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Abstract

Sequential circuits often use flip-flops (FFs) or latches for data storage. Latches have
advantages in error-resilient applications, lower supply voltage operation, reduced
power consumption, and increased operating frequency. However, complex timing
constraints have limited their adoption in commercial and industrial designs. To over-
come this limitation, researchers have explored the automatic conversion of FF-based
designs into latch-based designs, primarily focusing on performance enhancement
by reducing the clock period and considering potential area improvements.

Different solutions have been proposed, including pulsed latch designs, multi-
phase clocking schemes and retiming methodologies. All of them have specific
drawbacks that limit their deployment in industrial design flows which consist
in: preventing pulse signal degradation in all operating conditions, increasing the
area due to additional retimed registers, lack of fomal verification methodology or
requiring multiple clocks generation and complex clock distribution networks.

In this thesis, we introduce a methodology called Mix&Latch, designed to address
the mentioned limitations.

The key-points of the proposed flow are: trasforming flip-flop designs into
positive transparent latches (PTLs) based designs that leverage time borrowing,
incorporating negative transparent latches (NTLs) as retention barriers, instead of
relying on delay padding, to address short-path hold constraints, employing a single
clock tree throughout the design and merging adjacent latch pairs into positive-edge-
triggered flops (PETFs) or negative-edge-triggered flops (NETFs) to reduce area
overhead.

The first part of this thesis provides a comprehensive explanation of the proposed
methodology. It describes the modeling of circuit timing and positional data, the
conversion of the optimization problem into an integer linear programming (ILP)
form and the enhancements made to the original methodology.
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The second part of this thesis presents the experimental results obtained. In the
initial version, experimental evaluations demonstrate the advantages of this approach
on a suite of benchmark circuits. The enhancements to the algorithm are then
evaluated on a RISC-V processor, showing a reduction in the implementation flow
runtime, diminished area overhead, and enhanced timing performance in comparison
to retiming, which was executed using a state-of-the-art commercial tool.
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Chapter 1

Motivations

1.1 Challenges in sequential circuits design

Aggressive pipelining is common, in modern digital circuits, to push the maximum
operating frequency. However, the addition of pipeline stages increases the number
of registers and impact timing analysis complexity [1]. Furthermore, the addition of
register stages caused by the extreme pipelining causes an increased use of resources
translated in a higher area and power consumption.

Timing analysis ensures the correct operation of digital circuits at a specified
frequency. These timing requirements can be categorized into two distinct classes
of constraints: 1. Setup timing constraints: These constraints primarily relates to
slow-propagating signals along the setup critical paths (SCPs). They are concerned
with determining the maximum clock speed and rely on the assessment of the longest
signal paths within the circuit. 2. Hold timing constraints: These constraints are
centered around fast-propagating signals along the hold critical paths (HCPs). Their
primary objective is to prevent early-sampling errors between pipeline stages and
hinge on the evaluation of the shortest signal paths.

In the realm of design methodologies, those based on FFs are the most prevalent
due to their advantages in terms of simplified timing analysis and robust support
within commercial electronic design automation (EDA) tools. Regarding the aspect
of hold timing constraints, the primary concern revolves around managing clock skew
between consecutive stages. It is imperative for this skew to be less than the delay
of the shortest signal path. In FF-based designs, this issue typically does not pose
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a significant bottleneck. However, when employing aggressive pipelining, which
entails increasing the number of sequential elements and consequently introducing a
greater number of timing constraints, the complexity of the optimization problem can
worsen. Setup timing constraints limit the maximum clock frequency of FF-based
design. Splitting the logic in balanced pipeline stages, the longest paths are divided
in shorter sub-paths, which timing is satisfied by smaller clock periods. However,
exactly like for hold timing rules, the number of constraints to be satisfied increases
with the addition of new pipeline stages.

SCP

HCP

Fig. 1.1 FF-based design

Latches offer advantages, primarily because they can operate at higher frequen-
cies, thanks to a feature known as time borrowing [2]. Time borrowing permits
slow-propagating signals to traverse a pipeline stage even after the clock edge, a
limitation that exists in FF-based approaches. However, it’s important to note that
latch-based pipelines with a single-phase clocking scheme suffer from stringent
minimum timing constraints.

SCP

HCP

Fig. 1.2 latch-based design

The potential for an early-sampling error condition between consecutive registers
is amplified due to the presence of time borrowing. This extended window offers fast
signals a larger time window to generate the race condition [3]. As a consequence,
single-phase latch-based designs are notably challenging to employ and are generally
avoided in industrial applications. Nevertheless, the inherent challenges of increasing
the number of pipeline stages in digital circuits, drive the exploration of innovative
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design and implementation approaches aimed at enhancing performance without
necessitating additional stages.

1.2 Latch-based designs

Sequential circuits use FFs or latches for data storage. Latches can be used in
error-resilient applications [4, 5], work at lower supply voltages, reduce power con-
sumption [6–8], and can increase operating frequency [9, 10]. Different approaches
have been proposed to solve the problem of implementing digital circuits using
latches instead of FFs. Because of the complexity in designing latch-based circuis
at register transfer level (RTL) , it is more efficient to transform FF-based netlist in
latch-based ones.

The seminal work of [11, 12] provides the formal definition of the system of
equations which describe the timing behavior of a latch-based design. The authors
show that the optimal timing analysis of a latch-based design can be performed by
solving a system of equations similar to the one used for FF-based designs. After a
linearization process, the system of equations is composed by linear equations and
inequalities which can be solved using linear programming techniques. However, the
increasing time to solve the linear programming model with bigger circuits strongly
limit the applicability of this method.

A sub-group of solutions rely on generating a finite number of non-overlapping
clocks, with optimized phases and duty cycles, fed to latches. The clocks definition
is usually done using post-synthesis timing analysis. Zhang et al. [13] study the
distribution of errors caused by sub-threshold voltage supply and propose a two-
phase clocked latch-based method to solve the timing violations. Fojtik et al. [4]
analyze a two clock-phase latch-based implementation of Razor flops to detect errors
in an ARM Cortex-M3 processor. Cheng et al. [14] discuss a conversion algorithm
using three clock phases to improve area and power consumption.

Another approach fully exploit duty cycle selection through the concept of pulsed
latch introduced in [15–21]. These are composed by latches and pulse generators
which shape the clock in input to latches in order to reduce their duty cycles to
pre-computed value that respect min and max contraints. To limit the area cost, the
pulse generators are shared by PTL groups and they are integrated either in a single
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sequential cell for pulsed FF (P-FF) (P-Ls with the pulse generator within the latch
cell) or in a cell containing multiple sequential blocks for pulsed registers (P-Rs).

Nevertheless, with shared pulse generators it is very difficult to prevent pulse sig-
nal degradation in all operating conditions [15], and the additional retimed registers
for solving the remaining hold violations further increase the area.

Another noteworthy set of solutions is the retiming-based approach. Retiming is
a technique that aims to achieve optimal balancing of combinational paths between
two registers by relocating the sequential element along the combinational paths.
This concept bears resemblance to pipelining but is executed automatically during
the implementation process, eliminating the need for manual intervention by the
designer. In most cases, flip-flops (FF) are modeled using the master-slave approach,
which employs two latches operating at opposite clock level polarities. Retiming-
based approach moves master and slave latches in order to balance the combinational
paths between them. These pairs of latches are working at opposite phases [22]
avoiding the addition of complexity to the min-timing constraints because, exactly
as in FF-based solutions, the requirement depends on the clock skew and the shortest
path delay without the time borrowing addition. The additional register stages
introduced by retiming can increase the complexity of the timing analysis and the
area of the design. Yoshikawa et al. [23] present a single-phase forward retiming
algorithm for FF-based design conversion, using commercial tools for retiming.
Hassan et al. [7] and Singh et al. [6] present implementation flows to transform
FF-based designs into latch-based or mixed designs. In almost all previous cases,
the optimization uses post-synthesis timing information that may substantially differ
from the post-layout one, thus potentially leading to grossly sub-optimal post-layout
performance. Furthermore, [7, 23] evaluate the performance only on post-synthesis
data, thus ignoring the place and route (P&R) overheads.

SCP1

HCP

SCP2

Fig. 1.3 dual_latch-based design
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1.3 Problem statement

Latch-based circuits have the potential to enhance the performance of digital circuits
by leveraging time borrowing, which allows longer paths to navigate through a
pipeline stage. Despite these advantages, their adoption in commercial solutions is
limited due to the intricate timing requirements stemming from stringent hold timing
constraints imposed by the same time borrowing mechanism that boosts frequency.
Various approaches have been proposed to address these challenges, often beginning
with the formulation of the clocking problem using clocks featuring different duty
cycles and phases. However, these approaches exhibit drawbacks that hinder their
applicability within industrial implementation workflows. Multi-phase solutions
necessitate the generation of multiple clocks, introducing a substantial overhead.
On the other hand, pulsed-latch based solutions entail the inclusion of on-chip
pulse generators, which result in added area overhead and complexity in ensuring
the signal integrity of the numerous clocks supplied to the sequential elements.
In contrast, retiming-based solutions have achieved state-of-the-art performance
without complicating the implementation process. Nevertheless, since they involve
relocating sequential elements within the circuit, they do not provide guarantees for
formal verification and design correctness.

SCP

HCP

Fig. 1.4 Mix & Latch-based design

This thesis introduces a methodology known as Mix & Latch, which effectively
tackles the issues discussed. This approach converts at first the FFs-based netlist in a
single-phase latch-based circuit, and within it, places retention barriers to address
the intricate minimum-timing constraints, thus alleviating the complexities in the
implementation process. These retention barriers comprise latches that operate at the
opposite polarity compared to the functional ones. Notably, there’s no necessity to
generate additional clocks because the retention barriers are synchronized with the
same clock used by the functional latches. Importantly, the proposed methodology
ensures the accuracy of the design and the feasibility of formal verification, as it
maintains the original register positions intact.



Chapter 2

Preliminary analysis

2.1 Timing analysis

The timing analysis process in sequential circuits defines the critical paths and helps
ensuring the correct sampling of the signals generated by the combinational logic.
Depending the nature of the sequential elements, the analysis is different. For each
different nature, the hold and setup constraints must be defined.

The simplest case is the one of the flip-flops, which are edge-triggered elements,
i.e. the sampling of the data is performed at the rising or falling edge of the clock
signal. Given a flip-flop (FF) j the longest path in input to the cell (di, j) contributes
to the clock period (T) lower bound:

T −Tsetup j ≥max
i

{
di, j−∆i

}
(2.1)

with ∆i equal to the maximum clock-to-Q delay of the sequential element i. The
shortest path in input to the cell (di, j) do not introduce bounds to the clock in FFs-
based systems, however it is important to consider it in order to avoid the early
sampling of the signal:

Thold j ≤min
i

{
di, j +δi

}
(2.2)

with δi equal to the minimum clock-to-Q delay of the sequential element i.

In latch-based circuits, that are level-sensitive elements, the analysis is more diffi-
cult. As already discussed in the previous chapter they allow for higher performance
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even though the possible early sampling caused by the transparent phase can lead
to an error in the dataflow. The seminal works [11, 12] formalize the problem of
the level-sensitive sequential circuits clocking, taking also into account the possible
phase shifts between the sampling stages, and provide a linear programming model
to find a solution to the optimal period clocking problem. The first additional degree
of complexity is related to the computation of the maximum (Di) and minimum (di)
departure time of the signal from the launching latch i. They can happen in any time
instant of its transparent phase, defined by the latch phase xi:

Di = max
i
{Ai,xi} (2.3)

di = max
i
{ai,xi} (2.4)

Starting from these definitions, the minimum (a j) and maximum (A j) arrival
times of the signal at the capturing latch:

A j = max
i, j

{
Di +∆i +di, j + xi

}
(2.5)

a j = min
i, j

{
di +δi +di, j + xi

}
(2.6)

The setup Eq. (2.7) and hold Eq. (2.8) constraints now takes into account the
transparent phase of the latches. Considering the time borrowing on the positive
clock level, the setup constraints become less stringent by a factor of duty cycle
(DC).

T · (1+DC)+ x j ≥ A j +Tsetup j (2.7)

And the hold constraints worsen by the same factor:

T · (DC)+ x j ≤ a j−Thold j (2.8)
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2.2 Clock skew

In sequential circuits, each sequential element is connected to a clock signal which is
used to synchronize the operation of the circuit. During the synthesis step, in circuits
using edge-triggered flip-flops, the optimization focuses in optimizing the logic paths
in order to reduce the delay of the longest paths. However, the physical synthesis of
the clock tree introduces delays in the arrival time of the clock signal at the different
sequential elements. Considering two flip-flops i,j connected by combinational logic,
and their phases xi, x j, the clock skew is defined as the difference of the two phases:

∆xi, j = x j− xi (2.9)

These unbalances in the sampling instant of the sequential elements introduce
the possibility of early sampling, hold constraints violation, or late sampling, setup
constraints violation, of the data.

The first approaches to the implementation of the clock tree tried to minimize the
clock skew, zero skew [24], in order to meet the hold and setup analysis performed
at synthesis time. However, by correctly scheduling the clock phases [25–27], fixed
skew, it is possible to achieve a lower clock period thanks to cycle borrowing, i.e.
delaying the capturing time for long paths. Fig. 2.1 shows an example of useful skew
applied to a sequence of pipeline stages.

FFi FFj FFm4 ns 1 ns

CLOCK = 2

10 2

Fig. 2.1 Useful skew example

[27] proposes a method to find the minimum clock period of a circuit computing
if there is a possible clock schedule that satisfies the timing constraints. Given a
circuit composed of N sequential elements, the clock period T, the clock phases xi,
x j of two sequential elements i,j, two inequalities are defined to avoid the early and
late sampling of the data. To avoid late sampling the capturing time of the sequential
element j should be greater than the latest arrival time (di, j) of the data:
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x j +T ≥ xi +di, j +Tsetup (2.10)

To avoid early sampling instead, the capturing time of the sequential element j
should be less than the earliest arrival time (di, j) of the input data:

x j ≤ xi +di, j−Thold (2.11)

Considering the two inequalities, it possible to formulate the minimization of the
clock period problem as:

minimize T (2.12)

subject to x j− xi ≥ di, j−T +Tsetup (2.13)

xi− x j ≤ Thold−di, j (2.14)

∀i ∈ {1, . . . ,N}|xi| ≤ T (2.15)

The constraints 2.10 and 2.11 constitutes the first two inequalities of the problem,
the last one ensures that the maximum phase shift is lower than the clock period.

To solve this problem, [27] proposes a binary search algorithm which iterates on
the clock period, tracing the minimum and maximum limit of the search interval and
looking if the minimum proposed value for the clock period is feasible or not. If a
specific clock period is feasible then the maximum value of the considered interval
will be updated, if not then the minimum value will be updated. The feasibility check
is done through a Bellman-Ford like algorithm that looks for positive cycles after the
clock schedule.

To reduce the number of iterations, the low and high bounds are defined. The
minimum bound (Tlow) is computed as:

Ti, j = di, j−di, j +Tsetup +Thold (2.16)

Tlow = max
i, j

{
Ti, j

}
(2.17)

and depends on the time window in which the data can be sampled.
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The maximum bound (Thigh) is defined as:

Thigh = max
i, j

{
di, j +Tsetup

}
(2.18)

and depends on the maximum delay of the combinational paths. The iterative search
algorithm is shown in Algorithm 1.

Algorithm 1 Binary search algorithm for the clock period
1: Tmin← Tlow
2: Tmax← Thigh
3: while Tmax−Tmin > ε do
4: T ← Tmin+Tmax

2
5: f easible← BELLMAN-FORD(T )
6: if f easible then
7: Tmax← T
8: else
9: Tmin← T

10: end if
11: end while

Given the computed Tmax, any clock period T ≥ Tmax is feasible. To evaluate the
Bellman-Ford algorithm, the circuit is represented as a graph where the vertices are
the clock phases of the sequential elements and the edges are the relations defined
by 2.10 and 2.11. Figure 2.2 shows the constraints graph of an example circuit.

xi xj

xmxk

xj-xi
xi-xj

FFi FFj

FFmFFk

Fig. 2.2 Constraint graph of the circuit

Another problem which should be considered when optimizing the skew schedul-
ing is the wave pipelining, which is the coexistence of two different propagating
values in the same combinational path caused by the unbalanced sampling time
at different stages of the pipeline. As proposed by [28], starting from the model
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proposed in [25] specific constraints should be applied to avoid the overlap of the
two propagations.

2.3 Retiming

Retiming is a technique that aims to achieve optimal balancing of combinational
paths between two registers by relocating the sequential element moving them across
the logic gates. This technique do not change the number of registers on a path

FFi FFj FFm3 ns 1 ns

CLOCK = 2

10

1 ns

1

Fig. 2.3 Retiming example

from primary inputs to primary outputs, thus not changing the total latency of the
considered block or the behaviour of the circuit.

It could lead to further optimization in the delay of the combinational logic
because it changes the boundaries of the combinational paths. Retiming could be
applied to optimize multiple metrics, this work introduces only the clock period
minimization. It can be applied to both edge-triggered based sequential circuits and
level-sensitive based ones.

The ASTRA approach [29] shows the relations between retiming and clock
skew scheduling in minimum period optimization. The example figures 2.1 and
2.3, describes the same circuit with different optimization techniques applied; the
first one shows how increasing the latency applied to the FFj to 2 reduces the
clock period to 2 units, the second one shows how moving the FFj backward in
the combinational logic reaches the same result with a lower delay x j. From the
examples, the equivalence between the two methods is clear. The reduction in the
clock latency is equivalent to the time delay of the combinational logic moved to the
second stage of the pipeline.

The formal definition from [29] describes the equivalnce as:
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• Backward Retiming: moving a register backward in the combinational logic
corresponds to decreasing the delay of the clock signal feeding it.

• Forward Retiming: moving a register forward in the combinational logic
corresponds to increasing the delay of the clock signal feeding it.

The generalization of the equivalence to a multi-input and multi-output combina-
tional circuit is straightforward:

• Given a circuit that has a double sampling stage at the input, one of the two
stages is forward retimed to the output. For each sequential element j retimed
to the output, the delay of the clock signal feeding it is:

x j = max
i

{
xi +di, j

}
(2.19)

Which is equivalent to the clock phase able to satisfy the setup constraints at
the output of the combinational block.

• Similarly, given a circuit that has a double sampling stage at the output and
one of the two stages is backward retimed to the input. For each sequential
element k retimed to the input, the delay of the clock signal feeding it is:

xk = min
j

{
x j−dk, j

}
(2.20)

Which is equivalent to the clock phase able to satisfy the setup constraints.

The ASTRA approach uses this equivalence to efficiently perform the retiming
of the circuit. The algorithm looks for a feasible clock schedule for the sequential
elements of the circuit, and then moves the registers accordingly over the logic. Once
that a register is moved, the clock schedule is updated accordingly. If at the end of
the procedure the clock delays of all the flip-flops are zero, then the optimal clock
period is reached.

2.4 Analyzing different optimization models

As discussed in the previous sections, it becomes evident that optimization through
skew scheduling yields the lower bound for period minimization, which extends
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to the retiming problem as well. Utilizing the methodology proposed by [27] for
determining the lower bound of the clock period also results in optimal performance
for the retiming problem. The presented constraint graph considers both setup and
hold constraints to enable the determination of the scheduling of various clock phases.
It’s essential to note that the combinational delay of the most critical cycle has a
finite margin for optimization, thus establishing a limit on the circuit’s maximum
frequency. Fig. 2.4 illustrates the critical paths within the same constraint graph,
excluding the edges accounting for the short paths.

xi xj

xmxk

xj-xi
xi xj

xmxk

xj-xi
xi-xj

Fig. 2.4 Critical paths of the circuit

This configuration serves the purpose of determining the lower bound for the
clock period using the same database that was initially computed for the original
algorithm. If a disparity arises between the maximum frequency identified in the
initial configuration and the frequency determined by exclusively considering setup
critical paths, the variance is attributed to the hold critical paths. A remaining
scope for improvement exists that cannot be fully realized through clock skew
adjustments and retiming alone. A potential approach to address this issue involves
introducing delay padding to the combinational logic, specifically on the segments of
the hold critical paths that do not overlap with setup critical paths. The work by [30]
introduces a linear programming (LP) model to identify the optimal amount of delay
padding required on short paths to mitigate the issues related to hold constraints.

To evaluate the potential benefits of this approach for optimizing the clock period,
one possible solution is to incorporate the delay padding into the constraint graph and
employ the Bellman-Ford algorithm to determine the circuit’s maximum frequency.
Fig. 2.5 depicts the constraint graph with delay-padded paths, extending up to a
predetermined value equal to the high time of the clock cycle (DC ·T ).

This model is valid for both FF-based and latch-based circuits. Despite the
information presented in Eq. (2.7), the setup constraints for latch-based circuits are
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xi xj

xmxk

xj-xi
xi-xj

xi xj

xmxk

xj-xi
T*DC

Fig. 2.5 Delay padded circuit

the same of FF-based approach. The maximum setup optimization through latch
time borrowing overlaps with the one obtainable by retiming. As shown by Eq. (2.8)
latch-based circuits, the main problem is the early sampling of the data caused
by the extended transparent phase of the clock signal. The delay padding enables
solving this problem and allows the scheduling of the clock. The table 2.1 shows the
maximum frequency of the different configurations for the circuits considered in this
work. The duty cycle for this analysis is set to 50%.

Circuit Original (ns) Setup Opt. (ns) Delay padded (ns)
s1196 0.182 0.182 0.218
s1423 0.469 0.469 0.469
s5378 0.324 0.324 0.324

s15850 0.739 0.645 0.645
s38584 0.632 0.632 0.632
des3 0.729 0.486 0.646

Table 2.1 Maximum frequency of the configurations

The results indicate that with the exception of two cases, namely s15850 and
des3, the primary limiting factor for the maximum circuit frequency are the setup
critical paths. This observation relies from the fact that both the analysis of the
original constraint graph and the configuration focusing solely on setup critical paths
yield identical outcomes. The delay padding approach is capable of achieving, at a
minimum, the same frequency as the original configuration, except in the case of
s1196. In the context of the s15850 and des3 circuits, the delay padding approach
surpasses the original configuration’s frequency. This superiority is attributed to the
constraints imposed by the hold critical paths. Consequently, this benchmarking
exercise highlights the need to explore solutions that can assist the scheduling of
clock delays in order to attain higher frequencies.



Chapter 3

Methodology

3.1 Original flow

This chapter proposes the Mix&Latch method, which uses a conventional 50 %
duty cycle (DC) single-phase clock. Hold time violations are solved by inserting
NTLs driven by the same clock tree as the PTLs. First the resulting clock period is
optimized by combining time borrowing and NTL retiming. Then, as a secondary
objective, area recovery is used to reduce the area overhead by creating NTL-PTL
sequences whenever possible. These primary/secondary pairs are then converted
into either PETFs or NETFs, thus obtaining an optimized mixed design with PTL,
PETF, NTL, and NETF sequential elements. Mix&Latch also preserves a sequential
element in each of the original FF locations. This enables a 1-to-1 mapping from
FFs to sequential elements and ensures that equivalence checking can be performed
using conventional methods comparing combinational clouds.

Fig. 3.1 shows the application of this optimization algorithm to a simple case 1.
The original arbitrary PETF circuit is shown in Fig. 3.1a. All pins are annotated with
a parenthesized number pair indicating the (minimum arrival time at pin p (ATmin

p ),
maximum arrival time at pin p (ATmax

p )). For simplicity, the assumption in this figure
is of unitary delays for combinational gates, zero delays for the sequential elements,
and zero setup/hold FF constraints, while this algorithm uses delays from timing
analysis. In a PETF-based circuit, the minimum clock period, Tmin, is set to the

1The circuit in Fig. 3.1 do not account for interactions with I/O pins because they are always
modeled as being sampled by FFs and this would increase the complexity of the example.
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longest maximum arrival time at the endpoint pin (ATmax
end ), hence Tmin = 6 in this

example. After the PTL conversion shown in Fig. 3.1b, the circuit can use time
borrowing up to half a clock period (for DC = 50%) for ATmax

end

ATmax
end = Tmin (1+DC) =⇒ Tmin =

6
1+0.5

= 4. (3.1)

Note that there is an additional critical path with delay 6, PTL B→ PTL Z, due to
time borrowing at PTL B.

Despite the desirable Tmin reduction by 33 % compared to the PETF version,
there are hold violations at the inputs of PTLs X, Y, and Z because their minimum
arrival time (ATmin) is lower than the positive pulse width, PPW = DC ·Tmin. To
solve the hold violations, a group of nets is selected using the mathematical model
described below, and an NTL is placed in front of the endpoint pin of the selected
nets. As the NTLs become transparent after the positive pulse, they guarantee a delay
longer than the PPW for all paths.

However, the added NTLs can reduce performance. For example, Fig. 3.1c shows
that while placing the NTL too close to the source PTL solves the hold violation at
the input of PTL X, the additional delay causes a setup violation at the input of PTL
Z, which now requires a longer period, T > Tmin. Fig. 3.1d shows that a NTL can
solve the hold violations at the input of PTL Z, but it causes a new setup violation at
the input of the NTL that closes at T . Hence, the signal cannot reach PTL Z in time,
which also requires a longer T > Tmin.

This algorithm optimizes the position of NTLs to reach a solution that, as shown
in Fig. 3.1e, solves all hold violations without performance penalty, under the
assumptions discussed in Section 3.1.4.

Next, adjacent NTL-PTL pairs are merged as PETF to reduce the area, and
PTL-NTL pairs as NETF, as shown in Fig. 3.1f. This solution has the same Tmin

and area as the one in Fig. 3.1b, no hold violations, and uses the same number of
sequential elements as the original version. In some cases part of the latches cannot
be merged, which leads to area penalty (discussed in the experimental results). In
other cases the PTLs do not need hold time fixing, yielding both faster and smaller
circuits.

Several works propose design optimization using a mix of PETF and PTL. Here
there are described the main ones, in order to set the stage for this chapter. Hassan
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et al. [7] propose to start from an FF-based netlist, analyze sequences of three FFs,
and replace the middle one with a PTL retimed to match the timing constraints.
This approach seems to increase the clock frequency, reduce the power consumption
and the cell area, but the experimental data cover only logic synthesis, without
considering placement and routing. Furthermore, equivalence checking may be more
difficult because retiming changes the original position of the sequential elements
[31].

Singh et al. [6] describe a retiming method to generate a PTL-NTL-based
netlist starting from a FF-based one. Because the synthesis tools have poor support
for latch retiming, they propose replacing the primary/secondary latches with FF
pairs, doubling the frequency and finally retiming the design using a commercial
tool. Although they focus on reducing the power consumption, the results are poor
in terms of both power and area because the algorithm is effective for only one
frequency due to a sub-optimal retiming strategy. Moreover, experimental results are
shown only for one circuit.

The main contributions to the state-of-the-art are:

• A two-step implementation flow to obtain a working layout for an optimized
version (Fig. 3.1f) of the PETF-based netlist (Fig. 3.1a). The implementation
is fully based on commercial EDA tools and fully exploiting useful skew, both
in the baseline against which this chapter compares and in the obtained results.

• A methodology to reduce the sequential resources and generate the NTL
allocation, using post-layout timing data and exploiting incremental placement
and routing starting from the post-layout netlist. The NTLs work as retention
barriers for signals in short paths, reducing the hold constraints complexity.
To recover area, the PTL-NTL pairs are merged into FFs.

• Maintaining a 1-to-1 correspondence between each original FF and a FF or a
latch in the final circuit, to allow equivalence checking for design verification
with traditional tools.

3.1.1 Mix & Latch Optimization Flow

Fig. 3.2 shows the optimization flow, which starts from a RTL description and
produces a layout with mixed sequential resources. It includes four main steps:
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Fig. 3.2 Implementation flow starting from the register transfer level (RTL) description using
positive-edge-triggered flops (PETFs), positive transparent latches (PTLs), and negative
transparent latches (NTLs). Synthesis steps are in red, post-synthesis netlists in orange,
layout steps in green, and post-layout netlists in blue. The PETF layout is only used to
provide the baseline results.
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• Generate the PTL-based layout by replacing all sequential elements with PTLs
(shown in the second column in Fig. 3.2 and discussed in Section 3.1.2).

• Create a graph representation of the timing and positional information extracted
from the PTL-based layout (discussed in Section 3.1.3, Section 3.1.4, and
Section 3.1.5).

• Define the circuit location of NTLs, PETFs, and NETFs using an ILP formula-
tion, and inserting them in the PTL-based netlist.

• Generate the layout of this new circuit (see the right column in Fig. 3.2 and
the discussion in Section 3.1.6).

The NTL selection using ILP is similar to backward retiming [23] in a pri-
mary/secondary FF netlist. However, the formulation and graph representation are
different because they consider the post-layout timing data and avoid the redundant
NTLs. The designs are synthesized and implemented at several clock frequencies
to determine iteratively the highest possible operating frequency for both the mixed
design and of the PETF design.

We leave to future work the in-depth analysis of design for testability (DFT)
needed for the practical adoption of our methodology. We note however that DFT
can be implemented with traditional tools by adding some scan-only NTLs to the
PTLs [32].

Retiming techniques have the drawback that equivalence checking for design
verification cannot be solved in a reasonable amount of time even for relatively small
circuits, such as the s38584 from the ISCAS benchmark [31], which we also use in
our experiments as shown in Section 4.1. Mix & Latch does not have this problem
because it preserves a 1-to-1 correspondence with the FFs in the original design using
either FFs or PTLs. The 1-to-1 correspondence also helps solving the initialization
problem for the netlist, i.e., finding a consistent initial value of the circuit registers
that maintains the circuit equivalence [33].

3.1.2 Positive transparent latch-based circuit

The first processing step generates the PTL-based layout. The RTL description of
the target design is synthesized using a commercial tool. The considered circuits
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have only PETFs to ease the analysis, but the same methodology can be extended to
circuits based on NETFs or mixed. Once the netlist is synthesized, all the PETFs are
replaced with PTLs using the same commercial tool. Because cell resizing will be
automatically done by the layout tool (if needed), the PETFs are replaced with the
smallest PTLs from the technological libraries.

The netlist modified this way is provided to the layout tool, which produces
the post-P&R design. Unlike [11, 12], all hold constraints are temporarily ignored
(using a standard design constraint command of the tool) to obtain a layout of the
PTL-based netlist that meets the setup constraints.

The generated layout thus potentially violates hold conditions, which will be
solved afterwards.

3.1.3 Graph model

The state-of-the-art circuit graph representations [34, 12] are not suitable for our
optimization algorithm because they either exclude the sequential elements [34], or
aggregate pin data for the worst case delay [12].

For our method, the circuit is represented as a graph (V,E), where V represents
the set of all pins and I/O ports and E the connections (wires or cells) between them.
The nets and pins of the clock tree are not included. All sampling of input and output
ports is defined as synchronous, coinciding with the rising edge of the system clock.
This means that no borrowing of time from the environment is permitted and the new
circuit uses the same boundary conditions as the original one.

Fig. 3.3 shows an example of two graphs which are discussed later. Static timing
analysis (STA) timing information is a three-value tuple associated to graph edges
(see Section 3.1.4), while latch location is a value associated to edges of a different
graph (see Section 3.1.5).

3.1.4 Timing Graph

We create a timing graph (TG) that drives our optimization algorithm to limit the
setup slack (SS) degradation due to potential NTL insertions before gate input pins
in the PTL-based netlist. The computation of the edge attributes of this graph
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Fig. 3.3 Graph generation: (a) TG of the example in Fig. 3.1b. The attribute is a 3-tuple with
elements computed using Alg. 2, Eqn. (3.6), and Eqn. (3.5), respectively. The first value is
an estimation of the setup slack caused by NTL insertion, the second and third values are
the lengths of the sub-paths generated by NTL insertion. (b) SPG of the same circuit: it has
fewer edges and vertices than TG because it considers only pins and connections that belong
to short paths.

uses the timing data extracted from static timing analysis (STA), shown in Fig. 3.4,
Fig. 3.5, and Table 3.1. Unlike Fig. 3.4, all arrival times are obtained from the STA
considering the clock latencies of the PTL-based layout. The pin (p) for which
STA extracts the info is the endpoint of the edge (e) to which the related attribute is
associated. From the STA timing data we obtain three values: (1) the Estimated Setup
Slack for pin p (ESSp), (2) the p to SCPp endpoint delay (Dp

ptl), and (3) the SCPp

startpoint to p delay (Dptl
p ). These three values are assigned as a 3-tuple attribute to

the edges of timing graph (TG).

Estimated Setup Slack

The Estimated Setup Slack (ESSp) is computed for each edge (e) endpoint pin (p)
using Algorithm 2, which estimates the value of the setup slack (SS) related to the
pin (p) if an NTL were placed in front of it. It receives in input the timing info from
STA for the considered pin and returns the attribute ESSp. It is important to highlight
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Table 3.1 Timing computed by Algorithm 2 with data from static timing analysis

NAME DEFINITION

HCPp Hold critical path passing through pin p
SCPp Setup critical path passing through pin p
tHCP
launch Clock latency of the considered HCPp launching PTL

tSCP
launch Clock latency of the considered SCPp launching PTL

ATmax
p Maximum arrival time at pin p

ATmin
p Minimum arrival time at pin p

SSp Setup slack at pin p
HSp Hold slack at pin p
tHCP
capture Clock latency of the considered HCPp endpoint PTL

ATmax
end Maximum arrival time at endpoint PTL

ATmin
p Minimum arrival time at endpoint PTL

mTBend Time borrowing margin at endpoint PTL of SCPp

TBend Time borrowing at endpoint PTL of SCPp

PPW Clock positive pulse width

that the computation of ATmax
p takes into account the possible time borrowed by the

launching PTL. It relies on the following assumptions:

• To estimate the SSp degradation caused by the NTL insertion, we need the
NTL opening time, tntl

open, and closing time, tntl
close. They depend on the NTL

clock latency (tntl
del), from PPW and from T . Since it is difficult to know tntl

del at
this stage, we assume that it is equal to tHCP

capture, unless an NTL is merged into a
NETF when we use the latency tHCP

launch.

In Fig. 3.4, the NTL would have the clock latency of PTL X. Lines 4–10
implement these computations. The condition on line 4 checks if the pin is the
output of a PTL, thus the resulting NTL would be merged into a NETF.

• The additional delay from NTL insertion is ignored because it is usually small
compared to the SCPp delay and because it is hard to estimate before the
layout. Note that we ignore it only to simplify the TG generation, but in the
final layout step the P&R tool does consider the NTL delays.
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Algorithm 2 Estimated Setup Slack attribute for pin p
Inputs: Parameters from Table 3.1 Output: ESSp

1: if HSp ≥ 0 then
2: ESSp← ∞

3: else
4: if p is output of PTL then
5: tntl

del← tHCP
launch

6: else
7: tntl

del← tHCP
capture

8: end if
9: tntl

open← tntl
del +PPW

10: tntl
close← T + tntl

del
11: if ATmax

p < tntl
open then

12: ESSp← SSp− tntl
open +ATmax

p +mTBend
13: else
14: if ATmax

p > tntl
close then

15: ESSp← tntl
close−ATmax

p
16: else
17: ESSp← SSp +mTBend
18: end if
19: end if
20: end if

We explain the steps in Algorithm 2 analyzing the four cases which cover all
the possible combinations, while in Fig. 3.3a we illustrate an example of TG for the
circuit of Fig. 3.1b:

Case 1 — Positive hold slack If the considered p has positive hold slack, HSp,
then there is no violation to fix. To reduce the number of NTLs that will be used
after retiming, all the NTLs that would be placed close to pins not belonging to short
paths will not be added to the PTL netlist. Avoiding NTL insertion means no SSp

degradation, hence in this case we set weight (W) to ∞ (lines 6–7 of Algorithm 2).
An example is the edge D1O→N3I in Fig. 3.3a, corresponding to the edge D1→N3
in Fig. 3.1b, which does not belong to a short path.

Case 2 — NTL close to the source PTL The additional delay caused by the late
opening of the NTL may cause a setup violation, as shown in Fig. 3.1c. Attribute
computation estimates the degradation of the pin setup slack, taking into account
the late arrival time at the selected pin (ATmax

p ), SSp, tntl
open, and the margin for time



26 Methodology

borrowing (mTBend). The delay introduced by the NTL can be tolerated up to
mTBend. Lines 11–12 of Algorithm 2 perform these computations. An example is
edge AQ→ N1I from Fig. 3.3a, corresponding to the edge from PTL A to N1 in
Fig. 3.1c.

Considering that the SCP for this edge ends in PTL Z, the parameters SSp, ATmax
p

and mTBend are all equal to 0 because the SCP delay is equal to the T added to the
maximum time borrowing. tntl

open is equal to 2 for all the cases shown in Fig. 3.3a
because the clock is considered ideal. Given the previous considerations, compute
ESSp:

ESSp = 0−2+0+0 =−2 (3.2)

Case 3 — NTL close to the sink PTL If the input signal of the sink PTL belongs
to a critical path, then the setup constraints added by the early NTL closing will likely
prevent satisfying the setup constraints. If the late arrival time at the pin, ATmax

p ,
exceeds tntl

close, then the signal will not pass through the NTL. The SSp degradation is
computed as the difference between these two values (lines 14–15 of Algorithm 2).
An example is edge D2O→ ZD from Fig. 3.3a, corresponding to the edge from D2 to
PTL Z in Fig. 3.1d. tntl

close is equal to 4 for all the cases because the clock is considered
ideal and ATmax

p is 6. Given the previous considerations, ESSp is computed as:

ESSp = 4−6 =−2 (3.3)

Case 4 — General case If none of the previous cases occurs, then ATmax
p at the

NTL input falls into the NTL transparency interval and there is no SSp degrada-
tion (line 17 of Algorithm 2). An example is edge D1O→ YD from Fig. 3.3a,
corresponding to the edge from D1 to PTL Y in Fig. 3.1d.

Considering that the SCP for this edge ends in PTL Y , SSp = 1 because the
signal arrives 1 time unit before the rising edge of the clock, while mTBend = 2
because there is no time borrowing. Given the previous considerations, ESSp can be
computed as:

ESSp = 1+2 = 3 (3.4)
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Sub-path delays

The second value of the tuple, Dp
ptl, shows the delay of the path between the pin

p and the endpoint PTL of SCPp. It is equal to the difference between ATmax
end and

ATmax
p

Dp
ptl = ATmax

end −ATmax
p . (3.5)

The third value of the tuple, Dptl
p , shows the delay of the path between the start

point PTL of the SCPp and the pin p. It is computed as the difference between tSCP
launch

and ATmax
p

Dptl
p = ATmax

p − tSCP
launch. (3.6)

3.1.5 Short-Path Graph

The Short-Path Graph (short-path subgraph (SPG)) is a subgraph of the TG that only
contains the pins and edges that belong to short paths, i.e., all those pins p such that
HSp < 0. Hold violations will be fixed by finding a cut (subset of edges) of the SPG
where the NTLs will be inserted.

Two types of edges can be distinguished in the SPG:

E = Ecells∪Ewires

whereas Ecells correspond to those edges that connect input-to-output pins in com-
binational cells and Ewires correspond to the remaining edges. The cut of the SPG
must be defined using edges in Ewires.

The insertion of an NTL in an edge may benefit from the presence of an adjacent
PTL at the start or end point of the edge. Thus, both latches can be merged into an
FF, either PETF (NTL-PTL) or NETF (PTL-NTL), as shown in Fig. 3.1f. Thus, we
can define

Ewires = Eff∪Elat

to distinguish these edges, with Eff representing the edges in which the merging is
possible and Elat representing the remaining edges. Additionally, two parameters
are defined to represent the cost of inserting an NTL, cff and clat, with cff < clat,
since merging implies area savings. For the considered technology, when comparing
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latches and flip-flops with lower fanouts, the ratio of the area Alat
A f f is approximately

50 %. However, when considering cells with higher fanouts, the ratio significantly
increases, reaching around 75 % in the worst cases. Additionally, taking into account
the extra cells required to route the clock tree of the additional sequential elements
and the greater variety of cells available in the flip-flop library, merging appears to be
a more favorable choice. These parameters can be tuned to control the area overhead
of the solution.

Graph 3.3b shows the SPG of the example circuit from Fig. 3.1b.

Table 3.2 Variable definitions for Alg. 3. (ILP Model)

NAME DEFINITION

SPG Short-Path Graph
T Cycle period
δ Fraction of T to meet setup constraints
cff Cost of merging an NTL with a PTL
clat Cost of not merging an NTL (clat > cff)
Ecells Edges between pins of the same cell
Ewires Edges between pins of different cells
Eff Edges where NTL would be merged in PETF/NETF
Elat Edges where NTL would not be merged
R(e,X) Edge selection value

3.1.6 Integer Linear Programming model

Starting from the SPG and the attributes computed from static timing analysis of the
PTL post-layout netlist, an ILP model is defined to fix the hold violations and select
the NTL locations. Alg. 3 and Tab. 3.2 show the ILP model and the definition of the
algorithm variables.

For each pin (p) of the SPG, a binary variable p is created. For each edge (e),
pend(e) and pstart(e) represent the variables associated to the endpoint and the start
point of e, respectively. Each edge is characterized by the edge selection value,
R(e,X), defined as

R(e,X) = pend(e)− pstart(e). (3.13)
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Algorithm 3 Integer linear programming (ILP) Model
Inputs: SPG, T , δ , cff, clat
Output: Location of the NTLs (edges with R(e) = 1)
1: E← Edges(SPG)
2: Ecells,Ewires,Eff,Elat← E
3: ESSp,D

ptl
p ,Dp

ptl← TimingAttributes(E)

minimize clat ∑
∀e∈Elat

R(e) + cff ∑
∀e∈Eff

R(e) (3.7)

subject to ∀e ∈ Ecells : R(e) = 0 (3.8)

∀e ∈ Ewires : R(e)≥ 0 (3.9)

∀e ∈ Ewires : R(e) ·ESSp(e)≥ 0 (3.10)

∀e ∈ Ewires : R(e) ·Dp
ptl(e)≤ δ ·T (3.11)

∀e ∈ Ewires : R(e) ·Dptl
p (e)≤ δ ·T (3.12)

The cut (location of the NTLs) is defined for those edges with R(e,X) = 1, i.e.,
pstart(e) = 0 and pend(e) = 1, as shown in Fig. 3.6.

The cost function (3.7) accounts for the number of new sequential elements
added to the circuit, i.e., the number of NTLs inserted in edges not connected to a
PTL. This will push the solution of Algorithm 3 to use as many NETFs and PETFs
as possible to reduce the final number of sequential elements in the circuit.

The constraint (3.8) avoids that Alg.3 selects edges representing connections
between pins of the same cells (Ecells).

The constraint (3.9) enforces pend(e) ≥ pstart(e), because pend(e) and pstart(e)
are binary this restricts R(e,X) to be binary. It also implies that all pins p belonging
to a path that reaches pstart(e) will have p = 0, while all pins belonging to a path that
crosses pend(e), reaches p, and ends at a PTL will have p = 1. Then, the algorithm
splits the graph in two partitions, before and after the NTLs, by removing the edges
with R(e,X) = 1. The partition in which all pins have p = 1, i.e. the part of the
graph that includes the PTL endpoints, will have no early arriving signals. Fig. 3.6
shows an example of the graph partitioning generated by the model.

Although solving an ILP generally has very high runtime, in this particular case
it is very close to a max-flow min-cut problem, which is known to have polynomial
complexity. This is the likely reason why the runtime of our algorithm remains very
small, as shown in Table 4.2, even for designs with tens of thousands of gates and
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Fig. 3.6 Solution example showing the cut chosen for the SPG from Fig. 3.3b. The vertex
attributes correspond to the P variables of the ILP model and the edge attributes represent
the edge selection value (R(e,X)) computed for each edge. The vertices with input edge
attribute equal to 1 are selected for NTL insertion.

FFs. The development of a heuristic algorithm is left to future work, if the execution
time becomes excessive, e.g. comparable to or larger than the physical design time.

The constraint (3.10) guides the model towards solutions that do not worsen
setup violations, because the SSp for each selected edge for NTL insertion must be
greater than zero. The purpose of this constraint is to prevent the insertion of a NTL
at a location that would introduce delay to a setup critical path. The estimation done
in ESSp is an approximation of the final SSp that takes into account not only the
length of the combinational logic delay, but also the clock tree latency generated by
the layout tool, as discussed in Section 3.1.4.

However, this is an approximation and we need two more inequalities, (3.11,3.12),
to simplify the problem of meeting the setup constraints. The Dp

ptl and Dptl
p attributes

report the distance, in terms of post-layout delay, between each pin p and the
source/sink PTLs. An NTL placed in front of p divides the path in two parts and the
two graphs give an estimation of the length of these sub-paths. To make these paths
as short as possible, these time intervals are constrained to be a fraction δ of T , that
is a parameter of our algorithm. The value of δ , with 0 < δ < 1, is discussed in the
next section.
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PETF
X

D Q

NETF
D

D Q

PTL
Y

D Q

PTL
Z

D Q

PTL
C

D Q

PTL
B

D Q

PTL
A

D Q

NTL
2

D Q

(b) Resource merging

Fig. 3.7 Example of Mix & Latch optimization on a PETFs-based circuit (Fig. 3.7a). Merge
sequences of complementary latches: PTL-to-NTL into NETF, NTL-to-PTL into PETF
(Fig. 3.7b). Combinational gates have unit delay only for ease of explanation. We consider
as short paths those that cross one gate.

3.2 Updated flow

In this section, we aim to further increase performance with respect to Section 3.1,
reaching a level that is at least comparable to retiming and avoiding resource increase.

Our main contributions to the state-of-the-art are:

1. Speed up the original Mix & Latch flow by avoiding one P&R iteration.

2. Relax the timing analysis both in terms of setup constraints, which control
the performance of the circuit after NTL insertion, and of how to select which
hold violations the NTL insertion will solve.

3. Propose a flow considering only setup critical paths for PTL insertion.

Fig. 3.7 shows the Mix & Latch methodology using a simplified example. Starting
from a FF-based netlist (Fig. 3.7a), all registers are replaced by PTLs to fully exploit
time borrowing, but at the risk of hold time violations. To solve them, Mix & Latch
inserts NTLs on the short paths that are at risk. Such latches act as retention barriers,
delaying any signal that travels through a short path. Choosing the best location for
these latches is not trivial. In fact, if placed incorrectly, these NTLs lead to setup
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(b) New flow

Fig. 3.8 Comparison between the original (Fig. 3.8a) and the new post-synthesis (Fig. 3.8b)
implementation flow. The new flow performs timing information extraction and netlist
manipulation after the PTL-based netlist synthesis.

violations. Additionally, the latches can be merged if there is a direct PTL-to-NTL
or NTL-to-PTL connection, resulting in either a PETF or a NETF, as shown in
Fig. 3.7b.

Mix & Latch uses an ILP model to compute a cut from the PTL post-layout
circuit graph determining the best NTLs position. The ILP model aims to minimize
the new sequential elements (NTLs) added to the circuit, resolve hold violations, and
avoid performance degradation.

Three timing constraints limit the potential timing degradation produced by the
insertion of NTLs in critical paths and help satisfy the setup constraints. The cost
function optimizes the area overhead. The ILP model is similar to a max-flow
formulation, and the runtime has proven to be manageable even for large designs.

Fig. 3.8 shows a comparison between the original flow and our new proposal for
the Mix & Latch methodology.

To overcome the limitations of the original Mix & Latch flow, we introduce two
innovations: (1) pessimism reduction and (2) post-synthesis extraction of timing
information. The rest of this section analyses the proposed improvements.
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3.2.1 Post Synthesis Flow

The original Mix & Latch flow has typically long execution times because it requires
two P&R steps and derives the TG taking into account the delay contributions from
the interconnections. However, since it only estimates the best positions for NTLs,
it cannot guarantee that the solution will produce the desired results, since cell
placement and routing is left to the P&R tool, and the resulting netlist changes
cannot be handled by the tool in incremental mode (also known as ECO mode). To
address both problems, a so-called post-synthesis flow is introduced, where the TG
and cut computations are performed on the netlist after the synthesis step, as shown
in Fig. 3.8, instead of after the P&R of the PTL-based netlist.

3.2.2 Reduce Pessimism

As shown in Fig. 3.8a, the original Mix & Latch methodology uses post-P&R
information to estimate the effect of the NTL insertion. However, since the netlist
changes caused by NTL and NETF are too large to be handled by incremental
implementation, the estimate of the impact of their insertion performed by Mix &
Latch is necessarily imprecise.

For setup time, some promising solutions may be discarded due to small negative
values of the estimated setup slack after NTL insertion, ESSp, which poses a hard
exclusive constraint to the solver and instead may be fixed with P&R. For hold time,
it may not be necessary to resolve all violations via NTLs, as small ones can be
resolved by the P&R tool by inserting buffers and/or resizing cells. To address these
issues, two parameters are introduced to reduce the pessimism of the algorithm:

• Max setup derate MSD;

• Max hold derate MHD.

MSD is multiplied by the clock period T and added at the end of Algorithm 2, where
the final line becomes:

ESSp← ESSp +T ×MSD. (3.14)

In this way, small negative values of ESSp become positive, thus avoiding to discard
a potentially viable solution. As discussed in Section 4.2, small values of this
parameter (e.g., 10 % of T ) are sufficient to achieve better performance.
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While MSD tries to increase the number of possible solutions, MHD reduces the
number of paths included in the short-path subgraph, leaving the solution of some
hold violations to the P&R tool. Hold violations that have an absolute value smaller
than T ×MHD will not be addressed through NTL insertion. Instead, they will be
resolved during the implementation process using conventional methods like buffer
insertion. The results show that small values of this parameter (e.g., also 10 % of
T ) also help to achieve better performance, while too high values would lead to
excessive hold violations that cannot be fixed in the final layout.

3.2.3 Worst-Path Flow

Another strategy for reducing the complexity of the optimization problem is to only
take into account the flip-flops that are endpoints of the setup critical paths rather
than converting all of them to PTLs. This is called worst-path flow and use the Worst
Setup Slack (WSS) parameter. Only flip-flops with setup slack less than WSS at the
input data pin are taken into account. Experimental results show that the optimal
value for this parameter can change based on the target frequency. For instance, both
substituting the majority of FFs into latches and substituting a small percentage of
them can lead to a viable solution of the Mix & Latch algorithm. Future work will
concentrate on finding a correlation between WSS values and final area and power
results to automatically predict the best configuration of this hyperparameter.

3.2.4 Formal verification

[35] shows that keeping each register in its original position, and possibly adding
registers that will be ignored in formal verification, as done in Mix & Latch, simplifies
formal verification. The equivalence of circuit behavior involves a combination of
Logic Equivalence Checking (LEC) and STA. STA guarantees that modifying the
characteristics of registers does not introduce data sampling errors compared to
the original FF-based netlist, and is fully discussed in [36]. LEC ensures that the
introduction of retention barriers (NTLs) in the circuit does not alter the behavior of
the combinational logic. During LEC, the NTLs operate in transparent mode, setting
their input clock to 0. Differently from retiming, this methodology does not require
annotations from the synthesis step.
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Experimental Results

4.1 Original flow

Open-source PULP [37] library is used to model the ILP, the default solver is CBC.
To evaluate the proposed algorithm, we apply the optimization flow to 13 circuits
from a pool of benchmarks, each implemented at a range of operating frequencies.
Four circuits are cryptographic IPs from the CEP benchmark [38], eight are from
the ISCAS89 benchmark [39], and one is a small processor core from the ITC99
benchmark [40]. The implementation flow uses an industrial 28 nm FDSOI CMOS
technology, Design Compiler from Synopsys for logic synthesis, and Innovus from
Cadence for P&R.

We set δ = 0.75 in Algorithm 3, i.e. the maximum sub-path delay is 75 % of
T . Since δ defines the length of the sub-paths generated by NTL insertion, 75 %
for a DC of 50 % means that the two sub-paths are reasonably balanced. Further
exploration of the impact of δ is left to future work.

We also set cff = 0 and clat = 1 to account for the number of new sequential
elements in the circuit.

Table 4.1 shows the frequency improvement for the considered benchmarks, to-
gether with the final sequential resource mix. The average improvement in frequency
is about 1.33X. We used a granularity of 0.1 ns in the exploration of the minimum
clock period (T). The algorithm is doing better than average for the cryptography
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Table 4.1 Operating frequency and sequential resources for designs from ISCAS⋄, CEP◦ and
ITC99• benchmarks. Columns labeled ‘Original” refer to PETF-based layouts, while those
labeled “mixed” refer to the optimized ones.

Design
fmax (GHz) Original Mixed

Original Mixed Ratio PETF PETF NETF PTL NTL

s1196⋄ 2.50 3.33 1.33 18 1 0 17 19
s1423⋄ 2.00 2.50 1.25 74 5 4 65 128
s5378⋄ 1.67 2.00 1.20 176 80 3 93 105
s9234⋄ 2.00 2.50 1.25 145 47 28 70 113
s13207⋄ 1.00 1.43 1.43 625 395 137 93 521
s15850⋄ 1.25 1.67 1.33 442 94 88 260 453
s38417⋄ 0.48 0.67 1.40 1564 690 110 764 1213
s38584⋄ 0.43 0.53 1.21 1275 636 136 503 1116
b22• 0.48 0.67 1.40 613 78 72 463 1141
des3◦ 0.67 1.00 1.50 199 34 65 100 125
md5◦ 0.43 0.67 1.53 269 71 61 137 519
sha256◦ 0.56 0.62 1.12 1040 502 284 254 579
aes_192◦ ∗1 0.33 ∗1 9382 0 9153 229 530

IPs like des3 and md5, probably because they are designs with acyclic paths that are
generally not well-balanced.

Fig. 4.2 shows the frequency improvement and the area comparison considering
the maximum frequency for the original design and the optimized one. In most of the
cases there is an area penalty which can exceed 1.2 X. However, this is compensated
by a maximum frequency increase above 1.2 X for these designs. There are also
cases in which the performance improvements do not cause any area increase, like
for des3, sha256, s38584 and b22.

Fig. 4.1 shows the results obtained at frequencies at which both design versions
meet the timing for a meaningful area comparison. To demonstrate the actual
scalability of this approach, Table 4.2 shows the runtime of the ILP algorithm
compared to the time needed for the layout in the three cases. The ILP runtimes are
always less than 10% of the layout times.

1The maximum frequency reached for the original designs is low compared to [14] and to the
mixed result. For this reason, we do not report it for the frequency and runtime comparisons.
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Table 4.2 ILP execution time (s) and layout times (s). Orig layout refers to the starting PETF
netlist, PTL layout to the netlist without hold constraints and with only PTLs, and mixed
layout to the final step after NTL insertion. The columns #SEQ. and #COMB. report the
number of sequential and combinational elements in the PTL layout, which is the netlist
analyzed and provided to the ILP solver.

Design Orig layout (s) PTL layout (s) #SEQ. #COMB. ILP (s) Mixed layout (s)

s1196 461 425 18 332 1 461
s1423 698 577 74 456 1 670
s5378 1078 925 176 645 5 1219
s9234 620 554 145 503 2 566
s13207 4867 4151 625 1918 11 5049
s15850 816 784 442 1589 6 924
s38417 1252 1651 1564 4049 24 5155
s38584 1624 1809 1275 8058 32 1506
b22 2044 2306 613 11026 29 2242
des3 727 746 199 1795 7 725
md5 4175 3838 269 10639 19 2114
sha256 3456 2406 1040 4116 30 3121
aes_192 ∗1 39703 9382 130264 3130 44800

4.1.1 Timing closure

The P&R tool converges to a good solution if, at the end of the automated imple-
mentation flow, the hold and setup violations are small and can be fixed with only a
few iterations of the final design optimization commands. If they are too large, then
the designers typically conclude that the P&R tool cannot implement the design at
that specific frequency. In these cases we do not report the area because it is usually
excessive. We do at most five optimization iterations to solve the remaining setup
and hold violations.

4.1.2 Area comparison

Fig. 4.1a shows the area comparison at different frequencies in the cases in which
both the FF-based and the mixed designs meet the timing. The optimized designs
from the ITC99 and CEP benchmarks also have a smaller area than the original ones.
However, this is not true in general for the circuits from the ISCAS89 benchmark.

Fig. 4.1b shows the same area comparison as Fig. 4.1a, but in this case the x-axis
shows the ratio of FFs in the mixed design compared to the original netlist
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FF_MIXED
FF_ORIG

=
max(#PETFMIXED,#NETFMIXED)

#PETFORIG
(4.1)

where #PETFORIG is the number of PETF in the original circuit. The paths that
constrain the design the most are those between pairs of same polarity FFs, because
paths from PETF to NETF allow time borrowing and paths from NETF to PETF
cannot be generated by Algorithm 3. This is why in (4.1) we consider the maximum
between the two FF types, rather than the sum.

Fig. 4.1b shows that the area increase in the mixed designs is well correlated
with the ratio FF_MIXED/FF_ORIG.

In some circuits, even our cost function, which drives the solution to use as
many FFs as possible, could lead to considerable overhead of the mixed version
area. Fig. 4.1c and Fig. 4.1d show the sequential and combinational area comparison.
The sequential area increases in most examples because of the higher number of
sequential elements in the design. However, for the designs with a low FFs ratio,
easier timing convergence reduces the number of high speed gates.

Thus, it tends to compensate this overhead and sometimes leads to a smaller total
area. In the next section, we analyze the effect on the area overhead of modifying
the NETF allocation cost in the ILP model. We show that results in a significant
improvement in the worst cases. We conjecture that power would also be improved,
but its evaluation is outside the scope of this paper, which focuses on performance
gains with limited area cost, or even with area improvement.

4.1.3 Algorithm tuning to reduce area overhead

To reduce the area overhead, we discouraged the use of NETFs by increasing the
cost of inserting NTLs in locations enabling the PTL-NTL merging.

We slightly modified the ILP model by defining a different cost for merging
latches into NETF (cost 1) or PETF (cost 0). Fig. 4.1e shows that the original area
overhead for the ISCAS89 circuits is reduced.

Although this configuration improves the quality of the ISCAS89 worst cases,
it increases the area compared to Fig. 4.1a for some of the des3, md5, and b22
designs. Considering the best result among these two values for NETF costs, the
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average area improvement is 1.19 X over the considered benchmarks, with above-
average performance for the cryptography IPs. In some cases belonging to ISCAS89
benchmark, the area increases considerably. Addressing this issue, e.g. by further
tuning the algorithm parameters, is left to future work.

4.1.4 Comparison with other work

Some of our results can be directly compared with those presented in [14], which
converts an FF-based netlist to a 3-phase PTL-based netlist using two variants of
the same algorithm. While our main goal is to improve the maximum operating
frequency, [14] focuses instead on reducing the area occupation and power consump-
tion. This study demonstrates that utilizing latches and relative retiming techniques
can result in an average reduction in power consumption of over 20 %. Despite the
differences in technology, implementation setup and target optimization, the area
overhead introduced by our optimization algorithm is compared with the results
of [14]. There are six common benchmark circuits used by us and [14], four from
CEP and two from ISCAS89. For the CEP benchmarks, [14] reports maximum
area reductions at 500 MHz of 14 % for des3, 17.7 % for sha256, and 5.8 % for
md5. Our results in Fig. 4.1d and Fig. 4.1e show that, for the cryptography IPs our
area reduction exceeds [14], with peaks of 22.38 % for des3, 41.32 % for sha256,
and 51.13 % for md5. But for most ISCAS89 benchmark circuits our algorithm
increases or only slightly reduces the area, while the area reduction achieved by
[14] is more than 10 %. Specifically, our algorithm reduces the area by 5.29 % for
s1423, 7.59 % for s5378, and 8.82 % for s38584, and increases the area by 3.28 %
for s38417, 9.35 % for s9234, 4.79 % for s1196, and 41.75 % for s13207. Note
that performance, which is our main design goal, is improved in all cases.

4.2 Updated flow

4.2.1 Test Setup

We selected a Zero-riscy core [41] to be implemented using the above flows because
RISC-V cores have become increasingly popular in recent years, and because pro-
cessors contain both acyclic and cyclic paths, e.g., in arithmetic units and FSMs



40 Experimental Results

respectively. This variety of subcircuit topologies helps us to test the Mix & Latch
methodology under stringent conditions, since the original flow Section 4.1 showed
that it is most effective on acyclic circuits. To perform the power analysis with
realistic switching activity information, the standard delay format (SDF) simulation
step is performed with backannotated delays obtained while running an advanced
encryption standard (AES) algorithm on the RISC-V core. At the end of the test,
the flow compares the values stored in the data memory with those obtained during
a reference RTL simulation to ensure the correctness of the result. This increases
confidence in the correctness of the implementation because it validates the timing
constraints added to the backend flow.

The RISC-V core is synthesized with Synopsys Design Compiler, which also
performs the retiming optimization used for comparison. Physical synthesis is then
performed using Cadence Innovus. As mentioned in the Section 3.2, we use a 28 nm
CMOS FD-SOI technology.

From a sweep of their value from 0 % to 20 %, the best value obtained for both
MSD and MHD (discussed in Section 3.2.2) is 10 % of the clock period for the new
Mix & Latch flows.

Since the cell library does not provide NETFs cells, we used PETFs cells with
an inverter on the clock pin. Thus, replacing a PTL-NTL pair with a NETF to
increase frequency penalizes the design density due to the additional inverters, and
we disabled it during the experiments.

The worst path variation is applied on top of the post-synthesis flow. To adjust the
WSS threshold for the worst-path flow, the setup slack of the critical path is used as
a starting point and a sweep is performed in 50 ps steps until the clock period value.
Then is selected the WSS value which delivers the best area and power performance
after achieving STA closure. Automatic tuning of this parameter is left for future
work.

4.2.2 Performance, Area, and Power Analysis

For each flow, a clock period constraint sweep is performed to find the maximum
operating frequency. Table 4.3 shows the performance results for minimum clock
period Tmin, maximum frequency fmax and relative frequency gain fgain compared to
the baseline FF-based implementation.
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Table 4.3 Performance comparison of implementation flows

Implementation Tmin fmax fgain
flow (ns) (MHz)

FF without retiming (baseline) 3.00 333.3 1.0×

Mix & Latch original 2.50 400.0 1.20×
FF with retiming 2.15 465.0 1.40×
Mix & Latch post-syn 2.00 500.0 1.50×
Mix & Latch worst-paths 2.00 500.0 1.50×

Compared to baseline implementation, both the post-syn flow and the worst-path
version of Mix & Latch flow improve the frequency over classical retiming. This
result, obtained on a more complex benchmark than Section 4.1, is very promising
for the Mix & Latch methodology, implying that it may become a viable alternative
to logic retiming in industrial flows.

Note that the original Mix & Latch flow applied to this design failed, because
it added too many NTLs, which eventually caused timing violations in the mixed
layout. The 400 MHz clock frequency was achieved only by using the MSD and
MHD parameters introduced in this paper. This suggests that the choice of best values
for the Mix & Latch parameters (like many other parameters in modern physical
implementation flows) may vary with design characteristics. For example, the
Zero-riscy RISC-V core may have more short paths than the previously considered
benchmarks, and relaxing the timing constraints of Mix & Latch seems an effective
strategy to address this issue.

Fig. 4.3 and Fig. 4.4 plot power, area, and cell usage for each implementation flow
versus clock frequency, highlighting their components. Missing points in the plots
are caused by failed STA at the end of the selected flow. Note that the original Mix &
Latch flow struggles the most to achieve timing closure, while the post-synthesis and
worst path flows both provide a feasible solution for every target frequency, with the
sole exception of the 500 MHz clock frequency for the post-synthesis flow.

In general, designs optimized using both the original and post-synthesis Mix
& Latch flows consume more power than the retimed design, while their area is
comparable or smaller, except at the highest frequencies, as shown in Fig. 4.3a. The
worst path flow instead manages to deliver the smallest area occupation compared to
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the other flows for each target frequency. Moreover, it also achieves smaller power
consumption, apart from the highest retiming frequencies.

The area and power results show how the original Mix & Latch flow is suboptimal
with respect to the newest improvements. This is probably because the Mix & Latch
algorithm has trouble predicting the choices the P&R tool makes in the second
layout step. Instead, the post-synthesis implementation delivers on average a power
and area overhead of 11.10 % and 5.33 % , respectively, compared to the retiming
flow. Finally, the worst path implementation achieves a power reduction of 5.53 %
compared to retiming along with an area reduction of 12.63 % . Therefore, it
is possible to use either the post-synthesis or worst path flow based on power,
performance, and area (PPA) vs. design time constraints, since the first flow provides
a viable solution at the first iteration, while the second requires some additional steps
to fine-tune the WSS threshold.

4.2.3 Logic Cell Utilization

Comparing retiming with Mix & Latch results in Fig. 4.3a, it can be observed how
using latches instead of FFs reduces the area occupied by sequential elements, even
when the number of sequential cells is nearly doubled (see Fig. 4.3b). This is
due to both latches being smaller than FFs and retiming resizing cells to improve
performance, while we use the smallest PTL and NTL cells to further reduce area
usage.

Retiming also seems to use more numerous and larger buffers compared to post-
syn and worst path Mix & Latch, probably due to resizing like for FFs. Instead, the
introduction of even a very small number of latches leads to a significant increase in
inverter cells with respect to retiming. This result is explained by the stricter clock
tree constraints used during clock tree synthesis when using both sequential cell
types with different clock polarities. In our case, the P&R tool decided to instantiate
more inverter cells, as shown in Fig. 4.3b, leading to a corresponding increase in
inverter area in Fig. 4.3a.

It can also be observed how the results of the Mix & Latch flows can vary with
timing constraints. For target frequencies from 455 MHz to 488 MHz, the Mix &
Latch algorithms choose solutions in which 62.5 % of the original registers are kept
as latches, while in most of the other observed cases, at both lower and higher target
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frequencies, this percentage is less than 5 %. Since the final results highly depend on
the hyper-parameters of the Mix & Latch algorithm, further research is required to
obtain better predictions and avoid the manual tuning of the hyperparameters.

4.2.4 Power Contributions

Fig. 4.4 summarizes the power consumption estimates extracted from the back-
annotated simulation. Fig. 4.4b shows the different power components: (1) switching
power, consumed by charging and discharging the interconnect and load capaci-
tances, (2) internal power, consumed by charging and discharging the internal gate
capacitance and by short-circuit currents, and (3) leakage power. Fig. 4.4a shows
power contributions broken down by type of logic elements: (1) clock tree cells, (2)
combinational logic, and (3) sequential elements.

Switching power is the main component in Fig. 4.4b that determines the power
overhead of the original and post-synthesis Mix & Latch implementations. This can
be explained by the fact that PTLs and NTLs in the final design allow more glitches
to propagate along logic paths. The worst path flow, on the other hand, manages to
successfully reduce switching power relative to the other Mix & Latch flows, and
also reduces this component relative to retiming at the lower target frequencies.

Another major contribution is clock tree elements, especially when most of the
registers are ultimately kept as latches, as in the original Mix & Latch flow or the
other two flows in the range from 455 MHz to 488 MHz, as discussed in Section 4.2.3.
It is also possible to assess a positive correlation between the increase in inverter cells
and clock power, further indicating how the Mix & Latch methodology increases the
number of elements on the clock tree. The analysis of the necessary modifications to
the clock gating for Mix & Latch is left to future work.

While some configurations of Mix & Latch significantly increase the clock power,
these same configurations reduce internal and sequential power, both of which can
be attributed to the reduction in the size of the sequential elements.

Static power increases for the original and post-synthesis Mix & Latch flows
relative to the retimed implementation, while the worst path variant provides the
lowest leakage power in most of its configurations.
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Overall, the main term of the power graphs is the switching component, since
Fig. 4.4b shows how the sum of all power components follows the same trend as the
switching one. This suggests that by addressing glitch propagation and reducing the
number of clock tree elements, it should be possible to minimize the power overhead
of the post-synthesis implementation and achieve comparable values to the retiming
implementation, while avoiding the multiple iterations required for the worst path
flow.

4.2.5 Mix & Latch With Retiming

Finally, we tried the new Mix & Latch flow in conjunction with retiming to further
explore its potential. The P&R step only succeeds if retiming is performed either
before TG extraction or after mixed netlist generation. Applying Mix & Latch to a
retimed FF-based netlist or retiming after the PETF-to-PTL step results in a final
layout that does not satisfy the timing constraints. In both cases, if P&R is successful,
there is no performance gain over the original Mix & Latch flow, and in fact power
and area usage increase compared to the results in Fig. 4.3 and Fig. 4.4. Although
these results may be design dependent, they seem to imply that the proposed Mix &
Latch flow and retiming exploit essentially the same degrees of freedom in optimizing
performance without changing the combinational logic, and that no substantial gains
can be achieved by combining them.

Thus, for the analyzed design, Mix & Latch is superior to retiming in terms
of both maximum achievable performance and compatibility with combinational
equivalence checking.
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(a) Area vs. operating frequency (b) Area vs. flip-flops used

(c) Sequential area vs. flip-flops used (d) Combinational area vs. flip-flops used

(e) Area vs. flip-flops used with modified NETF
cost

Fig. 4.1 Results of area comparison when both the mixed-based netlist and the PETF-based
one successfully yield a layout
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Fig. 4.2 Ratio of post-layout area, considering the layouts obtained at the highest working
frequencies for both MIXED and ORIG versions, compared to the related frequency im-
provements. The black line shows the linear regression of the area increase with respect to
the frequency gain. The offset and the slope of the line are stated in the legend.
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(a) Area of different logic cell types

(b) Usage of different logic cell types

Fig. 4.3 Total area at different frequencies for baseline (B), original Mix & Latch flow (O),
post-synthesis Mix & Latch (P), retiming (R), worst path (W), split into sequential and
combinational contributions highlighting the fractions related to PTLs, NTLs, buffers, and
inverters (Fig. 4.3a) and number of logic elements (Fig. 4.3b).
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(a) Contribution of each cell group to the power consumption

(b) Internal, switching, and leakage power consumption

Fig. 4.4 Power consumption for original Mix & Latch (O), post-synthesis Mix & Latch (P),
and retiming (R) at different operating frequencies, split by cell group (Fig. 4.4a) and by
type of power (Fig. 4.4b).



Chapter 5

Conclusion and Future Work

This thesis introduces the Mix & Latch methodology that optimizes FF-based netlists
by replacing the PETFs with PTLs, and solving the hold violations generated by
such replacement using an efficient ILP model that selects a specific group of edges,
and places NTLs on short paths.

Following the exploration of the problem statement and the underlying motiva-
tions in Chapter 1, the subsequent chapter, Chapter 2, offers a theoretical analysis.
This analysis demonstrates that increasing delay on shorter paths has the potential
to yield further improvements in performance, boosting the benefits achieved only
using clock skew and retiming.

Chapter 3 presents both the original and the updated versions of this methodology.
The original one takes as input the timing data from the post-layout netlist of the FF-
based design. The updated one presents a variation of the original Mix & Latch flow
that aims to reduce runtime and increase performance to catch up with conventional
retiming methods. First, we introduced tolerances in the timing analysis to give Mix
& Latch more freedom to choose the NTL positions. The PTL netlist layout was then
avoided to reduce execution time by performing the timing analysis required by Mix
& Latch to determine the position of NTLs in the netlist earlier, in the post-synthesis
phase.

Chapter 4 presents the experimental results collected for the original and the
updated versions of the methodology. The testing of the original flow shows simul-
taneously smaller area and higher working frequency for all the circuits that we
considered, except for s38417, s9234, s1196, and s13207, where only performance
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is significantly improved. For most cryptography circuits, the area improvement
exceeds 1.3 X.

Even though our approach does not aim at improving area and uses just one clock
phase, our area reduction is in some cases comparable to that of a recent work [14],
which uses three clock phases,rather than just one, and focuses on area optimization.

As an example benchmark, we tested the updated Mix & Latch flow on a Ze-
roriscy RISC-V core. The results show a 25 % clock frequency improvement over
the original flow and a 7.5 % over retiming, with an average 5.53 % lower power
consumption and 12.63 % lower area occupation. The PPA improvements prove that
the Mix & Latch methodology can challenge traditional retiming-based techniques
while avoiding the drawbacks that make the latter inapplicable to industrial design
flows, i.e., by allowing combinational equivalence checking to be used throughout
the flow.

Future work will focus on further improving parameter selection (e.g., depending
on circuit topology), on extending the evaluation to other circuits, and on analyzing
the applicable DFT methodologies.
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Appendix A

Formal verification of the Mix &
Latch methodology

The implementation flow checks for system behavior through formal verification. It
is implemented with a two-steps checking procedure:

• Adding buffers: As shown in Fig. A.1a, the first step is to modify the PETFs
based post-synthesis netlist adding buffers in the same position computed for
the NTLs. The original PETFs-based netlist is verified against the one with
the additional buffers.

PETF
A

D Q

PETF
B

D Q

PETF
C

D Q

PETF
D

D Q

PETF
X

D Q

PETF
Y

D Q

PETF
Z

D Q

(a) Adding buffers

• Black box declaration: As shown in Fig. A.2a, the second step is to declare
as black-boxes:
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PETF
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D Q

PETF
Z

D Q

(a) Black box declaration

– PETFs-based netlist: the buffers and the modified PETFs;

– Mix & Latch netlist: the NTLs and the elements transformed in PTLs or
NETFs;

The PETFs-based netlist with the inserted buffers is now verified against the
Mix & Latch netlist.

The example shows the procedure on a Worst-Path flow example.
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