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A B S T R A C T   

Satellite retrieval of total suspended solids (TSS) and chlorophyll-a (chl-a) was performed for the Gold Coast 
Broadwater, a micro-tidal estuarine lagoon draining a highly developed urban catchment area with complex and 
competing land uses. Due to the different water quality properties of the rivers and creeks draining into the 
Broadwater, sampling sites were grouped in clusters, with cluster-specific empirical/semi-empirical prediction 
models developed and validated with a leave-one-out cross validation approach for robustness. For unsampled 
locations, a weighted-average approach, based on their proximity to sampled sites, was developed. Confidence 
intervals were also generated, with a bootstrapping approach and visualised through maps. Models yielded 
varying accuracies (R2 = 0.40–0.75). Results show that, for the most significant poor water quality event in the 
dataset, caused by summer rainfall events, elevated TSS concentrations originated in the northern rivers, slowly 
spreading southward. Conversely, high chl-a concentrations were first recorded in the southernmost regions of 
the Broadwater.   

1. Introduction 

Remote sensing of water quality through satellite imagery offers 
unique opportunities for inexpensive, spatially explicit estimation of 
optically active constituents (OACs) for entire water bodies. Estimation 
can be completed at relatively high spatial (e.g. 10 or 20 m for most 
spectral bands of Copernicus Sentinel-2) and temporal (e.g. multiple 
times each week when combining different satellite data such as from 
the Sentinel-2 and Landsat missions, assuming there is little to no cloud 
cover) resolutions (Sagan et al., 2020). Applications of satellite sensing 
for estimating water quality parameters such as chlorophyll-a (chl-a) or 
turbidity have increased in the last decade, as reviewed by Topp et al. 
(2020). 

Micro-tidal estuarine lagoons, such as the Gold Coast Broadwater 
(hereafter referred to as the Broadwater), are complex systems, 

hydrodynamically affected both by catchment outflows and marine 
tides. The Broadwater, which is 25 km in length, receives outflows from 
four main rivers and several additional creeks, draining diverse catch-
ments, from densely urbanised to grazing/crop lands and dense sub-
tropical rainforest. The Broadwater covers a large area (~32.5 km2) and 
has considerable spatial variability of water quality parameters (WQP) 
(Dunn et al., 2007a; Dunn et al., 2012; Dunn et al., 2007b), given the 
variety of water and potential contaminant inputs and tidal influence. 
Given the ecological, economic, and cultural importance of the Broad-
water, routine water quality monitoring is conducted for numerous 
purposes, including monitoring ecological health, ensuring human 
health safety, and as part of regulatory commitments (Dunn et al., 
2022). Water quality monitoring programs currently in place are limited 
by resource constraints and are conducted to comply with legislative 
requirements and to guide management practices and priorities. Thus, 
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the application of a satellite-based, rapid and inexpensive means to es-
timate water quality for this entire water body would be advantageous. 
Furthermore, if this could be achieved, it would provide useful data/ 
information regarding satellite-based sensing applications to estuaries/ 
deltas, of which there is a paucity in the scientific literature, as shown in 

Figs. 1 and 3 in Topp et al. (2020). 
A common issue with remote sensing retrieval of water quality pa-

rameters such as chlorophyll-a (chl-a) and turbidity or total suspended 
solids (TSS) is the inability of developing a single, universal retrieval 
model; as such, the majority of developed models are empirical or semi- 

Fig. 1. Map of the Broadwater with sampling sites. Adapted from Dunn et al. (2022). In-situ monitoring locations (1–18) are identified with black circles.  
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empirical (Topp et al., 2020). For instance, for chl-a, empirical algo-
rithms use spectral band combinations to estimate concentrations, with 
potentially high accuracy in local regions or specific inland waters only. 
However, optical properties are often affected by the presence of other 
OACs, (e.g., suspended sediments and coloured dissolved organic matter 
(CDOM)). Likewise, the optical properties of OACs vary independently 
from chl-a in productive inland waters (Dall’Olmo et al., 2005; Kutser 
et al., 2005). As such, empirical algorithms are typically effective only 
for specific water body datasets, due to different environmental back-
grounds related to the specific biochemical and hydrological charac-
teristics (Li et al., 2021). For instance, in their study, Li et al. (2021) 
presented a comprehensive modelling methodology for chl-a estimation 
in numerous Chinese lakes. However, their initial step involved 
employing a k-means approach to categorise these lakes into distinct 
clusters based on their water quality attributes. Subsequently, separate 
predictive models were developed for each cluster. The performance of 
their models was dependent on the lake cluster and was influenced by 
the presence of other non-covarying OACs; in particular, the presence of 
large amounts of TSS affected the model performance more signifi-
cantly. Additionally, in the same study, previously published empirical 
chl-a algorithms were tested, with the resulting model accuracy depen-
dent on the features of the different lakes’ clusters (Li et al., 2021). 
Relevant research was also conducted by Cherukuru et al. (2020), who 
studied TSS retrieval in a coastal site receiving outflows from multiple 
rivers, and monitoring 26 different sampling sites. They indicated that 
model performance varied by site due to, among other influences, the 
spatial variability of backscattering properties of suspended particulate 
matter, due to varying particle size(s) at different locations, likely 
related to different origin and in turn composition. In line with these 
findings, in their work Hansen and Williams (2018) suggested fully data- 
driven approaches compared to more traditional physics-based chl-a 
modelling, so to exploit information contained in all spectral bands and 
in turn to help account for lake-specific optical characteristics. 
Furthermore, Seegers et al. (2021), while successfully developing a 
generalised algorithm for chl-a estimation from Medium Resolution 
Imaging Spectrometer (MERIS) data for inland lakes in the United 
States, found the performance varied based on lake characteristics and 
their trophic state. 

As acknowledged in Sagan et al. (2020), different modelling methods 
have difficulties with transferability and site-specificity. For instance, 
spectral indices are prone to errors due to interference from other water 
quality constituents, and they rely on constant (unchanging) water 
conditions. As such, they are usually recommended for a qualitative 
assessment of spatial variations of the predicted constituent across the 
water body, rather than for a direct, quantitative estimation. Similarly, 
empirical models, despite predicting better in their study, inevitably rely 
on the data used for calibration/validation. As such, they are repre-
sentative of the site-specific data and historical variations. The non- 
generalisability of empirical models is also acknowledged by Topp 
et al. (2020). 

For individual inland water bodies, historical in-situ data from all 
available sampling sites have typically been used to develop a whole- 
lake chl-a retrieval model. The accuracy of this approach varied 
greatly from study to study, depending on factors such as lake features; 
higher accuracies are usually achieved only on eutrophic/hyper- 
eutrophic lakes (e.g. Duan et al. (2010)). An example related to this 
work is provided by Bohn et al. (2018) for a shallow Argentinian lake, 
where good correlation for three sampling sites was achieved for both 
Secchi Depth and chl-a prediction; the latter however fluctuated within a 
range of approx. 50–850 μg/L. In Markogianni et al. (2018), a model for 
chl-a was developed by combining the results for all sampling sites (n =
22), for three sampling dates, for a specific Greek lake. Accuracy for chl- 
a prediction was estimated as R2 = 0.33, highlighting potential chal-
lenges in building a generalised satellite-based chl-a prediction model, 
even for a single inland water body. 

In addition to site-specificity issues, the quantification and, 

importantly, visual representation of the model uncertainty is usually 
lacking; or complex to interpret. Most studies tend to “disconnect” the 
model development/accuracy estimation from the visual estimation/ 
representation of predictions (Bertone and Peters Hughes, 2023), by 
refraining from attempting to represent uncertainty during model 
application/deployment. Recently, Bertone and Peters Hughes (2023) 
proposed a “one-map” methodological approach, relying on a Bayesian 
Network prediction modelling framework, to display the probability of 
exceeding critical operational chl-a and turbidity thresholds for a 
drinking water reservoir. Limited similar alternatives exists, such as 
visualised in Roncoroni et al. (2022), though without using a Bayesian 
approach. An alternative method includes the provision of two separate 
maps, showing respectively (i) the prediction value and (ii) related un-
certainty (Werther et al., 2022), which is however less user-friendly to 
intepret. Other more traditional approaches include calculating confi-
dence intervals; methods to do so include bootstrapping approaches, as 
applied (also) for this goal by Seegers et al. (2021). All such methods 
help to quantify uncertainty and thus easily identify varying model ac-
curacy and improvement opportunities (e.g., ranges/sites requiring 
further data collection). 

In this work, we attempt to deal with these shortcomings (i.e. non- 
generalisability of empirical models and uncertainty representation in 
model outputs) for a type of water body where satellite-based remote 
sensing techniques are not commonly utilised (i.e., estuarine lagoons). 
We suggest a simple spatial distance-based, weighted average approach 
to incorporate site-specificity while allowing for prediction extrapola-
tion to unmonitored sites. We then calculate and visualise the location- 
specific model uncertainty through confidence intervals via a boot-
strapping approach. In addition to providing modelling/visualisation 
alternatives for similar applications, this work is important for the case 
study site, as the Broadwater is characterised by a developed, hetero-
geneous catchment, within one of the fastest growing regions of 
Australia. Such tools, complementary to traditional monitoring pro-
grams, can yield more expansive spatial coverage of water quality var-
iations in different areas over time without significantly increasing 
program costs, and provide valuable knowledge to inform catchment- 
based and recreational water management. 

2. Methods 

2.1. Study location 

The Broadwater (Fig. 1) is a micro-tidal estuarine lagoon, 25 km in 
length on a north-south direction with depths up to approximately 8 m 
and several areas characterised by exposed sandy banks (Dunn et al., 
2022). Catchment and river flow inputs originate from the Nerang, 
Coomera, Pimpama and Logan-Albert rivers, as well as from local creeks 
– Biggera and Loders, which can greatly influence water quality inputs. 
However, outside of wet weather events, tidal inputs usually exceed, in 
magnitude, riverine discharge volumes (Moss and Cox, 1999). Physi-
cochemical parameters are typically affected by tidal variations for pe-
riods with little to no rainfall (Dunn et al., 2007b; Dunn et al., 2003) 
Nevertheless, from a water quality perspective, local rivers still play an 
important role as they drain numerous catchments totalling approxi-
mately 112,000 ha, which greatly vary in land use, from developing 
urban areas to agricultural and grazing areas, dense subtropical rain-
forest and industrial areas. Land use change is, at the time of writing, 
occurring only in the Pimpama/Stapylton region, while for the other 
areas in the catchment, population density has been increasing but 
without causing further land use changes. Regulated recycled water 
from four sewage treatment plants is released from diffusers during ebb 
tide conditions within the Gold Coast Seaway (Kaminski et al., 2018). 
The strategic tidally staged release is designed to maximise the hydraulic 
efficiency of the release system, by directing recycled water away from 
the Broadwater on the ebb tide, enabling assimilation into the envi-
ronment within the Coral Sea with minimal impact to the Broadwater. 
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The Broadwater has significant ecological, economic, and cultural 
importance and due to the rapid urban expansion of the region, partic-
ular attention is required to ensure the infrastructure upgrades are 
performed in accordance with environmental regulations. As such, the 
area has been the focus of a number scientific and monitoring efforts, 
summarised in Dunn et al. (2022), in addition to the work presented in 
their own paper. Water quality prediction models have also been 
established (e.g. Bertone et al. (2019)), to facilitate recreational waters’ 
safety. 

2.2. Data collection and preprocessing 

To develop an empirical retrieval model, the two main sources of 
data needed are (1) in-situ historical water quality data, to use for model 
development/validation, and (2) near-synchronous satellite images 
(Topp et al., 2020). 

For this study, free-access images were acquired by the Sentinel 
Multispectral Instrument (MSI) installed in the twin Sentinel-2 2A and 
2B satellite platforms from the European Space Agency’s (ESA) Coper-
nicus Open Access Hub for April–October 2023 and thereafter Coper-
nicus Data Space Ecosystem, https://dataspace.copernicus.eu/. Level 
2A (processed) images were utilised as part of this study, with atmo-
spherically corrected Surface Reflectance (SR) ortho-images with an 
extension of 110 × 110 km2 in UTM projection WGS84 Datum. Images 
with cloud cover >9 % were not included in the analysis. Images were 
retained for analysis if the retrieval date was up to 2 days (or 3 days for 
the infrequent, high TSS and chl-a concentrations sampling days) from 
the in-situ sample collection date. Data from this hub (including the 
updated version) with the above-mentioned filtering and processing 
criteria were available from December 2018.We also considered an 
integration of relevant Landsat imagery synchronous data in the EO 
Browser platform from the Sentinel Hub (Sentinel_Hub, 2023); however, 
further retrieval was minor and limited to sampling days with negligible 
concentrations of TSS and chl-a. As such, for consistency, only Sentinel-2 
products were used for this study. To convert the measurements from 
16-bit integers to reflectance values between 0 and 1, the conversion 
equation provided by European Space Agency (2023) was applied, with 
quantification and offset values retrieved for each image. 

In-situ water quality data used for model development, during this 
study, was collected through a City of Gold Coast-funded monitoring 
program described in Dunn et al. (2022). The locations of the sampling 
sites are illustrated in Fig. 1. The monitoring dataset included mea-
surement of 14 WQPs (in particular, TSS and chl-a) at 18 different 
sampling sites in the Gold Coast Broadwater from 2016 to 2021. The 
sampling sites are representative of local specific features, such as 
rivers/creeks outflows, oceanic exchange, or foreshore developments. 
The collection frequency was fortnightly to monthly and as such, the 
overall number of WQP observations (i.e., data points) ranged from 
1608 to 1795 depending on the parameter (excluding salinity, with 

Table 1 
Models details for TSS prediction. Accuracy is for calibration and, in brackets, 
for the validation with the LOOCV approach.  

Cluster 
# 

Sampling 
sites # 

Model Accuracy 

1 1, 2, 3, 4, 5 TSS = 0.0919*R1–0.0579*R2 + 6.57 R2 = 0.47 
(0.42) 

2 7, 8, 9, 10, 
11, 12, 13 

TSS = 0.073*B8 + 0.037*B2/B4 +
7.403*TCARI-5.403*NDWI + 3.22 

R2 = 0.61 
(0.38) 

3 6, 16 TSS = 0.007528*B2 +
0.039496*B4–0.06714*B8 +
0.02636*B8/B4–1.718*TCARI- 
8.9588*NDWI + 11.71 

R2 = 0.67 
(0.22) 

NA 15 TSS = 0.56*(− 154*TCARI + 169*NDWI- 
0.04*B8/B4–2.05*B2/B4)-2.6 

R2 = 0.68 
(0.17)  

Table 2 
Models details for chl-a prediction. Accuracy is for calibration and, in brackets, 
for the validation with the LOOCV approach.  

Cluster 
# 

Sampling sites # Model Accuracy 

1 2, 5, 6, 14, 16, 
17 

Chl-a = 0.0163*B4 + 0.0175* 
(B3/B4) + 0.528 

R2 = 0.40 
(0.42) 

2 1, 3, 4, 7, 8, 9, 
11, 13 

Chl-a = 24.93*exp(0.0092* 
(NDWI-GRDI))-2.32 

R2 = 0.64 
(0.58) 

NA 12 Chl-a = 2.89*(0.1*B8–10*R3)- 
7.19 

R2 = 0.75 
(0.22)  

Fig. 2. Methodological framework of the spatially weighted average approach to pixel-specific TSS and chl-a prediction. In blue the process numbers as explained in 
the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1022 analyses). The total number data points for TSS and chl-a were 
1794 and 1795, respectively (Dunn et al., 2022). 

Following the data pre-processing and cleaning tasks described 
above for in-situ monitoring and remote sensing datasets, the number of 
matching data points was n = 148 for TSS and n = 142 for chl-a for all 
sites. The considerable reduction from the available in-situ dataset was 
due to (1) relatively low temporal frequency for both data sources, 
limiting the chance for same-day retrieval, (2) satellite data availability 
with the selected filtering/processing criteria commencing in late 2018, 
and (3) a number of satellite images not covering the entire Broadwater 
area of interest, thus missing a number of sampling sites. Such issues are 
not uncommon in this field (Bertone and Peters Hughes, 2023; Topp 
et al., 2020): the larger the existing in-situ dataset, the more likely it will 
be to have more synchronous readings and in turn a larger final sets of 
data to use for more robust model development. Given the substantially 
large initial dataset for this study (both in terms of time period and 
spatial distribution), the final number of matching data points was still 
deemed significant; a number of different solutions were applied, as 
described in the next section, to overcome remaining limitations. 

2.3. Data analysis and model development 

For the model development, a compromise between site-specificity 
of correlations and avoidance of model overfitting due to the small 
sample size (each sampling location had 6–10 matched data points 
only), sites clusters were developed based on similarities in their data 
cross-correlations and spatial proximity. 

Using the Sentinel-2 data, we developed models based on both (1) 
reflectance values of the individual pixel matching the sampling point 
coordinates only, and (2) the average reflectance values for a cluster of 9 
neighbouring pixels. This was because some of the sampling points are 
close to land; therefore, the mix of Sentinel-2 geometric accuracy and 
spatial resolution may lead to problems related with mixed reflectance 
and/or co-registration with sample points. Using a cluster of pixels 
approach assists removing (or correcting) land/water mixed pixels. 
Results show that the value of the central pixel (original one) and of the 
mean of the cluster do not differ by >1–2 %. This indicates that using 
reflectance values from only the specific pixel matching the sampling 
site coordinates was a reliable approach for model development within 
the study region. 

We highlight that for this reason, and for model development pur-
poses, we focused on the B2, B3, B4 and B8 spectral bands from Sentinel- 
2. While other bands (e.g. B5 to B7) may prove to be useful predictors, 
due to their lower spatial resolution, a more pronounced negative effect 

from land proximity within our study region could have occurred, since 
many sampling sites were located <30 m from the upper tidal limit (i.e., 
inter-tidal land), with some sites located at the mouth of creeks (e.g. 
Loders Creek, Site 17) being only approximately 20 m wide. In addition, 
having three additional potential predictors for an already small dataset 
would increase the chance of overfitting even further. 

Tables 1 and 2 present the final clusters with related regression 
models. A combination of empirical and semi-empirical approaches was 
employed. We selected, as potential predictors, both the corrected 
reflectance values for the different relevant spectral bands (B2, B3, B4 
and B8 – empirical approach), as well as combinations of them based on 
established ratios/indices already developed in previous well- 
established studies as potential indicators of TSS or chl-a (semi-empir-
ical approach). Similar models for turbidity were also tested, however 
they yielded lower accuracy than for TSS. Variations of such existing 
ratios (e.g. same mathematical formulation but different spectral bands) 
were also tested (i.e. empirical approach). Ratios/indices retrieved from 
the literature include the best performing band combination used in 
Ouma et al. (2020) for TSS prediction from Sentinel-2, herein denoted as 
R1: 

R1 =
(B4 + (B8/B4) )

2
(1) 

We also included a similar format but with spectral bands B4 and B2, 
herein denoted as R2: 

R2 =
(B2 + (B4/B2) )

2
(2) 

Other employed indices included:  

• Transformed Chl-a sorption in Reflectance Index (TCARI), previously 
proposed and used for leaf chl-a estimation in crops (Haboudane 
et al., 2002). 

TCARI =
(B4 − B8)
(B4 + B8)

(3)    

• A similar formulation to TCARI applied to the B2 and B3 bands, 
herein denoted as R3. 

R3 =
B2 − B3
B2 + B3

(4)   

Fig. 3. Image-averaged TSS and 95 % confidence intervals for BI = 5 and BI = 50. LB = Lower Bound; UB = Upper Bound; n5: BI = 5; n50: BI = 50. Images dates: 1: 
12/03/2019; 2: 21/01/2020; 3:15/02/2020. 
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• Green-Red Difference Index (GRDI), uses a slightly different version 
of the green-red vegetation index, and it has been used to monitor 
vegetation (Tucker, 1979). 

GRDI = B3 − B4 (5)    

• Normalised Difference Water Index (NDWI), proposed to measure 
absorption by vegetation’s liquid water (Gao, 1996) and previously 
used for chl-a prediction (Bertone and Peters Hughes, 2023). 

NDWI =
(B3 − B8)
(B3 + B8)

(6) 

A leave-one-out cross-validation (LOOCV) approach (James et al., 
2013), i.e. a particular type of cross-validation (Stone, 1978), was 
applied for the TSS and chl-a models, in order to develop the most robust 
model given the small datasets. LOOCV is a cross-validation technique 
that is specifically used to estimate how well a model will generalise to 
new/unseen data. Essentially similar to an “extreme” variant of a k-fold 
validation, it involves randomly splitting the dataset into training and 
validation sets, where each validation set contains a single data point, 
and the rest are used for training. This process is repeated k times, where 
k = the number of data points in the dataset. The results presented in 
Tables 1 and 2, show that R2 ranged between 0.40 and 0.75 for all 
models, while the value of this metric is lower for the validation test 
(especially for those models relying on smaller clusters). This is because 
the test set contains a single data point only, and hence one poor pre-
diction might affect the overall R2. The ensemble model resulting from 
aggregating all the models developed on the individual training set runs 
will presumably be more robust and yield higher accuracy over new/ 
unseen data. Regardless, calculating the confidence intervals will help 
represent the uncertainty in the model’s predictions. 

Sites were grouped together in clusters (see Tables 1 and 2) for 
modelling purposes to achieve a suitable compromise between accuracy 
and robustness. For TSS, the first cluster contains the northernmost sites 
(Sites 1–5), predominantly adjacent to river entrances, which drain 
water from agricultural/grazing catchments. The second cluster con-
tains sites (Sites 7–13) in the middle of the lagoon, with slightly deeper 
waters and different hydrodynamic/water quality influences than for 
the first cluster (i.e. reduced influence from river inputs). The third 
smaller cluster contains two river mouth sites (Sites 6 and 16) draining 
more urbanised catchments and in turn with potentially different fea-
tures in their sediment inputs compared to the first cluster. Site 16 in 
particular, is receiving waters from the Nerang River, which is bounded, 
more upstream, by Hinze dam; this acts as a significant barrier for 
sediments and nutrients, thus affecting their concentrations down-
stream. Site 17, representing Loders Creek, could not be clustered with 
other sites nor could be predicted individually. Loders Creek drains a 
very complex, mixed-use (e.g., industrial, urban) catchment which can 
contribute various sources of pollutants, and in turn made a satellite- 
based estimation more challenging. Similarly, Site 15 could not be 
clustered, probably due the influence of nearby Site 17. However, an 
individual model of Site 15 yielded an acceptable accuracy (though 
lower after LOOCV validation accuracy calculation, due to the very 
small dataset). For chl-a, with the exception of Site 12, the clustering was 
clearer between all river entrance sites (first cluster – regardless of 
different land uses in the catchment) and the central estuarine lagoon 
sites in deeper waters less affected by river flow (second cluster). A site- 
specific model for Site 12 was excluded due to the poor validation ac-
curacy (being a small dataset) and its proximity to several other moni-
toring sites. Instead, we applied the weighted average approach 
described below, similarly to any unsampled pixel. This also offered an 
opportunity to better validate the weighted average approach, since the 
three closest monitoring sites pertain to different clusters, thus leading 
to a unique site-specific quantification and the opportunity for valida-
tion with site-specific historical data. 

Fig. 4. TSS [mg/L] 97.5 % upper bound prediction difference (in percentage) 
among runs for BI = 50 and BI = 5 for 15/02/2020. UTM Zone 56S coordinates, 
WGS 84 datum (EPSG:32756) Easting and northing in metres. 
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To determine the confidence intervals, a bootstrapping approach was 
used (Mooney et al., 1993). Bootstrapping is a statistical resampling 
technique used to estimate the sampling distribution of a statistic. It 
involves repeated sampling from observed data with replacement to 
create new datasets of the same size as the original dataset. This process 
is done many times (herein defined as bootstrapping iterations or BI) to 
simulate the sampling variability and generate a distribution of the 
statistic of interest. Bootstrapping is commonly used to calculate confi-
dence intervals for a parameter, and this was a preferred method given 
the limited data (and its non-normal distribution, as clearly identifiable 
visually from histograms and Q-Q plots) compared to traditional confi-
dence intervals determination methods (e.g., relying on z-values). This is 
important as it visually accounts for the different robustness (or lack 
thereof) of the site-specific models. Models built with smaller datasets 
would tend to have larger confidence intervals, given similar accuracy. 

Finally, in order to identify which model to apply to individual pixels 
at unsampled locations, the proposed weighted average approach was 
implemented as follows and as illustrated in Fig. 2:  

1. For each pixel i, take B2, B3, B4, and B8 processed reflectance values 
(1a) and extract coordinates (1b).  

2. Calculate the TSS and chl-a predictions and confidence intervals 
based on reflectance values, for each sampled site based on the site/ 
cluster-specific models.  

3. Calculate the spatial distance of the pixel from each of the 17 sites 
(3a) and select the three closest ones (3b) – D1(i), D2(i), D3(i). Store 
the TSS and chl-a prediction for the three closest sites (3c) – TSS1(i), 
TSS2(i), TSS3(i) and chla1(i), chla2(i), chla3(i) 

4. Calculate the three weights W1(i), W2(i), W3(i), as inversely pro-
portional to the distance (4a) and with the sum normalised to 1 (4b).  

5. Calculate the weighted average of the TSS and chl-a predictions at 
those three sites and related confidence intervals – TSS(i) and chl-a (i)  

6. Assign that TSS and chl-a predicted concentrations to the pixel 
considered and move to the next pixel. 

A series of codes were written in the R environment (Rstudio 
2023.06.1 + 524), which:  

1. Identify and extract B2, B3, B4, and B8 processed reflectance values, 
for the satellite images of interest.  

2. Display both the true colour image and the individual band’s 
reflectance values.  

3. For each pixel, apply the weighted average approach described 
above, to generate a TSS and chl-a prediction and related 95 % 
confidence intervals based on defined BI.  

4. Apply a shapefile to the predictions (calculated over the wider region 
captured by the satellite) for the Broadwater area to mask non-water 
pixels and plot the resulting image. 

Fig. 5. Predicted (mean and confidence intervals from BI = 5) vs observed TSS, all sampling sites, 3 retrieval dates.  
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5. Extract the predicted values at the specific sampling locations.  
6. Plots observations against predictions. 

Due to the very high computational time required for the boot-
strapping/weighted average approach, the code was run in the ARDC 
Nectar Research Cloud (Nectar) (https://ardc.edu.au/services/ardc-nec 
tar-research-cloud/). The code’s computational time for one individual 
image, which contains approximately 1.5 million pixels, increased lin-
early with increasing bootstrapping iterations (BI); for instance, it took 
~1-day when considering BI = 5 and 10 days for BI = 50. As such, we 
focused our predictions on a handful (3 for TSS: 12/03/2019, 21/01/ 
2020, 15/02/2020; 4 for chl-a: 12/03/2019, 21/01/2020, 15/02/2020 
and 21/04/2021) of historical images. These were selected specifically 
as they covered both the low (12/03/2019) range as well as the high 
(21/01/2020, 15/02/2020, and to some extent 21/04/2021 for chl-a) 
range of observed values. We also compared the confidence intervals 
estimations determined with BI = 50 vs BI = 5, to understand if the 
discrepancy is predictable and thus allowing to run a faster code without 
compromising the robustness of the bootstrapping approach. 

3. Results 

Fig. 3 presents the predicted average TSS concentrations for three 
selected days (i.e., 1: 12/03/2019; 2: 21/01/2020; 3:15/02/2020) for 
the entire study region as well as the 95 % lower and upper bounds with 

BI = 50 and BI = 5. Fig. 3 illustrates that with increasing iterations the 
confidence intervals become wider. The lower bound sits, on average, 
21 % below the mean for BI = 50 and 14 % for BI = 5. However, more 
variation (likely due to more extreme values/outliers on the upper end 
of concentrations) occurs for the upper bound (26 % and 16 % above the 
mean for, BI = 50 and BI = 5, respectively). Importantly, the differences 
between 5 and 50 iterations (i.e. 7 % for lower bound and 10 % for upper 
bound) were consistent across different images. As such, to contain the 
computational time, most of the subsequent analyses were run with a 
lower (i.e., BI = 3 or BI = 5) number of BIs and with educated as-
sumptions/prediction of the wider confidence intervals. 

While aware that this analysis was performed only on three images 
(out of 7 matching images) due to the extremely high computational 
time to run the code with BI = 50, these images included both the low 
and the highest range of concentrations for TSS in our dataset; the 
consistent output across the images provides confidence that this similar 
pattern would repeat itself for other retrieval dates. Fig. 4 also presents, 
as an example, calculation based on the 15/02/2020 satellite image (i.e., 
near synchronous to the sampling day with the highest TSS concentra-
tion in our dataset), specifically representing the spatially explicit dif-
ferences (in percentage) between the upper bound of TSS concentration 
predicted with BI = 5 and BI = 50. The widespread light green colour 
demonstrates that the 10 %–15 % difference is consistent and uniform 
for most of the study area, thus indicating it is predictable. Locally 
higher differences were typically in proximity of land boundaries where 

Fig. 6. Predicted (mean and confidence intervals from BI = 5) vs observed TSS, North/South sampling sites, 3 retrieval dates (1: 12/03/2019; 2: 21/01/2020; 3:15/ 
02/2020) combined. 
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there is potentially higher retrieval uncertainty, and less interest for this 
analysis. 

Figs. 5 and 6 illustrate the prediction accuracy for TSS for the three 
retrieval dates of interest (i.e., Images dates: 1: 12/03/2019; 2: 21/01/ 
2020; 3:15/02/2020). Fig. 5 clusters the results based on date, while 
Fig. 6 presents the results based on sample location (northern vs 
southern region of the Broadwater). These results highlight how the 
February 2020 results have the highest TSS and in turn also the highest 
model errors. Predominantly higher concentrations were recorded at the 
northern sites, likely or at least partially due to being part of a model 
cluster with a lower calibration accuracy. While the cluster-specific 
accuracy was shown in Table 1, in this case it is acknowledged that 
overall, regardless of the cluster, the northern sites displayed the highest 
TSS concentrations in the dataset, which also proved more inaccurate in 
the predictions. While the error is most likely also due to a large 
discrepancy (3 days) between satellite acquisition dates and samples 
collection, which occurred on 18/02/2020, the confidence interval 
approach allows (especially when widening them according to the BI- 

based relationships described above) to, most times, include the true 
value within the 95 % confidence interval. 

The authors suggest future work could focus on improving the cali-
bration of the northern sites, through the further data collection which 
over time would allow a larger, synchronous, high-concentration 
training dataset, in turn presumably leading to more accurate 
predictions. 

Figs. 7 and 8 present chl-a concentration predictions against mea-
surements, based on retrieval date (Fig. 7) and sampling site (Fig. 8). 
Compared to TSS, which had a more limited number of retrieval dates 
with medium-high concentrations, for chl-a four images were consid-
ered, by adding a more recent image with mid-range concentrations. 
Similarly to TSS, 15/02/2020 shows a much higher variation in the 
predicted results compared to observations, which as mentioned before, 
may be due to the 3-day time lag between satellite acquisition date and 
sample collection. However, close scrutiny of the data reveals that most 
of the underpredictions are for sites where the exponential model (sec-
ond cluster) was applied. This was noticed in the model development 

Fig. 7. Predicted vs observed chl-a, all sampling sites, 4 retrieval dates.  
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stage, with the model underpredicting within the 20–40 μg/L range. In 
case higher concentrations were to be recorded, the model predictions 
would align closer to the in-situ values. 

The bootstrapping approach allowed for the inclusion of the in-situ 
value within the 95 % confidence intervals in most cases. For the vast 
majority of predictions, the in-situ value sits below the 97.5 % upper 
bound (Fig. 9). Hence, hypothetically, catchment managers could use 
the upper bound prediction to safely determine that there would be a 
very small (2.5 %) chance of detecting higher concentrations in the field. 

To validate the accuracy/appropriateness of our weighted average 
approach, we compared predicted vs observed chl-a concentrations at 
Site 12 for which, as mentioned earlier, we opted to apply the weighted 
average approach from the three closest sites rather than an individual 
site-specific model. A relatively high prediction accuracy was achieved 
(R2 = 0.75). Further work may look to focus on collecting samples from 
new (different) locations in the Broadwater and compare with the 
satellite-based estimation at the corresponding location. 

Fig. 10 shows the predicted TSS concentrations for 21/01/2020 and 
15/02/2020. These dates were close to the in-situ sampling days with 
the highest TSS readings in the historical dataset. The high 

concentrations were likely due to very large rainfall totals during this 
period, specifically: 349 mm from 12/01/2020 to 21/01/2020 and 566 
mm from 4/2/2020 to 14/02/2020 recorded at the Gold Coast Seaway 
(BoM, 2023). 

While a number of modelled results is missing from the upper section 
of the right panel, likely due to issues with the original satellite image, 
the study findings indicate the northernmost rivers were the initial (21/ 
01/2020) and dominant contributors to TSS within the Broadwater, 
with elevated concentrations (i.e., >20 mg/L) occurring three weeks 
later in February (15/02/2020) on most the northern area of the 
Broadwater. 

For the most critical (given the higher concentrations) February re-
sults, having the lower and upper bound estimations (Fig. 11) can assist 
stakeholders. For instance, the lower bound results predict that there is a 
97.5 % chance that the actual TSS values are higher than those displayed 
in the same map. As such, in this example, a very high probability of TSS 
> ≈15 mg/L exist in most locations around the river entrances of the 
northern Broadwater. Overall, the lower and upper bounds have similar 
values, indicating narrow confidence intervals. This is especially valid 
for areas with very high (river entrances) and very low (Southern lagoon 

Fig. 8. Predicted vs observed chl-a, colour-coded by sampling site, 4 retrieval dates combined.  
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area) TSS concentrations. Transitional regions, i.e. where the high loads 
coming from the rivers are diluted and mixed, show higher discrep-
ancies, i.e. higher uncertainty in the predictions. It must be also noted 
that these confidence intervals were based on a code run with BI = 5. A 
wider (− 7 %, +10 %) 95 % confidence interval would have been ach-
ieved with BI = 50. 

Fig. 12 presents predicted chl-a concentrations during the same 
retrieval dates, as well as on 20/04/2021. Results associated with a high 
intensity rainfall recorded in early 2020 show different patterns from 
TSS, with early elevated chl-a concentrations recorded in the southern 
part of the Broadwater before higher concentrations were recorded in 
the northern region, especially within immediate receiving waters of the 
Coomera River. In April 2021, higher chl-a concentrations are present at 
several scattered locations, predominantly within shallow near-shore 
waters. Given boundary issues (e.g., mixed reflectance) were initially 
checked as explained (Section 2), this result may point to the presence of 
cyanobacteria/algae in the shallower areas of the Broadwater. While, 
being shallow, the readings might be partially affected by the colour and 
features of the sand bottom, these locations may nevertheless provide 
better growing conditions or may be more protected from hydrodynamic 
or wind-related movement, as well as receive more nutrients from the 
nearby rivers than other (e.g. southernmost region, receiving waters 
from the Nerang River) Broadwater areas. The latest, preceding 

significant rainfall event occurred from 4/04/2021 to 7/04/2021 (136 
mm), followed by two dry weeks before the data collection date. The 
rainfall event may have provided nutrient inputs needed for algae to 
grow, in turn made possible by the subsequent relatively calm and warm 
conditions (water temperatures of 22–23 ◦C depending on the site, based 
on our analysis of available temperature data from the provided dataset 
from Dunn et al. (2022)). Further work is needed, however, to ensure the 
model predicts shallow areas correctly rather than misinterpreting e.g. 
intertidal sandbanks as regions of high concentration. 

4. Discussion 

Overall, this study contributes to the relatively limited body of work 
related to satellite remote sensing of estuarine lagoons, which is only a 
small fraction of the much larger research work completed for rivers, 
lakes and reservoirs (Topp et al., 2020). Regular in-situ water quality 
sampling and analysis within the Broadwater has, and continues to be, 
performed (Dunn et al., 2022). However, despite up to 18 points being 
recently monitored over time across the Broadwater (Dunn et al., 2022), 
quantification of WQP across all regions of the Broadwater remains a 
logistical and financial challenge. This is due to the intertidal charac-
teristics of the water body along with the complex interactions caused by 
multiple inflow points and human activities (e.g. dredging and boating). 

Fig. 9. Predicted 97.5 % upper bound (BI = 3) vs observed chl-a, all sampling sites, 4 retrieval dates. Slope of dashed line is 1:1.  
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The predicted growth in urban population and changes in land uses 
(especially in current agricultural areas) would likely change the spatial 
and temporal dynamics of sediments and associated pollutant inputs. 
Having a spatially explicit, and regular estimation of WQPs, such as TSS 
and chl-a concentrations, would provide new insights into TSS ad chl-a 
dynamics, as well as provide useful data for calibration or as input to 
existing process-based and data-driven hydrodynamic and water quality 
models. Such capability may also help to identify additional sites of 
interest to monitor using in-situ methods. At the same time, the pre-
diction maps could be used in near-real time to issue ‘trigger value’ 
warnings if required. For instance, in recent years a potentially toxic 
cyanobacteria genus, called Lyngbya maiuscula, made its appearance in 
the Broadwater. High chl-a estimations may be due to the presence of 
this toxic algae and as such recreational activities might have to be 
restricted in such localised areas. 

The proposed weighted average approach accounts for input sources 
having different water quality features and related optical properties. 
Clustering sites with similar features allows the preservation of rela-
tively large training sets of data and, at the same time, avoiding the 
development of a model which is too general and does not account for 
the different optical properties at different locations. Despite the clus-
ters, many datasets used for training different models were quite small; 
however, the application of the “leave-one-out” approach allowed for 
more robust models to be developed despite the data limitations; 
concurrently, the deployed bootstrapping approach helped to quantify 
confidence intervals and in turn provide, as the name implies, higher 
confidence with the end-user on the likely prediction range. In addition 

to the small dataset, other sources of errors and uncertainty include:  

(1) Uncertainty around the actual water quality values at the specific 
day/time of satellite retrieval. Often, there were up to 2/3 days of 
gap between the in-situ sample collection and the satellite image 
retrieval. Using only same-day synchronous data would have 
limited the dataset size even further (by 87 % for same-day only, 
or 37 % with a 1-day allowance only). Based on expert consul-
tation and educated assumptions, we included all those slightly 
asynchronous (up to 3 days) images to extend the dataset, 
whenever gradual TSS and chl-a variations could have been ex-
pected (e.g., no significant rainfall during that time gap). How-
ever, in some cases some significant variations at some sites could 
have occurred during that timeframe. Of particular significance 
in this regard is the February 2020 data, collected (18/02/2020) 
3 days after the satellite retrieval (15/02/2020). This was the 
longest allowed time gap in our matched dataset, as it was one of 
the few days with high readings, and as such it was important to 
include it for our modelling. Results show higher errors for this 
particular day compared to any other analysed date. To further 
add uncertainty is the role of tidal variation on water quality 
fluctuations, which can further add discrepancy if the tide phase 
was different at the time of collection of the in-situ and satellite 
data. The use of continuous in situ water quality monitoring in-
struments as well as in situ radiometers would allow the creation 
of a much larger dataset of synchronous readings; however, the 
financial viability of these expensive tools might rely on multiple 

Fig. 10. Predicted TSS [mg/L], Broadwater, 21/01/2020 (left panel) and 15/ 
02/2020 (right panel). UTM Zone 56S coordinates, WGS 84 datum 
(EPSG:32756). Easting and northing in metres. 

Fig. 11. Predicted TSS [mg/L], Broadwater, 15/02/2020; 2.5 % lower bound 
(BI = 5, left panel) and 97.5 % upped bound (BI = 5, right panel). UTM Zone 
56S coordinates, WGS 84 datum (EPSG:32756). Easting and northing in metres. 
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applications (i.e. beyond the creation of a larger dataset for this 
specific satellite project only).  

(2) Uncertainty around satellite data quality and quantity. Despite 
applying the appropriate corrections and checking potential 
boundary issues, in particular for those sampling sites closer to 
shore, the processed reflectance values might still be not 
completely reliable. Alternate (current and future) available 
processing/correction algorithms could be investigated in future 
works. Also, we relied on only those relevant spectral bands 
having a 10 m × 10 m spatial resolution (given the proximity to 
land of many sampling sites). Several chl-a and TSS indices and 
algorithms rely only on combinations of these bands, namely B2, 
B3, B4, B8. Nevertheless, other studies have shown that other 
spectral bands (e.g. B5, B6, B7, with a 20 m × 20 m resolution) 
have potential to provide useful information for improved 
retrieval accuracy (Bertone and Peters Hughes, 2023; Topp et al., 
2020). Future work could assess the values provided from other 
spectral bands, assess boundary issues such as mixed reflectance, 
and if results are promising, develop more accurate models, 
especially for certain shallow areas where the model might 
currently be mispredicting high chl-a concentrations at times. 
Subsequently, spatial interpolation (e.g. Bertone and Peters 
Hughes (2023)) approaches can be applied to still enable a 10 m 
× 10 m prediction resolution. For our historical dataset however, 

crucial limitations include the proximity of many sampling sites 
to land, or within relatively narrow creeks. Moving/adding 
sampling sites to more open water (while preserving the repre-
sentativeness of the river/creek contribution), and/or the 
installation of in-situ sensors measuring spectral reflectance, 
could allow for more appropriate data collection to make use of 
lower resolution spectral bands. 

(3) Uncertainty around the provided lab analyses results, and in partic-
ular the precision. Most of the high concentration results for e.g. 
chl-a were all either exactly 30 μg/L or 40 μg/L. While the original 
collected data might have had a higher level of precision, the lack 
of it in the provided data is herein acknowledged, though playing 
a more minor role compared to the other mentioned points.  

(4) Limited dataset at high concentrations. It is well known that satellite 
retrieval of water constituents is more difficult when their con-
centrations are low, due to lower signal to noise ratio. At the same 
time, most of the poor water quality events occur in summer, due 
to higher water temperatures and wet weather events. Unfortu-
nately, these periods often coincide with rainy/overcast weather. 
The high cloud cover does not allow for accurate correction/ 
processing of reflectance values and as such the amount of syn-
chronous data for such high-concentration events grows much 
more slowly than for the low concentrations (i.e., dry weather) 
data. 

Fig. 12. Predicted chl-a [ug/L], Broadwater, 21/01/2020 (left panel) 15/02/2020 (centre panel), and 20/04/2021 (right panel). UTM Zone 56S coordinates, WGS 
84 datum (EPSG:32756). Easting and northing in metres. 
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Despite the limitations, this research work has introduced a number 
of methodological concepts which, when combined within the overall 
methodological framework of Fig. 2 and Section 2.3 with their specific 
objectives, provides elements of novelty in this field. To summarise, this 
includes (1) avoiding the issue of limited data with sampling site specific 
predictions, as well as the issue of non-generalisability and thus poor 
accuracy of a whole-lagoon model, by instead forming a handful of site 
clusters based on similar optical properties; (2) generating confidence 
intervals maps with a bootstrapping approach given the features of the 
historical data; (3) ensuring model accuracy and robustness in spite of 
limited data, with a leave one out cross validation approach; and (4) 
estimation of TSS and chl-a at any unsampled site based on a weighted 
average approach, averaging the modelling predictions for the three 
closest sampling sites. All these elements combined, provided an effec-
tive, novel and robust method to predict water quality for the Broad-
water, based on local features and data availability. 

Overall, given the empirical (i.e., data-driven) modelling approach 
deployed, further in-situ data collection, potentially also at different 
sites and with newer technologies, would address most of the afore-
mentioned issues and gradually improve accuracy over time. A larger 
dataset might also enable other means of calculating the confidence 
intervals, as the bootstrapping approach (with large BI) proved to be 
very computationally intensive. 

5. Conclusions 

The Broadwater is an estuarine lagoon draining a complex mixed-use 
and rapidly changing catchment. Satellite retrieval of important water 
quality constituents such as TSS and chl-a provides an inexpensive and 
time-effective means to complement in-situ water quality monitoring 
efforts and better understand their spatial variability. In this work, we 
combined empirical/semi-empirical retrieval approaches for this goal. 
Sampling sites were grouped in clusters based on similarities, and for 
each cluster a retrieval model was developed. 

A weighted-average approach based on closest sampling sites was 
used to estimate TSS and chl-a concentrations at unsampled locations. A 
leave-one-out approach was used to ensure model robustness, despite 
the limited dataset, and a bootstrapping approach was deployed to es-
timate confidence intervals in light of the non-normal distribution of the 
historical data. Overall, WQP concentration estimation accuracy was 
acceptable and varied according to the model/cluster. Furthermore, 
confidence interval maps can aid ends users to understand uncertainty 
behind the estimation and take decisions accordingly (e.g., limit recre-
ational water use; conduct ad-hoc intensive sampling, etc). 

This study offers insights on the dynamic shifts in water quality 
across the Broadwater, particularly in response to wet weather events. 
During the primary event scrutinised, the TSS concentrations observed 
were more elevated in the river entrances situated in the northernmost 
regions. In contrast, chl-a concentrations exhibited an initial increase in 
the southernmost areas, highlighting a distinct spatial and temporal 
pattern in the impact of environmental factors on water quality 
dynamics. 

Future research could take advantage of further years of data 
collection to refine the models and potentially include other spectral 
bands as well as data from other satellite missions. The retrieved water 
quality maps could also be used to calibrate/validate process-based 
models, which could then be deployed to inform stakeholders of po-
tential water quality changes following certain land use changes, new 
developments, or more extreme weather events. 
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