tailored for HTTP/3. Saif et al. [49] measure
performance benefits of using HTTP/3 instead of MQTT and MQTT-over-QUIC in
IoT scenarios. Lovell et al. [50] compare HTTP/3 support across millions of web-
sites and show that the most popular websites have not yet explored HTTP/3, while
less popular websites have higher HTTP/3 adoption.

QUIC has been the subject of numerous studies. Wolsing et al. [51] show
that QUIC performs better than TCP thanks to its fast connection establishment.
Manzoor et al. [52] show that QUIC performs worse than TCP in wireless mesh
networks due to the poor interaction of the protocol with the WiFi layer in this
scenario. Carlucci et al. [53] found that QUIC reduces the overall page load time.
Kakhi et al. [54] conducted a large-scale measurement campaign on QUIC and
found that it outperforms TCP in most cases. However, these works target Google’s
QUIC versions, while the current IETF standard has made significant progress [55].
Moreover, they focus exclusively on the transport layer and neglect the improvements
introduced by HTTP/3, which we measure in this work.

4.3 Datasets and Performance Metrics 47

Table 4.1 Description of the employed datasets.

Dataset Runs Goal
HTTPArchive 53107185 HTTP/3 Adoption
BrowserTime-Web 2647260 Browsing Performance
BrowserTime-Mobile 1800 Mobile Browsing Performance
BrowserTime-Video 360 Video Streaming Performance

4.3 Datasets and Performance Metrics

We rely on several datasets to study (i) the adoption of HTTP/3 and its performance
on (ii) normal web browsing, (iii) mobile browsing, and (iv) video streaming. We
summarize these datasets in Table 4.1.

4.3.1 HTTP/3 Adoption

We examine HTTP/3 adoption using the HTTPArchive, an open dataset available
online.6 The dataset contains metadata derived from visits to a list of more than
5 million URLs provided by the Chrome User Experience Report.7 The list of
URLs is compiled using navigation data from real Chrome users and provides a
representative view of the most popular websites and services accessed worldwide.8

Each month, all URLs visited with the Google Chrome browser are taken from a
U.S.-based data center and the resulting navigation data is published. For each visit,
the dataset contains information about page characteristics, load performance, and
HTTP transactions in HAR format9 including request and response headers.

Of fundamental importance to our analyzes are the HTTP responses, which con-
tain the eventual Alt-Svc header used by servers to announce support for HTTP/3.
By setting the Alt-Svc header, the server tells the client that subsequent connections
can use HTTP/3, while also indicating its support for specific design versions (e.g.,
27 or 29).

We download the HTTPArchive dataset from November 2019, when we first
observe sites supporting HTTP/3. We monitor the HTTPArchive through September

6https://httparchive.org/, visited on February 4, 2021.
7https://developers.google.com/web/tools/chrome-user-experience-report
8HTTPArchive previously adopted the Alexa Top 1M Websites list, but switched to the Chrome

User Experience Report when Alexa discontinued its ranking in July 2018.
9http://www.softwareishard.com/blog/har-12-spec/

https://httparchive.org/
https://developers.google.com/web/tools/chrome-user-experience-report
http://www.softwareishard.com/blog/har-12-spec/

48 HTTP/3 - QUIC Measurements

Table 4.2 Network configurations used in the experiments.

Parameter Tested settings
Latency [ms] Native, 50, 100, 200
Loss [%] Native, 1, 2, 5
Bandwidth [Mbit/s] Native, 5, 2, 1

2021. We use the data to examine the trend of HTTP/3 adoption. The data is 6.6 TB.
Since we are interested in examining HTTP/3 adoption on websites, we discard all
visits to internal pages (less than half of the total) and keep only visits to home pages.
We refer to this dataset as HTTPArchive.

4.3.2 HTTP/3 Performance

Our goal is to compare the performance of the three HTTP versions when access-
ing heterogeneous types of content. To this end, we collect three datasets: (i)
BrowserTime-Web , including visits to websites supporting HTTP/3 from a regular
browser, (iii) BrowserTime-Mobile , targeting mobile websites under mobile network
conditions, and (iii) BrowserTime-Video , targeting video streaming.

Web Browsing

To automate website testing, we rely on BrowserTime, a docked tool for performing
automated visits to websites with a large number of configurable parameters.10 We
use BrowserTime to instrument Google Chrome to visit web pages with a specific
HTTP version. Importantly for our goal, Google Chrome provides the ability to
specify a set of domains to be contacted on the first visit using HTTP/3, i.e., without
prior specification via the Alt-Svc header. We restrict ourselves to Chrome, since
we are not aware of similar features in other browsers (e.g., Firefox).

We are interested in studying the impact of HTTP/3 under different network
conditions. For this reason, we perform our measurements under different network
configurations.11 We conduct our experiments with two high-end servers connected
to the Internet via 1 Gbit/s Ethernet and located on our university campus. We call
this baseline scenario Native, as indicated in Table 4.2.

10https://www.sitespeed.io/documentation/browsertime/
11We have included configurations covering the typical network conditions previously observed in

real measurements [19]

https://www.sitespeed.io/documentation/browsertime/

4.3 Datasets and Performance Metrics 49

We then enforce the network configurations during the visits using the Linux
tool tc tool. For each network configuration, we change one of the three network
parameters enforcing: (i) additional latency or (ii) additional packet loss or (iii)
bandwidth limit. For each parameter, we use 4 different settings listed in Table 4.2.
In the case of latency, we simulate an increasing Round Trip Time (RTT) and therefore
only apply it in one link, namely the uplink. For loss and bandwidth constraint,
we enforce the configuration for both uplink and downlink. For each network
configuration, we visit each website (i) with only HTTP/1.1, (ii) with HTTP/1.1
and HTTP/2, and (iii) with all three versions of the protocol. All visits to the same
website are performed sequentially, cleaning up all state between repetitions, i.e.,
browser cache, TCP connections, etc.

We collect the BrowserTime-Web dataset by visiting websites that currently
support HTTP/3. At the time we run this experimental campaign (December 2020),
we find 14707 websites that announce support for HTTP/3 and test them all.

The visits are repeated 5 times to get more reliable results. So we visit each
website 4×3×3×5 = 180 times. Next, we visit these websites with three HTTP
versions (HTTP/1.1, HTTP/2, and HTTP/3) to quantify potential performance im-
provements. In total, we performed 2647260 visits over a period of one month. The
metadata of the visits accounts for 189 GB, and we call this dataset BrowserTime.

Browsing Under Mobile Networks

We also evaluate the impact of HTTP/3 for mobile users, i.e., users of smartphones
or tablets connected via 3G or 4G mobile networks. We conduct an additional mea-
surement campaign in which we emulate both mobile devices and mobile network
conditions.

For the former, we rely on BrowserTime’s ability to mimic mobile devices by
setting the appropriate user agent string in Google Chrome and limiting the size
of the view port when rendering the page. We emulate an iPhone 6 and an iPad
tablet. For the latter, we use ERRANT [19], a data-driven open-source emulator
for mobile access networks. Briefly, ERRANT uses more than 100 thousand speed-
test measurements obtained from real mobile networks to simulate network profiles
for different Radio Access Technologies (RATs) (3G or 4G) and signal strengths
(bad, medium, and good). Each network profile describes both typical behavior and

50 HTTP/3 - QUIC Measurements

inherent network variability. Then, ERRANT uses the Linux tool tc-netem Linux
tool to enforce the selected network profile that emulates both the typical behavior
and the network variability.

In this experimental campaign, we target a random subset of 100 websites that
support HTTP/3. We have reduced our sample in this experiment to limit both the
time needed to complete the measurements and the generated traffic. To ensure
a general coverage of the list of websites used in other experiments, we perform
a stratified random sampling across content providers. Specifically, we take 25
websites for the top three content providers (Google, Facebook, and CloudFlare)
plus 25 from the remaining websites.

We visit each website using both emulated devices (tablet and smartphone).
As an additional comparison step, we revisit the website with the default desktop
setting, as in the BrowserTime dataset. We test the websites with 6 ERRANT profiles,
namely the combination of the two RATs (3G and 4G) and three signal strengths
(bad, medium, and good). For each profile, we run 10 experiments, firing a total of
54000 visits. We refer to this dataset as BrowserTime-Mobile .

Video Streaming

In addition to web browsing performance, we evaluate the impact of HTTP/3 on
video streaming. Among the dozens of protocols for video streaming, most providers
have moved to solutions based on streaming over HTTP. The most widely used
solution is called Dynamic Adaptive Streaming over HTTP (DASH), which splits
the video into chunks of a few seconds that the client retrieves via HTTP requests.

DASH supports adaptive streaming by allowing the client to choose the best video
resolution among those available on the server, depending on network conditions. We
run an experimental campaign for video streaming in a controlled test environment.

Popular commercial video streaming services such as Twitch, Prime Video, or
Netflix do not yet support HTTP/3 by the time of writing. YouTube, on the other
hand, supports HTTP/3 and HTTP/1.1, but surprisingly not HTTP/2. As our goal in
this paper is to assess the benefits of HTTP/3 considering also HTTP/2, no streaming
service currently in production could serve as basis for our analysis. We therefore
prefer to use a controlled environment on both the client and server side to measure
performance across protocols.

4.3 Datasets and Performance Metrics 51

In our setup, an instrumented browser runs a DASH web client that plays a
video hosted on our server set to support HTTP/1.1, HTTP/2, and HTTP/3. We
use the popular and open source player Dash.js12 and a nginx web server set to
use Cloudflare’s quiche HTTP/3 and QUIC implementation.13 The server hosts a
9-minute video delivered in 150 chunks, available in 10 bitrates ranging from 250
kbit/s to 14 Mbit/s.

We test the same network conditions as in Table 4.2 with all three HTTP versions.
Each experiment lasts 9 minutes and we repeat it 10 times. In total, we run 360 video
sessions. We call this dataset BrowserTime-Video .

4.3.3 Performance Metrics

We rely on different performance metrics for the web browsing and video streaming
scenarios. For each case, we select metrics that are known to be good proxies for
users’ Quality of Experience (QoE).

First, BrowserTime collects various statistics during emulated web browsing,
including QoE-related performance metrics. We track two metrics that are correlated
with users’ QoE [56] during web browsing:

• onLoad: The time when the browser fires the onLoad event –i.e., when all
elements of the page, including images, stylesheets and scripts, have been
downloaded and parsed;

• SpeedIndex: Suggested by Google,14 it represents the time at which the visible
parts of the page are displayed. It is computed by recording the video of the
browser screen and tracking the visual progress of the page during rendering.

Note that we use these metrics for both mobile and non-mobile browsing.

For video streaming, we rely on the following QoE-related metrics [57]:

• Video resolution: Image quality is fundamental to QoE and can be estimated
from video resolution. We determine the bitrate by parsing the requested

12https://reference.dashif.org/dash.js/
13https://docs.quic.tech/quiche/
14https://web.dev/speed-index/

https://reference.dashif.org/dash.js/
https://docs.quic.tech/quiche/
https://web.dev/speed-index/

52 HTTP/3 - QUIC Measurements

URLs. We then calculate both the average encoding bitrate per video session
and the number of requests for chunks in each bitrate.

• Playback Startup Delay (PSD for brevity): This is the time between the user
request for a video and the start of playback. Most players wait until a buffer
(a few seconds) is filled before starting playback. We calculate the startup
delay by measuring the time until the client receives the first video chunk.

• Frequency of Video Downscale: We evaluate how video resolution evolves
in video sessions and track resolution switches. While switching is normal for
adaptive video (e.g., to prevent video freezes), frequent switching affects QoE.
We count how often the browser experiences a downscale in the requested
bitrate.

4.4 Dissecting HTTP/3 Adoption

We now provide an overview of the adoption of HTTP/3. Since announcing HTTP/3
support does not equate to delivering content over this protocol, we also quantify the
amount of content delivered over HTTP/3.

4.4.1 Websites Supporting HTTP/3

We use the HTTPArchive dataset to examine the extent to which HTTP/3 has been
adopted since it was first proposed. The first IETF draft was published in January
2017, but we do not observe the first websites adopting HTTP/3 until late 2019. Since
then, the number of websites supporting HTTP/3 has steadily increased. Figure 4.1
shows the trend for the last months of 2019, all of 2020, and the first 9 months
of 2021. Using the Alt-Svc header, we can observe the HTTP/3 draft version
supported by the server, shown with different colors in the figure. In case a website
provides more than one version, we consider the last one seen in HTTPArchive. As
of September 2021, we observe a significant number of websites supporting draft_34,
which is on its way to becoming the final IETF standard for HTTP/3.

The figure shows that the number of websites supporting HTTP/3 has slowly
increased, reaching 0.7 % of the total in early 2020. At that time, only Google
and Facebook offered HTTP/3 for their websites. In February 2020, the number of

4.4 Dissecting HTTP/3 Adoption 53

2019/10
2019/12

2020/02
2020/04

2020/06
2020/08

2020/10
2020/12

2021/02
2021/04

2021/06
2021/08

0

5

10

15

20
W

eb
si

te
s

[%
]

BrowserTime-Web

H3
23

24
25

26
27

28
29

32
34

Fig. 4.1 Percentage of websites in HTTPArchive that announce support to HTTP/3,
separately by IETF draft (HTTPArchive dataset).

websites supporting HTTP/3 jumped. This increase was due to CloudFlare enabling
HTTP/3 for the websites it hosts. The percentage of websites supporting HTTP/3
increases over 4 % during this period, reaching a maximum of 4.8 % of websites
(203 k) in October 2020. In November, the number of websites suddenly dropped
to less than 0.1% (4024 in absolute numbers). This gap was caused by CloudFlare
suspending support for HTTP/3 due to performance issues.15 CloudFlare re-enabled
HTTP/3 for a subset of websites in December 2020. Since our BrowserTime-Web
campaign took place in December 2020, we only consider these 14707 websites for
the following results.

The number of HTTP/3enabled websites remained low in the following months,
mainly due to changes in the Cloudflare CDN configuration. Starting from February
2021, Cloudflare finally enabled HTTP/3 and we observe that the number of enabled
websites returned to the October 2020 level. Since then, HTTP/3 support has reached
17.01%. In September 2021, 11.84% of websites announce support for the latest
version of HTTP/3.

15https://community.cloudflare.com/t/community-tip-http-3-with-quic/117551, vis-
ited on 2/20/2021.

https://community.cloudflare.com/t/community-tip-http-3-with-quic/117551

54 HTTP/3 - QUIC Measurements

cloudflare

LiteSpeed

Not specified
nginx

gtranslate

domainesia
Apache

IdeaWebServer
Caddy

Google Frontend
Other

100

101

102

103

104

105

106

W
eb

si
te

s

Fig. 4.2 Server in HTTP response (December 2020) (HTTPArchive dataset).

0 20 40 60 80 100
Objects/volume served on HTTP/3 [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(W

eb
si

te
s)

Objects
Volume

Fig. 4.3 Share of objects/volume served using HTTP/3 on enabled websites
(BrowserTime-Web dataset).

The majority of websites supporting HTTP/3 are hosted by large enterprises
running their own server applications. We break down these numbers in Figure 4.2,
which lists the 10 most popular servers, as indicated in the HTTP Server header. As
expected, CloudFlare hosts the most websites that support HTTP/3 (672909, notice
the log y- scale). In second position, we find LiteSpeed, a high-performance web
server that supports HTTP/3. Looking at the server IP addresses, we notice that some
popular cloud providers use it (e.g., OVH). For 5957 websites, there is no reference
to the server in the HTTP responses, and most of them belong to Facebook’s
domains - e.g., facebook.com and instagram.com. Google also supports HTTP/3,
with gtranslate (Google Translate) and Google front-end servers. The remaining
websites run other servers (e.g., nginx and Apache).

4.4 Dissecting HTTP/3 Adoption 55

Cloudflare
(12455)

Facebook
(445)

Google
(1094)

Other
(731)

0

25

50

75

100

H
T

T
P/

3
Sh

ar
e

[%
]

Objects
Volume

Fig. 4.4 Share of objects/volume served on HTTP/3, separately by provider
(BrowserTime-Web dataset).

4.4.2 Content Served over HTTP/3

Next, we examine the extent to which objects are served by enabled websites using
HTTP/3. This is because even if a website supports HTTP/3, not all of its objects
are served over HTTP/3. Objects may be downloaded from external CDNs, cloud
providers, or third-parties not supporting the same protocol. This is the case, for
example, with ads and trackers, which are usually hosted on a different third-party
infrastructure. We use the BrowserTime-Web dataset, which allows us to observe the
protocol used to deliver each object that makes up the websites we visit.

In Figure 4.3, we consider all visits made with HTTP/3 enabled. For each
visit, we compute the fraction of objects served via HTTP/3. Since each website is
accessed multiple times, we calculate the average of the values over all visits. It is
clear that at least the main HTML document is always sent over HTTP/3, but the
remaining objects can be served with older HTTP versions. The figure shows the
distribution of the percentage of objects transmitted over HTTP/3 (solid red line) and
the byte-wise distribution (dashed blue line). Note that in 18% of cases all objects
are delivered over HTTP/3, which means that the web page contains only elements
hosted on HTTP/3-enabled servers. Web pages with 90% or more objects (volume)
on HTTP/3 are 36 (41) % and only 9 (28) % have less than 20 % of objects (volume).

Next, we break down the above analysis by provider –i.e., by the company/CDN
hosting the website. We get it by looking at the HTTP header server, the name of
the website, and the IP addresses of the server. As shown in Figure 4.2, we find that

56 HTTP/3 - QUIC Measurements

HTTP/3 is mainly used by (i) Cloudflare CDN, (ii) Facebook, and (iii) Google. The
remaining 595 websites (i.e., Other) largely belong to self-hosted websites running
updated versions of the nginx web server.

Figure 4.4 shows the percentage of objects and volume served over HTTP/3,
separately by provider. Websites hosted by Cloudflare tend to be more heterogeneous,
with half of the objects accessed via non-HTTP/3 servers (at median). In addition,
only 24% of the volume is served via HTTP/3. This is likely due to the diversity
of websites that rely on the provider. These websites may use complex web pages
consisting of multiple third-party objects stored on external providers that do not yet
rely on HTTP/3. In contrast, Facebook and Google serve almost all objects using
HTTP/3. For Google, the long tail of the distribution is due to Blogspot, where
the creator can add content from external sources. Finally, if we look at the Other
category, almost all objects are served using HTTP/3. These websites are usually
simple and consist of a few objects stored on the same self-hosted servers along with
the main HTML document.

4.5 Web Browsing Performance

Now we investigate how HTTP/3 affects QoE-related web browsing performance
metrics and whether the observed improvements can be related to the provider
hosting the content (Section 4.5.1), website characteristics (Section 4.5.2), or mobile
networks (Section 4.5.3).

We now investigate the impact of HTTP/3 on website performance. For this
purpose, we use the BrowserTime-Web dataset in which the 14707 web pages were
visited multiple times under different network conditions. In addition to computing
performance in the native scenario (i.e., 1 gpbs Ethernet in a campus network), we
use tc-netem to enforce additional latency, packet loss, and bandwidth constraints.
We then contrast the QoE-related performance indicators of the site (onLoad and
SpeedIndex) by (i) displaying their absolute value and (ii) computing a metric that
we call H3 Delta. Given a website and a given network scenario, we obtain the
H3 Delta as the relative deviation of the metric when using HTTP/3 (h3) instead
of HTTP/2 (h2). Since we always perform 5 visits for each case, we consider the
median values. The H3 Delta for a website w in scenario s is calculated as follows:

4.5 Web Browsing Performance 57

0

2

4

6

8

10

12

Pa
ge

L
oa

d
Ti

m
e

[s
]

HTTP/1.1
HTTP/2
HTTP/3

Native 50 100 200
Extra Latency [ms]

0
1
2
3
4
5
6
7
8

Sp
ee

d
In

de
x

[s
]

Fig. 4.5 onLoad (top) and SpeedIndex (bottom) with extra latency, separately for
HTTP/1.1, HTTP/2 and HTTP/3 (BrowserTime-Web dataset).

H3-Delta(w,s) =
median(w,s,h3)−median(w,s,h2)

max(median(w,s,h3),median(w,s,h2))
(4.1)

By definition, H3 Delta(w,s) is bound in [−1,1] and negative if a website loads
faster under HTTP/3, and positive if not. We calculate the H3 Delta for both onLoad
and SpeedIndex.

We illustrate how the values of the metric change under different network condi-
tions by first focusing on the additional latency in Figure 4.5. Using boxplots, we
show the distribution of onLoad (top) and SpeedIndex (bottom), separately by HTTP
version (coloured boxes). The boxes range from the first to the third quartile, the
whiskers indicate the 10th and the 90th percentiles, while the black dashes represent
the median. When no additional latency is added (native case), we observe that the
median onLoad time is about 2s, while SpeedIndex is about 1s, without much differ-
ence between HTTP versions. When adding additional latency, websites load slower
as more time is needed to download the page objects, 6 seconds on median with 200
ms of additional latency. Not shown here for brevity, also packet loss and limited

58 HTTP/3 - QUIC Measurements

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (onLoad)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Native
50 ms
100 ms
200 ms

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (SpeedIndex)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Latency.

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (onLoad)

Native
5 Mbit/s
2 Mbit/s
1 Mbit/s

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (SpeedIndex)

(b) Bandwidth.

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (onLoad)

Native
1%
2%
5%

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
H3 Delta (SpeedIndex)

(c) Packet loss.

Fig. 4.6 H3 Delta on different scenarios. onLoad (top) and SpeedIndex (bottom).
Negative values indicate that HTTP/3 is faster (BrowserTime-Web dataset).

bandwidth cause a similar degradation in performance indicators. Figure 4.5 shows
that HTTP/1.1 has the worst performance at high latency, while HTTP/3 shows the
greatest benefits. With an additional latency of 200 ms, websites onLoad in a median
of 6.4, 5.8 and 5.4 s with HTTP versions 1.1, 2, and 3, respectively.

To better capture the differences between HTTP/3 and HTTP/2, we now examine
the H3 Delta in Figure 4.6, where we show the distribution across the 14707 web-
sites for both onLoad (top row) and SpeedIndex (bottom row). The three columns
respectively refer to scenarios with additional latency, limited bandwidth, and packet
loss, respectively. Solid red lines represent the native case. Dashed lines represent
scenarios with emulated network conditions as indicated in Table 4.2.

Starting with latency, we confirm what has already been shown in Figure 4.5.
In the native case, we do not observe a general trend: looking at the solid red lines,
we find that in about 50 % of cases, websites load faster with HTTP/3, and in the
remaining cases HTTP/3 is slower. When latency is high, HTTP/3 offers significant
advantages over HTTP/2. With an additional 50 ms of latency, 70 (71) % of websites
have a lower onLoad time (SpeedIndex), meaning they load faster. The number of
websites that load faster increases to 73 (77) % at a latency of 100 ms latency. At

4.5 Web Browsing Performance 59

200 ms, the number of websites that load faster reaches 74 (77) %, and the median
H3 Delta is −0.059 (−0.056).

When we focus on bandwidth-limited experiments (central plots in Figure 4.6),
different considerations hold. We observe (limited) benefits only for the onLoad
time when bandwidth is limited to 1 Mbit/s, with 57 % of websites loading faster
with HTTP/3. Note that this benefit does not come from indirect higher latency due
to queuing delays (also called bufferbloat), since we limit host queues to 32 kB.
In other cases, no clear trend emerges, but we do notice greater variability in the
H3 Delta measure due to the constrained configuration. For example, in the case
of SpeedIndex, 52, 45, 49 % of websites load faster with HTTP/3 with 5, 2 and 1
Mbps bandwidth. Similar considerations apply to packet loss (rightmost graphs in
Figure 4.6). Despite greater variability, we cannot see an overall trend, and the H3
Delta values are evenly distributed above and below 0.

In summary, we observe limited improvements in onLoad time with very low
bandwidth and substantial benefits for both metrics in the high latency case. We do
not testify performance improvements of HTTP/3 in high packet loss scenarios. In
fact, in several tested cases, some websites may even perform worse when HTTP/3
is enabled.

4.5.1 HTTP/3 Performance by Provider

Next, we investigate whether the performance gains of HTTP/3 might be related
to the provider hosting the websites. Since we observed considerable performance
benefits for HTTP/3 only in cases with high latency or low bandwidth, we limit our
analysis to these cases.

Figure 4.7 shows the distribution of H3 Delta for onLoad, separated by provider.
We focus on scenarios with 200 ms of additional latency and 1 Mbit/s bandwidth
limit. We find that the H3 Delta varies significantly by provider. When we focus on
latency (Figure 4.7a), Facebook websites show the highest performance gain (H3
Delta −0.13 in median), which is represented by the blue dashed line in the figure.
In addition, 95% of websites load faster with HTTP/3 than with HTTP/2. Cloudflare
(red solid line) shows the lowest benefits, with only 72% of websites loading faster.
Google and the rest of the websites are in the middle. Similar considerations hold
for SpeedIndex, which is not shown here for brevity.

60 HTTP/3 - QUIC Measurements

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5
H3 Delta (onLoad)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Cloudflare
Facebook
Google
Other

(a) Latency.

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5
H3 Delta (onLoad)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cloudflare
Facebook
Google
Other

(b) Bandwidth.

Fig. 4.7 onLoad H3 Delta by website provider for scenarios with extra-latency and
bandwidth limit (BrowserTime-Web dataset).

Number of conn.

Number of Domains

Objects on largest conn.
HTTP/3 share

Page size
0

1

2

3

4

5

6

N
or

m
al

iz
ed

V
al

ue

H3 Faster
H3 ≈ H2
H2 Faster

(a) Latency.

Number of conn.

Number of Domains

Objects on largest conn.
HTTP/3 share

Page size
0

1

2

3

4

5

6

N
or

m
al

iz
ed

V
al

ue

H3 Faster
H3 ≈ H2
H2 Faster

(b) Bandwidth.

Fig. 4.8 Visit characteristics vs. H3 Delta class (normalized values, BrowserTime-
Web dataset).

With limited bandwidth (Figure 4.7b), we observe a completely different situation.
Here, Facebook generally has the worst performance with HTTP/3, with 91% of its
websites loading faster with HTTP/2. Conversely, Google (green dashed line) shows
the best values, with a median H3 Delta −0.14 and 79% of its websites loading
faster with HTTP/3. Cloudflare and the rest of the websites do not show a clear trend,
with about half of the websites loading faster with HTTP/3.

4.5.2 Page Characteristics

Now we examine the characteristics of the pages and possible correlations with
performance when using HTTP/3. To this end, we compute several metrics that
describe the loading process of a web page and contrast them to understand if they
have correlations with H3 Delta. For each visit to the 14707 websites in our dataset,
we calculate the following metrics in addition to the H3 Delta:

4.5 Web Browsing Performance 61

• Number of connections made by the browser to load the website when using
HTTP/3.

• Number of domains contacted while loading the website (i.e., including third-
party domains).

• Share of objects on the largest connection, which measures the percentage of
objects transferred over the connection where the most objects were requested.
Recall that HTTP/3 best practices recommend avoiding domain splitting to
improve performance.

• Share of objects served on HTTP/3, which is used to investigate possible cor-
relations between the share of objects transferred over HTTP/3 (in Figure 4.3)
and the H3 Delta metric.

• Page Size to break down performance for small and large web pages.

In Figure 4.8, we compare the distribution of the above metrics and group the
websites by classes defined by the onLoad H3 Delta:

• H3 Faster: websites loading faster with HTTP/3, i.e., onLoad H3 Delta
<−0.1.

• H3 ≈ H2: websites having a similar loading time in HTTP/2 and HTTP/3, i.e.,
onLoad H3 Delta ∈ [−0.1,0.1].

• H2 Faster: websites loading faster with HTTP/2, i.e., onLoad H3 Delta > 0.1.

In the figure, boxes with different colors represent these three classes. The y-
axis represents the metrics normalized by scaling to a unit variance for ease of
visualization and comparison. Again, we examine the scenarios with added latency
(top row) and limited bandwidth (bottom row) as they provide the most interesting
insights. With additional latency, H3 Faster websites are 32%, H2 Faster 11% and H3
≈ H2 are 57%. With limited bandwidth, they are 38%, 25% and 37%, respectively.

We first focus on the left group of boxes in Figure 4.8, which shows the (normal-
ized) number of connections the browser established to load the web page. Green
boxes indicate that websites that make fewer connections (smaller metric values)
are faster with HTTP/3 than with HTTP/2. This is true for both scenarios, i.e., low

62 HTTP/3 - QUIC Measurements

latency and low bandwidth. Similar considerations apply when we focus on the
second set of boxes, which represents the number of domains contacted. Indeed,
we find that the number of connections per site and the number of domains con-
tacted are 0.91-correlated (Pearson correlation). The third set of boxes provides a
similar perspective, measuring how web page objects are split across multiple con-
nections/domains. The web pages that benefit the most from HTTP/3 are those that
tend to collect objects on a single connection – see the highest position of the green
boxes, which means more objects are on a single connection. This is very clear when
bandwidth is limited (Figure 4.8b) and not when latency is high (Figure 4.8a).

Serving most objects using HTTP/3 (instead of HTTP/2) also has a positive
effect, as we can see from the fourth group of boxes in Figure 4.8. Again, this is most
evident in the case of bandwidth limitations (Figure 4.8b), while it is hard to see a
clear trend in the case of additional latency (Figure 4.8a). Finally, the case of web
page size (last box group) is interesting. In high latency scenarios, the websites that
benefit from HTTP/3 are small, while large websites tend to do better with HTTP/2.
When bandwidth is tight, the picture is more even: again it is the small websites that
load faster with HTTP/3, albeit only moderately.

In summary, the websites that benefit from HTTP/3 are those that limit the
number of connections and third-party domains, fully adopt HTTP/3 for all website
objects, and limit page size. These considerations hold for high latency or limited
bandwidth scenarios, while we do not observe a clear trend for optimal network
conditions or high packet loss, where the distributions of the metrics largely overlap.

4.5.3 Performance for Mobile Users

We now use the BrowserTime-Mobile dataset to investigate how HTTP/3 impacts the
browsing performance of Internet users. To this end, we evaluate the impact of using
different devices (i.e., smartphone and table) that we emulate with the BrowserTime
features. Then, as described in Section 4.3.2, we emulate different mobile network
conditions using ERRANT [19]. Here, we restrict our analysis to the 100 selected
websites and measure the gain of HTTP/3 by computing the H3 Delta.

To give a compact overview of our results, we plot the median H3 Delta across
all 100 websites in Figure 4.9 in the form of a heatmap, separately by OnLoad
(Figure 4.9a) and SpeedIndex (Figure 4.9b). We emulate three different devices: an

4.5 Web Browsing Performance 63

Smartphone Tablet Desktop

3G (bad)

3G (medium)

3G (good)

4G (bad)

4G (medium)

4G (good)
N

et
w

or
k

C
on

di
tio

n

-0.08 -0.05 -0.05

-0.06 -0.05 -0.07

-0.06 -0.07 -0.08

-0.06 -0.06 -0.07

-0.07 -0.06 -0.08

-0.10 -0.10 -0.14

0.00

−0.02

−0.04

−0.06

−0.08

−0.10

−0.12

−0.14

H
3

D
el

ta
(o

nL
oa

d)

(a) onLoad.

Smartphone Tablet Desktop

3G (bad)

3G (medium)

3G (good)

4G (bad)

4G (medium)

4G (good)

N
et

w
or

k
C

on
di

tio
n

-0.06 -0.05 -0.04

-0.05 -0.06 -0.07

-0.07 -0.05 -0.09

-0.05 -0.05 -0.08

-0.06 -0.06 -0.07

-0.08 -0.10 -0.10

0.00

−0.02

−0.04

−0.06

−0.08

−0.10

−0.12

−0.14

H
3

D
el

ta
(S

pe
ed

In
de

x)
(b) SpeedIndex.

Fig. 4.9 Web Browsing Performance of Mobile Users, separately by user device type
and emulated network (BrowserTime-Mobile dataset).

iPhone 6 smartphone, an iPad tablet, and the default desktop version of Chrome.
We arrange them in the columns of the heatmap. The different rows represent the 6
ERRANT network profiles, including 2 Radio Access Technology (RATs) (3G and
4G) and three signal quality levels. We refer the reader to [19] for the details of the
emulated network conditions. In summary, ERRANT emulates the typical latency,
uplink and downlink bandwidths measured in a large-scale speed test measurement
campaign with 4 European network operators. Importantly, ERRANT emulates not
only the average conditions, but also their variability measured during the speed tests
at training time.

Starting from OnLoad in Figure 4.9a, we find that HTTP/3 performs better than
HTTP/2 in all scenarios – note the negative median of the H3 Delta between −0.05
and −0.14. Websites that benefit from HTTP/3 range from 66% to 88% depending
on device and network conditions. Desktop websites generally see the greatest
improvements – see the last column in the figure-but smartphones and tablets also
see improvements. In terms of network conditions, the improvements are more
pronounced on Good 4G, the best network profile we tested. Similar conclusions

64 HTTP/3 - QUIC Measurements

Smartphone Tablet Desktop
0

2

4

6

8

10

on
L

oa
d

[s
]

HTTP/1.1 HTTP/2 HTTP/3

Fig. 4.10 onLoad time with emulated 4G good network (BrowserTime-Mobile
dataset).

apply to the SpeedIndex (Figure 4.9b). Visits with an emulated mobile device cause
the browser to render the mobile versions of the web pages. As a result, they tend to be
easier to render and therefore smaller in terms of bytes. In fact, the average page size
is 680 kB for desktop versions, which reduces to 630 kB in the case of tablet versions
and 402 kB for smartphone versions. We also find that latency on mobile networks is
on the order of 50−150ms, as measured in the real experimental campaign behind
ERRANT [19]. These results are consistent with those in Section 4.5 and show that
HTTP/3 offers significant benefits in high latency scenarios.

Figure 4.9 clearly provides a rough median of the H3 Delta, but the absolute
metrics exhibit large variability due to the varying characteristics of the 100 websites
and the variable network conditions imposed by ERRANT. We illustrate this variabil-
ity using the Good 4G profile as an example by plotting the distribution of onLoad
time using violin plots in Figure 4.10. The distributions are wide, as we notice from
the black vertical line within each violin, which represents the interquartile range
(IQR). For example, in the case of a smartphone using HTTP/1.1, the onLoad time
ranges from 2s to 4s. For HTTP/2 and 3, the onLoad time tends to decrease. The
median is 2.8s for HTTP/1.1, which drops to 2.6s for HTTP/2 and 2.4s for HTTP/3.
Similar considerations hold for the other cases, with the median onLoad value de-
creasing by about 0.2s for newer HTTP versions. In summary, our experiments show
that HTTP/3 provides significant benefits in mobile networks, even when users use
mobile devices that retrieve the lighter mobile versions of websites.

4.6 Performance of Adaptive Video Streaming 65

Table 4.3 Summary of the takeaways from BrowserTime-Video .

Resolution Speedup Downscale

Native No difference No difference No difference

Loss No difference minor difference None for h3
Rare for h1 and h2

Bandwidth h3 worse h3 little slower h2 Many for h3
h2 faster h1 Few for h2 and h1

Latency No difference h2 faster h1 No differenceh3 slower h2

4.6 Performance of Adaptive Video Streaming

4.6.1 Metrics

In this section, we study the performance of HTTP/1.1, HTTP/2, and HTTP/3 in
video streaming using the BrowserTime-Video dataset. To do so, we conduct ex-
periments with different network conditions NC and measure the quality of video
streaming using metrics known to correlate with subjective QoE [58, 57]. In particu-
lar, we focus on three QoE-related metrics, namely: (i) video resolution, (ii) playback
startup delay (PSD for brevity), and (iii) number of downscale adjustments.

To ease the comparison between different HTTP versions, we compute the
Speedup of PSD similar to the H3-Delta defined in Equation 4.1. Specifically, given
two experiments j and k, we compute the speedup as follows:

Speedup(j,k) =
PSD(j)−PSD(k)

max(PSD(j),PSD(k)
(4.2)

Since we are interested in comparing experiments with the same network condi-
tions nc ∈ NC, we define the set of experiments Si,nc for HTTP version i ∈ {1,2,3}.
Finally, we compare successive HTTP versions by measuring how the median
Speedup changes. Thus, given a network condition nc and an HTTP version i, the
median Speedup MSi,nc is simply:

MSi,nc = Median j∈Si,nc,k∈Si−1,nc (Speedup(j,k)) i ∈ {2,3} (4.3)

66 HTTP/3 - QUIC Measurements

4.6.2 Results

We summarize our key findings on video streaming results in Table 4.3. Starting
from the case without network impairments (i.e., the Native case in Table 4.3), we
note that regardless of the HTTP version used, the chunks are always delivered at the
highest resolution (4k) and without downscaling. Also, when looking at the Average
Speedup (see also Figure 4.11), we cannot see any radical differences between the
HTTP versions. In sum, when the network has good quality, all HTTP versions
perform similarly.

When we introduce controlled Packet Loss, some initial differences start to
appear. Specifically, for HTTP/1.1 and 2, we observe some rare video adjustments
(downscale) where the resolution of the chunks jumps between 1920×1080p and
4k. In contrast, HTTP/3 proves to be more stable, with all chunks delivered at 4k
resolution. Considering other metrics (video resolution and Speedup), we see nearly
the same figures across all HTTP versions, e.g., with video chunks delivered at either
4k or 1920×1080p.

More interesting differences emerge when we consider bandwidth limitations.
We find that HTTP/3 results in lower resolution video and more frequent video
adjustments. We show this effect in Figure 4.12, which shows the distribution
of the number of downloaded chunks in relation of their corresponding bitrate.16

Recall that we varied the bandwidth between 1 and 5 Mbit/s and, as expected, the
video quality does not exceed 1024×576p. HTTP/1.1 and HTTP/2 show the same
performance, while for HTTP/3 we find a higher percentage of chunks delivered at
the lower resolutions.

This result is also detailed in Table 4.4, which gives the average number of
resolution downscales for each scenario. At only 1 Mbit/s, all HTTP versions
struggle and result in a high (and similar) number of downscales (first line in the
table). At 5 Mbit/s, the situation improves and the video settles at 1024×576p (third
line in the table). Interestingly, HTTP/1.1 and HTTP/2 show stable performance with
almost no adaptation in the 2 Mbit/s case, while HTTP/3 averages 13.3 downscales
per experiment for the 150 chunks (second line in the table).

To explore further this phenomenon, Figure 4.13 shows an example of the quality
level of the chunks for an HTTP/2 and an HTTP/3 video session at 2 Mbit/s. On the

16We do not use resolution because some of the chunks in our setup are encoded at two bitrates.

4.6 Performance of Adaptive Video Streaming 67

MS2 MS3

Playback Startup Delay

Native
Loss = 1 %
Loss = 2 %
Loss = 5 %

Bandwidth = 5 Mbit/s
Bandwidth = 2 Mbit/s
Bandwidth = 1 Mbit/s

RTT = 50 ms
RTT = 100 ms
RTT = 200 ms

-0.000 0.002
-0.004 0.002
-0.003 0.002
-0.003 -0.001
0.001 0.003
-0.004 0.024
-0.020 0.034
-0.019 0.020
-0.014 0.021
0.000 0.028

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Fig. 4.11 Median Speedup per network condition (BrowserTime-Video dataset).

second chunk, the player downgrades with HTTP/2, but then immediately stabilizes
the quality level to 1000 kbit/s (640×360p). In contrast, the player with HTTP/3
is more eager for high-resolution chunks and fetches the video several times at the
1500 kbit/s quality level, i.e., 768×432p. However, the lack of bandwidth results in
downgrading to the lowest possible resolution.

While we cannot clearly identify the causes for this behavior, we conjecture that
it is caused by complex interactions between several components. Recalling that
HTTP/3 runs on top of UDP/QUIC with a different congestion control algorithm, the
client player seems more aggressive in this scenario. For example, we observe cases
in which the player requests multiple times the same chunk with different resolutions,
probably as a reaction to delays in lower network layers.

Looking at the Speedup metric, we see that HTTP/2 improves greatly over
HTTP/1.1, while HTTP/3 has the worse performance, especially at very low band-
width (0.034). We provide further details about this result in Figure 4.11, which
show the median Speedup for HTTP/3 (h3) and HTTP/2 (h2) for different network
conditions. The bluer the color, the greater the benefits of the newer HTTP version.
Conversely, the red color indicates that the newer HTTP version results in a larger
PSD, i.e., slower transmission of the first chunk

Finally, when we impose additional latency (last row in Table 4.3), almost all
chunks are delivered at the highest resolution, and we find that video resolution

68 HTTP/3 - QUIC Measurements

600400200 800
1000

2500
1500

Quality Level [kbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
HTTP/1.1
HTTP/2
HTTP/3

Fig. 4.12 Distribution of chunks resolution with limited bandwidth (BrowserTime-
Video dataset).

Table 4.4 Mean number of downscale per experiment.

HTTP1/1 HTTP/2 HTTP/3
Bandwidth = 1 Mbit/s 38.7 43.3 38.0
Bandwidth = 2 Mbit/s 1.0 1.0 13.3
Bandwidth = 5 Mbit/s 1.9 2.0 2.0

adjustments are very rare (i.e., no differences between HTTP versions for this metric).
Looking at the median in the last three lines of Figure 4.11, we find that HTTP/3
tends to be slower than HTTP/2, i.e., the first video chunks take more time to be
delivered to the client. We again conjecture that this effect is due to the different
congestion and flow control algorithms implemented in QUIC, and their interactions
with the player. Investigating how performance could be improved by changing the
video server configuration (note that we use nginx HTTP server with quiche HTTP/3
implementation) is left for future work.

4.7 Takeaways

This chapter presents a comprehensive study on the adoption and performance
of HTTP/3, highlighting its impacts in various network scenarios and its gradual
adoption by leading Internet companies since 2020. Our findings can be summarized
as follows:

• Adoption Trends: The adoption of HTTP/3 began in late 2019, with a notable
increase in website support over time, especially with the involvement of

4.7 Takeaways 69

0 20 40 60 80 100 120 140
Chunk

1000

600

200

1500

800

400
Q

ua
lit

y
L

ev
el

[k
bi

t/s
]

HTTP/2
HTTP/3

Fig. 4.13 Example sessions with 2 Mbit/s bandwidth (BrowserTime-Video dataset).

major entities like Google, Facebook, and Cloudflare. By September 2021,
approximately 11.84% of websites had adopted HTTP/3, with Cloudflare
being a significant host.

• Content Delivery: Despite the growing support for HTTP/3, a substantial
amount of web content, particularly from third-party sources, continues to be
delivered over older HTTP versions.

• Web Browsing Performance: HTTP/3 shows considerable performance
improvements in high-latency environments and offers limited benefits under
low bandwidth. However, it does not significantly outperform HTTP/2 in high
packet loss scenarios. Websites hosting most content on third-party HTTP/2
servers show less improvement.

• Provider-Specific Performance: The performance gains from HTTP/3 vary
significantly across different hosting infrastructures. Sites hosted on platforms
like Facebook and Google show notable improvements in specific network
conditions.

• Mobile Browsing: HTTP/3 enhances browsing performance for mobile users,
with smartphones and tablets benefiting from faster onLoad times and im-
proved SpeedIndex metrics across various network conditions.

• Video Streaming: In controlled environments, HTTP/3 does not demonstrate
notable benefits for adaptive video streaming, with performance similar to or
worse than HTTP/2 under bandwidth constraints.

70 HTTP/3 - QUIC Measurements

• Overall Impact: The study underscores that HTTP/3 brings more significant
benefits in scenarios with high latency or limited bandwidth, particularly for
websites that minimize third-party domain loading.

In conclusion, our large-scale measurement campaign highlights the growing
adoption of HTTP/3 and its impact on web browsing and video streaming perfor-
mance. While HTTP/3 offers considerable improvements in specific scenarios, its
advantages vary depending on network conditions and hosting infrastructures.

Chapter 5

Satellite Network Measurements

5.1 Motivation

The work we present in this chapter is mostly taken from our paper When satellite is
all you have: watching the internet from 550 ms, published in Proceedings of the
22nd ACM Internet Measurement Conference [59].

While 5G and Fiber-To-The-Home (FTTH) technologies give us access capacity
on the order of Gb/s [60–63] and Content Delivery Networks (CDN) can guarantee
end-to-end delay in the range of milliseconds [64–66], there are significant parts
of the world where economic and technological constraints force people to rely on
solutions that provide far more constrained access to the Internet. These include
mountainous and rural areas in developed countries, as well as the entire territory
of underdeveloped countries, where even the supply of stable electricity can be
problematic. In such scenarios, Satellite Communications (SatCom) offers a practical
connectivity solution. Among the available SatCom technologies, geostationary
(GEO) satellites are the oldest and most widely used solution [67], with the first
offerings dating back to the early 2000. Here, a satellite orbits the Earth at an altitude
of about 36000 km, and moves at an angular velocity equal to the Earth’s rotational
speed. To an observer on Earth, the satellite appears immobile, making it easier to
establish a communication link. A single GEO satellite can cover entire continents,
and the directional beams enable efficient space and frequency multiplexing, with
each beam providing a total channel capacity on the order of 10 Gb/s [68].

72 Satellite Network Measurements

In addition to limited shared capacity, GEO satellite communications suffer from
high propagation latency, which is about 550 ms for a round trip (including two
passes through the satellite). For this reason, complicated Medium Access Control
(MAC) and scheduling protocols coordinate the access and sharing of the satellite’s
uplink and downlink, while traffic shapers, Performance Enhancing Proxies (PEP),
and TCP optimization solutions attempt to mitigate the effects of end-to-end delay
and limited capacity [69–71].

In this chapter, we have the unique opportunity to present the first large-scale
passive characterization of a global GEO SatCom Internet access solution. Through
passive instrumentation of the satellite ground station, we observe traffic from tens of
thousands of customers in more than 20 countries in Europe and Africa. On the one
hand, this allows us to characterize the different Internet usage habits in the different
scenarios, if any. On the other hand, we observe the impact of SatCom technology
on performance and identify possible optimization strategies.

The main observations can be summarized as follows:

• In Africa, chat and social media applications consume 100 and 10 times more
data than in Europe. This is due to the presence of community WiFi points
that share SatCom access.

• Since these applications are accessed throughout the day, the typical peak time
in African countries is anticipated in the morning.

• Satellite channel protocols and solutions increase the Round Trip Time (RTT)
much more than just the propagation delay. Link channel quality and conges-
tion (if any) can actually add seconds to the end-to-end RTT.

• In SatCom networks, all traffic must pass through the same ground station, in
our case in Europe. This impacts local popular services. For example, services
in Africa suffer from the additional delay caused by traffic being routed back
and forth through the ground station.

• To complicate the picture, most customers use open DNS resolvers, some of
which are located in China and Africa. This increases DNS response time
to hundreds of milliseconds and jeopardizes the server selection policies of
CDNs and DNS resolvers.

5.2 Related Work 73

We believe that the characterization offered in this paper contributes to under-
standing the complexity of the Internet by providing a novel perspective on SatCom
networks and customers. We also discuss possible technical improvements that
SatCom providers might consider to improve the quality of service offered to their
customers. These include the use of additional ground stations to route traffic more
efficiently and the control of DNS requests or responses to limit the impact of in-
correct server selection. To allow the research community to conduct experiments
with an emulated GEO SatCom connection and compare it to other connection tech-
nologies (including the novel Starlink connection with data from [72]), we have
created a data-driven model for our ERRANT network emulator tool [19] and make
it available at https://github.com/SmartData-Polito/errant.

In the remainder of the chapter, we present first the related work (Section 5.2),
then we introduce the SatCom technology and monitoring infrastructure (Section 5.3)
and provide an overview of our dataset (Section 5.4). We then illustrate our results
in terms of volumetric traffic distribution (Section 5.5), user habits and service
consumption (Section 5.6), and performance indicators (Section 5.7). Finally, we
discuss and draw conclusions and takeways (Section 5.8).

5.2 Related Work

Since the Internet was born, characterization of network traffic has been an important
topic to understand its evolution and usage. Seminal works analyze trends of Internet
traffic trends in the 1990 s and early 2000 s [73, 74]. Since then, there has been a
large body of research using passive measurements to understand Internet operations
and usage patterns. Most works focus on characterizing Internet traffic generated
by cable/fiber customers [75, 60, 76, 64], while others analyze traffic captured in
the backbone network, mixing users with different access technologies [77, 78]. Re-
cently, researchers have focused on analyzing the impact of the Covid-19 pandemic
on Internet traffic, noting sudden and remarkable changes [79–81]. Our work is
in this area and uses a similar methodology for collecting and analyzing passive
measurements. We note that most measurements are related to Europe and North
America, while we also provide insights into African Internet traffic, similar to John-
son et al. [82]. In addition, in this work, we have a unique opportunity to specifically
study traffic from SatCom subscribers. To the best of our knowledge, we are the first

https://github.com/SmartData-Polito/errant

74 Satellite Network Measurements

to conduct a longitudinal study of SatCom traffic and present a comparison of traffic
from different countries on two continents.

Satellite-based consumer Internet access [67] was launched in 2003 and has been
the subject of a wide corpus of literature. Most of the work targets the design and
optimization of communication channels, and a few studies successfully cover the
topic [83, 68, 84]. Other work focuses on measuring and improving the performance
of Internet protocols in SatCom. Tropea et al. [85] evaluates different TCP versions
on geostationary satellite links, while Peng et al. [86] and Muhammad et al. [87]
focus on the interaction of TCP and PEPs. More recently, the performance of
QUIC and its interaction with PEPs have been studied [88–90]. For a complete
benchmark of SatCom performance, see Deutschmann et al. [91], which provides
figures on SatCom latency, throughput, and web page load time. Recently, the authors
in [92, 72] examined Starlink, the new low-orbit satellite communication system,
which provides a comprehensive overview of the impact of this new communication
on user-perceived performance when accessing globally distributed resources and
the impact of different HTTP versions. Similarly, Mohamed et al. [93] propose a
study from different vantage points to understand how the performance changes from
the browser’s perspective.

All of these works rely on active measurements, i.e., they deploy test environ-
ments with devices using SatCom and analyze the results. In this work, we provide
a different perspective by providing performance data on SatCom through passive
measurements by observing traffic from about 10 k customers and complementing
the results of previous work.

5.3 Measurement Setup and Methodology

In this section, we describe our measurement setup and the methodology we use to
gather and analyze data from the actual deployment of a large international SatCom
operator. We first provide an overview of the specific data-link technologies that can
affect Internet access performance, but avoid detailing the complexity of the physical
layer of SatCom transmissions. In this section, we describe our measurement setup
and the methodology we use to gather and analyze data from the actual deployment
of a large international SatCom operator. We first provide an overview of the specific

5.3 Measurement Setup and Methodology 75

data-link technologies that can affect Internet access performance, but avoid detailing
the complexity of the physical layer of SatCom transmissions.

5.3.1 The SatCom Network

In traditional SatCom networks, the operator has deployed a satellite infrastructure
consisting of satellites in geostationary orbit, and a ground infrastructure. Referring
to Figure 5.1, subscribers employ a dedicated equipment, i.e., the customer-premises
equipment (CPE), to connect their devices (PC, smartphone, etc.) to the SatCom
network. The CPE consists of a dish antenna and a router/modem that manages the
satellite links and access protocols on one side, while offering WiFi and Ethernet
connectivity on the other side.1 The satellite acts as relay for subscriber traffic, which
traverses 35, 786 km twice to reach the ground station, accumulating from 240 ms to
280 ms, depending on the location on Earth of the subscriber. The ground station
terminates the satellite segment and forwards the traffic to the Internet.2 Notice that
this forces all traffic to enter the Internet from the location where the ground station
is. In our measurement setup, we monitor the traffic managed by one satellite in
geostationary orbit. This satellite offers service in Europe and Africa, from Ireland
to South Africa. At the time of data collection, the satellite operator operates a single
ground station in Italy, through which all traffic passes to reach all Internet services.

The satellite is equipped with multiple directional antennas, each managing a
transmission beam that points to a specific region on Earth. This allows the reuse
of frequencies to increase overall capacity while optimizing the use of spectrum
reserved for satellite communications. Each beam acts as a separate and independent
physical channel, providing aggregate capacity on the order of Gb/s, the actual
capacity being configurable. Two separate beams (and frequencies) cover each area,
one for the uplink (from users’ CPE to the satellite) and one for the downlink (from
the satellite to users’ CPE). A separate beam pair also connects the satellite and the
ground station.

On the shared uplink channel, the transmission of packets involves a complicated
MAC protocol: a slotted-Aloha protocol allows the CPE to access the shared reser-

1A customer may represent a single individual, a household, a company’s office, or a community-
based WiFi Internet access solution.

2The total round trip time (RTT) of any communication is in the order of 550 ms since the packets
must go through the satellite link on both the forward and backward paths.

76 Satellite Network Measurements

vation channel the first time it needs to transmit. Then, a Time Division Multiple
Access (TDMA) scheduling protocol run by the satellite allocates time-slots to each
active CPE to avoid collisions and to fairly share capacity among the active users at
each TDMA frame. The satellite then forwards the packets to the ground station via
a dedicated high-capacity beam.

On the downlink channel, the ground station transmits the packets directly to the
satellite, which then forwards them to the destination CPE by selecting the correct
frequency and beam. In this case, the packets are broadcasted to all receivers, which
filters those destined for their CPE MAC address and discard the packets destined for
other CPEs. In addition to the TDMA and MAC schemes, Forward Error Correction
(FEC) and Automatic Repeat Request (ARQ) mechanisms provide a reliable data-
link service. All in all, these proprietary algorithms provide a reliable, almost error-
free, bi-directional point-to-point link between each CPE and the ground station. By
combining these MAC, scheduling, FEC and ARQ protocols, further random delays
are added to the communication between the CPE and the ground station.

To mitigate the potential performance degradation caused by this high latency, the
SatCom operator relies heavily on a Performance Enhancing Proxy (PEP) to improve
TCP performance on the satellite segment. A PEP is a network component that
improves end-to-end performance by transparently manipulating TCP connections.
Defined in RFC 3135 [94], PEP works as follows in our case. In the lower part of
Figure 5.1, the subscriber CPE acts as a transparent TCP proxy for the end user’s TCP
traffic. It terminates all TCP connections initiated by applications on end-user devices
and forwards TCP payload to the ground station via a bidirectional reliable tunnel
over UDP. In detail: When a subscriber’s device initiates a new TCP connection
via a SYN packet, the CPE impersonates the destination server and immediately
completes the TCP three-way handshake, allowing the client application to send the
initial data with no delay.

Here, the CPE acts as a L4 proxy. It buffers the TCP data stream and forwards it
to the ground station via the bidirectional UDP tunnel at the allowed uplink rate. The
ground station again works as a L4 proxy. When it receives a Connect request from
the CPE, it establishes a new TCP connection to the actual destination server. It then
forwards the data to/from the CPE via the downlink/uplink satellite tunnel. In this
way, the TCP congestion control algorithm is effectively decoupled, allowing the
ground station proxy to retrieve the data from the origin server at the backbone-path

5.3 Measurement Setup and Methodology 77

rate and the CPE to forward the data to the end user’s device as quickly as possible.
Note that the download rate of the ground station from the origin server is still
regulated by the download rate of the end device because the buffer capacity of PEP
in the ground station is limited. Note that user traffic using UDP (e.g., DNS, QUIC)
cannot benefit from PEP acceleration and therefore UDP packets are forwarded as
is.3

At last, the ground station also acts as a Network Address Translation (NAT) box,
DNS resolver, and supports Quality of Service (QoS) schedulers to prioritize and
shape traffic depending on the application. To this end, the SatCom operator uses
L3/L4 and domain name-specific rules to prioritize interactive traffic and shape video
streaming flows. The shaper allows also to enforce commercial maximum capacity
of up to 5 Mb/s in the uplink, and 10, 20, 30, 100 Mb/s in the downlink based on the
subscriber’s contract.

In our setup, the SatCom operator provides private IPv4 addresses to each
customer CPE. This means that all connections must be initiated by an end-user
client and no server can be run on the customer’s premises.4

5.3.2 Passive Measurements

We instrument the SatCom operator’s network to collect passive measurements
of all subscriber traffic. To this end, we deploy a passive probe at the operator’s
ground stations in Italy. Here we collect all traffic after the operation of the PEP,
which handles traffic in the satellite segment. We observe all packets exchanged by
each customer – that we uniquely identify by their SatCom CPE IPv4 IP address.
Using a router span port, we mirror both downlink and uplink traffic to a high-end
measurement server equipped with two Intel X710 network cards. The server runs
Tstat[38], a custom flow monitoring software that generates rich per-flow summaries
in real time from the processed data packets. To handle the high rate, our software
resorts to the Data Plane Development Kit (DPDK) library for packet capture [95],
which enables accelerated packet processing by bypassing the kernel-space drivers
and protocol stack, and guarantees that all packets are processed in real time without
information loss. Using the classic 5-tuple, Tstat identifies and tracks the evolution

3The PEP can only act as a L4 proxy without violating the authenticity provided by TLS.
4The SatCom provider offers hosting of servers in the data center for customers interested in

running services.

78 Satellite Network Measurements

Terminal Server

SatCom
Equipment

Ground
Station

PEP Tunnel

Passive
Meter

Satellite
RTT

Ground
RTT #1

Ground
RTT #2

Fig. 5.1 Methodology for the estimation of the Satellite Segment RTT.

of TCP and UDP flows. For each flow, it extracts hundreds of statistics for both flow
directions. The metrics we mainly rely on are: the i) flow size and duration, ii) the
timing information of the first 10 packets, iii) the server and client IP address, iv) the
TCP RTT between data and ACK segments, and v) the name of the contacted server
as retrieved by the SNI, HTTP or DNS protocol..

The measurement of the TCP RTT deserves a careful explanation because the
presence of PEP makes the measurement of RTT particularly troublesome. Indeed,
the PEP causes the total RTT to be divided into three components, as shown in the
bottom part of Figure 5.1: (i) home RTT – between the user device and the user’s
SatCom CPE; (ii) Satellite RTT – between the CPE and the ground station, where
TCP segments are forwarded over the satellite PEP tunnel; and (iii) ground RTT –
between the PEP terminator at the ground station and the destination server. Our
vantage point is co-located with the ground station and therefore observes traffic
exchanged from the PEP proxy to the Internet. For the ground RTT measurement
(iii), TSTAT uses the TCP connection initiated by the ground station PEP. For each
TCP segment sent, it measures the time to the corresponding ACK, calculating
the minimum, maximum, average, and standard deviation of all RTT samples in a
TCP flow. To measure the RTT (ii) of the Satellite segment, we need an additional
ingenuity. Specifically, we leverage the TLS handshake of a TCP data flow to

5.3 Measurement Setup and Methodology 79

measure the time from the Server Hello message to the next Client Key Exchange
message/Change Cipher Spec message. This time also includes the Home RTT (i),
which we can consider negligible compared to the satellite. In this way, and only for
TLS flows completing the TLS negotiation, we can safely estimate the delay caused
by the satellite at least once per flow.

At last, for both TCP and UDP, the software runs a Deep Packet Inspection (DPI)
module that identifies the most popular protocols and extracts various information
from headers. In particular, it annotates each flow with the server domain name
as extracted from the Host header in case of plain-text HTTP, or from the Server
Name Indication (SNI) field in the case of TLS or QUIC flows.5 For DNS traffic, the
software logs each requested domains and obtained responses, including the DNS
server IP address the client used to resolve the name.

5.3.3 Ethical Aspects

Passive monitoring involves capturing and processing traffic generated by human
beings, thus we need to take proper actions to protect as much as possible the individ-
ual’s privacy. Indeed, IP address is considered a Personally Identifiable Information
(PII) and it can be used to identify and track individuals. The characteristics of traffic,
such as the list of visited websites, can be considered Sensitive Personal Information
(SPI), as they can reveal personal aspects and habits of an individual.

For this work, we take all possible countermeasures to properly handle our
measurements. First, the setup, management and data collection were physically
managed uniquely by the operator personnel, who control the data collection process.
Second, we configured the data collection to limit as much as possible the exposed
information. We process packets in real time and save only strictly required infor-
mation in flow logs. In details, we do not store any information present in headers
that can be associated with a single user. Customers IP addresses are anonymized in
real time using the CryptoPan algorithm [96] which preserve the subnet structure of
the original IP addresses. The only sensitive information remains the server IP ad-
dresses and the domain names customers’ visited, which we process only to extract
aggregated statistics for the most popular services. Third, we only have access to the
anonymized logs that we store in our secure Hadoop cluster, which is not reachable

5We use the term domain meaning Fully Qualified Domain Name.

80 Satellite Network Measurements

from the public Internet and has strictly controlled physical access. The operating
system and software are kept up to date to avoid possible vulnerabilities, and strict
user access policies limit the access to the data only to authorized users.

The operator SatCom Data Protection Officer (DPO) has approved the above
process and we have verified with our institutional review board that the data we
collect is exempt from their approval.

5.4 Dataset Processing and Overview

In this paper, we consider all data collected during February-April 2022, resulting
in 4.3 PB, for a total of 34.4 billion flows. On a daily basis, we transfer the flow
summaries from the measurement server located in the SatCom provider premises
to the Hadoop storage cluster, where we post-process the data using Apache Spark
with custom designed analytics to compute various statistics and distributions.

5.4.1 Data Enrichment and Aggregation

In the first step of processing, we enrich the data by adding information about
the customer’s country (obtained by mapping the encrypted customer subnet to the
corresponding country with the support of the SatCom operator) and about the service
offered by the server. We focus here on six classes of services: Video Streaming,
Social Networks, Audio Streaming, Chat, Work-related applications, and Search
Engines. We rely on custom regular expressions that map popular server names to
services. In detail, for each service class, we enumerate the top and local players
by manually inspecting the list of most popular domains by volume and popularity.
For each service, we enumerate the list of fully-qualified domains and second-level
domains used to serve its content.6 In some cases, we use regular expressions to
generalize the set of domains. This is the typical case of CDN server names, which
often include numbers or country codes in the domain. We uniquely use the domain
to classify the service, as we do not capture the full HTTP URL, which is typically
encrypted within the TLS session. For TLS flows, we obtain the domain from the
SNI field of the Client Hello messages. As a result, we are sometimes unable to

6We handle the case of two-label top level domains – e.g., co.uk.

5.4 Dataset Processing and Overview 81

Table 5.1 TCP/UDP traffic breakdown by protocols.

Protocol Volume share
TCP/HTTPS 56.0 %
TCP/HTTP 12.1 %
Other TCP 7.0 %
UDP/QUIC 19.6 %
UDP/RTP 1.1 %
UDP/DNS < 0.1 %
Other UDP 4.2 %

Congo
Nigeria Spain

Ireland

South Africa

United Kingdom

Ivory Coast

Zimbabwe
Camerun

Germany
Other0

5
10
15
20
25
30

[%
]

Volume Customers

Fig. 5.2 Per country breakdown of traffic volume and user base.

distinguish between sub-services from the same provider (e.g., Google Search and
Maps both share the SNI *.google.com). As an alternative to manually curated lists,
we could rely on online ranking and analytics tools (e.g., Alexa, Cisco Umbrella, or
Similar Web). However, these services are known to list only the main domain of a
given service, while not listing the domains of third party services such as content-
delivery providers and support services used by the first-party service. Given the
small number of services we are interested in, we choose to create the lists manually.

The second step is to create aggregated views of the data to obtain traffic break-
downs by protocols, server domains, time (with 1hour granularity), country of the
customer, and contacted service. This aggregation step facilitates subsequent data
processing by reducing the amount of data to be processed by several orders of
magnitude, enabling real-time data exploration.

82 Satellite Network Measurements

5.4.2 Dataset Overview

We first present an initial overview of the dataset by presenting the breakdown by
country and protocol. Table 5.1 summarizes the latter. As expected, web traffic
accounts for most of the traffic, with HTTPS and QUIC accounting for 56% and
19.6 % of the total volume, respectively. HTTP still accounts for 12.1% share. This
is consistent with other studies that showed the convergence of Internet protocols
towards encrypted web protocols [64, 97, 79]. Interestingly, despite the high latency
due to the satellite link, we observe a non-negligible amount of video or voice traffic
using Real Time Protocol (RTP).

Looking at traffic by country, we observe a large imbalance in the number of
customers and thus traffic, as shown in Figure 5.2. The blue bars indicate the share of
data traffic per country. The red line shows the share of customers. The countries are
sorted by decreasing total volume. Interestingly, the two figures are not completely
proportional and show that customers in African countries consume much more
traffic on average than customers in European countries. For example, Congolese
customers are 20 % of overall customers, but they generate 27 % of volume (each
generates about 600 MB per day). Spaniards are about 16 % of customers, but
generate only 10 % of volume (each generates only 170 MB per day). This suggests
that African customers may share Internet connections with multiple end-users,
while European customers may resort to SatCom access only when forced to do so.
In section 5.6 we will explore this direction in more detail.

To complete this overview, we list the breakdown of protocols by country. We
limit the analysis to the top-10 countries. Figure 5.3 shows the results that exhibit
some considerable differences. In European countries, a large portion of TCP traffic
is not due to web protocols. The case of Germany is extreme: 35 % of all TCP traffic
is due to other protocols. Manual inspection suggests that this is due to the use of
Virtual Private Network (VPN) solutions (unknown protocol, non-standard port, long-
lived flows without parallelism). Note also that the percentage of unencrypted HTTP
traffic is higher in Ireland and the U.K. than in other countries. This is due to popular
Microsoft and Sky services that use HTTP to distribute software updates and video
content. Conversely, Congo, Nigeria, and South Africa show very similar protocol
breakdown. This may reflect the different customer base in Europe and Africa, with
some business customers in the former (confirmed by the SatCom operator) using
non-web-based protocols for VPN and internal services.

5.5 How much Customers Consume 83

Congo
Nigeria Spain

Ireland

South Africa

United Kingdom

Ivory Coast

Zimbabwe
Camerun

Germany0

20

40

60

80

100
Sh

ar
e

[%
]

HTTP
HTTPS

DNS
Other TCP

HTTP/3
RTP

Other UDP

Fig. 5.3 Protocol share per country.

Given this initial overview, we limit our analysis below to the top 3 countries in
Europe and the top 3 countries in Africa to compare usage, performance and services
used.

5.5 How much Customers Consume

In this section, we discuss the temporal pattern and volume of traffic generated by
customers in different countries. We start our analysis from the traditional hourly
traffic pattern, which we report in Figure 5.4. The y-axis reports the percentage of
traffic volume at a specific hour, normalized over the maximum value for the given
country. For each time bin, we report the average value seen at that time during the
whole time period, summing the upload and download traffic. We use the UTC time
zone and countries in different time zones appear shifted.

We immediately observe how African (dashed lines) and European (solid lines)
countries exhibit very different traffic patterns. In Europe, the traffic peak happens
during evening prime time between 18:00-20:00-UTC. Conversely, during the day
the traffic volume settles to lower values, down by 50 % in the morning and as low
as 20 % at night. Conversely, in African countries, we observe a much higher traffic
consumption during the morning too. For Congo (dashed red line), the absolute peak
is at 9:00-UTC (10:00 local time). In Nigeria and South Africa, the morning peak

84 Satellite Network Measurements

[00:00]
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

24:00

Hour (UTC)

0

25

50

75

100
[%

]
Congo (UTC+1)
Ireland (UTC+1)

Nigeria (UTC+1)
South Africa (UTC+2)

Spain (UTC+2)
UK (UTC+1)

Fig. 5.4 Daily trends per country.

reaches 90 % of evening peak time. Notice also at night the low-peak that is almost as
high as 40 % of peak-time. This suggests that customers’ use of the SatCom access
differs between Europe and Africa, hinting a classic leisure usage for the former.

We now focus on the volume of traffic generated per each customer, per each
day. In Figure 5.5, we report the empirical Complementary Cumulative Distribution
Function (CCDF), using log-log scales. We consider both the total number of flows
and the total bytewise volume generated in each day by a given customer. We
consider both TCP and UDP, and distinguish upload and download volume. Note
that a single subscription generates many samples in the distribution, one per day.

Start from the number of daily flows per customer shown in Figure 5.5a, and
focus on the main body of the CCDF (the leftmost part of the figure). We clearly
observe that a significant fraction of European subscribers (solid lines) generate less
than some hundred flows in 24 hours. In fact, the curves show a clear knee between
50 and 250 flows – i.e., more than 50 % of customers generate less than 250 flows in
a given day. Those flows are likely being generated by the SatCom equipment or
devices left connected to the network but unused. This could be the case of customers
buying satellite access for their second houses in the remote regions that they use
only during holidays. Conversely, in African countries (dashed lines) this effect is
not present. From now on, we define active customers those that generate at least
250 flows per day.

5.5 How much Customers Consume 85

10 100 1k 10k
100k 1M

0.1
0.2
0.5
1.0

0.01
0.02
0.05CC

D
F

Congo
Ireland

Nigeria
South Africa

Spain
UK

(a) Flows (all customers)

10MB
100MB 1GB

10GB
100GB

0.1
0.2
0.5
1.0

0.01
0.02
0.05CC

D
F

Congo
Ireland

Nigeria
South Africa

Spain
UK

(b) Download volume (active customers)

1MB
10MB

100MB 1GB
10GB

0.1
0.2
0.5
1.0

0.01
0.02
0.05CC

D
F

Congo
Ireland

Nigeria
South Africa

Spain
UK

(c) Upload volume (active customers)

Fig. 5.5 Distribution of daily volume per customer in different countries. Notice the
log scale on both axes.

86 Satellite Network Measurements

Focus now on the tail of the curve. Here we can clearly see that African customers
generate almost an order of magnitude more flows per day than European customers.
This is due to the presence of some WiFi access points that share SatCom access
in community internet solutions or internet cafés. In fact, most Africans in Congo
and more in Nigeria and South Africa than in Europe, lack home Internet access.
Therefore, people have to go to public places – Internet cafes, libraries, workplaces,
etc. – to access the Internet. This situation was observed by the scientific community
as early as 2013 [98] and more recently in 2019 [99]. The multiplexing of several
end-users behind a single customer CPE IP address results in an inflated number of
per-customer daily flows.

Next, we characterize the amount of daily downloaded and uploaded amount of
traffic by each active customer. We show results in Figure 5.5b and 5.5c, respectively,
for downlink and uplink. First, we observe that African customers download more
data than European customers. Yet, the increase is reduced. For instance, in Congo,
the percentage of heavy hitters (those customers downloading more than 10 GB in
a day) is twice as much (8 %) than in Spain (4 %). This different behavior clearly
impacts the congestion on the SatCom link, and the per-customer cost the SatCom
operator in terms of volume.

Interestingly, the difference between European and African countries is more
pronounced in upload volume than in download volume. A Look at Figure 5.5c
shows that Congo, Nigeria and South Africa have 10 %, 7 % and 5 % heavy hitters
(those customers uploading more than 1 GB of data in a day), respectively, compared
to less than 3−4 % in the U.K., Spain and Ireland. As we will see in the next session,
customers who tend to upload a lot of content tend to exhibit a large usage of instant
messaging applications, likely sharing images and videos from their mobile app.
Overall, we find that SatCom customers generate similar traffic volumes as FTTH
and ADSL customers. Compared to some recent work [64], the average download
(upload) volume per FTTH customer was on the order of 1 GB (100 MB) per day in
2017. We thus observe a significant increase in the volume of traffic exchanged by
customers despite the limited possibilities offered by SatCom access.

5.6 What Customers Consume 87

Con
go

Nige
ria

So
uth

Afric
a

Ire
lan

d
Sp

ain UK

Aver
age

Google
Whatsapp
Snapchat

Wechat
Telegram

Instagram
Tiktok
Net�ix

Primevideo
Sky

Spotify
Dropbox

62.96 61.26 64.72 68.58 68.30 65.48 64.20
61.22 51.18 62.88 59.59 63.82 53.75 58.62
33.93 28.90 19.14 38.52 12.33 28.50 28.10
6.42 3.55 1.11 0.49 0.06 0.41 2.99
1.83 3.17 1.28 0.53 1.75 0.29 1.64
48.81 41.04 40.67 48.53 45.59 40.43 44.84
41.56 31.99 36.31 40.11 31.89 36.53 36.95
17.34 17.84 38.91 50.91 39.20 46.41 30.21
3.90 3.77 8.42 21.30 22.78 28.21 11.94
15.71 7.86 7.26 27.68 6.04 28.37 14.87
37.78 30.31 33.19 46.79 45.20 39.73 38.15
11.50 9.22 16.57 10.39 9.34 16.81 11.75

Fig. 5.6 Heatmap of the service popularity in different countries.

5.6 What Customers Consume

We now examine the habits of SatCom subscribers in terms of services they access.
As described in Section 5.3, we identify the services by examining the domain
of TLS, HTTP, and QUIC flows. For each country, we extract the list of popular
services, manually create regular expressions to identify them from the domain,
and assign a category among Audio steaming, Chat, Search engine, Social, Video
streaming, and Work.

In Figure 5.6, we first give, for each category, the percentage of customers
accessing different services on a daily basis, separated by country. We focus on a
subset of the services for which we can write regular expressions that match domains
that we know the user intentionally visited. For example, we do not report on Social
Media Networks or widely used services (e.g., YouTube) because these services
often appear as third-party services in web pages (e.g., embedded social buttons,
videos, tracking services).

Among Chat services, WhatsApp is the most widely used service - comparable
to Google, which is the most popular service, as expected. This is consistent with our
earlier findings [64]. Interestingly, Snapchat ranks second, while in Congo more than
6% of customers also use WeChat for communication. This suggests the presence of
Chinese-related communities. Telegram has yet to gain momentum.

88 Satellite Network Measurements

Audio Chat

Search
engine

Social
Video

Work
1kB

10kB
100kB

1MB
10MB

100MB
1GB

10GB
D

ai
ly

vo
lu

m
e

pe
rc

us
to

m
er

Congo
Nigeria

South Africa
Ireland

Spain
UK

Fig. 5.7 Boxplot of the daily volume consumption per customer when accessing
different service category.

Instagram and TikTok have similar penetration in all countries, with the latter
being only 4−7 percentage points less popular than Instagram.

In the paid-video category, it is notable that they are more popular in Europe than
in Africa, with only South Africa achieving similar penetration. This is likely due
to both economical and cultural effects, as well as the investments these platforms
make in each country. For completeness, as previously said, Sky uses HTTP rather
than HTTPS for serving the video content, and its popularity in Ireland and the U.K.
leads to the increase in HTTP traffic observed in Figure 5.3.

Our findings corroborate recent research on African Internet usage, which shows
the strong presence of social and chat services. For example, a recent report from
the Pew Research center [100] shows that chat and social networking are much more
popular than paid services in Africa. In fact, paid video streaming services are not
yet very popular in Africa, with Netflix having an estimated 2 million users on the
continent, according to the 2022 annual report from Digital TV consulting [101].
However, the same report predicts rapid growth, which is also confirmed by a report
from Conviva, a major video distribution company [102]. We note that South Africa
is peculiar among African countries and that the strong penetration of streaming in
South Africa is already well known.

5.7 Which Performance Consumers Get 89

Next, we focus on the volume of traffic generated when accessing the different
service categories per country. Here we consider all services, assuming that social
buttons, tracking cookies, etc., consume little volume compared to customers using
the actual service. Figure 5.7 uses boxplots to show the distribution of daily volume
per customer accessing each category. The box extends from the lowest to the highest
quartile, with a line at the median. Whiskers that extend from the box show the 5th

and 95th percentiles.

Audio streaming services consume the least amount of traffic in Africa and
slightly more in Europe, where some customers consume more than 50 MB in some
days. Chat application usage is much more heterogeneous. While customers in
Europe consume a median of less than 10 MB per day for Chat services, this value
surprisingly increases by more than three orders of magnitude in African countries.
Customers in Congo have a daily median of 250 MB, with the top-5 % of the
heaviest customers consuming more than 2 GB on some days. These are likely
those community WiFi Access Point (AP) that share SatCom access with multiple
end users. The same effect is observed in the Social Media category, with a daily
median of 300 MB in Congo, but only 30 MB in European countries. In contrast,
the differences are smaller in the Video streaming category. However, the share of
video traffic comes from different services: free YouTube in Africa, and paid video
streaming services in Europe.

5.7 Which Performance Consumers Get

We now discuss the performance SatCom customers get. We focus on classical
Quality of Service (QoS) indicators, namely RTT and throughput, and finally drill
down on DNS performance.

5.7.1 Satellite RTT Analysis

Here, we examine how the satellite access link and SatCom network architecture
affect end-to-end RTT. We consider the satellite RTT and the ground RTT separately,
as we defined in Section 5.3.

90 Satellite Network Measurements

Congo
Nigeria

South Africa Ireland
Spain UK

0
500

1000
1500
2000
2500
3000

Sa
te

lli
te

RT
T

[m
s]

Night time Peak time

(a) Distributions and quartiles of the satellite RTT per country for night time (from 2:00 to
5:00 local time) and peak time (from 13:00 to 20:00 local time).

0 25 50 75 100
Beam utilization [%]

750

1000

1250

Sa
te

lli
te

RT
T

[m
s]

Congo Nigeria South Africa Ireland Spain UK

(b) Median satellite RTT per beam.

Fig. 5.8 Satellite RTT computed from TLS handshake.

5.7 Which Performance Consumers Get 91

Focus first on the satellite RTT shown in Figure 5.8a. We report the measurements
at night – when we expect low congestion on the satellite link – and at peak time.
The dashed lines indicate the median, while dotted lines are used for the 25th and
75th percentiles. As expected, the minimum satellite RTT is above 550 ms. However,
the distributions show very large variability with RTT that can be higher than 2 s and
varies widely in each country. This variability is due to several factors: Queuing
delay at various forwarding elements; Processing and transmission delay for limited
performance terminals; Packet losses and TCP retransmission; but the main reason
is the SatCom access technology. Specifically, Spain has the best RTT at night in
general, with 82 % of RTT samples less than 1 s. Nigeria follows in second place
and has even better RTT than Spain at low values. This is due to Nigeria favorable
position, where the satellite is closer to the zenith (and thus has a shorter line of
sight than Spain). South Africa and U.K. suffer from a larger zenith angle and thus a
larger RTT.

In contrast, Congo and Ireland suffer from a much higher and more variable RTT.
For Congo, the main cause is the congestion on the satellite beams covering the
country. In such bandwidth-constrained scenarios, the MAC protocol and the PEP
scheduler may delay the transmission of packets by several frames, affecting the
satellite RTT. For example, note that about 20 % of RTT samples are longer than 2 s.
The high RTT values already occur during periods of low peak traffic and worsen
during periods of high traffic, with RTT values increasing significantly - compare
median values. For completeness, note that congestion also affects some Nigerian
beams, while it is practically unnoticeable in Spain, U.K. and South Africa.

For Ireland, on the other hand, the different shape of the CDF and the practically
identical RTT during nighttime and peak hours rule out congestion as the main
cause of RTT variability. In fact, Ireland is located at the edge of the satellite
coverage area with a large zenith angle, so the satellite transmission channel suffers
from severe transmission impairments. The Satellite data-link protocol must deal
with such impairments, which affect access time for those customers in particularly
unfavorable locations.

To give more details, Figure 5.8b shows the median satellite RTT for each beam
and relates it to the beam utilization7. We consider the peak time interval and

7We normalize the results to the maximum utilization observed across all beams to avoid disclosing
the actual per-beam utilization.

92 Satellite Network Measurements

10 20 50 100100 200 500
[ms]

0.00

0.25

0.50

0.75

1.00
CD

F

Congo (29ms)
Ireland (20ms)

Nigeria (25ms)
South Africa (21ms)

Spain (19ms)
UK (23ms)

Fig. 5.9 Ground segment RTT computed as the average RTT in each TCP flow.
Legend details the median.

mark each beam with the corresponding country it serves. Both Congo and Ireland
suffer from high delay almost regardless of beam utilization. Nigeria, Spain and
U.K. exhibit in general lower per-beam RTT. When checking this with the SatCom
provider, the staff confirmed that there is some congestion that occurs, but it is
not due to the beam capacity, but rather to the saturation of the PEP processing
ability. This, in turn, slows down the forwarding of packets, especially during the
initial phase of the connection setup. The amount of PEP resources that the SatCom
provider allocates to each beam and country depends on the SLA and the cost of the
service. This clearly shows the overall complexity of the SatCom access technology,
with implications on end-user quality of experience.

5.7.2 Ground RTT Analysis

We now focus on the ground RTT shown in Figure 5.9. This RTT considers only the
part of the path between the SatCom ground station and the server in the Internet.

In general, the ground RTT is much more deterministic than the satellite RTT.
Here, clear bumps reflect the proximity of the servers on the Internet to the SatCom
ground station. Focus on the European countries. The closest group has an RTT
of about 12 ms and serves about 20 % of the traffic. These are CDN nodes of well-
known players with widespread infrastructures with which the SatCom provider has
direct peering agreements. A second group of servers is around 15−17 ms, and a
third around 35 ms. All of these servers are located in Europe and serve more than

5.7 Which Performance Consumers Get 93

Congo Nigeria South
Africa

Ireland Spain UK

Operator-EU
Google

CloudFlare
Nigerian

Open DNS
Level3
Baidu

114DNS
Other

0.87 9.10 1.87 43.75 28.95 38.10
85.68 50.69 63.47 38.49 61.27 34.67
3.02 2.54 10.36 2.03 2.05 6.04
0.00 11.84 6.32 0.00 0.00 0.00
1.22 4.00 0.65 0.49 0.72 6.97
0.45 7.63 0.09 0.00 0.00 0.49
0.68 0.32 0.22 0.12 0.11 0.05
2.97 3.43 1.64 0.05 0.03 0.01
5.11 10.46 15.38 15.07 6.87 13.67

3.98
21.98
19.97

119.98
17.99
23.99

355.97
109.98
29.97

M
ed

ia
n

Re
sp

on
se

Ti
m

e
[m

s]

Fig. 5.10 Adoption and median response time of DNS resolvers.

80 % of the traffic for European customers. Continuing this analysis, we observe
another group of servers at about 95 ms (180 ms). Most of these servers are cloud
servers located in the East (West) coast of the U.S., which suffer from the latency
of crossing the Atlantic Ocean (and the U.S.). This reflects the typical RTT on the
common Internet paths [64–66].

Now look at the RTT for African countries. Surprisingly, they have a higher
RTT than their European counterparts. Since all traffic must be routed through the
same ground station in Europe, African countries experience additional ground RTT
when the final server is located in the original African country, e.g., when the end-
user accesses a local service that is not served by global CDNs. In other words, the
location of the ground station in Italy forces all traffic to be routed through Italy. This
creates the rightmost bumps, where RTT on the ground increases to 300−400 ms.

By manually examining the services offered by these servers, we can confirm
that they are likely popular services in the country of origin. Again, we also observe
a significant proportion of Chinese services that are particularly popular in Congo
(note the last bump in the ground RTT). This is related to the presence of Chinese
companies in the country.

The SatCom provider is well aware of the RTT inflation due to the forced routing
through the single ground station in Italy. They are already evaluating the possibility
of setting up a ground station in Africa to optimize traffic routing and reduce groung
RTT for those service located in Africa. In terms of performance, the numbers are
clearly in favor of this decision.

94 Satellite Network Measurements

UK Nigeria
Op-EU Google Op-EU Google 114DNS

captive.apple.com 19.1 ms 26.0 ms 23.1 ms 38.4 ms 110.4 ms
play.googleapis.com 16.3 ms 17.7 ms 38.7 ms 36.0 ms 114.2 ms

*.nflxvideo.net - 25.5 ms 33.6 ms 28.8 ms 20.1 ms

Table 5.2 Average ground segment RTT per country and DNS resolver.

5.7.3 DNS Performance

Given the importance of the server IP address location to reduce latency, DNS
resolution plays an important role. For this, we drill down on DNS resolver choice
and performance. We consider DNS/UDP traffic, for which we observe the original
end-user device request and resolver response. First, we look for popular DNS
resolvers, quantify their resolution latency, and next we observe the impact on server
choice.

In total, we observe 4195 of different resolvers, some of them only sporadically.
Interestingly, we found that customers use well-know open resolvers instead of
operator resolver, and strangely choose custom, unusual, and geographically distant
resolvers. In Figure 5.10, we break down the top-8 resolvers in terms of volume,
separated by country. For a given country, each column shows the percentage of
DNS traffic for the different resolvers. In the rightmost column, we report the median
response time observed at the ground station.

We note that the operator DNS (first row) is quite used only in European countries.
In Ireland, Spain, and the U.K., it accounts for 44,%, 29,%, and 38 % of the DNS
volume, respectively. With a mean resolution time of only 3.98 ms, it offers the best
performance. As expected, Google DNS is popular everywhere. In Africa it resolves
86 % of requests in Congo and more than 50 % in the other African countries. Other
popular open resolvers, namely CloudFlare DNS and OpenDNS, have a different
popularity, usually below 10 %. The resolution time for all of them is on the order of
20 ms.

Nigeria is a peculiar case. We find that 12 % of traffic goes to a local Nigerian
operator resolver. For this resolver, the ground RTT artificially inflates the resolution
time to about 120 ms since packets have to travel from the ground station in Italy to
Nigeria and back.

5.7 Which Performance Consumers Get 95

Interestingly, we observe two Chinese DNS resolvers (Baidu DNS and 114 DNS)
in African countries, confirming the assumption that there is a significant Chinese
community that use homeland resolvers. For Baidu, the resolution time is terrible,
with a median response time higher than 350 ms that have to be added to the satellite
RTT to reach the actual end-user device.

In summary, in most cases SatCom customers do not adopt the operator DNS and
resort instead to open resolvers. Due to the particular routing in the SatCom network,
we observe cases of resolvers that suffer very high RTT, yet they are widely used in
Africa. This greatly impacts the DNS response time and introduces an additional
100−300 ms delay on top of the satellite RTT. This has a clear negative impact on
the user experience.

5.7.4 Implications on Server Selection Policies of CDNs and DNS
Resolvers

The superposition of i) routing constraints through the same ground station in Italy,
ii) an intercontinental service presence that includes African and European countries,
iii) the adoption of different DNS resolvers by customers, creates a very tangled
picture that complicates the server selection policies of different CDN and DNS
resolver operators. To examine these implications, we observe whether there are
differences in ground RTT to the same service when using different DNS resolvers.

Table 5.2 shows some examples. We report the average ground RTT for some
sample domains and some of the most popular resolvers for Nigeria and U.K. For
U.K. (and European countries in general), the DNS resolver has little impact on
performance. This is expected since i) the ground station is located in Europe and ii)
customers tend to access European services that are well served by CDNs in Europe.

However, this is not the case for African countries such as Nigeria. For example,
the server IP address resolved to serve the captive.apple.com service results
at 19.1 ms if resolved via the Operator-EU DNS for U.K. customers. It results
instead at 110.4 ms if resolved by the 114DNS for customer in Africa. Interestingly,
even the Google DNS resolver returns two different CDN nodes for U.K. (26.0 ms)
and Nigerian (38.4 ms) customers. These resolvers provide more distant CDN IP
addresses because they are likely confused by the originating customer request geo-
position which conflicts with the routing through Italy. Not shown for brevity, we

96 Satellite Network Measurements

100 kbit/s
1 Mbit/s

10 Mbit/s

100 Mbit/s

0.2

0.5

1.0

0.02

0.05

0.1
CC

D
F

Congo
Ireland

Nigeria
South Africa

Spain
UK

(a) Per country.

Congo
Nigeria

South Africa Ireland
Spain UK

0 bit/s

2 Mbit/s

4 Mbit/s

6 Mbit/s
Night time Peak time

(b) Per time of the day.

Fig. 5.11 Download speeds per customer.

even observe that some DNS resolvers point to some CDN server in the original
African country of the customer. This clearly inflates the ground RTT by several
hundreds of milliseconds. Some domains, e.g., nflxvideo.net, are less affected
by these phenomena. This may be because resolvers and CDNs have accurate
information, or because they do not rely on DNS resolution to determine the closest
CDN node, e.g., because they use Anycast-based CDN solutions (which are not
affected by the DNS resolution issue).

A possible solution to the DNS inconsistency problem is to either force the
use of the SatCom operator’s resolver or work with the Open Resolver providers
to correctly instruct the server selection policies to return the closest server to the
ground station instead of the original location of the end user’s terminals.

5.7 Which Performance Consumers Get 97

5.7.5 Throughput Analysis

For the sake of completeness, we now briefly discuss download throughput. We mea-
sure it for TCP connections by calculating the gross ratio between bytes downloaded
and the duration of the flow (calculated from the first to the last TCP segment with
data sent).

Recall that we observe the TCP data flow from the Internet server to the ground
station PEP. This download throughput is regulated by the actual download through-
put from PEP to the end device, which happens to be the bottleneck. To obtain a
reliable measurement, we only consider flows large enough for the throughput to
reach stable values and to neglect the effects of buffering at the PEP.8 For this pur-
pose, we only consider flows carrying at least 10 MB of data, for which we limit
the representations to 1 million samples from a three-day interval. Even in these
cases, not all flows can be considered valid bulk download samples (e.g., persis-
tent HTTP flows or rate-limited video streaming flows), and competing traffic may
limit throughput. This figure can only be considered a rough estimate of the actual
performance a customer gets.

Figure 5.11a shows the CCDF for download throughput separately by country.
The operator offers several commercial plans with different maximum throughput.
This is reflected in the knees of the curves in the figure. In Europe, where 30 Mb/s,
50 Mbit/s, and 100 Mbit/s plans are popular, we find that these customers can satu-
rate their capacity with a single TCP flow. Overall, European countries have similar
download throughput, with Ireland achieving slightly lower values due to its particu-
lar physical channel characteristics (see Section 5.7.1). For brevity, we limited our
analysis to video streaming flows, and separated off-peak and on-peak times. In both
cases, we could not find any signs of congestion.

In the African countries, the picture is quite different. First, the operator sells
plans with a capacity of 10 Mb/s and 30 Mbit/s. Only few customers can saturate
this capacity, with Nigerian customers tending to achieve slightly higher throughput.
This is likely due to lower congestion on the satellite link. However, the higher
congestion on the link, the less optimal server selection and routing, the presence
of community WiFi APs, and likely the less powerful end-user terminals limit the
maximum download throughput that customers can achieve.

8The PEP has a limited buffer per-user.

98 Satellite Network Measurements

This is confirmed by Figure 5.11b, which shows the distribution of download
speed for each country, with nighttime hours separated from peak hours. Again,
European customers have higher throughput than African customers. In all countries,
throughput is lower during peak hours than at night, as shown in the body of the
distribution and the lower percentiles and medians. The change is more pronounced
in Congo and South Africa.

5.8 Takeaways

In this comprehensive study, we have performed the first characterization of the
SatCom network through passive measurements at a major SatCom operator’s ground
station. This unique vantage point, aggregating traffic from tens of thousands of
customers, enabled us to provide a multi-faceted perspective on this mature yet
complex technology. The key findings of our study are synthesized as follows:

• Usage Patterns: Our analysis reveals distinct usage patterns across regions.
European customers primarily use the internet during evening peak hours,
indicative of leisure-oriented usage. In contrast, African countries exhibit a
morning traffic peak, suggesting at least partial business usage. This regional
divergence is further highlighted by the higher data flow and consumption in
Africa, often through communal internet access points like internet cafes.

• Service Preferences and Traffic Patterns: SatCom customers in both regions
favor chat services such as WhatsApp and social media platforms including
Instagram and TikTok. However, African customers consume much more
of these services, indicating multiple users per subscription, contrary to the
typical sole or domestic use in Europe. Despite the routing through a single
ground station in Europe, African customers frequently use DNS resolvers
in other continents, adding latency but reflecting the global nature of internet
connectivity.

• Performance Metrics: We observe significant variability in satellite RTT, with
African countries experiencing higher RTTs due to factors like congestion,
satellite positioning, and technological constraints. Ground RTT is lower for
European countries, but higher for African countries, impacted by routing

5.8 Takeaways 99

through European ground stations. DNS performance is also critical, with
many African customers using high-RTT resolvers.

• Throughput and Access to Services: Customers are able to reach the nomi-
nal throughput of their plans, often accessing popular high-definition video
streaming platforms. However, notable differences in download throughput
exist between European and African users, influenced by service plans, con-
gestion, and end-user terminal capabilities.

In conclusion, this study sheds light on the distinct usage habits and traffic pat-
terns of SatCom customers, emphasizing the necessity for targeted optimization
strategies in SatCom services. This involves considering establishing local ground
stations in Africa, enhancing coordination with DNS resolver providers, and op-
timizing CDN server selection policies. Such strategies are crucial for improving
the quality of experience for SatCom customers globally, taking into account the
regional variations in service usage, traffic volume, and performance metrics.

Chapter 6

Retina: An open-source tool for
features extraction

6.1 Motivation

The work presented in this chapter is mostly taken from our paper Retina: An open-
source tool for flexible analysis of RTC traffic, published in Computer Networks
202 [103].

Retina is a user-friendly command-line utility designed to extract advanced
network metrics for RTC sessions found in packet captures. Additionally, it generates
visual output comprising various charts and visual representations of the metrics,
facilitating easy analysis. The primary focus of Retina is on the Real-Time Protocol
(RTP) [3], which is the prevalent protocol used in most RTC applications [104]. This
includes its encrypted version SRTP (where packet headers remain unencrypted).
Retina delves deeper into the understanding of RTC traffic compared to more generic
tools. Starting from a capture, it scans for RTC traffic, identifies streams, and
provides over 130 statistics pertaining to packet characteristics like timing and size.
It also traces the evolution of the stream over time intervals of a chosen duration.
The utility is highly adaptable, allowing users to customize the output metrics and
various other parameters. Moreover, Retina can enhance its output by incorporating
information from RTC application logs, offering the necessary ground truth for
numerous classification tasks.

6.2 Related Work 101

Retina is open-source and accessible to the research community and network
practitioners.1 We believe it holds value for traffic monitoring, and it has been
effectively employed for data processing and feature extraction to support Machine
Learning (ML) algorithms in the realm of RTC-aware network management.

6.2 Related Work

Numerous tools are already proficient in conducting thorough traffic analysis, with
packet dissectors like Wireshark2 (along with its command-line variant Tshark)
serving as primary resources for network diagnostics. Flow monitoring is also com-
monly employed for examining traffic summaries [105], with NetFlow [106] being
the widely accepted standard for collecting and processing flow records. Advanced
network monitors also furnish application-level statistics through Deep-Packet In-
spection on Layer-7 protocols. For instance, Tstat [38] provides comprehensive
global statistics on RTP streams, while nProbe [107] introduces a VoIP plugin as a
closed-source commercial offering. In contrast, Retina supplies extensive statistics
on both a per-time-unit and per-flow basis. Its specialization lies in RTC traffic, en-
compassing the detection of numerous RTC applications, including those that modify
the RTP protocol. Moreover, it provides a broad array of parameters for tailoring log
creation to individual preferences.

6.3 System Overview

In this section, we describe Retina’s operation. As input, Retina takes one or more
packet captures as well as optional configuration parameters. It processes the traffic
and outputs the desired output in various forms. Figure 6.1 depicts its overall
architecture. Retina is written in Python and depends on Tshark and a number of
modules that can be installed via the package manager pip. We also provide a
dockerized version to allow the use as a standalone container.3

1https://github.com/GianlucaPoliTo/Retina
2https://www.wireshark.org/
3The dockerized version is available at: https://hub.docker.com/r/gianlucapolito/retina

https://github.com/GianlucaPoliTo/Retina
https://www.wireshark.org/
https://hub.docker.com/r/gianlucapolito/retina

102 Retina: An open-source tool for features extraction

Fig. 6.1 Retina architecture.

6.3.1 Inputs and Configuration

Retina requires the user to specify one or more captures in PCAP format, the most
common format used in many traffic capture software (Wireshark, TCPdump, etc.).
Retina can also process an entire directory by searching for all captures in it. If it
finds more than one, Retina uses multiprocessing to process multiple files at once.
The number of processes is a configurable parameter.

For some RTC applications, the user can provide application log files that Retina
uses to calculate additional statistics and enrich the output. The application logs
typically contain details about the media sessions, including the Source Identifiers
of the RTP streams, the type of media (audio, video, or screen sharing), the video
resolution, the number of frames per second, etc. When available, Retina uses this
additional information to provide finer-grained per-second statistics – e.g., media
type, video resolution or concealment events at the codec level. Currently, Retina
supports log files of: (i) Cisco Webex4, which logs second-by-second details for
each RTP stream, and (ii) Google Chrome, by collecting WebRTC debugging logs
with WebRTC browser-based RTC services.5. This way we can download logs of
each application used through Google Chrome (Google Meet, Jitsi etc.).

In Retina, the user can customize a variety of parameters. All are optional,
with carefully set default values. Retina has personalized features for many RTC
applications, which can be enabled by specifying the name of the RTC application

4https://www.webex.com/
5These logs can be obtained by creating and downloading a dump at chrome://

webrtc-internals

https://www.webex.com/
chrome://webrtc-internals
chrome://webrtc-internals

6.3 System Overview 103

whose traffic is included in the capture as an input parameter. While it supports
all applications that use RTP at their core, we have tested it extensively for Webex,
Jitsi, Zoom, and Microsoft Teams. Retina accepts threshold parameters, such as
the minimum number of packets or the minimum duration of a stream for it to be
considered valid. The user can also control the statistics computed at each time bin
(see Section 6.3.3) and can ask Retina to create (interactive) graphs. The full list of
parameters can be found in the documentation, while in the rest of the chapter we
will only mention the most important ones.

6.3.2 System Core

The overall architecture of Retina is shown in Figure 6.1, with the middle rectangle
indicating the building blocks at its core. We depict the basic functionalities in blue,
at the bottom, and the optional modules in purple, at the top. We also show a sample
command line at the top of Table 6.1.

The basic functionalities of Retina analyze the raw packets contained in the input
PCAP captures and gather statistics, organized in tables per stream and per time-bin.
For example, consider a PCAP capture collected at a user side, containing RTP traffic
from a two-party call consisting of 4 RTP streams (outgoing and incoming audio and
video). Setting a time bin duration of 1 second, Retina maintains a table where, for
each of the 4 streams and for each second, it accumulates several statistics. Given
a packet characteristic, such as packet size or interarrival time, Retina calculates
several statistical indicators, such as mean, median, third and fourth moments, or
percentiles. We report the list of packet features and available statistics in Figure 6.2,
which summarizes the whole process of statistics extraction. The user can configure
the duration of the time bin for this aggregation of packets, which is 1 s by default.
The duration of the time bin directly affects the number of packets used to compute
the statistics, and should therefore be varied judiciously. For example, in 1 s of audio,
50 packets are sent, while, in 1 s of HD video, more than 200. Clearly, if the time
window is 200 ms for audio, no significant features can be computed, while this time
window would be fine for video.

To identify RTP streams in traffic, Retina internally relies on Tshark, the
command-line version of Wireshark. This step is not straightforward, as RTP packets
often appear in a UDP flow along with other protocols. In fact, many applications

104 Retina: An open-source tool for features extraction

Fig. 6.2 Aggregation process and some of the statistics computed by Retina.

17:46:45

17:46:50

17:46:55

17:47:00

17:47:05

17:47:10

17:47:15

Time

0

200

400

600

800

1000

1200

1400

B
it

ra
te

[k
b

it
/s

]

Video

FEC-Video

Audio

FEC-Audio

Fig. 6.3 Example plot of the stream bitrate in a call.

use STUN [4] to establish the media session and/or TURN [5] to relay the streams
if no direct connection between peers is possible. In addition, it is common to use
DTLS [108] interleaved among RTP packets to exchange control information such
as encryption keys. Retina supports two methods for identifying RTP streams: (i)
with a user-defined list of ports or (ii) by examining the STUN-initiated UDP flows.
Retina attempts to decode the UDP payload as RTP and verifies that the protocol
headers are compatible with RTP. We define an RTP stream using the combination of
IP addresses and ports (the classic tuple) plus the RTP Synchronization Source Iden-
tifier (SSRC), which is used to multiplex multiple streams within a single UDP flow.
For some RTC applications, we also use the RTP Payload Type (an RTP field that
specifies the media codec). Retina maintains internal data structures to efficiently
collect statistics for each RTP stream. This way to identify RTP streams in a traffic
mix is used throughout the thesis.

Retina has a number of optional modules that target RTC applications, for
which we have implemented special support. First, the traffic of some popular

6.3 System Overview 105

RTC applications (Zoom and Microsoft Teams) needs to be preprocessed to become
standard RTP traffic. This is because they use the RTP protocol in a non-standard
form6. Microsoft Teams encapsulates RTP in a proprietary version of TURN called
MTURN, while Zoom adds its own undocumented header. To make Retina work for
these RTC applications, we have created specific modules that can also be used as
standalone command line tools. They can be found in a separate folder in the code
repository.

Second, Retina can read and process the application log of (i) Webex and (ii)
Google Chrome, as mentioned in Section 6.3.1. Retina can parse these logs and
provide additional information about the RTP flows. If the application logs are
available, we enrich the output logs from Retina with information such as the video
resolution, employed codec, frames per second, jitter, codec concealment events, etc.
We also provide a classification of media types into 7 classes, such as audio, FEC
streams, 3 different qualities of video and screen sharing, for easier recognition. The
information in the application logs is particularly useful for training supervised ML
models, as it contains the necessary ground truth for many QoE-related problems,
such as number of losses, smoothness of the video, concealment etc. Retina matches
the timings of the logs with the timings of the packets exactly, so it outputs a labelled
dataset.

Lastly, Retina includes a plotting engine based on the Matplotlib and Plotly
libraries7 to create both static and responsive graphs of all RTP streams. It draws
the time-series of stream characteristics, such as bitrate or inter-arrival time, so that
the user can easily get an overview of the traffic or debug an RTC application. It
also draws several histograms for each stream to show the stream-wise distribution
of packet characteristics (e.g. packet size). For an example graph, see Figure 6.3.
Here we show the bitrate of 4 RTP streams present in a portion of a Webex call. The
plotting engine also labels the time-series with their media type (audio, video, FEC
etc.), if the information is provided (e.g. through an application log file).

6Based on recent tests conducted on Microsoft Teams version 23320.3110.2622.1325, it appears
that there are no longer any masking mechanisms concealing SRTP traffic. When decoded in
Wireshark as RTP, the headers are found to be in plaintext.

7Matplotlib: https://matplotlib.org/, Plotly: https://plotly.com/

https://matplotlib.org/
https://plotly.com/

106 Retina: An open-source tool for features extraction

Command: ./Retina.py -d capture.pcap -so webex -log webex.log

Timestamp Packet size
(mean)

Packet size
(std dev)

Bitrate
(kbit/s)

Interarrival
(max) Packets/s Frame

width
Frame
height Frames/s

2021-06-08 14:32:11 1041.84 66.74 1163.93 0.043 143 480 270 30
2021-06-08 14:32:12 1080.72 100.75 1578.86 0.045 187 640 360 30
2021-06-08 14:32:13 1023.49 72.21 1023.49 0.045 128 640 360 30
2021-06-08 14:32:14 1076.80 52.91 1362.82 0.043 162 640 360 30
2021-06-08 14:32:15 1055.50 52.41 1410.08 0.044 171 640 360 30
2021-06-08 14:32:16 1074.62 62.71 1989.73 0.089 237 640 360 30
2021-06-08 14:32:17 1055.22 40.09 2588.59 0.033 314 640 360 30
2021-06-08 14:32:18 1057.73 51.67 1479.17 0.040 179 640 360 30

Table 6.1 Example command and Retina log for an RTC stream. The last three
columns are derived from the application logs.

6.3.3 Outputs

Retina produces a CSV file for each RTP stream found in the input capture, reporting
the selected statistical features for each time bin. The logs contain different columns
according to user preferences and additional stream information if the RTC applica-
tion log is provided. We show an example output log in Table 6.1, along with the
command line used to create it. Optionally, Retina creates a summary log file in
which it reports stream-wise statistics. The file contains the most important informa-
tion for each stream – i.e., the source and destination IP addresses and ports as well
as general statistics such as the number of packets, duration, etc. Having per-stream
information is useful for many applications that rely the analysis of flow/stream
records for e.g., traffic accounting. Additionally, Retina provides a rich set of graphs
that describe the traffic, which are discussed in Section 6.3.2.

Finally, Retina also provides a dashboard for analyzing RTC traffic through an
interactive interface.8 The dashboard requires an input .pickle file, which can
be produced by passing one or more packet captures to Retina and specifying an
argument for the plot. Here the user can see interactive plots of stream statistics and
compare streams of interest.

8An online demonstrator of the dashboard is available at: https://share.streamlit.io/
gianlucapolito/retina-dashboard/main/dashboard.py

https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py
https://share.streamlit.io/gianlucapolito/retina-dashboard/main/dashboard.py

6.4 System Design Assets 107

6.4 System Design Assets

Retina is designed following principles of scalability and modularity, so that it can be
easily extended. It adopts a multiprocessing architecture, so when there are multiple
PCAP files to process, it uses an independent process for each of them and stores
separate output log files. These files can then be merged at the end of the processing.
This also increases the robustness of the tool.

Retina is highly modular, with separate functions organized into logical modules
for all the different operations. This also allows for extensibility, as a user can
write new functionalities with minimal effort. For example, it is easy to support
the application log of a new RTC application (e.g. Microsoft Teams), as it is only
necessary to add a parser function and call it with an argument.

Retina can be used to analyze any kind of RTP traffic, and it is not limited
to video conference applications. For example, we have successfully used Retina
to gain insights into the operation of cloud gaming applications running over the
browser [109]. Similarly, our parser for the Chrome WebRTC log works seamlessly
for any type of browser-based application.

Finally, Retina, as described in Section 6.3.1, is highly configurable. The user
can limit the statistics to be computed (potentially speeding up the computation), the
desired time aggregation, and several internal parameters - e.g., the minimum length
of an RTP stream for it to be considered - which are detailed in the README file.

6.5 Publications Enabled by the Software

Retina was first developed at the end of 2019, and within 4 years of its existence,
it has already been a valuable asset for 6 scientific publications that target RTC
traffic. Retina sits at the core of [110] and [111], described in Chapter 7. There,
we used it to engineer features and extract the ground truth for an ML classifier
that distinguishes media types. Using these features, we developed a Decision Tree
classifier that performed with 97% accuracy. We further built on it in [112], to
do data preprocessing and identify RTC streams in traffic. It also served for data
characterization in [104], where we compare 13 different RTC applications. We
also successfully employed it to study cloud gaming traffic, and it allowed us to

108 Retina: An open-source tool for features extraction

understand the networking operation behind Google Stadia, GeForce NOW and
PSNow in [109] presented in Chapter 3.

6.6 Takeaways

This chapter has introduced Retina, a comprehensive command-line utility designed
to extract advanced metrics from network traffic of Real-Time Communication (RTC)
applications. It provides a systematic overview of its functionalities, including the
inputs, core processing system, and outputs, complemented by practical examples.
Moreover, the chapter highlights the robust design principles of Retina, such as its
modularity, scalability, and adaptability, making it a versatile tool in the field.

The significant contributions of this chapter are as follows:

• It outlines the integral role of Retina within this thesis, establishing it as the
primary tool for processing RTC traffic as per the traffic classification system
detailed in Chapter 7. Retina is positioned as the foundational step for all RTC
packet analysis.

• The utility serves as a valuable asset for both the academic and professional
spheres, facilitating research into RTC applications and assisting network
administrators in resolving RTC traffic-related challenges.

• Retina acts as a pivotal framework for feature generation and as a reliable
source for ground truth data, essential for machine learning endeavors aimed
at improving RTC traffic visibility and Quality of Experience (QoE).

Given the current scarcity of modern, user-friendly tools and datasets for the
efficient development of algorithms and the establishment of benchmarks, we believe
that Retina can significantly contribute to this area. By making this software publicly
available, we aim to partially close this gap, providing the networking community
with a resource to enhance their investigative and developmental capabilities.

Chapter 7

Machine Learning for QoE in
Real-Time Communication

7.1 Motivation

The work we present in this chapter is mostly taken from our paper Real-time
classification of real-time communications, published in IEEE Transactions on
Network and Service Management 2022 [111].

In recent years, real-time communication (RTC) applications for video calls and
virtual meetings have become a fundamental pillar of leisure and business. They
help people communicate with each other and businesses save significant travel
costs. Their value was especially proven during the months of self-isolation due to
the COVID -19 pandemic, when online conferencing allowed many businesses to
continue operations using remote working, mitigating the economic impact of the
outbreak. This was largely possible due to the Internet being ubiquitous and the avail-
able bandwidth increasing [113]. After the first phase of IP telephony based on SIP
and H.323, during the early 2000s, Skype opened the business for RTC applications,
entering into competition with traditional telephony providers. At that time, most
users were connected via cable modems, which offered low bandwidth and high
latency. Today, the market offers countless competing video calling applications that
benefit from the widespread adoption of broadband access and cellular networks.
Each application employs different technical solutions and network protocols, al-

110 Machine Learning for QoE in Real-Time Communication

though Real-Time Protocol (RTP) [3] is most widely adopted [104]. There are also
efforts towards standardization, WebRTC being the notable example.1

In this context, it is essential to maximize the Quality of Experience (QoE) of
users at the network level in order to avoid impairments, service misbehavior and
consequently user churn. QoE depends on many factors, such as the quality of the
participants’ connection, network topology, and network management. Classification
of RTC traffic is the first and most important step towards effective traffic manage-
ment, allowing in-network devices to get an informed view of network flows and,
if the classification is done in real time, to take appropriate actions to counter any
degradation. The widespread adoption of encryption [114] has made it difficult for
routers and middleboxes to separate traffic based purely on deep packet inspection
(DPI) [115], while the convergence towards HTTPS has made port-based classifi-
cation ineffective. However, most RTC applications adopt the RTP protocol [3] to
encapsulate the multimedia content in its encrypted version, Secure RTP (SRTP).
SRTP employs in-clear and straightforward packet headers, making its identification
straightforward using existing DPI techniques. However, in SRTP, the media payload
is encrypted, making it difficult to guess the type of content it carries. This calls for
novel techniques based on machine learning (ML) to re-obtain visibility on applica-
tion traffic and help decision-making at routers. For real-time communications, this
could amount to distinguishing between top-priority flows and possibly less critical
streams – e.g., audio as more important than video, the presenter’s media as more
valuable than the audience’s media.

In this Chapter, we propose a novel ML-based application for classifying, in
real-time, the RTP streams to the type of content they carry. Our approach is
based on a few, but well-chosen features derived from the statistical properties of
the traffic, which allow us to classify RTP streams using off-the-shelf supervised
learning algorithms. Our approach identifies not only audio or video streams but
also other properties of the media, such as the video quality or the use of Forward
Error Correction (FEC) streams. Our solution works with minimal delay, deciding
on the type of each stream within just 1 second of traffic. We design it as a software
module that can be plugged into network devices (e.g., routers) or integrated into
Software Defined Networks (SDN) to provide fine-grained traffic categorization and
management.

1https://webrtc.org/

https://webrtc.org/

7.2 Related Work 111

Our study is based on two popular RTC applications for online multi-party
meetings with audio, video, and screen sharing: Cisco Webex Teams2 as a business-
oriented platform and Jitsi Meet3 as a lightweight in-browser application. Using
data coming from more than 62 hours of real calls, we evaluate the impact of feature
selection and different classification algorithms. After careful feature selection and
using a lightweight decision tree classifier, we achieve an overall accuracy of 96% for
Webex Teams and 95% for Jitsi Meet, with no large differences across classes. Our
models require little traffic to train and do not introduce systematic errors. We note
that models trained for one RTC application (e.g., Webex Teams) are hard to transfer
to another application (e.g., Jitsi Meet) due to the different feature distributions.
However, in section 7.6.6 we show that we can partially overcome this limitation
by using domain adaptation techniques. A few works already proposed their use for
problems related to networking, albeit in different contexts. Authors of [116] use
transfer learning in wireless networks for a caching procedure. Instead, the approach
proposed in [117] used it in combination with Deep Reinforcement Learning to
solve the reconfiguration problem in the context of experience-driven networking. It
has also been used for QoE estimation of video streaming [118, 119]. The transfer
learning technique we use (CORAL [120]) has already been used in optical networks
for assisted quality of transmission estimation of an optical lightpath [121]. Here,
we apply it to the RTC scenario, trying to align statistical features of network traffic.

7.2 Related Work

Network traffic classification has been extensively studied since the birth of the
Internet [115]. Due to the widespread adoption of encryption and the use of pro-
prietary protocols, traditional approaches based on mere DPI and port numbers fall
short, and the current research tends to use statistical traffic features and machine
learning techniques [122]. Recent efforts aim to identify the web services [123] or
mobile applications [124] behind network traffic, predicting the QoE of web [125],
video [126] or smartphone [127] users.

Focusing on RTC traffic, many works propose techniques to identify it among
other traffic categories. The authors of [128] use a stochastic characterization of

2https://www.webex.com/team-collaboration.html
3https://meet.jit.si

https://www.webex.com/team-collaboration.html
https://meet.jit.si

112 Machine Learning for QoE in Real-Time Communication

Skype traffic to obtain an ML-based model to be used for classification. In [129],
UDP flows are classified into different classes, including Skype and RTP-based
traffic,using SVM models and statistical signatures of the payload. The approach
proposed in [130] leverages statistical properties of RTP to differentiate between
voice and data traffic. The authors of [131] propose a method to detect WebRTC
sessions at run-time based on statistical pattern recognition. Finally, some approaches
target signaling mechanisms of RTC applications to identify Skype traffic through
in-clear headers exchanged during session setup [132]. The ultimate goal of RTC
traffic classification is the improvement of QoS and users’ QoE. These aspects have
been studied, focusing on the relationship between QoS and QoE [133], targeting
the WebRTC [134] and mobile [135] scenarios. Another way to improve the QoE
of RTC traffic is optimal media bridge placement. The media bridge relays the
traffic between the peers. Some works target cache placement in SDN, which can be
adapted to the RTC scenario [136–139].

Fewer works address the classification of media streams carried by RTP streams.
Authors of [140] train machine learning classifiers to distinguish, among other
classes, video and audio flows, targeting the WeChat messaging application. The ap-
proach presented in [141] identifies 20 codecs used for compression of audio,based
on packet size, RTP timestamp delta, payload type and ratio between RTP timestamp
delta and payload size. However, they do not use machine learning but a simple
lookup table. In [142], the authors use statistics on the packet size as a distinguishing
feature between audio, video streaming, browser, and chat traffic. They use inter-
esting features, albeit fewer than we do, and divide into broader traffic classes. We
only target RTC traffic and divide it into 7 classes, while for them it is a single macro
class. As a model, they opt for an interpretable decision tree, similar to ours.

The closest work to ours is the approach proposed by Choudhury et al. [143].
There, the authors design a system to classify RTP traffic to the employed codec.
They develop an ML pipeline similar to ours, to classify audio traffic into three
Variable Bit Rate (VBR) codecs, thus identifying three types of audio. Conversely,
we distinguish seven classes, two of which are audio (audio and FEC audio), four
are video (three video qualities and FEC video) and one is screen sharing. Similar to
us, they classify RTP streams separately by time bin, with a granularity coarser than
ours – 10-20 seconds vs 1 second. They use two types of features: statistical features
of packet sizes (such as mean, standard deviation, mode, etc.) and entropy-based
features (4 types of entropy calculations on the RTP payload of the packets). We

7.3 Deployment Scenarios 113

Multimedia
Source

Multimedia
DestinationPath with limited

bandwidthAudio

Video

?

Fig. 7.1 Example of RTC-aware traffic management.

follow a similar approach, using five feature groups and calculating various statistics
on the distributions. They also perform feature selection, reducing from 10 to 7
features. We use 8 for Webex and 4 for Jitsi.

Like in our system, they train offline, using 18-second streams and then the
classifier is deployed in real time, over 10 seconds of stream data. They get overall
97% accuracy, similar to us (95%). Concerning the algorithms, they opt for a 1
Nearest Neighbours, while we finally choose a Decision Tree.

In summary, our work aims at unveiling the nature of media streams. Differently
from previous works, we classify streams into a rich set of classes including media
type (audio and video), video quality and redundant data (FEC). We engineer a wider
range of features and then run an thorough feature selection process. Moreover, to the
best of our knowledge, we are the first ones to explicitly target real-time applications
with a 1 second (or shorter) classification delay, while the past approaches base their
decision on the characteristics of an entire stream, lasting 10 seconds or longer.

The remainder of this Chapter is organized as follows. In Section 7.3 we mo-
tivate our work illustrating the advantages of RTC-aware traffic management. In
Section 7.4, we present and characterize our dataset, while in Section 7.5 we describe
our methodology for feature engineering and classification. Section 7.6 shows our
experimental results, and, finally, Section 7.7 concludes the Chapter and discusses
future work.

We make our dataset, code, and trained classifiers available online.4 We believe
they can help researchers reproduce our results or apply them to different contexts.

114 Machine Learning for QoE in Real-Time Communication

Table 7.1 Experiment summary

Experiment
Media
type

Packets
lost

Packets
received

Packet
loss %

1
RTC-unaware

Audio 2136 6673 24,2
Video 4997 17031 22,6

2
RTC-aware

Audio 0 8809 0
Video - - -

7.3 Deployment Scenarios

In this section, we discuss the advantages of our proposal and possible deployment
scenarios in real networks. We first illustrate how RTC-aware traffic management
can practically improve user QoE, using a simple experimental setup. Our goal is to
show that routing traffic not only based on the classical L3 packet headers, but also
based on the media stream type, leads to sizable benefits under certain conditions. To
this end, we setup a small testbed and assume our ML algorithm correctly classifies
the media streams.

We outline our setup in Figure 7.1. Two hosts (the multimedia source and the
destination) are each connected to a switch. The two switches are connected by
a single path with limited capacity. The total available bandwidth for the path is
240 kbit/s. We set up a multimedia transmission where we send audio and video in
two RTP streams. The audio is a high quality track with a bitrate of 140 kbit/s and
the video has a constant bitrate of 200 kbit/s. The streams last 10 minutes and we
send them simultaneously to emulate a video call. We build the testbed using the
Mininet5 tool to create the virtual network. We also use the Linux tool tc netem6

to impose network constraints and FFmpeg7 to stream the multimedia traces. To
show the usefulness of our approach, we conduct two experiments: (i) RTC-unaware:
the switch uses the classical approach to forward packets and thus treats both flows
in the same way (ii) RTC-aware: our classifier is present and allows the switch to
differentiate its behavior depending on the media type. Note that in both cases the
required bitrate for both streams exceeds the capacity of the link.

4https://smartdata.polito.it/rtc-classification/
5http://mininet.org/
6https://www.linux.org/docs/man8/tc-netem.html
7https://ffmpeg.org/

https://smartdata.polito.it/rtc-classification/
http://mininet.org/
https://www.linux.org/docs/man8/tc-netem.html
https://ffmpeg.org/

7.3 Deployment Scenarios 115

In both experiments, we quantify the impact on user QoE by using packet loss as
a metric, since it has been shown to be closely related to QoE [144]. The results are
summarized in Table 7.1. In the RTC-unaware experiment, the switch drops packets
from both audio and video streams, so we observe 24% of losses for audio and 23%
for video. This renders the communication impossible, as such packet loss prevents
audio and video streams from being decoded correctly. In the second experiment,
RTC-aware, the switch detects that the bandwidth on the path is insufficient for both
streams and therefore decides to forward the entire audio stream and discard the
video stream instead of sacrificing both. In this scenario, the audio stream reaches
the destination without any losses, so that the interlocutors enjoy at least audio
communication.

As this simple experiment exemplifies, our system can improve the QoE users
perceive. Moreover, it enables RTC-aware traffic management so that scarce but
expensive resources can be reserved for more valuable payloads (i.e., audio). Indeed,
even in case we are unable to salvage the video, the network can preserve the audio.
As proven in the literature [145, 146], when presented with a good audio and several
different degraded versions of video, users perceive sufficient QoE.

On a general level, we foresee the use of our system in the context of RTC-
aware network management and engineering, in which the network can make its
decisions based on the type of multimedia content carried in streams. For example,
the emerging SDN paradigm could benefit from RTC stream classification, allowing
switches to steer traffic not only according to the classical protocol fields (i.e.,
addresses and ports) but also based on the media type of a stream. Similarly, in a
Multiprotocol Label Switching (MPLS) network, the ingress node can set the label
according to the classification outcomes. Also, approaches inspired to DiffServ or the
IP Type of Service header are viable ways to differentiate traffic upon classification.
Here, we do not explicitly target any of these possibilities but only show a few
general cases where RTC traffic classification can be beneficial.

We sketch a first deployment scenario in Figure 7.2a. The edge network equip-
ments run classification and select the path of each stream based on the media content
they carry. In the example, audio packets are considered more critical and are routed
to a Golden (reliable yet expensive) egress link, while the video is routed to a Silver
(unreliable, yet cheap) path – e.g., a congested peering link.

116 Machine Learning for QoE in Real-Time Communication

Golden Path

Silver Path
Video

Audio Classification

Classification

Audio

(a) Media-Aware Path Selection

Audio

Classification

Orchestrator

QoE
Reporting

Set new
path

(b) Path Selection based on media type and QoE feedback.

Fig. 7.2 Deployment scenarios benefiting from our classification system.

We illustrate a second deployment possibility in Figure 7.2b. Here, our classifica-
tion module is a building block of a more complex RTC-aware management system.
Besides classifying streams to the content they carry (close to the source), network
equipments report QoE-related metrics (close to the destination). The latter can be
done in different ways, using well-known industrial standards [147, 148] or with
other ML models [144]. A controller (or orchestrator) implements RTC-aware traffic
management and can, like in our example, select new paths for RTC streams if it
detects degradation in the measured QoE.

Note that the scenarios we envision are robust to possible flaws or delays in the
underlying classification task. In Section 7.6, we report classification performance
of 96.3% and 95.3% for Webex and Jitsi, respectively, with a delay of 1 second for
collecting statistics and a few milliseconds for computing features and running the
classification. Now we evaluate the impact on our proposed deployment scenarios,
taking into account that both proposals (Figure 7.2a and Figure 7.2b) work by
promoting streams to a better path when QoE is poor or the link is congested. There
are generally two types of misclassification. In the first case, the error causes the
system to respond unnecessarily – for example, we classify a video stream as an

7.4 Dataset 117

audio stream and promote it to a more reliable path. In this case, the system wastes
resources unnecessarily. In the second case, the error does not trigger a system
response when it should have – e.g., we classify a stream that is actually an audio
stream as video and do not promote it. In this case, the system would maintain the
status quo, i.e., a “bad” QoE. In this sense, an accuracy of 95-96% means that the
system improves the QoE in 95-96% of the cases, while in 4-5% of the cases we
maintain the status quo or we waste some resources. Although undesirable, these
situations do not entail severe impairment in QoE or in the whole system, provided
they are sufficiently sporadic.

As for delay, we believe a delay in system reaction in the order of 1 s is tolerable
for video calls, since their lifetime is in the order of minutes or hours. Collecting
information about a stream for 1 second allows us to compute representative statistics
about the stream, thus increasing the accuracy of the classifier. In Section 7.6, we
also show that it is possible to use our classifier with slightly worse accuracy at a
reduced delay of 200ms.

7.4 Dataset

7.4.1 Data Collection

In this section, we describe the dataset we use throughout this work. We target the
two RTC applications described in the previous section, namely Webex and Jitsi.
With both applications, we capture real calls made under different conditions, with
a different number of participants (from two to ten), multimedia content (audio,
video, screen sharing), and user equipment (PC, tablet, or phone). The calls run in
a real environment where participants are connected via different networks from
3 countries and use different devices, from Windows PCs to iPhones and Android
phones. During each call, at least one participant captures all the exchanged traffic
and stores it in pcap format. The calls took place over a period of 6 months.

In our classification problem, we target RTP streams, which we identify with
the tuple: source IP address, source port, destination IP address, destination port
and RTP SSRC. In other words, we target a single stream that carries a specific
multimedia content. We divide the streams into 5 classes: Audio, Low Quality (LQ)
Video (180p), Medium Quality (MQ) Video (240-640p), High Quality (HQ) Video

118 Machine Learning for QoE in Real-Time Communication

0 0.5 1 1.5 2
Mbit/s

0.00

0.25

0.50

0.75

1.00
C

D
F

SS
HQ
MQ
LQ
Audio

(a) Bitrate (Webex)

0 250 500 750 1000 1250
Bytes

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) Packet size (Webex)

0 100 200 300
ms

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) Interarrival time (Webex)

0 0.5 1 1.5 2
Mbit/s

0.00

0.25

0.50

0.75

1.00

C
D

F
SS
HQ
MQ
LQ
Audio

(d) Bitrate (Jitsi)

0 250 500 750 1000 1250
Bytes

0.00

0.25

0.50

0.75

1.00

C
D

F

(e) Packet size (Jitsi)

0 100 200 300
ms

0.00

0.25

0.50

0.75

1.00

C
D

F

(f) Interarrival time (Jitsi)

Fig. 7.3 Distribution of traffic characteristics for Webex (top) and Jitsi (bottom),
separately for media stream type.

(720p), and Screen Sharing. For Webex, we consider two additional classes: FEC
audio and FEC video. Indeed, Webex uses FEC to mitigate packet losses, sending
streams with redundant information to be used at the receiver if some packets are lost
or contain errors. We observe FEC streams for audio and video, and we are interested

7.4 Dataset 119

Table 7.2 Dataset summary

Class
No. of seconds

Webex Jitsi

Train Test Train Test

Audio 224 295 80 781 123 745 30 180
Video LQ 200 380 76 825 84 134 20 192

Video MQ 55 112 18 156 34 708 7 817
Video HQ 59 073 19 526 33 049 7 920

Screen Sharing 41 170 8 800 29 216 6 870
FEC Audio 146 567 41 247 - -
FEC Video 45 591 2 164 - -

in identifying them as separate classes. Hence, seven classes are considered when
analysing Webex data.

We employ the debugging logs to gather the ground truth, which maps each
RTP stream to the content type. For Webex, logs are automatically generated during
each call, while for Jitsi we use the Chrome browser WebRTC logs.8 The logs for
both applications contain per-second statistics for each stream, including the type
of media (audio, video or screen sharing), the video resolution and the number of
frames per second. During each call, the participant who captures the traffic also
collects the logs, which we store alongside the pcap trace. Note that we cannot use
the RTP Payload Type field for this, as it is dynamically assigned.

We collect traffic for approximately 62 hours of video calls, exchanged during 27
meetings with Webex and 50 meetings with Jitsi. They sum up to 90 GB of pcap files,
which include the call traffic as well as a small amount of background traffic that we
neglect. The dataset contains 3977 RTP streams for Webex and 521 for Jitsi. Each
call contains a different mix of the above classes, and includes traffic generated by all
participants as captured from the point of view of a single individual. Out of the 77
calls, 35 have only two participants, 11 have three participants and 31 include more
than three. In Table 7.2 we give an overview of the dataset, separating the training
and test set. In Section 7.5 we describe our training/testing methodology in detail.
For each RTC application and class, we report the amount of data we collected, in
seconds. The most represented classes for both applications are Audio and LQ video.

8This log can be obtained by creating and downloading a dump at chrome://webrtc-internals

120 Machine Learning for QoE in Real-Time Communication

While this is somewhat expected for audio, the prevalence of LQ video is due to the
video thumbnails used in the applications to show inactive participants during calls
with more than three participants. Note that for Webex, FEC audio is also widely
represented. The least represented class is Screen Sharing, but the overall dataset
imbalance is still limited, with the ratio between the support of the most and the least
represented class being less than 6.

7.4.2 Characterization and Challenges

We provide a high-level overview of the dataset in Figure 7.3, where we plot the
Cumulative Distribution Functions (CDFs) for different stream features, separately
by application. We use different lines to contrast the four video-based classes, plus
audio. The leftmost figures show the bitrate distribution for Webex (Figure 7.3a)
and Jitsi (Figure 7.3d). For each stream, we compute the average bitrate using 1-
second bins. We first note that better video qualities tend to have higher bitrates
(e.g., red and green lines). Audio (cyan line) has the lowest bitrate, as expected.
However, the two applications present different shapes for the video curves. Webex
displays smooth distributions, indicating that it adjusts the target bitrate of the video
codec. In contrast, Jitsi exhibits a cascading behaviour, indicating thresholding and
somewhat quantized bitrates. Note that the same video quality appears with multiple
evident bitrate peaks. For example, MQ video (green dashed line) presents two
peaks roughly at 0.5 and 1.5 Mbit/s, both corresponding to 640×360 video. The
Screen Sharing class (solid blue line) exhibits the greatest variability. Again, this is
expected, as it carries diverse contents, from slide sharing to scrolling through the
screen, to effectively playing a video. This leads to a generally low bitrate with short
periods of high activity. We note that setting a simple threshold on the bitrate would
not yield accurate class predictions. This is especially true for Webex, where the
distributions overlap significantly. In particular, for screen sharing, the bitrate ranges
from a few kbit/s to more than 1 Mbit/s. Interestingly, the Screen Sharing bitrate is
often as low as an audio stream, for both applications.

Similar considerations hold for the packet size (Figures 7.3b and 7.3e). Better
video qualities tend to use larger packets as they sustain a higher bitrate. Again,
we observe a high overlap of Screen sharing with all other classes. For Webex
(Figure 7.3b), Screen Sharing packets can be as little as those of audio streams. Con-

7.5 Methodology 121

.PCAP

a) Offline Training Of Models b) Live Classification

LABELLED
PCAPS

FEATURE
SELECTION

MODEL
FITTING

MODELS LIVE
TRAFFIC

RTP FLOW
IDENTIFICATION

PER SEC.
FEATURE

EXTRACTION

MODEL
PREDICTION

RESULTS

Audio
Screen Sharing
Video HQ
Video MQ
Video LQ
FEC*

Fig. 7.4 Overview of the training and classification pipeline.

versely, for Jitsi (Figure 7.3e), only audio uses small (100-150B) packets, potentially
easing its identification.

Finally, the rightmost figures show the distribution of packet inter-arrival time
for Webex (Figure 7.3c) and Jitsi (Figure 7.3f). We compute it as the time interval
between two consecutive packets in the same RTP stream. The video distributions
partially overlap, with Screen Sharing presenting inter-arrival time as large as 400 ms
when nothing on the screen is changing. Figure 7.3 shows that a careful mixture of
these features is required for accurate prediction. In the remainder of the paper, we
show that it is possible to identify the type of media stream with high accuracy using
features derived from these traffic characteristics and a machine learning classifier.

7.5 Methodology

In this section, we describe the proposed approach, from RTP traffic identification to
feature extraction and classification. We envision an offline training of a classification
model and its application to live traffic in real-time. We sketch a high-level overview
of our approach in Figure 7.4. We also describe in detail the methodology to build
and select the features from RTP traffic. We follow the same approach for both
Webex and Jitsi and create a separate classifier for each. Throughout this section, we
use Webex as a running example to facilitate the understanding of the methodology.

Problem Statement. Our goal is to classify the RTP streams that we observe on the
network to one of the classes listed in the previous section and Table 7.2. We want to
solve this task in real time, i.e., make a decision based solely on the traffic observed
in a short time interval, by applying a model trained on historical data. Thus, our
classification target is an RTP stream as observed during a certain time bin (from
200 ms to 5 s).

122 Machine Learning for QoE in Real-Time Communication

RTP Stream Identification. We identify the RTP traffic with straightforward deep
packet inspection, by matching the protocol headers. Indeed, the RTP header includes
fixed-sized fields that facilitate its identification, and its sequence number serves as
a simple sanity check for identification, since it must increase by 1 for subsequent
packets. Popular passive meters identify RTP flows using DPI – e.g., Tstat [149]
or nProbe [107]. Note that we do not handle the case of RTP tunneled through an
encrypted channel (e.g., over a VPN or IPSec tunnel), since we cannot distinguish
the different streams. We separate multiple media streams via their SSRC. We are
not interested in the control traffic for, e.g., session establishment or login, and
thus neglect it. We also assume that we know the application in use (Webex or
Jitsi), since different techniques may be used for this purpose. In some cases, RTC
applications provide public lists of the relay server IP addresses or use well-known
ports [104]. Webex, for example, uses UDP port 5000 for RTP streams. In case such
an approach is not feasible, it is possible to leverage ML-based solutions. In our
previous work [112], we showed how to guess the RTC application in use with high
accuracy using the domain names that the client resolves over the DNS prior to the
call and an ML classifier.

The ML Pipeline. A single RTP stream results in many samples (one per time
bin) that we shall classify. For our classification problem, we follow the classical
approach of supervised learning. First, we extract meaningful features from the
data, guided by domain knowledge on network traffic and RTP protocol. Then, we
perform a two-step feature selection process by first discarding highly correlated
features and then performing a recursive feature elimination. Finally, we train a
machine learning classifier and evaluate its performance on an independent test set.
Feature selection and algorithm training are performed offline, while the system is
designed to compute features and classify new samples in real time. The time it takes
is equivalent to the chosen time bin plus the feature computation and algorithm run,
whose execution time is negligible. Our code is written in Python and uses the scikit-
learn library [150] for machine learning. Our methodology is readily amenable to
parallelization, as all processing is done on a per-flow basis – i.e., feature extraction
and classification only need to obtain data from a single stream. Therefore, a multi-
core parallel approach is fully feasible, and we do not expect any bottlenecks in high-
speed deployments, provided packet capture is adequate. In case of deployment with
off-the-shelf hardware, high-speed packet capture libraries (e.g., DPDK9) together

9https://www.dpdk.org/

https://www.dpdk.org/

7.5 Methodology 123

RTP
FLOWn

TIME
 BIN

Mean
Standard Deviation
3rd, 4th Moment
Percentile 10, 20 ... 90
Skewness
Kurtosis
Max(Xi)- Min(Xi)
% Unique Values
% Occurrences of Mode

Packet Time (delta)
Packet Size (delta)
RTP Timestamp (delta)
Packet Size
Volume

RAW
 PACKETS

Fig. 7.5 Features derived from packets.

with Network Cards natively supporting load balancing (e.g., Receive-Side Scaling
on Intel cards) would perfectly serve at this goal.

Train/test Methodology. We split the call dataset into a training and a test set
to prevent overfitting and obtain robust results. We perform feature selection and
algorithm hyper-parameter tuning on the training set, and we evaluate classification
performance on the test set (which we never use at training). Note that the streams of
a single call are used either at training or testing time to keep the two sets completely
independent. For Webex, out of 27 calls, we use data from 22 calls for training and
data from the remaining 5 calls for testing. For Jitsi we use data from 41 for training
and 9 for testing. With this split, we obtain roughly 80% of samples (1-second bins)
for training and 20% for testing (see Table 7.2). We also verify that each class is
well-represented in both sets. As a global performance indicator, we use the macro-
average (a simple mean) of the F1-scores of each class.10 For some analyses, we
also consider accuracy as a concise index of overall performance, since classes are
not strongly imbalanced.11

Feature Extraction. We extract features from the packets separately by RTP stream
and time bin. The features are based on the fields of the RTP protocol and take into
consideration its operation. We outline our approach in Figure 7.5. We consider
five groups of features, reported in the middle column of the figure, in bold. These
include packet characteristics (size, time, volume) and the RTP timestamp field,
which indicates the time at which the content was generated at the source. RTP has a

10The F1-Score is the harmonic mean between Precision and Recall of a class.
11The accuracy is the share of correct predictions over the total.

124 Machine Learning for QoE in Real-Time Communication

few other fields that essentially indicate header extensions, which we do not include
because they are very application and client-specific. Since two of the selected fields
(packet time and RTP timestamp) represent time instants, we only consider their
relative variation across packets, since the absolute values are useless in our context.
For packet size, we use both absolute and relative values. We extract these five values
for all packets and compute various statistical indices to create the final features,
such as range, mean, standard deviation, percentiles, third and fourth moments, etc.
Since we find that the same values recur frequently in the packets, we also add
features that measure the number of unique values, the percentage of occurrence
of the most frequent value (mode), and the ratio between the minimum value and
the range. We report the complete list of statistical indicators on the last column of
Figure 7.5. Finally, we consider the traffic volume in terms of the number of packets
and bitrate observed in the time bin. We also use the number of packets with the
RTP marker flag set as a separate feature.

Since our goal is to design a real-time classification system, we create features
that can be computed on the fly by considering only the packets observed in a time bin.
Intuitively, the smaller the time bin is, the faster the stream is classified. However,
features are more representative with larger time bins since they are computed over a
more extensive set of packets. In Section 7.6, we explore this trade-off and evaluate
how the temporal granularity affects the classification of an entire stream. Finally,
note that we also avoid features that require linking multiple streams to keep our
design simple and easily parallelizable.

Feature Selection. In total, we extract 96 features derived from the four empirical
distributions mentioned above, plus volume. We publish the full list of features on
our research center website.12 To remove those that are redundant and shrink the
overall number of features, we perform a two-step selection process.

1. Correlation analysis: We perform an initial feature selection by measuring the
correlation between each pair of features. We evaluate all possible pairs in a
random order, and whenever we find a Pearson correlation coefficient greater
than 0.9 (in absolute terms), we keep only one of the two features at random.
With this step, we roughly eliminate half of the features.

12https://smartdata.polito.it/rtc-classification/

https://smartdata.polito.it/rtc-classification/

7.5 Methodology 125

Packet size

Packet size (delta)

Packet time (delta)

RTP timestamp (delta)

Volume

Discarded (after correlation analysis)

Discarded (after RFE)Final

Fig. 7.6 Graph representing the correlation between features. The color indicates
the feature set, the shape whether the feature is kept after feature selection and the
distance represents the correlation.

2. Recursive Feature Elimination using the ExtraTree algorithm: We use the
Recursive Feature Elimination (RFE) approach [151] to refine our list of
features, maintaining only those that are most useful for our classification
problem. Using RFE, we train an ExtraTree classifier on the training set and
rank the features by their feature importance as provided by the algorithm.13

We then eliminate the one with the least importance. We recursively repeat
this procedure until we reach the minimum number of features and the best
performance, which we evaluate using 5-fold cross-validation. Note that tree-
based feature ranking is known to be biased in the case of groups of correlated
features [152]. Thus, our first step (correlation analysis) is essential for RFE
to work correctly.

We graphically illustrate the entire feature selection process for Webex with
Figure 7.6, which shows the initial 96 features in the form of a graph. Each node

13The ExtraTree classifier natively exposes the feature importance after training.

126 Machine Learning for QoE in Real-Time Communication

1 5 10 15 20 25 30 35 40 45
Number of features selected

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

(m
ac

ro
av

er
ag

e)

Webex
Jitsi

Fig. 7.7 Mean F1 score when varying the number of features. The vertical lines
indicate the final number of features.

represents a feature, and the length of edges is (roughly) inversely proportional to
the correlation among pairs in absolute value – i.e., highly correlated features remain
close to each other. For illustration purposes, we only show the edges where the
correlation is higher than 0.5 (in absolute value). Different colours represent the
feature sets, while the shape of each node indicates whether a feature is maintained or
discarded at one of the selection steps: a circle means that the feature was discarded
after correlation analysis, a double circle means that the feature was discarded with
RFE, and an octagon means that it passed both steps and is included in the final list.

We first notice that the correlation analysis step maintains all features which are
poorly correlated with other ones: all nodes without edges are either double circles
or octagons. On the contrary, among groups of highly correlated features, only a
few samples are retained. For example, the dense community in the top right of the
figure includes the percentiles of packet time inter-arrival time and RTP timestamp,
which are intuitively highly correlated. We retain only two of them.

Continuing with the running example of Webex, the first step of the feature
selection shrinks our set from 96 to 47 features. We then perform RFE to obtain
only those that are useful for our classification problem. We train an ExtraTree
classifier on the remaining 47 features, running a 5-fold cross-validation to evaluate
how accurate the obtained model is. We then eliminate the feature ranked as least
important and repeat this process until we find that the classification performance
starts to decrease. In Figure 7.7, we show how the average F1 score varies when

7.5 Methodology 127

removing an increasing number of features. The figure shows our results for both
Webex (solid blue line) and Jitsi (red dashed line).

Considering Webex, when we use all 47 features, we get an F1-score of 0.91.
The performance is almost stable (with minimal variations) until we use 8 features
only – i.e., we eliminate 39. Then, the accuracy starts decreasing consistently. After
analysing the curve, we decide to set the final number of features to 8. Interestingly,
we notice that every feature group (except the packet size) appears in the set of the
final features (there is an octagon of every colour except red in Figure 7.6). Among
the final features, we find the packet size (mode, 25th, 70th and 75th percentile), the
30th percentile and mode of the RTP timestamp delta, the mode of the inter-arrival
time and the number of packets with the RTP marker flag set. Intuitively, for each
characteristic of the packets, we keep a few statistical properties of its distribution.

The process is similar for Jitsi (red dashed line in Figure 7.7). Note that the
curve ends at 43 features, since for Jitsi the first step of feature selection eliminates
a slightly larger number of features. The knee in the line shows that we already
achieve good performance with as little as 4 features. Among them, we find three
representatives of the packet size feature group and the mode of the RTP timestamp
delta. This indicates that the packet length is a vital factor for this classification
problem.

Multi-class Classification. Using the features that we obtain after the feature
selection, we try different classification algorithms to find the one that yields a
proper trade-off between performance and simplicity. The algorithms we consider
are: tree-based classifiers [Decision Tree (DT) and Random Forest (RF)], k-Nearest
Neighbors (k-NN), which classifies points based on proximity to other data points,
and Gaussian Naïve Bayes (GNB) as a generative probability model. We perform
hyper-parameter tuning with 5-fold cross-validation for each of these models, using
the training set uniquely. We then evaluate their performance on the separate test set,
using the macro-averaged F1-score as a performance indicator. In Section 7.6, we
show that the algorithm choice has a moderate impact on classification performance.

128 Machine Learning for QoE in Real-Time Communication

7.6 Experimental Results

In this section, we present our experimental results for the entire classification
problem. First, we discuss the overall classification performance and quantify the
impact of the time bin duration, classification algorithm and training set size. We
then discuss the importance of the features and analyze how classification errors
arise. Finally, we investigate the possibility of transferring a model trained for one
RTC application to another. All results are obtained by training classification models
on the training set and evaluating their performance on the independent test set.

7.6.1 Classification Performance

We first report and discuss the performance we obtain for both RTC applications
when using the best models. Indeed, we try different classification algorithms and
finally opt to use a Decision Tree classifier, which provides good performance and
a simple model. Running hyper-parameter tuning, we obtain the best results when
using the Gini index as a purity measure. In Figure 7.8, we show the confusion
matrices for both Webex and Jitsi using a 1s time bin. By definition, a confusion
matrix C is such that Ci, j is equal to the number of observations known to be in
group i and predicted to be in group j. Thus, the main diagonal represents the
number of correctly classified samples. We also show the per-class recall and F1-
score in the last two columns and precision in the bottom row. We note that, for both
applications, all classes except Video MQ and HQ exhibit an F1-Score above 0.96,
and thus high precision and recall. Audio is the best performing class for both RTC
applications, together with FEC audio for Webex. Here only a handful of samples are
misclassified, suggesting that audio streams are generally easy to isolate. Indeed, for
Jitsi especially, audio streams tend to use smaller packets than video (see Figure 7.3),
making their identification simpler. The worst performing class is video MQ, with
F1 scores of 0.73 and 0.75 for Webex and Jitsi, respectively. The confusion matrices
reveal that the three different video qualities are, in some cases, confused with each
other. Although this is a flaw of our classification model, we tolerate this behaviour
given the similar nature of the three classes. Also, keep in mind that applications
(especially Webex) use video codecs with variable bitrates that result in different
network traffic (see Section 7.4). Overall, for Webex, 96.3% of the samples are

7.6 Experimental Results 129

A
ud

io

V
id

eo
L

Q

V
id

eo
M

Q

V
id

eo
H

Q

Sc
re

en
Sh

ar
in

g

FE
C

A
ud

io

FE
C

V
id

eo

Predicted label

Audio

Video LQ

Video MQ

Video HQ

Screen Sharing

FEC Audio

FEC Video

Tr
ue

la
be

l
80781 0 0 0 0 0 0

0 74674 1916 3 232 0 0

0 2267 13170 2523 189 0 7

0 2 1728 17690 99 0 4

0 73 78 34 8571 0 44

0 0 0 0 0 41229 18

0 0 0 1 0 0 2163

R
ec

al
l

F1
sc

or
e

1.00 1.00

0.97 0.97

0.73 0.75

0.91 0.89

0.97 0.96

1.00 1.00

1.00 0.98

Precision 1.00 0.97 0.78 0.87 0.94 1.00 0.97

(a) Webex

A
ud

io

V
id

eo
L

Q

V
id

eo
M

Q

V
id

eo
H

Q

Sc
re

en
Sh

ar
in

g
Predicted label

Audio

Video LQ

Video MQ

Video HQ

Screen Sharing

Tr
ue

la
be

l

30180 0 0 0 0

52 19806 225 68 41

1 254 5876 1657 29

0 40 569 7241 70

0 223 49 172 6426

R
ec

al
l

F1
sc

or
e

1.00 1.00

0.98 0.98

0.75 0.81

0.91 0.85

0.94 0.96

Precision 1.00 0.97 0.87 0.79 0.98

(b) Jitsi

Fig. 7.8 Confusion matrices when using a Decision Tree classifier and 1s time bins.

classified correctly (i.e., accuracy), and the average F1-score is 0.94. For Jitsi, we
obtain an accuracy of 95.3% and an average F1-score of 0.92.

Considering computational time, our system needs to perform 3 consecutive
steps before providing the final classification label: (i) Wait for the time bin to
gather traffic information, (ii) Calculate the features and (iii) Apply the classification
model. Step (i) obviously takes most of the time. Step (ii) depends on the class,

130 Machine Learning for QoE in Real-Time Communication

0.2s 0.5s 1.0s 2.0s 5.0s
Time bin

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

F1
sc

or
e

(m
ac

ro
av

er
ag

e) GNB KNN RF DT

(a) Webex

0.2s 0.5s 1.0s 2.0s 5.0s
Time bin

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

F1
sc

or
e

(m
ac

ro
av

er
ag

e) GNB KNN RF DT

(b) Jitsi

Fig. 7.9 Performance of the four algorithms for different time bins.

with Video HQ being the most expensive as it sends the highest number of packets,
thus increasing the number of samples in the calculation. On average, this step takes
few milliseconds with our Python code on commodity servers. Finally, step (iii) is
even faster, requiring the use of a light-weight decision tree model, that takes tens of
microseconds. For high-speed deployments, we envision the use of a parallel multi-
core architecture to scale the processing. Such an approach is completely feasible
since the classification relies on features extracted on a per-UDP flow basis.

7.6.2 Parameter Sensitivity

We now discuss the impact of the time bin duration on the classification performance.
Indeed, we are interested in classifying a stream as fast as possible without sacrificing
accuracy. Figure 7.9 shows how performance varies with different time bin durations,
from 200ms to 5s. We provide results for 4 classification algorithms, and the y-
axis reports the average F1-score we obtain. We find that we generally get better
results with larger time bins. This is no surprise since the features are computed over

7.6 Experimental Results 131

5k 50k 95k 140k 185k 230k 275k
Number of samples

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

(m
ac

ro
av

er
ag

e)

Webex
Jitsi

Fig. 7.10 Learning curve: Relationship between the number of training samples and
the F1-score.

more extensive sets of packets. For example, in 200ms of a typical audio stream,
only 10 packets are generated. The performance flattens for values larger than 1s
for both applications, implying that such a time frame is large enough to capture
representative features about a stream. We believe that a delay of 1s is not critical,
since RTC calls typically last minutes.

Looking at Figure 7.9, we can also compare the performance of different clas-
sification algorithms. We observe no large differences, except for Gaussian Naïve
Bayes, which exhibits somewhat worse performance, probably due to the simplicity
of the model. Note that the lowest F1-score is 0.62 for Webex and 0.73 for Jitsi. This
confirms that our careful feature engineering and selection make the results robust
to the choice of algorithm. We finally opt to use a Decision Tree for its simplicity,
interpretability and speed. Random Forest produces similar results, but is more com-
putationally intensive as it uses trees in parallel, 100 in our case. k-NN also performs
well, but requires the model to store the entire training set in the main memory, result-
ing in significant memory consumption. Using a decision tree instead, the model is
only a few kB in size. Comparing the two applications confirms that they exhibit very
similar performance, with Jitsi having a lower F1-score by about 0.02 in most cases.

7.6.3 Training Set Size

We now investigate how much training data is necessary to achieve good classification
performance. To this end, we train many classification models, gradually increasing

132 Machine Learning for QoE in Real-Time Communication

Webex

Jitsi

Packet size
Packet size (delta)

Packet time (delta)
RTP timestamp (delta)

Volume

Kept in final feature set Discarded after RFE

Fig. 7.11 Feature importance comparison between Webex and Jitsi.

the size of the training set. We vary the number of training set samples selecting them
from the least possible number of calls. In other words, we entirely consume the
samples from one call before drawing them from a second. In this way, we indirectly
observe how many calls are required. Note that randomly selecting training data from
all calls would likely sample the diversity of the entire dataset, which is unfair for
our analysis. In this experiment, we use Decision Tree classifiers with 1s time bins.

Figure 7.10 shows the classification performance versus the training set size.
Again, we measure the performance using macro-averaged F1- score on the test
set. We repeat each experiment 5 times, shuffling the order of the calls but still
drawing samples from one call altogether. The solid blue and red dashed lines
indicate the mean score of the experiments for Webex and Jitsi, respectively. The
areas represent the standard deviation across the runs. Starting from Jitsi, we notice
that the performance improves very quickly with the training set size– with only 20k
samples, the F1- score is already above 0.86. Such an amount of time corresponds to
5 hours of audio and video call. After that, it increases very gradually, reaching a
local maximum of 0.92 F1 score at 200k samples (55 hours of calls). The standard
deviation is generally small and stable. This result suggests that the features we
extract and the nature of the problem do not require a large dataset to obtain a reliable
model. Conversely, Webex requires a larger training set for accurate classification,
exhibiting a slow growth and a larger standard deviation, stabilizing at 145k samples
(40 hours of calls). This is likely due to the higher number of classes (with the
additional audio and video FEC classes) and a variegated behaviour of the application
within a call. Indeed, we observe that there is an abundance of audio and video LQ
in various calls and a deficiency of the other classes. Consequently, additional calls
are necessary to bridge the gap. To test this conjecture, we perform an additional

7.6 Experimental Results 133

experiment where we balance the number of samples per class and find that the
performance converges faster.

7.6.4 Feature Analysis

We now discuss the outcomes of the feature selection phase. Our goal is to investigate
whether we can recommend a fixed set of features for any RTC application or they
are specific for each one. As described in Section 7.5, we carry out a two-fold feature
selection: we first remove highly correlated features, and then we perform recursive
feature elimination using an ExtraTree classifier. In Figure 7.11 we compare the
results of the second step for Webex and Jitsi. Each symbol represents a feature
that we retain after the correlation analysis – 43 for Jitsi (upper row) and 47 for
Webex (lower row). Circles represent the features that are finally selected, and their
size is proportional to the relative importance given by the ExtraTree classifier. The
squares represent the remaining features, that were discarded using RFE. We arrange
them in the order in which they were discarded. The colours indicate the feature
group, similar to Figure 7.6. The edges connect the same feature on the two RTC
applications so we can compare Jitsi and Webex.

As anticipated in Figure 7.7, with Jitsi, 4 features are enough to achieve good
performance, while Webex needs 8. Looking at Figure 7.11, we observe a large
presence of features related to the packet size (blue) – 3 out of 4 for Jitsi and
4 out of 8 for Webex. This is expected, as the packet size is instrumental for
distinguishing audio and video streams (see Figure 7.3). We note that 3 of the Jitsi
features also appear in Webex, albeit with different importance. Overall, the features
are ranked similarly for the two applications, and the Spearman’s rank correlation
coefficient between the two ranks (including all features shown in Figure 7.11) is
0.70. Interestingly, two features chosen for Webex have been discarded in the first
feature selection phase for Jitsi – two circles on the bottom row are not connected
to any of the above shapes. A notable one is the number of packets with the RTP
packets with the marker flag set (the gray circle). We note that this feature correlates
strongly with frame rate in video streams, and speculate it helps identify the screen
sharing class, typically with a low frame rate.

134 Machine Learning for QoE in Real-Time Communication

7.6.5 Error Analysis

We now analyze misclassification cases to understand (i) how they are spread among
streams and (ii) whether they can affect the prompt classification of streams.

Overall, we obtain an accuracy of 96.3% for Webex and 95.3% for Jitsi, as
detailed in Section 7.6.1. Here, we want to measure whether these errors are concen-
trated on a few RTP streams or are scattered between all. To this end, in Figure 7.12,
we plot the complementary cumulative distribution function (CCDF) of the percent-
age of errors per RTP stream. In other words, for each stream in the test set, we
compute the percentage of misclassified samples and then show the distribution over
all streams. The test set includes 508 streams for Webex and 101 for Jitsi. We ob-
serve that most of them present a rather low error rate. For Webex (solid blue curve),
we notice that the probability of misclassifying more than 10% of the samples of a
stream is ≈ 10%. Moreover, the probability of misclassifying more than 50% is less
than 2%. This result suggests that, in general, mistakes span through many different
streams rather than all originating from a few, and our classifier typically does not
commit systematic errors. Similar considerations hold for Jitsi. There are only a
handful of streams for which most samples are assigned to the wrong class – see
the right-most side of the plot. These are usually short-lived streams (shorter than
10s), except two long Webex video MQ streams where 68% of samples are misclas-
sified and one long Jitsi video MQ stream with 73%. As reported in Section 7.6.1,
video MQ is the hardest class to discern. In conclusion, these results show that the
misclassification of an entire flow is very unlikely to happen.

We now investigate the possibility of classifying an entire stream just by looking
at the first few samples. It might be beneficial in some real deployments when the
network must react quickly to new streams to – e.g., prioritize particular traffic
classes (see Section 7.3 for possible deployment scenarios). To this end, we suppose
to classify a new stream based on the first N samples, using a majority vote scheme
on the labels we obtain for those samples. In other words, given the first N samples
of a stream, we assign it entirely to the class most samples have been assigned
to. In Figure 7.13, we show the macro-averaged F1-score we obtain, varying N
between 1 and 30 seconds. In this case, the classification goal is a stream rather
than a sample, and, as such, we compute performance metrics over the streams in
the test set. When classifying the stream based solely on the first second, we obtain
0.92 macro-averaged F1-score for Webex (solid blue line) and 0.82 for Jitsi (red

7.6 Experimental Results 135

dashed line), as sporadic errors have the maximum impact. Increasing the number
of samples N, we obtain better results, reaching macro-averaged F1-Score of 0.99
and 0.93 for Webex and Jitsi, respectively. Indeed, our classifier hardly perpetrates
systematic errors (see the previous paragraph), making the majority voting scheme
very robust to misclassification. We conclude that our approach is fully appropriate
in contexts where the network is required to quickly make decisions on an entire
flow, e.g., installing appropriate SDN rules on the network switches.

7.6.6 Model Transfer to other Applications

In our previous results, we train a classifier with labelled data belonging to the same
RTC application that we aim at classifying. This might not always be possible, as
labelled data are hard and expensive to obtain. Moreover, new RTC applications
may spread rapidly without controlled experiments being possible. In this section,
we explore to what extent a classifier trained for RTC application A can be used to
classify streams of the application B.

For our goal, we investigate the use of transfer learning techniques [153], whose
goal is to transfer knowledge from one domain (i.e., one RTC application) to another.
These techniques are useful when we cannot collect labelled data in the second
domain. In this case, we can try to use the knowledge from domain A to solve
the same problem in domain B. In general, the rationale behind transfer learning
techniques is to modify and adapt an ML classifier trained in domain A to classify
samples in domain B.

Here, we employ the domain adaptation technique called CORrelation ALigne-
ment (CORAL) [120]. As the name suggests, given the feature distributions from
two domains (A and B), CORAL tries to align the covariance matrix (matrix of
second-order moments) of distribution B to the one of distribution A. Due to the
nature of our problem, we hypothesize this approach suitable since we target two
similar RTC applications that use the same network protocols. Necessary for our
goal, CORAL is an unsupervised technique, as it assumes data for domain B are
available, but without class labels.

We here investigate the performance we obtain when using a classifier trained
on application A (e.g., Webex) for classifying data of application B (e.g., Jitsi). We
perform experiments (i) using the classifier directly on application B and (ii) using

136 Machine Learning for QoE in Real-Time Communication

0 20 40 60 80 100
Misclassified Samples [%]

10−3

10−2

10−1

100

C
C

D
F

Webex
Jitsi

Fig. 7.12 CCDF of percentage of errors per stream.

1 5 10 15 20 25 29
First N seconds

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

(m
ac

ro
av

er
ag

e)

Webex
Jitsi

Fig. 7.13 Classification performance using first N samples per stream.

CORAL to align domains A and B. Case (i) corresponds to using a classifier directly
outside of the training context. In case (ii), we assume that non-labelled data for
application B are available, allowing the use of CORAL to align the two domains.
We show the results in Figure 7.14, again measuring performance in terms of macro-
averaged F1-Score. The x-axis reports the domain on which the classifier is trained,
while the colour of the bars indicates the domain on which we use it. We provide a
reference using the green bars, indicating the performance we obtain when we use
the classifier in its domain –i.e., the approach we used in the previous sections. For
this experiment, we remove the FEC streams from the Webex traffic, since we need
the same number of classes for the two applications for a fair comparison. The red
bars represent case (i), while the blue bars case (ii).

We first notice how using a classifier directly on a different RTC application
entails a certain performance drop (red bars). Indeed, using a classifier trained
on Webex to classify Jitsi streams leads to a 0.67macro-averaged F1 score. In the

7.7 Takeaways 137

Webex Jitsi
0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

(m
ac

ro
av

er
ag

e)

0.67

0.750.74
0.77

0.94 0.94

Diff. domain CORAL Same domain

Fig. 7.14 Classification performance varying the target domain.

opposite direction (training on Jitsi and testing on Webex), the performance is slightly
better (0.75). The use of CORAL improves the performance in both directions,
yielding similar results in both directions (blue bars). We get an F1-Score of 0.74
when training on Webex and using Jitsi and 0.77 vice-versa. Interestingly, the benefit
of CORAL is higher in the former case (+0.07), while minimal in the second (+0.02).
Nevertheless, it is still far from the performance obtained by training a model on
the same domain, which then soars to an F1-score of 0.94 for both applications
(green bars). This might originate from the different shapes of traffic distributions
between the two RTC applications, as discussed in Section 7.4. In summary, our
results suggest that it is possible to use a classifier for a different application if lower
performance can be tolerated. If non-labelled data for the target RTC application are
available, CORAL is instrumental in increasing the performance.

7.7 Takeaways

In this chapter, we presented an extensive study on the classification of Real-Time
Communication (RTC) streams using machine learning techniques, with a focus on
RTP traffic in applications like Webex and Jitsi. The key findings from our study can
be summarized as follows:

• Methodology: We developed a methodology involving RTP stream iden-
tification, feature extraction, and a machine learning pipeline for real-time
classification of media streams.

138 Machine Learning for QoE in Real-Time Communication

• Classification Performance: Using a Decision Tree classifier, we achieved
high classification accuracy for both Webex and Jitsi, with most classes ex-
hibiting F1-Scores above 0.96. The approach was particularly effective in
isolating audio streams.

• Parameter Sensitivity: Our results indicated that classification performance
generally improved with larger time bins, with a 1s time bin providing a good
balance between speed and accuracy.

• Feature Analysis: The study highlighted the importance of packet size fea-
tures in classification. The feature selection process, including correlation
analysis and recursive feature elimination, was crucial in identifying the most
relevant features for each application.

• Error Analysis: Misclassifications were generally distributed across streams
rather than concentrated, suggesting that our classifier does not commit sys-
tematic errors.

• Model Transferability: We explored the concept of transfer learning for
RTC stream classification, finding that while direct application of a model
trained on one application to another led to performance drops, techniques
like CORrelation ALignement (CORAL) could improve cross-application
performance.

• Deployment Scenarios: We demonstrated the potential of our classification
system in RTC-aware network management, showing how it can improve
Quality of Experience (QoE) by intelligently managing traffic based on the
type of media stream.

In conclusion, our research successfully demonstrates a versatile and efficient
approach for real-time classification of media streams in RTC applications, setting a
new standard in network management and QoE optimization. By making our dataset
and code publicly available, we aim to inspire further advancements in this promising
field.

Chapter 8

Machine Learning for QoE in
Satellite Communication

8.1 Motivation

The content presented in this Chapter is primarily derived from our paper Monitor-
ing Web QoE in Satellite Networks from Passive Measurements, which, as of the
writing of this thesis, has been accepted for presentation at the IEEE Consumer
Communications & Networking Conference.

Satellite Communication (SatCom) offers Internet connectivity where traditional
infrastructures are too expensive to deploy, including rural areas and the territory of
underdeveloped countries. Here we focus on the GEO SatCom technology, which
relies on satellites positioned in geostationary orbits. Propagation delay makes
the Round Trip time (RTT) higher than 550ms [154, 92] so that the substantial
hurdle of high link latency significantly impairs traditional interactive browsing
experiences [155–157]. For instance, the download of a webpage can take several
seconds.

In this context, monitoring the Quality of Experience (QoE) subscribers obtain
becomes a crucial factor [158–160], and it would allow the SatCom provider to detect
anomalies, plan network upgrades, and optimize management policies. Because
quantifying Web QoE remains a formidable challenge due to its subjective nature,
proxy quality metrics like “onLoad” (or Page Load Time) and “Speed Index” are

140 Machine Learning for QoE in Satellite Communication

used as indirect measures within web browsers [161]. Recent research efforts have
focused on proposing unsupervised [162, 163] and supervised [164–166] approaches
for measuring web browsing QoE in traditional networks. However, these approaches
cannot be directly used for SatCom scenarios. This is especially true because
operators deploy middleboxes to mitigate the impact of latency, i.e., Performance
Enhancing Proxies (PEPs) [94]. The impact of PEPs on QoE is not clear, and the
modification to the traffic they cause challenges traditional QoE estimators.

This Chapter aims to fill this gap. We propose a system to monitor Web QoE
specifically designed to address the challenges unique to SatCom. We employ a
supervised Machine Learning (ML) approach to predict Web QoE from in-network
passive measurements and explore the different factors that affect prediction accuracy.
Our system gathers training data through Test Agents, which automatically visit the
website to monitor. Ingenuity is needed to design such Test Agents, as they need
to generate traffic patterns similar to real subscribers’ traffic and we illustrate the
most significant challenges to achieve this goal. In addition, the complex nature
of Web traffic requires ad-hoc approaches to construct meaningful features. After
designing a proper ML pipeline to predict the QoE of a given website, we explore
the possibility of training if a single ML model extracts the QoE of multiple websites.
Our results are negative and show that a website-specific model must be considered.
At last, we explore the model drift with time and propose a continuous learning
solution to address this problem.

Our findings demonstrate the feasibility of monitoring Web QoE in SatCom
environments, albeit with some limitations. Notably, this approach works well with
the subset of websites whose pages include objects from multiple domains. On
the contrary, for websites hosted on a single infrastructure, the prediction accuracy
remains limited. Periodic generation of training data becomes essential to adapt to
evolving web dynamics, and it remains an open challenge to build a general ML
model able to predict the QoE of websites unseen at training time.

The rest of the Chapter is organized as follows: in Section 8.2 we present
the related work while in Section 8.3 we describe our methodology for feature
engineering and classification. Section 8.4 shows our experimental results, and,
finally, Section 8.5 concludes the chapter and discusses important takeaways.

8.2 Related Work 141

8.2 Related Work

The QoE of Internet users is a wide and complex topic as it involves the subjectivity
of users and has been extensively studied in the literature [167, 168]. Several works
address the challenges of gathering meaningful metrics and the impact of different
network conditions [169, 158–160, 170]. Commonly, Web QoE is measured through
proxy metrics, which have been shown to be correlated with users’ subjective
experience. Notably, Page Load Time (also called OnLoad) and Speed Index are
the most widely adopted, although Bocchi et al. [161] have shown that they do
not necessarily model all factors influencing users’ perceptions. More recently,
“Above-The-Fold” metrics have been proposed as a more accurate estimation of
users’ QoE [56].

Regarding SatCom environments, the literature extensively explores the role of
the physical layer on the seamless network operation and Quality of Service [171, 68].
Several works proposed approaches to enhance browsing performance in SatCom
environments using the most diverse techniques, including Performance Enhancing
Proxies and HTTP caching [155–157]. However, there is still a dearth of studies
evaluating or measuring QoE in these kinds of networks. Recent efforts regard
estimating video QoE [172] or measuring the performance of the QUIC novel
protocol in the SatCom environment [89, 173]

Measuring QoE using passive network measurements poses additional challenges,
as it is not trivial to derive meaningful metrics or features from network traffic,
especially when encryption is in place. Recent research efforts have focused on
proposing unsupervised [162, 163] and supervised [164–166] approaches to monitor
browsing QoE. These techniques have in common careful feature engineering and
the use of machine learning models to derive measures which correlate to users’
perceived QoE or to well-known proxy metrics. However, none of them has been
studied specifically for SatCom environments or even tested in such a scenario, and
no existing literature comprehensively studies Web QoE metrics in SatCom networks.
Our work aims to bridge this gap. We engineer a system based on supervised learning
and exploit some of the intuitions proposed in [162, 164], specifically the link of
different flows to the same user visit. We tailor our system to be deployed at the
SatCom operator’s premises, where the presence of complex middleboxes (i.e., PEPs)
challenges the harvest of truthful metrics.

142 Machine Learning for QoE in Satellite Communication

Test Agent
Web

Server

SatCom
Equipment

Ground
Station

PEP Tunnel
(UDP)

Passive
Meter

Segment 1
(TCP/QUIC)

Segment 2
(TCP/QUIC)

Fig. 8.1 Test Agent and Passive Meter deployment scenario.

8.3 System Design

8.3.1 Problem Statement

Our goal is to design and implement a monitoring system that uses passively-
collected measurements to estimate the Web QoE of SatCom users. We target GEO
operators, which rely on one or few satellites positioned at a fixed distance from
Earth, providing continuous coverage over large geographic areas. In GEO SatCom,
operators typically deploy PEPs to improve performance on the satellite segment.
In particular, PEPs are designed to overcome TCP limitations in high-latency sce-
narios. For this, the PEP transparently manipulates TCP connections. Referring to
Figure 8.1, the user’s SatCom home gateway impersonates the server for all TCP
connections initiated by the end-user devices (Segment 1 in the Figure). Acting as
TCP proxy, the home gateway buffers the TCP data stream and forwards it to the
operator’s ground station via a bidirectional UDP tunnel (PEP Tunnel in the Figure).
Complex reservation and scheduling algorithms decide how to share the SatCom link
capacity among active users. The ground station receives the tunnelled traffic and
acts as a second TCP proxy. It opens a new TCP connection toward the actual server
to download and store the responses before forwarding them to the home gateway
through the shared satellite link (Segment 2 in the Figure). The PEP complicates the
collection of passive in-network measurement, as it splits each TCP flow into two sec-
tions. A passive probe installed on the ground station will then only observe Segment
2 – i.e., the TCP connection the ground station PEP opens –, and not the actual traffic
as received by the end-user device. As such, any QoS metric collected for TCP (such
as packet loss, throughput or RTT) might not be representative of the end-user expe-
rience. In the case of QUIC (over UDP), PEPs operate in a slightly different fashion:

8.3 System Design 143

Packets are tunnelled via UDP, but the home gateway cannot impersonate the server
as QUIC header encryption prevents middleboxes from manipulating connections.

We depict our deployment scenario in Figure 8.1. We control a number of Test
Agents that are connected as regular end-user devices. At the same time, a passive
probe collects measurements at the ground station where it observes the traffic of
all subscribers. The passive monitor collects per TCP and per UDP flow summaries
with rich statistics. Here we rely on Tstat [38] which exports more than 100 features
per each TCP/UDP flow, including the server name (as recovered from Server Name
Indication (SNI) in TLS Header), the RTT, the total number of packets and bytes
exchanged from the server to the client and vice-versa, the size and timing of each
flow first packets, etc. Notice that the observed timings radically differ from the time
at which packets are transmitted by/delivered to the subscriber’s devices as packets
are collected after/before they travel the satellite segment. We assume that each
subscriber is uniquely identified by their subscriber IP address.

Using passive measurements, we design a system to estimate the Web QoE
of subscribers using ML models that map flow-level and packet-level features to
quantitative metrics. As target metrics, we consider SpeedIndex and OnLoad, as
explained in section 2.4.

We use Test Agents to periodically collect QoE measurements resulting from
automated visits to a list of monitored websites. The test agents access the internet
via the Sat modem offered by the operator with a standard subscription.

8.3.2 Test Agent Design

A Test Agent aims to emulate the behaviour of a regular user by visiting a set of
websites to gather the necessary QoE metrics for training the ML models. The
operator chooses the list of websites to include websites of particular interest, such
as business-related portals.

A Test Agent consists of dedicated physical machines connected as a regular
end-user device. It uses a browsing automation suite (the dockerized version of
Browsertime1 in our case) to automatically visit webpages. We assume Test Agents
continuously operate and seek to maximize (i) the diversity within collected data

1https://www.sitespeed.io/documentation/browsertime/

https://www.sitespeed.io/documentation/browsertime/

144 Machine Learning for QoE in Satellite Communication

and (ii) the size of the data available to train ML models. Creating an accurate and
realistic training set requires ingenuity and involves overcoming various pitfalls, here
detailed.

Our Test Agent takes into account three aspects that have been recently shown to
largely impact automatic web experimentation: The need to include internal pages
of a target website; The need to accept the cookie policies; The need to visit pages
with warm browser caches.

In fact, recent literature [174, 166] has shown that it is necessary to include
websites’ internal pages when running any kind of web testing. Thus, for each
website, Test Agents visit at least 10 internal pages chosen to maximize diversity.
Notice that several approaches can be used to automate this task. Here we opt for
manually defining such a list.

Second, the presence of Privacy Banners (also known as Cookie Walls) impairs
automated navigation[175]. If not specifically instrumented, the Test Agents will
always visit a website as a “first visit” so that the website will show the privacy
banner and will not download any third-party elements that require the user to accept
the cookie policy first. Given 95% of users simply click on “accept all cookies
and policies” [175], here we create a custom Javascript script to accept the Privacy
Banner and continue the navigation just like a normal user would do.

Third, the presence of a browser cache radically impacts the resulting network
traffic. Thus, we run repeated visits to webpages so that subsequent visits occur with
a populated browser cache.

For the experiments in this Chapter, we use two Test Agents, focusing on 10
websites. We chose them among the most visited ones by the operator’s subscribers.
These include top websites for e-commerce, news, search engines and adult videos.
In building such a list, we exclude those websites for which user login is needed to
consume most of the website’s content (e.g., online social networks). The website
list can be derived from Figure 8.2. For each website, we select p=5 representative
internal pages. We run a first measurement campaign in September 2022 and a
second one from December 2022 to February 2023. Each campaign includes about
2000 visits to each website and page. In Figure 8.2 we show the distribution of
QoE metrics in the form of boxplots. The boxes represent the Inter-Quartile range,
while whiskers span from the 5th to the 95th percentile. The black stroke represents
the median. Observe how different are the metrics on each website, and how the

8.3 System Design 145

ac
cu

wea
the

r.c
om

am
az

on
.co

m

go
og

le.
co

m

lefi
ga

ro.
fr

leq
uip

e.f
r

po
rnh

ub
.co

m

rep
ub

bli
ca

.it

sta
ck

ov
erfl

ow
.co

m

xn
xx

.co
m

xv
ide

os
.co

m

yo
utu

be
.co

m
0

10

20

30

40

50

60

70

Ti
m

e
[s

]

OnLoad
SpeedIndex

Fig. 8.2 BoxPlot OnLoad vs SpeedIndex

onLoad and SpeedIndex are in the order of tens of seconds and radically higher than
those seen on wired or mobile networks [176]. This testifies to the peculiar SatCom
extreme latency which impairs the browsing experience.

8.3.3 Feature Engineering

Here we propose to follow a domain expert-driven approach to engineer specific
features that are highly correlated with the target QoE metrics. As done in the previ-
ous works [177, 165], we focus on time-related and volume-related metrics that we
extract from the flow-level measurements. For this, to gather passive measurements,
we deploy a Tstat passive probe in between the operator’s ground station and the
internet access where we continuously collect flow-level data.

To build the training set for ML models we first join the passive data (i.e., flow
records collected at the operator’s ground station) with Test Agent data (i.e., the
target metrics onLoad and Speed Index). We join the Test Agent and passive data
records using subscriber IP as key addresses.

Referring to Figure 8.3, we identify the beginning of a new webpage visit when
a client contacts the domain of one of the target websites. To this end, we exploit the
observation of a flow with the contacted domain name. We call this event Trigger. It
serves as the observation initial point for building the features. We mark those with
thick arrows in Figure 8.3. We refer to the Trigger Flow as f0.

146 Machine Learning for QoE in Satellite Communication

Given a Trigger, we open an Observation Window of ∆T = 30 seconds during
which we extract the information on the first n = 10 packets of the first k = 5 flows.
The rationale behind this choice is twofold. First, the webpage rendering process
entails contacting different servers to download all webpage objects. Thus, we want
ML models to leverage information from the group of Related Flows immediately
subsequent to the visit start. Second, we want to minimize the impact of caching and
persistent HTTP connection that allows the same flow to download multiple objects
(i.e., when a user scrolls a page, the browser downloads new images and material
using the same previously opened TCP connections). For this, we extract features
only from the first n = 10 packets of a flow to include uniquely the first instants of
the communication. In the following, we refer to Related Flows as f1, . . . , fk.

We engineer features using the information available in the first n packets of the
Trigger flow f0 and Related Flows f1, . . . , fk. Given a flow f , we denote with ci, f and
si, f the ith packet on the client and server side, respectively. Each packet ci, f (or si, f)
is characterized by its size |ci, f |, its time t(ci, f) and the value of its Time-To-Live
field T T L(ci, f). From them, we build our features. Specifically, each dataset entry
represents a webpage visit and is described by the following features:

• We build two sets including, respectively, the size of all client packets |ci, f |
and the size of all server packets |si, f | for Trigger and Related flows. Out of
each set, we extract the 25th, 50th, 75th and 90th percentiles, as well as the
mean, standard deviation, maximum, minimum values, and the occurrences of
the missing samples2.

• We compute the inter-arrival time of each packet as the time elapsed since
the previous packet in the same direction. Given ci, f (or si, f), its inter-arrival
time is defined as t(ci, f)− t(ci−1, f), with i ≥ 2. We build two sets including
all inter-arrival times for client and server packets, respectively. Out of them,
we extract the same statistics as for packet sizes.

• For each Related Flow fi, we compute its relative starting time with respect to
the Trigger as t(c1, fi)− t(c1, f0) with i ∈ {1 . . .k}

2Missing samples can occur if a flow has less then n packets, or if a website opens less than k flow
in ∆T

8.3 System Design 147

• For each flow fi, we compute the time between the first server and client packet
t(s1, fi)− t(c1, fi). This time measures, in fact, the Round Trip Time between
the operator’s ground station and the actual server.

• For each flow, we compute the size of the first flight in each direction. A flight
is the total size of the application payload contained in packets sent without
any confirmation received from the counterpart. It provides an estimate of
Client and Server Hello TLS messages. For the client side, formally, given
flow f , we compute it as ∑

jmax
j=1 |c j, f | with jmax set so that t(c j, f)< t(s1, f). For

the server side, we compute the same measure specularly.3

• For each flow, we extract the Time-To-Live (TTL) value from the IP header of
server packets. This is a coarse indication of the server’s distance (in number
of hops). As the TTL could vary within a single flow, we take the minimum
value. For each flow fi, we extract min∀i∈1...n T T L(si, fi).

In total, we have 52 features. By design, they are L4-agnostic, meaning that
even if the communication is carried over UDP/QUIC, the system continues to
operate seamlessly. At last, observe that, once the Starting Point is triggered, the
first k Related Flows may include some flows generated by background traffic and
applications. This may result in occasional uncorrelated flows that can confuse the
classifier. For instance, if the user accesses multiple web pages at the same time, the
flows each page generates gets multiplexed in the network, possibly impacting the
feature extraction process.

8.3.4 ML Pipeline

To train the ML models, we adopt the typical pipeline for supervised tasks. We
formulate the problem as a regression task, the goal being the prediction of the value
of the target QoE-related metrics. Given a data point yi, we aim at building a model
ŷi = f (xi), where x is the array of the input features described in the previous section.

To measure prediction performance, we use two established metrics: R2 Score
and Mean Absolute Percentage Error (MAPE). The R2 coefficient serves to determine
whether a linear regression can be used to describe the target variable. An R2 score

3For the server side, we clearly neglect client packets related to the first flight while computing
jmax.

148 Machine Learning for QoE in Satellite Communication

SN
I=

le
qu

ip
e.

fr

Related Flows

c1,f c2,f … cn,f

Client Server

First n=10 packets

Trigger
Flow

Observation Window (ΔT=30s)

f1 f2 f3 f4 f5

s1,f s2,f … sn,f

Fig. 8.3 Detection of Related Flows and corresponding features.

of 0 signifies a model x that is not able to predict correctly the actual values (i.e.,
x cannot explain y). Conversely, R2 = 1 means f (x) is a perfect predictor. In
mathematical terms:

R2 = 1− ∑
z
i=1(ŷi − yi)

2

∑
z
i=1(ŷi − ȳ)2

where ŷi represents the predicted values of the actual sample yi, ȳ being the mean yi

and z the number of data points.

The MAPE is a metric used to assess the accuracy of a predictive model in
percentage terms. It measures the average percentage error between the predicted
and actual values:

MAPE = 100
1
z

z

∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣
We apply a feature selection stage to identify the most relevant features from an

initial array x of 52 variables. This reduces the complexity of the model by discarding
either features that are redundant or uncorrelated with the target variable. To tackle
this task, we utilize the Recursive Feature Elimination (RFE) algorithm [151] in
conjunction with a Random Forest Regressor-based model. This approach involves
systematically training the algorithm and iteratively discarding features deemed least
important. The output x’ is then used to build the model f (x’)

We train a specific ML model for each website using the selected features and
adopting the standard Stratified K-Fold Cross-Validation methodology to mitigate
the risk of overfitting, with 70% and 30% of data used for training and validation.
As regression models f (x’), we test Decision Tree Regressor (DTR), Random Forest

8.4 Experimental Results 149

lequipe.fr

pornhub.com

xnxx.com

accuweather.com

xvideos.com

lefigaro.fr

repubblica.it

amazon.com

youtube.com

google.com
0

25

50

75

0

0.25

0.5

0.75

1.0

M
A

PE
[%

]
R

2
Sc

or
e

OnLoad Speed Index

Fig. 8.4 Performance on different websites, measured using R2 Score and MAPE.

Regressors (RFR), Linear Regressors (LR) and K-Nearest Neighbors Regression
(KNNR).

8.4 Experimental Results

In this section, we show and discuss the experimental results, dissecting the regressor
performance first in different scenarios and then delving into feature and ML model
choice. To determine the most suitable ML model and training strategy, we undertake
a systematic exploration of several ML models and alternatives on how to build them.

8.4.1 Per-Website Model Performance

We first consider building a website-specific model, an option suitable for our target
deployment where the operator can select the target websites. Here we consider the
Random Forest Regressor, which provides the best results (see Sec. 8.4.4).

150 Machine Learning for QoE in Satellite Communication

In Figure 8.4, we show per-website performance in terms of R2 score (top plot)
and MAPE (bottom plot). As expected, values of the R2 score and MAPE are
negatively correlated. Prediction accuracy radically varies across websites, with
some exhibiting very good performance while others have unsatisfactory results. For
the onLoad, 6 websites have R2 score > 0.5 and MAPE < 25%, hinting that ML
models are capable of providing a reliable prediction for them. However, for the
remaining 4 websites, the predictive power of the model is very poor, with an R2

score below 0.25 or negative (not visible as the scale represents positive values only).
For amazon.com, youtube.com and google.com, we link bad prediction to the fact that
those websites include objects that are served by a few domains hosted in the same
infrastructure owned by the same company. This limits the number and the diversity
of related flows that are often below k = 5 impacting the set of meaningful features.
Conversely, for repubblica.it we observe that all pages include a very large number of
third-party objects. Some of them are advertisement banners extremely slow to load.
This impairs the OnLoad time as observed in Figure 8.2, which exceeds 35 seconds
most of the time. This makes the prediction for this website very unreliable. Similar
considerations hold for Speed Index, even if prediction accuracy is overall lower –
only 3 websites present R3 score above 0.5. This is somewhat expected, as the Speed
Index value depends on how the webpage is rendered by the browser [161, 56] and,
thus, network traffic has a more indirect impact.

We provide two examples to qualitatively illustrate predictions for a website
with a high/poor R2 score in Figure 8.5. We show the predicted and real values
for the OnLoad metric using a scatter plot. Each point represents a different visit,
and different colours indicate the density of points. Ideally, in the case of a perfect
regressor, all points should lie on the main diagonal. This is what happens for
lequipe.fr (R2 = 0.8) where points lie on the diagonal stretched between 16 and 30
seconds, hinting that predictions are accurate both for slow and fast visits. Different
is the picture for google.com (R2 < 0). The model exhibits almost no prediction
power, with predictions that are massed in a circular shape centred along 6 seconds
regardless of the real visit OnLoad time.

In summary, the different performance indicates that the operator shall carefully
select the target websites and test the prediction performance of the regressor before
deploying it in operations.

8.4 Experimental Results 151

12 16 20 24 28 32
OnLoad [s]

12

16

20

24

28

32
lequipe.fr

0 3 6 9 12 15 18
OnLoad [s]

0
3
6
9

12
15
18

google.com

Pr
ed

ic
te

d
[s

]

Fig. 8.5 Scaterplots representing predicted and real OnLoad values for two websites.

Specific Model

Single Model

Leave One Out

Time Shift

lequipe.fr
pornhub.com

accuweather.com
xnxx.com

xvideos.com
amazon.com

lefigaro.fr
repubblica.it
youtube.com

google.com

0.78 0.73 0.59 0.26
0.77 0.74 0.45 -0.30
0.74 0.77 0.14 -0.05
0.69 0.64 0.64 0.31
0.60 0.54 0.42 0.32
0.45 0.39 -4.19 -0.09
0.35 0.37 -3.89 -0.36
0.31 0.29 -1.22 -0.62
0.26 0.14 -0.95 -0.13
0.06 -0.05 -2.30 -0.02

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
2

Sc
or

e

Fig. 8.6 Prediction performance for onLoad in different scenarios.

8.4.2 One vs Many Models

We now discuss the possibility of using a single model to predict the QoE for multiple
websites.

First, we consider the case of building a single model trained on all websites.
The intuition is to create a model that generalizes the complexities and nuances
present across multiple domains, resulting in a more robust and adaptable solution.
For this, we create a single set containing all points for all websites. We use it
for training (70%) and testing (30% split) a single model. We normalize the target
metrics in a website-wise fashion to obtain values in the same order of magnitude.
In Figure 8.6, we compare the R2 score we obtain for different scenarios. The first

152 Machine Learning for QoE in Satellite Communication

20
22

/12
/28

20
23

/01
/02

20
23

/01
/07

20
23

/01
/12

20
23

/01
/17

20
23

/01
/22

20
23

/01
/27

20
23

/02
/01

20
23

/02
/06

20
23

/02
/11

20
23

/02
/16

20
23

/02
/21

20
23

/02
/26

0.00

0.25

0.50

0.75

1.00

R
2

Sc
or

e

Sliding No Update

Fig. 8.7 Prediction performance for OnLoad of pornhub.com with different training
strategies.

two columns compare the prediction performance with a Specific Model for each
website (first column) with the performance of the Single Model (second column).
Overall, prediction accuracy decreases with the R2 score that never decreases more
than 0.2. For some websites, the drop is negligible (see for example pornhub.com).
Again, some websites present awful performance in general

We now evaluate the scenario in which the ML model is used to predict the QoE
for websites unseen at training time. The intuition is to have a global single model
that works for any website. To this end, we adopt a leave-one-out approach: we
train a model using all data from all websites except the one under consideration for
testing, i.e., systematically excluding data about one target domain at a time during
the training phase. The resulting performance is depicted in the third column of
Figure 8.6. It shows that almost no prediction capability is offered in such a scenario.
In most cases, the R2 score is negative, and above 0.5 only in two cases. This clearly
demonstrates that we need to include samples during training for the specific target
website the operator wants to monitor. In a nutshell, it is not possible to generalize
a single model applicable to any website. This reflects the specificity of the traffic
generated by each website and underlines the need to collect site-specific data for
training.

We conclude that the best results are obtained by considering a site-specific
model. It would be possible to train a single model on multiple websites, even with a
moderate penalty. However, it is not possible to train a generic model to predict QuE
of a website unseen at training time.

8.4 Experimental Results 153

8.4.3 Temporal Stability

We now evaluate the impact of training data and model freshness. We want to
quantify to what extent a model trained on a dataset collected at a given point in time
can correctly predict the QoE later in time. To this end, we use the data collected on
September 2022 to train models, while we use data from February 2023 to evaluate
their prediction performance. We use a Random Forest regressor trained for each
website. We show results in the last column of Figure 8.6. With few exceptions,
the predictive capabilities of the models are completely lost. For instance, the
lefigaro.com R2 drops from 0.78 to 0.26. For xnxx.com and xvideos.com, some
prediction capability survives after three months. In the other cases, the prediction
power is completely lost, with negative R2 scores. This is due to changes in the
website aspect, in the infrastructure that serves them, or/and in the network properties.
For instance, manual inspection of available snapshots on the Wayback Machine4

reveals that some websites incurred a graphical restyle in the last weeks of 2022.
This clearly makes the previously collected training set totally useless.

We simulate such a system using the data in the December 2022 - February
2023 dataset. In Figure 8.7, we show the evolution over time of the R2 score for
pornhub.com. The blue dashed line reports performance when using always the same
model trained using only the first week of data (the penultimate week of December
2022), and then testing its performance on all visits occurring in each period of
5 days. Clearly, the frozen model becomes quickly obsolete over time. From the
beginning of 2022, its prediction power vanishes. In a nutshell, the regression model
is becoming too outdated. We observe the same behaviour for all websites: in the
long term, any model must be updated.

To overcome the model ageing, we propose to use the walk-forward approach
typically used for time series prediction. Here, we assume test agents continuously
collect data. For each target website, at the end of a period (e.g., a few days), we use
the data collected from the past w days to train a new model. We follow a sliding-
windows approach, i.e., we keep constant the size of the training set. We then use
this freshly trained model to predict the performance during the next period of time.

We simulate a system that implements the walk-forward policy previously de-
scribed. We show results with the red solid line in Figure 8.7. Here, we consider a

4https://web.archive.org/

https://web.archive.org/

154 Machine Learning for QoE in Satellite Communication

Table 8.1 List of 25 most important features according to RFE.

Measure Direction Statistics

Packet Inter-arrival Time Client Mean, Standard Deviation, Maximum, #(Zero Value), Percentiles 25, 50, 75, 90
Packet Inter-arrival Time Server Standard Deviation, Maximum, Percentiles 50, 75
Time-To-Live Server Minimum value of the first 3 flows
Time between first Client and Server packet - First 5 flows
Relative time of Related Flows - All Related Flows

4 8 12 16 20 24 28 32 36 40 44 48 52
Number of features

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

R
2

Sc
or

e

Fig. 8.8 Prediction performance for OnLoad with a different number of features.

period of w equal to 5 days for training a model. We then evaluate its performance
for the following 5 days. Since we use a model that is trained always on the most
recent dataset, the R2 score remains stable at around 0.75.

We conclude that it is mandatory to continuously operate Test Agents to en-
sure the freshness of the training data which results the key to maintaining model
performance consistent over time.

8.4.4 Feature and Algorithm Impact

We finally discuss the impact of the feature selection and the choice of regression
algorithm. As detailed in Section 8.3.4, we adopt the RFE feature selection method
to find the most meaningful features among the 52 we extract. In Figure 8.8, we show
how R2 Score varies with models that consider only the top-k ranked features for the
onLoad prediction. Boxplots represent the distribution across the 10 websites. We
observe that the median R2 score significantly increases up to 20 features. Including
more than 25 features brings negligible improvement.

8.4 Experimental Results 155

Random Forest

Decisio
n Tree

KNN
Linear

lequipe.fr
pornhub.com

xnxx.com
accuweather.com

xvideos.com
amazon.com
repubblica.it

lefigaro.fr
youtube.com

google.com
R2 Score

0.77 0.72 0.71 0.38
0.74 0.74 0.69 0.58
0.67 0.64 0.65 -1.92
0.66 0.61 0.61 0.42
0.57 0.48 0.52 0.51
0.45 0.31 0.33 0.29
0.39 0.20 0.25 0.16
0.31 0.04 0.23 0.21
0.29 0.08 0.20 0.17
-0.01 -0.03 0.01 0.00
0.48 0.38 0.42 0.08

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
2

Sc
or

e

Fig. 8.9 Comparision of prediction performance for onLoad, using one model per
site.

Looking at which are the most relevant features, we observe those related to
packet inter-arrival time and other flow timings (relative starting time in particular),
as well as some on the server Time-To-Live. For completeness, we list in Table 8.1
the set of 25 features that we use in all experiments.

We finally compare the performance of different classification algorithms, as
anticipated in Section 8.3. For each algorithm, we run a hyper-parameter tuning step
using a coarse grid search. A Random Forest Regressor with 100 estimators provides
the best performance in all cases, for both OnLoad and SpeedIndex and for both the
R2 and MAPE performance metrics. In Figure 8.9, we detail the average per-site R2

scores of all algorithms in predicting the OnLoad. The last row presents the column-
wise average. As said, the Random Forest model provides the best performance for
all websites, followed by KNN. However, the latter entails large models as they must
contain the entire training set. Thus, we believe the Random Forest model represents
the best choice. A Decision Tree provides modest performance for all websites,
while the Linear regressors perform largely worse than other methods, hinting they
are not well-suited for this kind of problem.

At last, we test the performance of Neural Network (NN) models. However,
the need for large amounts and always recent data limits their applicability in this
scenario. Our dataset in fact resulted too small to let the NN converge. In practice,

156 Machine Learning for QoE in Satellite Communication

the cost of obtaining thousands of samples for each target website increases the cost
of data collection with a limited payoff.

8.5 Takeaways

In this chapter, we have explored the challenges and successes of designing a
Web Quality of Experience (QoE) estimation system for satellite communications
(SatCom). Through extensive experimentation and analysis, several critical insights
have been gained. These insights not only reflect the current state of our research but
also chart the course for future explorations in this domain. Key findings from this
study are summarized as follows:

• Monitoring System Design and Implementation: Successfully designed
and implemented a system for estimating Web Quality of Experience (QoE)
for satellite communication (SatCom) users, targeting GEO operators using
passive measurements.

• Role and Challenges of PEPs: Performance Enhancing Proxies (PEPs) are
crucial in SatCom networks for TCP performance enhancement but introduce
complexities in QoE measurement due to the splitting of TCP flows.

• Machine Learning for QoE Estimation: The application of machine learning,
particularly random forest regressors, proved effective in mapping flow-level
and packet-level features to QoE metrics, utilizing data from Test Agents.

• Web Content Dynamics: The variability and architectural differences across
websites hinder the development of a general model for predicting performance
on new, unseen websites.

• Continuous Model Training Necessity: Regular model updates and training
are essential due to the dynamic nature of web content and infrastructure, with
the walk-forward approach being crucial for maintaining model relevance.

• Future Research Directions: Expanding the scope to include a broader
range of websites and considering user habit diversity, subscriber setup, and
backbone connectivity are vital. Further exploration into transfer learning and

8.5 Takeaways 157

domain adaptation is needed to enhance model generalization across different
regions.

This chapter demonstrates the feasibility of using machine learning to predict
Web QoE in SatCom scenarios and emphasizes the continuous adaptation and refine-
ment needed for the models in response to the dynamic web environment.

Chapter 9

Conclusions

The research presented in this thesis revolves around the measurement of network
traffic utilizing both active and passive techniques (Chapter 3, Chapter 4, and Chap-
ter 5). Additionally, it encompasses the development of Machine Learning models
that leverage these measurements as features, enabling the prediction of QoS and
QoE metrics (Chapter 7 and Chapter 8).

The case study is founded on a diverse array of traffic protocols, ranging from
video-conferencing applications employing RTP to the utilization of HTTP/3 with
QUIC, as well as more generalized protocols such as DNS, TCP or UDP traffic
consumption. A comprehensive overview of the network protocols and mechanisms
employed by these applications is presented, with a prominent emphasis on RTP and
QUIC.

This thesis also provides guidance on establishing a robust testbed for measure-
ment purposes, including a discussion on the most valuable open-source software
tools to facilitate this task. Additionally, a significant portion of the code and data
collected over the course of the study is shared (see Table 1.1).

9.1 Machine Learning for Networks: Personal Con-
siderations

We are witnessing the true potential of Machine Learning unfolding before our eyes.
A prime example is the advent of Large Language Models (LLM), exemplified by

9.1 Machine Learning for Networks: Personal Considerations 159

ChatGPT1 and Google Bard2, which revolutionized the market in early 2022. Only
a couple of years ago, the idea of such advances might have seemed plausible, but
with predictions of much longer development times.

Artificial intelligence has indeed made significant inroads into the market: many
companies have shifted their operations towards utilizing these tools to enhance
productivity, while others have even made artificial intelligence the cornerstone of
their business strategies. Large Language Models, in particular, rely heavily on vast
amounts of data to function optimally. The internet, with its extensive reservoir of
textual, visual, and multimedia content, has provided an ideal environment for their
evolution by providing a rich data pool. However, it’s essential to recognize that AI
requires not only data but also substantial computing power for training. In recent
years, the surge in GPU capabilities has been propelled in tandem with the remarkable
growth of the gaming industry, likely fueled by the cryptocurrency mining boom
as well. Consequently, demand for GPUs has skyrocketed to unprecedented levels,
driven by both gamers seeking high-performance hardware and cryptocurrency
miners leveraging GPUs for their computationally intensive tasks. This convergence
of factors has provided fertile ground for the rapid growth and flourishing of AI,
thanks to the investment received in those sectors.

At this point, we must address a crucial question: what drives the convergence of
AI and networking? Machine Learning is often used to identify patterns in data, with
the aim of understanding complex structures through examples. Network protocols,
being a set of standardised rules, naturally lend themselves to the application of AI.
While our focus has been on the abundance of internet data, it’s vital to acknowledge
that its effective use hinges on network infrastructure traversal. This involves two key
aspects: monitoring network traffic consumption and developing scalable, energy-
efficient, and secure infrastructures. Network protocols are essential for transmitting
data online, forming the backbone of the internet. They structure data into packets
for transmission, highlighting the intrinsic link between data and protocols. These
protocols act as containers for data, ensuring its efficient exchange. This dualism
between protocol and data is the basis of the Internet. In other words, data on the
Internet cannot exist without network protocols, just as network protocols cannot
exist without the need to exchange data. Optimizing network performance, such as
reducing energy consumption and minimizing delays, leads to significant economic

1https://chat.openai.com/
2https://bard.google.com/chat?hl=it

https://chat.openai.com/
https://bard.google.com/chat?hl=it

160 Conclusions

and environmental benefits due to the internet’s vast scale. Hence, every enhancement
contributes to substantial impacts in financial and environmental realms, making this
topic pertinent and intriguing.

Looking to the future, envisioning a world where Artificial Intelligence (AI)
becomes increasingly intertwined with our daily lives, it’s evident that significant
changes are on the horizon across multiple domains that currently seem common-
place. In this evolving landscape, researchers are tasked not only with the develop-
ment of AI models but also with the responsibility of fostering a deeper understand-
ing of these technologies within society. Our role extends beyond mere innovation;
it involves disseminating knowledge about the capabilities and safety measures as-
sociated with AI, thereby promoting an ethical and secure advancement of these
tools. It is imperative that we engage in discussions surrounding the implications
of AI technologies, ensuring that their integration into our lives is guided by ethical
principles and societal well-being. Through collaborative efforts and transparent
communication, we can pave the way for a future where AI enriches our lives while
safeguarding our values and security.

References

[1] Vijay K Adhikari, Yang Guo, Fang Hao, Volker Hilt, Zhi-Li Zhang, Matteo
Varvello, and Moritz Steiner. Measurement study of netflix, hulu, and a tale
of three cdns. IEEE/ACM TRANSACTIONS ON NETWORKING, 23(6), 2015.

[2] Trinh Viet Doan, Vaibhav Bajpai, and Sam Crawford. A longitudinal view of
netflix: Content delivery over ipv6 and content cache deployments. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, pages
1073–1082. IEEE, 2020.

[3] Ron Frederick, Stephen L. Casner, Van Jacobson, and Henning Schulzrinne.
RTP: A Transport Protocol for Real-Time Applications. RFC 1889, January
1996.

[4] Jonathan Rosenberg, Christian Huitema, Rohan Mahy, and Joel Weinberger.
STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). RFC 3489, March 2003.

[5] Philip Matthews, Jonathan Rosenberg, and Rohan Mahy. Traversal Using
Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN). RFC 5766, April 2010.

[6] Jonathan Rosenberg. Interactive Connectivity Establishment (ICE): A Pro-
tocol for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols. RFC 5245, April 2010.

[7] Marc Petit-Huguenin and Gonzalo Salgueiro. Multiplexing Scheme Updates
for Secure Real-time Transport Protocol (SRTP) Extension for Datagram
Transport Layer Security (DTLS). RFC 7983, 2016.

[8] Christer Holmberg, Stefan Hakansson, and Goran Eriksson. Web Real-Time
Communication Use Cases and Requirements. RFC 7478, 2015.

[9] Magnus Westerlund and Stephan Wenger. RTP Topologies. RFC 7667,
November 2015.

[10] Roy T. Fielding, Henrik Nielsen, Jeffrey Mogul, Jim Gettys, and Tim Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2068, January 1997.

162 References

[11] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Proto-
col Version 2 (HTTP/2). RFC 7540, May 2015.

[12] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn, Alessan-
dro Finamore, and Konstantina Papagiannaki. Is the web http/2 yet? In
International Conference on Passive and Active Network Measurement, pages
218–232. Springer, 2016.

[13] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

[14] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and
Danilo Giordano. A network analysis on cloud gaming: Stadia, geforce now
and psnow. Network, 1(3):247–260, 2021.

[15] Ryan Shea, Jiangchuan Liu, Edith C-H Ngai, and Yong Cui. Cloud gaming:
architecture and performance. IEEE network, 27(4):16–21, 2013.

[16] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen.
Gaminganywhere: an open cloud gaming system. In Proceedings of the 4th
ACM multimedia systems conference, pages 36–47, 2013.

[17] Henning Schulzrinne, Stephen Casner, Ron Frederick, and Van Jacobson. Rtp:
A transport protocol for real-time applications. Technical report, 2003.

[18] Branislav Sredojev, Dragan Samardzija, and Dragan Posarac. Webrtc tech-
nology overview and signaling solution design and implementation. In 2015
38th international convention on information and communication technology,
electronics and microelectronics (MIPRO), pages 1006–1009. IEEE, 2015.

[19] Martino Trevisan, Ali Safari Khatouni, and Danilo Giordano. Errant: Realistic
emulation of radio access networks. Computer Networks, 176:107289, 2020.

[20] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and
Danilo Giordano. A network analysis on cloud gaming: Stadia, GeForce Now
and PSNow. Zenodo, 2021.

[21] Marc Carrascosa and Boris Bellalta. Cloud-gaming: Analysis of google stadia
traffic. Computer Communications, 188:99–116, 2022.

[22] Philippe Graff, Xavier Marchal, Thibault Cholez, Stéphane Tuffin, Bertrand
Mathieu, and Olivier Festor. An analysis of cloud gaming platforms behavior
under different network constraints. In 2021 17th International Conference
on Network and Service Management (CNSM), pages 551–557. IEEE, 2021.

[23] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingning Han, John
Koleszar, Paul Wilkins, Yaowu Xu, and Ronald Bultje. The latest open-source
video codec vp9-an overview and preliminary results. In 2013 Picture Coding
Symposium (PCS), pages 390–393. IEEE, 2013.

References 163

[24] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu,
Victor CM Leung, and Cheng-Hsin Hsu. A survey on cloud gaming: Future
of computer games. IEEE Access, 4:7605–7620, 2016.

[25] Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-
Hsin Hsu. Placing virtual machines to optimize cloud gaming experience.
IEEE Transactions on Cloud Computing, 3(1):42–53, 2014.

[26] Arto Ojala and Pasi Tyrvainen. Developing cloud business models: A case
study on cloud gaming. IEEE software, 28(4):42–47, 2011.

[27] Florian Metzger, Stefan Geißler, Alexej Grigorjew, Frank Loh, Christian
Moldovan, Michael Seufert, and Tobias Hoßfeld. An introduction to online
video game qos and qoe influencing factors. IEEE Communications Surveys
& Tutorials, 24(3):1894–1925, 2022.

[28] Yanjiao Chen, Kaishun Wu, and Qian Zhang. From qos to qoe: A tutorial
on video quality assessment. IEEE Communications Surveys & Tutorials,
17(2):1126–1165, 2014.

[29] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. Achieving consistent low latency for wireless real-time
communications with the shortest control loop. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 193–206, 2022.

[30] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan,
Walter Wong, and Jussi Kangasharju. Pruning edge research with latency
shears. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 182–189, New York, NY, USA, 2020. Association for
Computing Machinery.

[31] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj, Babak Naderi,
Carsten Griwodz, and Sebastian Möller. A latency compensation technique
based on game characteristics to mitigate the influence of delay on cloud
gaming quality of experience. In Proceedings of the 11th ACM Multimedia
Systems Conference, pages 15–25, 2020.

[32] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-
Laung Lei. Measuring the latency of cloud gaming systems. In Proceedings
of the 19th ACM international conference on Multimedia, pages 1269–1272,
2011.

[33] Mark Claypool and David Finkel. The effects of latency on player performance
in cloud-based games. In 2014 13th Annual Workshop on Network and Systems
Support for Games, pages 1–6. IEEE, 2014.

[34] Xavier Marchal, Philippe Graff, Joël Roman Ky, Thibault Cholez, Stéphane
Tuffin, Bertrand Mathieu, and Olivier Festor. An analysis of cloud gaming
platforms behaviour under synthetic network constraints and real cellular

164 References

networks conditions. Journal of Network and Systems Management, 31(2):39,
2023.

[35] Philippe Graff, Xavier Marchal, Thibault Cholez, Bertrand Mathieu, and
Olivier Festor. Efficient identification of cloud gaming traffic at the edge. In
NOMS 2023-2023 IEEE/IFIP Network Operations and Management Sympo-
sium, pages 1–10, 2023.

[36] Joël Roman Ky, Bertrand Mathieu, Abdelkader Lahmadi, and Raouf Boutaba.
Assessing unsupervised machine learning solutions for anomaly detection in
cloud gaming sessions. In 2022 18th International Conference on Network
and Service Management (CNSM), pages 367–373, 2022.

[37] M. Trevisan, A. S. Khatouni, and D. Giordano. ERRANT: Realistic emulation
of radio access networks. Computer Networks, 176:107289, 2020.

[38] Martino Trevisan, Alessandro Finamore, Marco Mellia, Maurizio Munafo,
and Dario Rossi. Traffic analysis with off-the-shelf hardware: Challenges and
lessons learned. IEEE Communications Magazine, 55(3):163–169, 2017.

[39] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport
protocol for real-time applications. Rfc, RFC Editor, 07 2003.

[40] Carsten Burmeister, Jose Rey, Noriyuki Sato, Joerg Ott, and Stephan Wenger.
Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based
Feedback (RTP/AVPF). RFC 4585, 2006.

[41] Luca Vassio, Hassan Metwalley, and Danilo Giordano. The exploitation of
web navigation data: Ethical issues and alternative scenarios. In Blurring the
Boundaries Through Digital Innovation, pages 119–129. Springer, 2016.

[42] Gianluca Perna, Martino Trevisan, Danilo Giordano, and Idilio Drago. A
first look at http/3 adoption and performance. Computer Communications,
187:115–124, 2022.

[43] Mike Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-
Draft draft-ietf-quic-http-34, Internet Engineering Task Force, 2021. Work in
Progress.

[44] J. Iyengar and M. Thomson. Quic: A udp-based multiplexed and secure
transport. RFC 9000, RFC Editor, May 2021.

[45] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. An early benchmark
of quality of experience between http/2 and http/3 using lighthouse. arXiv
preprint arXiv:2004.01978, 2020.

[46] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. Same standards,
different decisions: A study of quic and http/3 implementation diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoper-
ability of QUIC, pages 14–20, 2020.

References 165

[47] Sreeni Tellakula. Comparing HTTP/3 vs. HTTP/2 Performance. https://blog.
cloudflare.com/http-3-vs-http-2/, April 2020.

[48] Luis Guillen, Satoru Izumi, Toru Abe, and Takuo Suganuma. Sand/3: Sdn-
assisted novel qoe control method for dynamic adaptive streaming over http/3.
Electronics, 8(8):864, 2019.

[49] Darius Saif and Ashraf Matrawy. A pure http/3 alternative to mqtt-over-quic
in resource-constrained iot. arXiv preprint arXiv:2106.12684, 2021.

[50] Dominic Lovell, Barry Pollard, Robin Marx, and Shaina Hantsis. Part IV
Chapter 24, HTTP), 2021.

[51] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. A performance
perspective on web optimized protocol stacks: Tcp+ tls+ http/2 vs. quic. In
Proceedings of the Applied Networking Research Workshop, pages 1–7, 2019.

[52] Jawad Manzoor, Llorenç Cerdà-Alabern, Ramin Sadre, and Idilio Drago. On
the performance of quic over wireless mesh networks. Journal of Network
and Systems Management, 28(4):1872–1901, 2020.

[53] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. Http over udp: An
experimental investigation of quic. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, SAC ’15, page 609–614, New York, NY,
USA, 2015. Association for Computing Machinery.

[54] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru,
and Alan Mislove. Taking a long look at quic: an approach for rigorous
evaluation of rapidly evolving transport protocols. In Proceedings of the 2017
Internet Measurement Conference, pages 290–303, 2017.

[55] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. Beyond quic v1–a first
look at recent transport layer ietf standardization efforts. arXiv preprint
arXiv:2102.07527, 2021.

[56] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides,
Renata Teixeira, and Dario Rossi. Narrowing the gap between qos metrics
and web qoe using above-the-fold metrics. In International Conference on
Passive and Active Network Measurement, pages 31–43. Springer, 2018.

[57] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias
Hoßfeld, and Phuoc Tran-Gia. A survey on quality of experience of http
adaptive streaming. IEEE Communications Surveys & Tutorials, 17(1):469–
492, 2014.

[58] Thiago Guarnieri, Idilio Drago, Alex B. Vieira, Italo Cunha, and Jussara
Almeida. Characterizing qoe in large-scale live streaming. In GLOBECOM
2017 - 2017 IEEE Global Communications Conference, pages 1–7, 2017.

https://blog.cloudflare.com/http-3-vs-http-2/
https://blog.cloudflare.com/http-3-vs-http-2/

166 References

[59] Daniel Perdices, Gianluca Perna, Martino Trevisan, Danilo Giordano, and
Marco Mellia. When satellite is all you have: Watching the internet from 550
ms. IMC ’22, page 137–150, New York, NY, USA, 2022. Association for
Computing Machinery.

[60] José Luis García-Dorado, Alessandro Finamore, Marco Mellia, Michela Meo,
and Maurizio Munafo. Characterization of isp traffic: Trends, user habits,
and access technology impact. IEEE Transactions on Network and Service
Management, 9(2):142–155, 2012.

[61] Matthew Sargent and Mark Allman. Performance within a fiber-to-the-home
network. ACM SIGCOMM Computer Communication Review, 44(3), 2014.

[62] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. Understanding operational 5g: A
first measurement study on its coverage, performance and energy consumption.
In Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 479–494, 2020.

[63] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu,
Feng Qian, and Zhi-Li Zhang. A first look at commercial 5g performance on
smartphones. In Proceedings of The Web Conference 2020, pages 894–905,
2020.

[64] Martino Trevisan, Danilo Giordano, Idilio Drago, Maurizio Matteo Munafò,
and Marco Mellia. Five years at the edge: Watching internet from the isp
network. IEEE/ACM Transactions on Networking, 28(2):561–574, 2020.

[65] Thomas Koch, Ethan Katz-Bassett, John Heidemann, Matt Calder, Calvin
Ardi, and Ke Li. Anycast in context: A tale of two systems. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 398–417,
New York, NY, USA, 2021. Association for Computing Machinery.

[66] (how much) can edge computing change network latency? In 2021 IFIP
Networking Conference (IFIP Networking), pages 1–9, 2021.

[67] Yurong Hu and V.O.K. Li. Satellite-based internet: a tutorial. IEEE Commu-
nications Magazine, 39(3):154–162, 2001.

[68] Oltjon Kodheli, Eva Lagunas, Nicola Maturo, Shree Krishna Sharma, Bha-
vani Shankar, Jesus Fabian Mendoza Montoya, Juan Carlos Merlano Duncan,
Danilo Spano, Symeon Chatzinotas, Steven Kisseleff, et al. Satellite com-
munications in the new space era: A survey and future challenges. IEEE
Communications Surveys & Tutorials, 23(1):70–109, 2020.

[69] J Border. Enhancing proxies intended to mitigate link-related degradations.
RFC 3135, 2001.

References 167

[70] J. Zhu, S. Roy, and J.H. Kim. Performance modelling of tcp enhancements in
terrestrial–satellite hybrid networks. IEEE/ACM Transactions on Networking,
14(4):753–766, 2006.

[71] Alain Pirovano and Fabien Garcia. A new survey on improving tcp per-
formances over geostationary satellite link. Network and Communication
Technologies, 2(1):1, 2013.

[72] François Michel, Martino Trevisan, Danilo Giordano, and Olivier Bonaven-
ture. A first look at starlink performance. In Proceedings of the 2022 Internet
Measurement Conference, 2022.

[73] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb
Moll, Robert Rockell, Ted Seely, and S Christophe Diot. Packet-level traffic
measurements from the sprint ip backbone. IEEE network, 17(6):6–16, 2003.

[74] Marina Fomenkov, Ken Keys, David Moore, and KC Claffy. Longitudinal
study of internet traffic in 1998-2003. In Proceedings of the winter interna-
tional synposium on Information and communication technologies, pages 1–6,
2004.

[75] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. On dominant
characteristics of residential broadband internet traffic. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement, pages 90–102,
2009.

[76] Zachary S Bischof, Fabián E Bustamante, and Rade Stanojevic. Need, want,
can afford: Broadband markets and the behavior of users. In Proceedings
of the 2014 Conference on Internet Measurement Conference, pages 73–86,
2014.

[77] Pierre Borgnat, Guillaume Dewaele, Kensuke Fukuda, Patrice Abry, and
Kenjiro Cho. Seven years and one day: Sketching the evolution of internet
traffic. In IEEE INFOCOM 2009, pages 711–719. IEEE, 2009.

[78] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. Internet inter-domain traffic. ACM SIGCOMM Computer
Communication Review, 40(4):75–86, 2010.

[79] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar
Poese, Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapi-
ador, Narseo Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis.
The lockdown effect: Implications of the covid-19 pandemic on internet traffic.
In Proceedings of the ACM Internet Measurement Conference, IMC ’20, page
1–18, New York, NY, USA, 2020. Association for Computing Machinery.

[80] Thomas Favale, Francesca Soro, Martino Trevisan, Idilio Drago, and Marco
Mellia. Campus traffic and e-Learning during COVID-19 pandemic. Com-
puter Networks, 176:107290, 2020.

168 References

[81] Timm Böttger, Ghida Ibrahim, and Ben Vallis. How the internet reacted to
covid-19: A perspective from facebook’s edge network. In Proceedings of the
ACM Internet Measurement Conference, pages 34–41, 2020.

[82] David L Johnson, Veljko Pejovic, Elizabeth M Belding, and Gertjan Van Stam.
Traffic characterization and internet usage in rural africa. In Proceedings
of the 20th international conference companion on World wide web, pages
493–502, 2011.

[83] Daniel Minoli. Innovations in satellite communications and satellite technol-
ogy: the industry implications of DVB-S2X, high throughput satellites, Ultra
HD, M2M, and IP. John Wiley & Sons, 2015.

[84] Joerg Deutschmann, Thomas Heyn, Christian Rohde, Kai-Steffen Hielscher,
and Reinhard German. Broadband internet access via satellite: State-of-the-
art and future directions. In Broadband Coverage in Germany; 15th ITG-
Symposium, 2021.

[85] M Tropea and P Fazio. Evaluation of tcp versions over geo satellite links. In
2013 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), pages 86–90. IEEE, 2013.

[86] Fei Peng, Ángel Salamanca Cardona, Kaveh Shafiee, and Victor CM Leung.
Tcp performance evaluation over geo and leo satellite links between perfor-
mance enhancement proxies. In 2012 IEEE Vehicular Technology Conference
(VTC Fall), 2012.

[87] Muhammad Muhammad, Matteo Berioli, and Tomaso De Cola. A simulation
study of network-coding-enhanced pep for tcp flows in geo satellite networks.
In 2014 IEEE International Conference on Communications (ICC), pages
3588–3593. IEEE, 2014.

[88] A Abdelsalam, Michele Luglio, Mattia Quadrini, Cesare Roseti, and
Francesco Zampognaro. Quic-proxy based architecture for satellite com-
munication to enhance a 5g scenario. In 2019 International Symposium on
Networks, Computers and Communications (ISNCC), pages 1–6. IEEE, 2019.

[89] Ludovic Thomas, Emmanuel Dubois, Nicolas Kuhn, and Emmanuel Lochin.
Google quic performance over a public satcom access. International Journal
of Satellite Communications and Networking, 37(6):601–611, 2019.

[90] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel Dubois, and
Emmanuel Lochin. Quic: Opportunities and threats in satcom. In 2020
10th Advanced Satellite Multimedia Systems Conference and the 16th Signal
Processing for Space Communications Workshop (ASMS/SPSC), pages 1–7.
IEEE, 2020.

[91] Jörg Deutschmann, Kai-Steffen Hielscher, and Reinhard German. Satellite
internet performance measurements. In 2019 International Conference on
Networked Systems (NetSys), pages 1–4. IEEE, 2019.

References 169

[92] Aravindh Raman, Matteo Varvello, Hyunseok Chang, Nishanth Sastry, and
Yasir Zaki. Dissecting the performance of satellite network operators. Pro-
ceedings of the ACM on Networking, 1(CoNEXT3):1–25, 2023.

[93] Mohamed M. Kassem, Aravindh Raman, Diego Perino, and Nishanth Sastry.
A browser-side view of starlink connectivity. In Proceedings of the 2022
Internet Measurement Conference, 2022.

[94] Jim Griner, John Border, Markku Kojo, Zach D. Shelby, and Gabriel Mon-
tenegro. Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations. RFC 3135, June 2001.

[95] DPDK Intel. Data plane development kit, 2014.

[96] Jinliang Fan, Jun Xu, and Mostafa H Ammar. Crypto-pan: Cryptography-
based prefix-preserving anonymization. Computer Networks, 46(2), 2004.

[97] Luca Schumann, Trinh Viet Doan, Tanya Shreedhar, Ricky Mok, and Vaibhav
Bajpai. Impact of evolving protocols and covid-19 on internet traffic shares.
arXiv preprint arXiv:2201.00142, 2022.

[98] Christoph Stork, Enrico Calandro, and Alison Gillwald. Internet going mobile:
internet access and use in 11 african countries. info, 2013.

[99] Samuel Maredi Mojapelo. The internet access and use in public libraries in
limpopo province, south africa. Public Library Quarterly, 39(3):265–282,
2020.

[100] Laura Silver and Courtney Johnson. Internet connectivity seen as having
positive impact on life in sub-saharan africa. 2018.

[101] Digital TV Research. Africa svod forecasts. https://digitaltvresearch.com/
product/africa-svod-forecasts/, 2022.

[102] Conviva. Conviva’s state of streaming. https://pages.conviva.com/rs/
138-XJA-134/images/RPT_Conviva_State_of_Streaming_Q3_2021.pdf,
2021.

[103] Gianluca Perna, Dena Markudova, Martino Trevisan, Paolo Garza, Michela
Meo, and Maurizio M Munafò. Retina: An open-source tool for flexible
analysis of rtc traffic. Computer Networks, 202:108637, 2022.

[104] Antonio Nistico, Dena Markudova, Martino Trevisan, Michela Meo, and
Giovanna Carofiglio. A comparative study of rtc applications. In 2020 IEEE
International Symposium on Multimedia (ISM), pages 1–8. IEEE, 2020.

[105] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre,
Anna Sperotto, and Aiko Pras. Flow monitoring explained: From packet
capture to data analysis with netflow and ipfix. IEEE Communications Surveys
& Tutorials, 16(4):2037–2064, 2014.

https://digitaltvresearch.com/product/africa-svod-forecasts/
https://digitaltvresearch.com/product/africa-svod-forecasts/
https://pages.conviva.com/rs/138-XJA-134/images/RPT_Conviva_State_of_Streaming_Q3_2021.pdf
https://pages.conviva.com/rs/138-XJA-134/images/RPT_Conviva_State_of_Streaming_Q3_2021.pdf

170 References

[106] Benoît Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954,
October 2004.

[107] Luca Deri and NETikos SpA. nprobe: an open source netflow probe for
gigabit networks. In TERENA Networking Conference, pages 1–4, 2003.

[108] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security.
RFC 4347, April 2006.

[109] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and
Danilo Giordano. A network analysis on cloud gaming: Stadia, GeForce Now
and PSNow, 2021.

[110] Gianluca Perna, Dena Markudova, Martino Trevisan, Paolo Garza, Michela
Meo, Maurizio M Munafò, and Giovanna Carofiglio. Online classification
of rtc traffic. In 2021 IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC), pages 1–6. IEEE, 2021.

[111] Gianluca Perna, Dena Markudova, Martino Trevisan, Paolo Garza, Michela
Meo, Maurizio M Munafò, and Giovanna Carofiglio. Real-time classification
of real-time communications. IEEE Transactions on Network and Service
Management, 2022.

[112] Dena Markudova, Martino Trevisan, Paolo Garza, Michela Meo, Maurizio M
Munafo, and Giovanna Carofiglio. What’s my App?: ML-based classification
of RTC applications. ACM SIGMETRICS Performance Evaluation Review,
48(4):41–44, 2021.

[113] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia. Five
years at the edge: Watching internet from the isp network. IEEE/ACM Trans.
on Networking, 28(2):561–574, 2020.

[114] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger,
Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter
Steenkiste. The cost of the" s" in https. In Proc. of the 10th ACM Inter-
national on Conf. on emerging Networking Experiments and Technologies,
pages 133–140, 2014.

[115] M. Finsterbusch, C. Richter, E. Rocha, J. Muller, and K. Hanssgen. A survey
of payload-based traffic classification approaches. IEEE Communications
Surveys Tutorials, 16(2):1135–1156, 2014.

[116] E. Baştuğ, M. Bennis, and M. Debbah. A transfer learning approach for
cache-enabled wireless networks. In 2015 13th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pages 161–166, 2015.

[117] Z. Xu, D. Yang, J. Tang, Y. Tang, T. Yuan, Y. Wang, and G. Xue. An actor-
critic-based transfer learning framework for experience-driven networking.
IEEE/ACM Transactions on Networking, 29(1):360–371, 2021.

References 171

[118] Selim Ickin, Markus Fiedler, and Konstantinos Vandikas. Customized video
qoe estimation with algorithm-agnostic transfer learning. arXiv preprint
arXiv:2003.08730, 2020.

[119] Y. Hao, J. Yang, M. Chen, M. S. Hossain, and M. F. Alhamid. Emotion-aware
video qoe assessment via transfer learning. IEEE MultiMedia, 26(1):31–40,
2019.

[120] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for
unsupervised domain adaptation. In Domain Adaptation in Computer Vision
Applications, pages 153–171. Springer, 2017.

[121] Cristina Rottondi, Riccardo di Marino, Mirko Nava, Alessandro Giusti, and
Andrea Bianco. On the benefits of domain adaptation techniques for quality
of transmission estimation in optical networks. Journal of Optical Communi-
cations and Networking, 13(1):A34–A43, 2021.

[122] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for internet
traffic classification using machine learning. IEEE communications surveys &
tutorials, 10(4):56–76, 2008.

[123] Martino Trevisan, Idilio Drago, Marco Mellia, Han Hee Song, and Mario
Baldi. What: A big data approach for accounting of modern web services. In
2016 IEEE Int. Conf. on Big Data (Big Data), pages 2740–2745. IEEE, 2016.

[124] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.
Mobile encrypted traffic classification using deep learning. In 2018 Network
Traffic Measurement and Analysis Conference (TMA), pages 1–8. IEEE, 2018.

[125] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Srini-
vasan Seshan, Shobha Venkataraman, and He Yan. Modeling web quality-
of-experience on cellular networks. In Proceedings of the 20th annual inter-
national conference on Mobile computing and networking, pages 213–224,
2014.

[126] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. A
machine learning approach to classifying youtube qoe based on encrypted
network traffic. Multimedia tools and applications, 76(21):22267–22301,
2017.

[127] Pedro Casas, Alessandro D’Alconzo, Florian Wamser, Michael Seufert, Bruno
Gardlo, Anika Schwind, Phuoc Tran-Gia, and Raimund Schatz. Predicting qoe
in cellular networks using machine learning and in-smartphone measurements.
In Ninth International Conf. on Quality of Multimedia Experience, pages 1–6.
IEEE, 2017.

[128] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo To-
fanelli. Revealing skype traffic: when randomness plays with you. In Pro-
ceedings of the 2007 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 37–48, 2007.

172 References

[129] A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: Stochastic packet
inspection classifier for udp traffic. IEEE/ACM Transactions on Networking,
18(5):1505–1515, 2010.

[130] A. S. Buyukkayhan, A. Kavak, and E. Yaprak. Differentiating voice and
data traffic using statistical properties. In 2013 International Conference on
Electronics, Computer and Computation (ICECCO), pages 76–79, 2013.

[131] M. Di Mauro and M. Longo. Revealing encrypted webrtc traffic via machine
learning tools. In 2015 12th International Joint Conference on e-Business and
Telecommunications, volume 04, pages 259–266, 2015.

[132] T. Sinam, I. T. Singh, P. Lamabam, N. N. Devi, and S. Nandi. A technique for
classification of voip flows in udp media streams using voip signalling traffic.
In 2014 IEEE International Advance Computing Conference (IACC), pages
354–359, 2014.

[133] Nanditha Rao, A Maleki, F Chen, Wenjun Chen, C Zhang, Navneet Kaur,
and Anwar Haque. Analysis of the effect of qos on video conferencing qoe.
In 2019 15th International Wireless Communications & Mobile Computing
Conference (IWCMC), pages 1267–1272. IEEE, 2019.

[134] Boni Garcia, Micael Gallego, Francisco Gortazar, and Antonia Bertolino.
Understanding and estimating quality of experience in webrtc applications.
Computing, 101(11):1585–1607, 2019.

[135] Manuela Vaser and Sonia Forconi. Qos kpi and qoe kqi relationship for lte
video streaming and volte services. In 2015 9th International Conference
on Next Generation Mobile Applications, Services and Technologies, pages
318–323. IEEE, 2015.

[136] Jan Badshah, Majed Mohaia Alhaisoni, Nadir Shah, and Muhammad Kamran.
Cache servers placement based on important switches for sdn-based icn.
Electronics, 9(1):39, 2020.

[137] Jan Badshah, Muhammad Kamran, Nadir Shah, and Shahbaz Akhtar Abid.
An improved method to deploy cache servers in software defined network-
based information centric networking for big data. Journal of Grid Computing,
17(2):255–277, 2019.

[138] Dohyung Kim and Younghoon Kim. Enhancing ndn feasibility via dedicated
routing and caching. Computer networks, 126:218–228, 2017.

[139] Stuart Clayman, Reza Shokri Kalan, and Müge Sayit. Virtualized cache
placement in an sdn/nfv assisted sand architecture. In 2018 IEEE International
Black Sea Conference on Communications and Networking (BlackSeaCom),
pages 1–5. IEEE, 2018.

References 173

[140] Muhammad Shafiq, Xiangzhan Yu, and Asif Ali Laghari. Wechat traffic
classification using machine learning algorithms and comparative analysis
of datasets. International Journal of Information and Computer Security,
10(2-3):109–128, 2018.

[141] Petr Matousek, Ondrej Rysavy, and Martin Kmet. Fast rtp detection and
codecs classification in internet traffic. Journal of Digital Forensics, Security
and Law, 01 2014.

[142] M. C. S, S. H, and T. E. Somu. Network traffic classification by packet
length signature extraction. In 2019 IEEE International WIE Conference on
Electrical and Computer Engineering, pages 1–4, 2019.

[143] P. Choudhury, K. R. Prasanna Kumar, G. Athithan, and S. Nandi. Analysis of
vbr coded voip for traffic classification. In 2013 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages
90–95, 2013.

[144] Giovanna Carofiglio, Giulio Grassi, Enrico Loparco, Luca Muscariello,
Michele Papalini, and Jacques Samain. Characterizing the relationship be-
tween application qoe and network qos for real-time services. In Proceedings
of the ACM SIGCOMM 2021 Workshop on Network-Application Integration,
pages 20–25, 2021.

[145] Robert C Streijl, Stefan Winkler, and David S Hands. Mean opinion score
(mos) revisited: methods and applications, limitations and alternatives. Multi-
media Systems, 22(2):213–227, 2016.

[146] Dunja Vucic and Lea Skorin-Kapov. The impact of packet loss and google
congestion control on qoe for webrtc-based mobile multiparty audiovisual
telemeetings. In International Conference on Multimedia Modeling, pages
459–470. Springer, 2019.

[147] International Telecommunication Union – Telecommunication Standardiza-
tion Bureau. Recommendation ITU-T G.1070 – Opinion model for video-
telephony applications. 2018.

[148] International Telecommunication Union – Telecommunication Standardiza-
tion Bureau. Recommendation ITU-T G.107.1 – Wideband E-model. 2019.

[149] Martino Trevisan, Alessandro Finamore, Marco Mellia, Maurizio Munafo,
and Dario Rossi. Traffic Analysis with Off-the-Shelf Hardware: Challenges
and Lessons Learned. IEEE Commun. Mag., 55(3):163–169, 2017.

[150] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

174 References

[151] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene
selection for cancer classification using support vector machines. Machine
learning, 46(1-3):389–422, 2002.

[152] Laura Toloşi and Thomas Lengauer. Classification with correlated features:
unreliability of feature ranking and solutions. Bioinformatics, 27(14):1986–
1994, 2011.

[153] Lorien Y Pratt. Discriminability-based transfer between neural networks.
Advances in neural information processing systems, pages 204–204, 1993.

[154] Daniel Perdices, Gianluca Perna, Martino Trevisan, Danilo Giordano, and
Marco Mellia. When satellite is all you have: Watching the internet from 550
ms. In Proceedings of the 22nd ACM Internet Measurement Conference, IMC
’22, page 137–150, New York, NY, USA, 2022. Association for Computing
Machinery.

[155] Paul Davern, Noor Nashid, Cormac J Sreenan, and Ahmed Zahran. Httpep: A
http performance enhancing proxy for satellite systems. International Journal
of Next Generation Computing (IJNGC), 2:242–256, 2011.

[156] Igor Bisio, Stefano Delucchi, Fabio Lavagetto, and Mario Marchese. Transmis-
sion rate allocation over satellite networks with quality of experience-based
performance metrics. In 2014 7th advanced satellite multimedia systems con-
ference and the 13th signal processing for space communications workshop
(ASMS/SPSC), pages 419–423. IEEE, 2014.

[157] Adrien Thibaud, Julien Fasson, Fabrice Arnal, David Pradas, Emmanuel
Dubois, and Emmanuel Chaput. Qoe enhancements on satellite networks
through the use of caches. International Journal of Satellite Communications
and Networking, 36(6):553–565, 2018.

[158] Andreas Sackl, Pedro Casas, Raimund Schatz, Lucjan Janowski, and Ralf
Irmer. Quantifying the impact of network bandwidth fluctuations and outages
on web qoe. In 2015 Seventh International Workshop on Quality of Multimedia
Experience (QoMEX), pages 1–6, 2015.

[159] Tobias Hoßfeld, Florian Metzger, and Dario Rossi. Speed index: Relating
the industrial standard for user perceived web performance to web qoe. In
2018 Tenth International Conference on Quality of Multimedia Experience
(QoMEX), pages 1–6, 2018.

[160] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides,
Renata Teixeira, and Dario Rossi. Narrowing the gap between qos metrics
and web qoe using above-the-fold metrics. In Robert Beverly, Georgios
Smaragdakis, and Anja Feldmann, editors, Passive and Active Measurement,
pages 31–43, Cham, 2018. Springer International Publishing.

References 175

[161] Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the quality of
experience of web users. ACM SIGCOMM Computer Communication Review,
46(4):8–13, 2016.

[162] Martino Trevisan, Idilio Drago, and Marco Mellia. Pain: A passive web
performance indicator for isps. Computer Networks, 149:115–126, 2019.

[163] Luis Roberto Jiménez, Marta Solera, Matías Toril, Carolina Gijón, and Pedro
Casas. Content matters: Clustering web pages for qoe analysis with webclust.
IEEE Access, 9:123873–123888, 2021.

[164] Alexis Huet, Antoine Saverimoutou, Zied Ben Houidi, Hao Shi, Shengming
Cai, Jinchun Xu, Bertrand Mathieu, and Dario Rossi. Revealing qoe of web
users from encrypted network traffic. In 2020 IFIP Networking Conference
(Networking), pages 28–36. IEEE, 2020.

[165] Pedro Casas, Sarah Wassermann, Nikolas Wehner, Michael Seufert, Joshua
Schüler, and Tobias Hossfeld. Mobile web and app qoe monitoring for isps-
from encrypted traffic to speed index through machine learning. In 2021 13th
IFIP Wireless and Mobile Networking Conference (WMNC), pages 40–47.
IEEE, 2021.

[166] Pedro Casas, Sarah Wassermann, Nikolas Wehner, Michael Seufert, and
Tobias Hossfeld. Not all web pages are born the same content tailored
learning for web qoe inference. In 2022 IEEE International Symposium on
Measurements & Networking (M&N), pages 1–6. IEEE, 2022.

[167] Olga Kondratyeva, Natalia Kushik, Ana Cavalli, and Nina Yevtushenko. Eval-
uating quality of web services: A short survey. In 2013 IEEE 20th Interna-
tional Conference on Web Services, pages 587–594. IEEE, 2013.

[168] Sabina Baraković and Lea Skorin-Kapov. Survey of research on quality of
experience modelling for web browsing. Quality and User Experience, 2:1–
31, 2017.

[169] Tobias Hoßfeld, Sebastian Biedermann, Raimund Schatz, Alexander Platzer,
Sebastian Egger, and Markus Fiedler. The memory effect and its implications
on web qoe modeling. In 2011 23rd International Teletraffic Congress (ITC),
pages 103–110, 2011.

[170] Pengfei Wang, Matteo Varvello, and Aleksandar Kuzmanovic. Kaleidoscope:
A crowdsourcing testing tool for web quality of experience.

[171] Christian Niephaus, Mathias Kretschmer, and Gheorghita Ghinea. Qos provi-
sioning in converged satellite and terrestrial networks: A survey of the state-of-
the-art. IEEE Communications Surveys & Tutorials, 18(4):2415–2441, 2016.

[172] Matthieu Petrou, David Pradas, Mickaël Royer, and Emmanuel Lochin. Fore-
casting youtube qoe over satcom. In The IEEE 97th Vehicular Technology
Conference, 2023.

176 References

[173] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel Dubois, Em-
manuel Lochin, Francklin Simo, and David Pradas. Quic: Opportunities and
threats in satcom. International Journal of Satellite Communications and
Networking, 40(6):379–391, 2022.

[174] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M
Maggs. On landing and internal web pages: The strange case of jekyll and
hyde in web performance measurement. In Proceedings of the ACM Internet
Measurement Conference, pages 680–695, 2020.

[175] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco Mellia. The internet
with privacy policies: Measuring the web upon consent. ACM Transactions
on the Web (TWEB), 16(3):1–24, 2022.

[176] Mohammad Rajiullah, Andra Lutu, Ali Safari Khatouni, Mah-Rukh Fida,
Marco Mellia, Anna Brunstrom, Ozgu Alay, Stefan Alfredsson, and Vincenzo
Mancuso. Web experience in mobile networks: Lessons from two million
page visits. In The World Wide Web Conference, pages 1532–1543, 2019.

[177] Sarah Wassermann, Pedro Casas, Zied Ben Houidi, Alexis Huet, Michael
Seufert, Nikolas Wehner, Joshua Schüler, Shengming Cai, Hao Shi, Jinchun
Xu, et al. Are you on mobile or desktop? on the impact of end-user device
on web qoe inference from encrypted traffic. In 2020 16th International
Conference on Network and Service Management (CNSM), pages 1–9. IEEE,
2020.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Outline
	1.2 List of Publications
	1.3 Open Source - Code and Dataset

	2 Background and Motivation
	2.1 Active and Passive Measurements
	2.2 Real-Time Transport Protocol
	2.3 Evolution and History of HTTP
	2.4 Metrics of QoS and QoE in Networking
	2.5 General Testbed Setup

	3 Cloud Gaming Measurements
	3.1 Motivation
	3.2 Related Work
	3.3 Measurement Collection
	3.4 Results
	3.4.1 Employed Protocols
	3.4.2 Network Testing
	3.4.3 Multimedia Streaming
	3.4.4 Network Workload
	3.4.5 Cloud Gaming under Mobile Networks
	3.4.6 Location of Gaming Machines

	3.5 Takeaways

	4 HTTP/3 - QUIC Measurements
	4.1 Motivation
	4.2 Related Work
	4.3 Datasets and Performance Metrics
	4.3.1 HTTP/3 Adoption
	4.3.2 HTTP/3 Performance
	4.3.3 Performance Metrics

	4.4 Dissecting HTTP/3 Adoption
	4.4.1 Websites Supporting HTTP/3
	4.4.2 Content Served over HTTP/3

	4.5 Web Browsing Performance
	4.5.1 HTTP/3 Performance by Provider
	4.5.2 Page Characteristics
	4.5.3 Performance for Mobile Users

	4.6 Performance of Adaptive Video Streaming
	4.6.1 Metrics
	4.6.2 Results

	4.7 Takeaways

	5 Satellite Network Measurements
	5.1 Motivation
	5.2 Related Work
	5.3 Measurement Setup and Methodology
	5.3.1 The SatCom Network
	5.3.2 Passive Measurements
	5.3.3 Ethical Aspects

	5.4 Dataset Processing and Overview
	5.4.1 Data Enrichment and Aggregation
	5.4.2 Dataset Overview

	5.5 How much Customers Consume
	5.6 What Customers Consume
	5.7 Which Performance Consumers Get
	5.7.1 Satellite RTT Analysis
	5.7.2 Ground RTT Analysis
	5.7.3 DNS Performance
	5.7.4 Implications on Server Selection Policies of CDNs and DNS Resolvers
	5.7.5 Throughput Analysis

	5.8 Takeaways

	6 Retina: An open-source tool for features extraction
	6.1 Motivation
	6.2 Related Work
	6.3 System Overview
	6.3.1 Inputs and Configuration
	6.3.2 System Core
	6.3.3 Outputs

	6.4 System Design Assets
	6.5 Publications Enabled by the Software
	6.6 Takeaways

	7 Machine Learning for QoE in Real-Time Communication
	7.1 Motivation
	7.2 Related Work
	7.3 Deployment Scenarios
	7.4 Dataset
	7.4.1 Data Collection
	7.4.2 Characterization and Challenges

	7.5 Methodology
	7.6 Experimental Results
	7.6.1 Classification Performance
	7.6.2 Parameter Sensitivity
	7.6.3 Training Set Size
	7.6.4 Feature Analysis
	7.6.5 Error Analysis
	7.6.6 Model Transfer to other Applications

	7.7 Takeaways

	8 Machine Learning for QoE in Satellite Communication
	8.1 Motivation
	8.2 Related Work
	8.3 System Design
	8.3.1 Problem Statement
	8.3.2 Test Agent Design
	8.3.3 Feature Engineering
	8.3.4 ML Pipeline

	8.4 Experimental Results
	8.4.1 Per-Website Model Performance
	8.4.2 One vs Many Models
	8.4.3 Temporal Stability
	8.4.4 Feature and Algorithm Impact

	8.5 Takeaways

	9 Conclusions
	9.1 Machine Learning for Networks: Personal Considerations

	References

