
20 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for GPUs / Rodriguez
Condia, Josie E.; Guerrero-Balaguera, Juan-David; Patiño Núñez, Edwar J.; Limas, Robert; Sonza Reorda, Matteo. - In:
JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-8174. - ELETTRONICO. - 40:(2024), pp. 215-228.
[10.1007/s10836-024-06107-9]

Original

Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for
GPUs

Publisher:

Published
DOI:10.1007/s10836-024-06107-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987204 since: 2024-03-21T15:20:51Z

Springer



Vol.:(0123456789)

Journal of Electronic Testing (2024) 40:215–228 
https://doi.org/10.1007/s10836-024-06107-9

Investigating and Reducing the Architectural Impact of Transient 
Faults in Special Function Units for GPUs

Josie E. Rodriguez Condia1   · Juan‑David Guerrero‑Balaguera1   · Edwar J. Patiño Núñez2 · Robert Limas1   · 
Matteo Sonza Reorda1 

Received: 30 July 2023 / Accepted: 14 February 2024 / Published online: 21 March 2024 
© The Author(s) 2024

Abstract
Ensuring the reliability of GPUs and their internal components is paramount, especially in safety-critical domains like 
autonomous machines and self-driving cars. These cutting-edge applications heavily rely on GPUs to implement complex 
algorithms due to their implicit programming flexibility and parallelism, which is crucial for efficient operation. However, 
as integration technologies advance, there is a growing concern regarding the potential increase in fault sensitivity of the 
internal components of current GPU generations. In particular, Special Function Unit (SFU) cores inside GPUs are used in 
multimedia, High-Performance Computing, and neural network training. Despite their frequent usage and critical role in 
several domains, reliability evaluations on SFUs and the development of effective mitigation solutions have yet to be studied 
and remain unexplored. This work evaluates the impact of transient faults in the main hardware structures of SFUs in GPUs. 
In addition, we analyze the main overhead costs and benefits of developing selective-hardening mechanisms for SFUs. We 
focus on evaluating and analyzing two SFU architectures for GPUs (’fused’ and ’modular’) and their relations to energy, 
area, and reliability impact on parallel applications. The experiments resort to fine-grain fault injection campaigns on an 
RTL GPU model (FlexGripPlus) instrumented with both SFUs. The results on both SFU architectures indicate that fused 
SFUs (in commercial-grade devices) require lower area overhead (about 27%) for their integration in GPUs but are more 
vulnerable to transient faults (in up to 47% for the analyzed cases) and less power efficient (in up to 36.6%) than modular 
SFUs. Moreover, the reliability estimation shows that Modular SFUs are structurally more resilient than Fused ones in up 
to one order of magnitude. Similarly, selective-hardening mechanism based on Triple-Modular Redundancy (TMR) shows 
that coarse-grain strategies might increase the reliability of the overall SFUs under feasible overhead costs.

Keywords  Graphics processing units (GPUs) · Fault-tolerance · Reliability evaluation · Special function unit (SFU) · 
T-Stream core

1  Introduction

The programming flexibility and the structural parallelism 
of Graphics Processing Units (GPUs) boost their vertiginous 
adoption in several domains, from multimedia and gaming 

to aerospace, automotive, military, and High-Performance 
Computing (HPC) applications. In fact, (GPUs) are massively 
deployed to implement complex algorithms in safety-critical 
applications, such as those in the automotive and autonomous 
machines domains (e.g., Deep Neural Networks, Advanced 
Driver-Assistance Systems or ’ADAS’, and sensor fusion 
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systems), where device reliability and functional safety are 
significant concerns. In detail, industrial functional safety 
standards and norms, such as the ISO 26262 in automotive, 
demand safety mechanisms and reliability evaluations deter-
mining fault effects in a device.

Despite the use of cutting-edge transistor technologies 
in GPUs to increase performance and reduce power 
consumption, the "International Roadmap for Devices and 
Systems - 2022" (IRDS) and several independent studies [24, 
34] suggest that modern digital devices, such as GPUs, are 
highly susceptible to Electromigration and Time-Dependent-
Dielectric-Breakdown, both major sources of in-field and 
accelerated fault effects [25]. In particular, IRDS emphasizes 
that the lifetime of a device decreases by half at each new 
manufacturing process generation [25], exacerbating the 
importance of reliability evaluations and mitigation solutions 
in GPUs and their internal units. Unfortunately, the limited 
structural information and the missing architectural details 
from real devices interfere with deep reliability evaluations 
(e.g., on the architecture and applications), as well as the 
exploration and validation of mitigation solutions.

Among the available functional units and cores in GPUs, 
the Special Function Units (SFUs) [46], or T-Stream cores 
[3] are essential accelerators calculating (in hardware!) effi-
cient trigonometric and transcendental operations for several 
domains (e.g., pre-processing, handling, and correlation of 
images, sensor fusion, and training/inference of Neural Net-
work algorithms). Unfortunately, most of the previous works 
on GPU’s functional units reliability targets Floating-Point 
Units [39], Integer cores [48], and Tensor units [2, 33, 47], 
leaving fault effects in SFUs largely unexplored.

Most works in literature analyze the reliability of processor-
based systems and hardware accelerators (e.g., CPUs and 
GPUs) by resorting to three strategies: i) Beam experiments, 
exposing a device to radiation and analyzing their effects 
on targeted workloads, ii) Software-based error injection, 
representing faults as instruction errors in software, and iii), 
architectural/functional and low-level microarchitectural 
simulations, by injecting faults on a functional, RTL- or gate-
level implementation of a design [6, 7]. The first two methods 
employ real devices but can hardly analyze fault effects on 
focused units. In contrast, the last method provides accurate 
and fine-grain evaluations when descriptions are available. 
Authors in [37, 45] analyzed the reliability assessment of 
the main memory elements in GPU and CPU devices. Their 
results demonstrate that available low-level structures of a 
target device increase the accuracy in evaluating reliability. 
Similarly, authors in [29] exploited functional simulators 
to evaluate the reliability assessment of multiple GPU 
architectures in mainly memory hierarchy units. Other works 
[9, 14–16, 19, 21, 40] evaluated the reliability features of 
several GPU units (pipeline registers and block schedulers). 
Unfortunately, most works neglected to evaluate transient 

fault effects on SFUs. Moreover, some of them are limited 
by missing structural details of the units, i.e., functional 
simulators provide acceptable evaluations of memory and 
data-path units. Still, these can barely describe and evaluate 
(at fine-grain) functional units, such as SFUs. Authors in 
[12] analyzed the incidence of SFUs in the application’s 
sensitivity to fault effects. In this case, two versions of the 
workloads (with and without SFU) are evaluated to observe 
the workload’s impact on transient fault effects injected as 
instruction errors. This work also introduced a first approach 
to analyzing the structure of SFUs. Another work [17] 
provided a first attempt to analyze the effects of faults in 
SFUs. However, the evaluation was limited to permanent 
transition path delay faults. To the best of our knowledge, no 
works in the literature evaluate and analyze the architectural 
effects of transient faults on the reliability of SFUs for the later 
exploration of selective hardening solutions.

This manuscript extends a preliminary work [13] that 
explored the evaluation, analyses, and trade-off among the area, 
power consumption, and reliability of two SFU architectures. 
We focused on evaluating the impacts of transient faults (Sin-
gle Event Upsets or SEUs) in the structures of two hardware 
implementations of SFUs for GPUs: 1) a fused SFU (SFU1), 
and 2) a modular SFU (SFU2). In detail, Fused SFUs are 
commercial-grade designs exploiting Piece-wise Polynomial 
Approximations (PPA) [38] to implement highly area-efficient 
architectures reusing sub-units and process several operations. 
Moreover, Modular SFUs comprise simple, optimized, and 
independent units (organized in parallel) that implement in 
hardware compacted algorithms to calculate specific operations 
[11]. This work extends the reliability analyses on several paral-
lel workloads and micro-benchmarks for SFU cores. Moreover, 
this work evaluates the impact of the architectural features of 
both SFUs on their performance operation. In addition, this 
work proposes, implements, and evaluates the modeling of 
coarse-grain selective hardening mechanisms for the SFU 
architectures in GPUs. In particular, we analyze the impact, 
main benefits, and overhead costs of passive fault-tolerance 
selective-hardening mechanisms (i.e., based on Triple Modu-
lar Redundancy or TMR approaches) to mitigate transient fault 
effects in SFUs.

To evaluate and validate the impacts on the reliability of 
SFUs and implement the passive selective hardening mecha-
nisms, we resort to one open-source GPU model (FlexGrip-
Plus) [10] instrumented with both SFU architectures. We use 
two available open-source SFUs (with modular1 and fused2 
architectures) developed and released in previous works [11,  
22]. A total of 20 statistical fault injection campaigns deter-
mined the most vulnerable structures in both SFUs and 

1  https://​openc​ores.​org/​proje​cts/​speci​al_​funct​ions_​unit.
2  https://​openc​ores.​org/​proje​cts/​speci​al_​funct​ion_​unit_​ppa.

https://opencores.org/projects/special_functions_unit
https://opencores.org/projects/special_function_unit_ppa
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provide the impacts at the application levels. Those vulner-
able structures are the main targets for the selective hardening 
analysis in both SFU architectures.

Our results suggest that modular SFUs are more struc-
turally resilient to transient faults than fused ones by their 
implicit architecture (workload corruption effects reduced 
from about 5% to 47%). The multi-functional operation in 
fused SFUs (reusing hardware sub-units) seems to be the 
main factor in increasing their fault vulnerability. In con-
trast, using independent units per operation increases the 
fault resilience in modular SFUs. The area and power budget 
analyses on both SFUs show that fused ones demand an 
additional moderate percentage of power (about 36.6%) 
in comparison with modular ones for the same amount 
of operations in the complete GPU core. Unsurprisingly, 
modular SFUs are less area efficient than fused SFUs (in 
around 27% of area and resources). The analysis shows that 
SFU’s architecture is vital in its implicit fault vulnerability. 
Moreover, the association of fault impacts, power budget, 
operational latency, and area overhead highlights the main 
benefits and possible disadvantages of each SFU architec-
ture. Then, we modeled and developed selective-hardening 
solutions for SFUs. For our validation, we employ FPGA-
based platforms to evaluate parameters of area and power 
consumption overhead. Our reliability models suggest that 
Fused SFUs are less structurally reliable than Modular ones 
in up to one order of magnitude.

The document is organized as follows. Section 2 intro-
duces a background of the architectural organization 
of GPUs and SFUs. Section 3 describes the evaluation 
approach to characterize fault effects on both SFU archi-
tectures. Then, Section 4 reports the fault characterization 
experiments and their impacts. Section 5 discusses the area 
and power analyses on both SFU architectures and relates 
the impacts regarding reliability. Then, Section 6 modulates 
and evaluates passive selective hardening mechanisms for 
the vulnerable structures in SFU architectures. Finally, Sec-
tion 7 draws future works and provides conclusions.

2 � Background

This section describes the organization and main features of 
GPUs and SFU cores.

2.1 � GPU Organization

GPUs are homogeneous arrays of Parallel Processors (also 
known as Streaming Multiprocessors or SMs) grouped in 
clusters to operate one or several parallel tasks exploiting 
the Multiple-Instruction Multiple-Data (MIMD) paradigm. 
Each SM implements Single-Instruction Multiple-Data/
Thread (SIMD or SIMT) schemes to execute groups of threads 

(i.e., Warps) in parallel. More in detail, the SM comprises a 
pipeline of one or more scheduler controllers, a fetch unit, an 
instruction’s decoder, memory controllers, local memories, 
register files, and several execution units devoted to process 
arithmetic and logic operations for multiple Warps. Current 
GPU generations include arrays of Floating-point units (FPUs) 
in single- (FP32) and double-precision (FP64) sizes, Integer/
Streaming cores (INT/SP), and special-purpose accelerators, 
such as SFUs, which are devoted to performing trigonometric 
and transient operations, as part of each SM core.

In particular, SFUs are vital units in two main domains: i) 
general purpose computing and ii) graphics rendering [30]. 
In the first case, the SFU cores perform general-purpose 
operations (e.g., the reciprocal, exponent, logarithm, square 
root, and trigonometric functions) highly used in CNN’s 
training and the implementation of image processing algo-
rithms (e.g., using CUDA). In the second case, the SFUs are 
a crucial engine of the graph data path in GPUs (i.e., hard-
ware operations of coordinate transformation, perspective 
division, and vector normalization), which are commonly 
configured through Graphics ’Application Programming 
Interface’ (APIs).

2.2 � Organization of SFU Cores

SFUs (or T-Stream cores) are crucial in-chip hardware accelera-
tors intended to efficiently execute complex functions. The SFUs 
in GPUs perform a fast approximation of several transcendental 
functions, such as ( sin(x) , cos(x) , 1

√

x
 , 2x , and log2(x) ) on real 

value operands expressed in floating-point IEEE-754 formats.
In hardware, SFUs use a wide variety of approximation 

algorithms to describe transcendental and special functions 
directly implying in the final core’s structures. The algo-
rithms are classified according to its operation as i) iterative 
when require several steps to provide a result (i.e., Cordic 
algorithms), and ii) non-iterative that compute results using 
efficient and compacted combinational hardware. Both algo-
rithms can be combined according to different SFU design 
goals, always looking for a balance among performance, 
area, precision, and scalability.

Typically, SFUs in commercial products adopt non-iterative 
approximation algorithms leading to ’Fused’ architectures reus-
ing the same hardware to implement more than one operation 
[27, 44]. Furthermore, alternative design strategies adopt Mod-
ular approaches to employ independent and optimized hard-
ware (implementing one or several iterative and non-iterative 
algorithms) to compute individual operations [11].

2.2.1 � Architecture of Fused SFUs

These cores implement the Piece-wise Polynomial 
Approximation (PPA) [27] approach to calculate 
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transcendental operations. The PPA approach splits the 
input value into a set of equal-size sub-segments and eval-
uates a polynomial expression using per-segment coef-
ficients stored in lookup tables (LUTs) (i.e., Quadratic 
Polynomial Approximation [44]).

Figure 1 (left) depicts the scheme of an SFU employ-
ing the polynomial expression f (x) = C0 + C1Xl + C2X

2
l
 . 

Where C0 , C1 , and C2 are the segment coefficients 
indexed by the Xu input that describes the segment where 
the approximation happens, and Xl represents the point 
inside the segment at which the approximation is made. 
The general organization of the computation core com-
prises five main components: a square unit [26], two 
partial product generators (PProd), a Fused Accumula-
tion Tree, a set of LUTs (one per function to be evalu-
ated), and the normalization and output logic (NL). PPA 
architectures provide multi-functional operation allow-
ing optimized implementations of an SFU, in terms of 
area, and latency. Since PPA schemes are highly flex-
ible, several nonlinear functions can be implemented in 
an SFU by reusing the same hardware and only resort-
ing to specific coefficients in the LUTs per operation. 
In addition, the PPA strategy is the common base for 
commercial implementations of SFUs and several works 
in literature addressed optimization targets by resorting 
to analyses on their structural parameters to improve the 
performance of PPA-based SFU cores [41, 4]. In [20], 
the authors introduce a Dual-Channel Multiplier that 
focuses on optimizing the hardware multipliers (P Prod) 
to reduce energy and area. Other strategies include sev-
eral pipeline stages to improve performance [5], while 
different approaches focus on compressing and reducing 
the memory tables (LUTs) through bank partitions [43],  
bit partitioning [28], and through the adjustment (i.e., 
assignation of special constraints) of the polynomial 
coefficients ( C0 , C1 , and C2 ) of adjacent segments to 
reduce the overall LUT size [18]. In [31], the authors 
combine functional units (e.g., ADD and MUL cores) 
with PPA-based SFU structures to improve the system’s 
data path, as well as reduce the overall area and power of  
large parallel processors.

2.2.2 � Architecture of Modular SFUs

Modular SFUs integrate multi-functional architectures, 
implementing each function as an individual hardware 
unit. Each function adopts the most suitable approximation 
algorithms to guarantee the best balance between accuracy 
and performance in the core. Figure 1 (right) illustrates 
the scheme of a modular SFU implementing five transcen-
dental functions sin(x) , cos(x) , 1

√

x
 , 2x , and log2(x) resorting 

to four computational sub-units.
The first sub-unit implements the CORDIC algorithm [49] 

to evaluate the sin(x) and cos(x) operations. The 1
√

x
 operation 

employs the Fast Inverse Square Root algorithm (FISR) 
implementing an approximation step by evaluating the func-
tion 1

√

x
= 2−0.5×log2(x) , taking advantage of the logarithmic 

representation when the bit-wise floating-point operand is 
interpreted as an integer. Then, a Newton-Raphson iteration 
refines the output result to reduce the error. The log2(x) and 
2x functions employ an Adaptable Logarithm Approximation 
(ALA) [1], which is a PPA variation for the execution of expo-
nential and logarithm operations in hardware.

3 � Methodology for Evaluating, Analyzing 
and Reducing the Impact of Transient 
Faults in SFUs

Our evaluation is divided into three stages: i) the evaluation and 
analysis of transient fault effects in SFUs and their relation with 
their internal structures. ii) A combined analysis of the area, 
power, performance, and reliability of both SFU architectures. 
iii) The exploration, modeling, and evaluation of coarse-grain 
selective-hardening mechanisms for SFUs. Figure 2 depicts 
a general scheme of the method to characterize fault effects 
and explore selective-hardening mechanisms for both SFU 
architectures in GPUs. For our evaluation, two versions of the 
FlexGripPlus GPU have been created, each including a different 
SFU implementation (GPU1 with the SFU1, and GPU2 using 
SFU2). The following subsections describe the primary targets 
for each stage of the evaluation.

Fig. 1   A general scheme of the 
architectures of the fused SFU 
using a PPA structure (a) and 
the modular SFU (b)

(a) Fused SFU (SFU1) (b) Modular SFU (SFU2)
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3.1 � Reliability Evaluation of the SFU’s Architecture

The characterization of fault effects on the SFU architec-
tures exploits an statistical-based fault injection approach 
that comprises fault-injection campaigns determining the 
Architectural Vulnerability Factor (AVF) [36] on both GPUs 
(GPU1 and GPU2). Each injection campaign involves sev-
eral logic faulty simulations that exhaustively target all avail-
able flip-flops (FFs) in both SFUs. In detail, every campaign 
randomly inject (in time) an individual Single Event Upset 
(SEU) on one targeted fault site and then a complete simu-
lation is executed. This procedure is exhaustively repeated 
for each fault site in the SFU core. In modern generation 
devices, the SEU fault model represents state changes in 
the system’s structures caused by one single ionizing parti-
cle (e.g., ions, electrons, photons) striking a sensitive node. 
Since, these changes temporarily affect and modify the con-
tent of memory cells or storage elements (e.g., FFs) in a sys-
tem, we represent a SEU as the bit-flip on one targeted site 
(flip-flop) of an SFU. Then, we observe the hardware fault 
effects at the output of the GPU system, considering the fault 
propagation and the corruption on a running application. We 
employ an RT Level description of the GPU and SFU units 
for the experiments.

We used two application types as input workloads for 
the fault characterization: 1) Representative GPU applica-
tions employing SFUs (i.e., from the Rodinia tool suite and 
NVIDIA SDK samples), and 2) carefully designed micro-
benchmarks to address individual SFU operations (FSIN, 
FCOS, RSQRT, EXP2, and LOG2). Each micro-benchmark 
includes exclusive instructions for every operation and 
resorts to a considerable amount of input data operands to 
excite the SFU’s sub-units and propagate faults.

For the experimental evaluation, we adapted a custom 
fault injection environment [9] to target each flip-flop in 
the SFUs of both GPUs. Our approach takes advantage of 
the operative times of the SFUs on the parallel workloads 
an only inject faults on these operative intervals, so reducing 

the overall simulation times. In particular, our environment 
randomly selects a fault-injection time (clock cycle) accord-
ing to the active execution times of the SFUs per application 
(i.e., only when executing SFU instructions/operations) [50]. 
Then, a fault site is targeted and the fault is placed. The sim-
ulation resumes and continues until it is finished. It must be 
noted that preliminary fault-free profiling executions, on the 
parallel workloads, provide the active intervals of the SFU 
cores that support the selection of the injection times (clock 
cycles) to be used during the fault injection campaigns. The 
output results (from the GPU’s memory) are collected and 
retrieved for later evaluation and fault classification.

Faults are classified according to the output effect on the 
applications as: i) Detected Unrecoverable Error (DUE) that 
is caused when the fault hangs or crashes the execution of the 
application and results are not available, ii) Silent Data Cor-
ruption (SDC) when the impact of a fault is propagated to the 
outputs of the applications and corrupts the results, and iii) 
masked when the fault effect does not affect the application’s 
operation and the module’s functionality in the GPU.

3.2 � Evaluation of Area, Power, and Performance 
in SFU’s Architectures

To evaluate the cost of area, power, and performance of both 
SFU architectures, we consider the SFU gate-level imple-
mentations in two cases: i) stand-alone evaluation (i.e., 
determining their individual architectural features) and ii) 
evaluation when integrated with the complete GPU core 
(SM cores instrumented with each SFU).

We perform the logic synthesis on both SFUs, using the 
same technology library for the units inside the GPU cores 
and targeting the same operative performance (e.g., maxi-
mum operative frequency). In the evaluation, we employ 
the instrumented GPUs (GPU1 and GPU2) to evaluate the 
architectural features. The power consumption analysis 
considers the 50% of switching activity and the maximum 

Fig. 2   A general scheme of 
the method used to character-
ize fault effects, analyze their 
impacts on the architecture of 
SFUs and develop selective 
hardening mechanisms

1. Evaluation of fault effects 2. Analysis 3. Development and evaluation
of selective hardening
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obtained operative frequency per unit. Similarly, we com-
pare the relative area cost of each SFU inside a GPU core.

As a result of the comparisons, we correlate four main 
parameters: the relative area size, the power budget, the opera-
tional latency, and the fault vulnerability for both SFU archi-
tectures to analyze the best trade-off of both SFUs for GPUs.

3.3 � Exploring and Evaluating Selective hardening 
mechanisms for SFUs

Our evaluation and analysis of fault-tolerance structures 
aim at identifying internal structures and crucial targets to 
increase the reliability of an SFU unit, considering their 
internal organization. For this purpose, this stage explores 
and evaluates hardware-based hardening mechanisms for 
SFUs by resorting to one passive hardening strategy (i.e., 
Triple Modular Redundancy or TMR).

First, we characterize the structures of the sub-units in 
both SFU cores. Then, we identify the primary and alter-
native hardening configurations following coarse-grain 
schemes according to the SFU’s internal structures and the 
results from the reliability evaluation performed in the first 
stage, see Subsection 3.1. Consecutively, we implement 
each hardening configuration to evaluate each hardening 
configuration’s structural features (e.g., area, power, and 
performance). Finally, we characterize, model, and evalu-
ate the reliability features of each hardening configuration 
by resorting to reliability functions of probability and Reli-
ability Block Diagram (RBD) [23] analyses. As a reference 
for comparison, we apply the complete passive hardening on 
both SFU architectures.

4 � Reliability Evaluation of SFUs

This section describes the experiments and the result anal-
yses of the reliability evaluation on SFU architectures. We 
consider the workloads and their impact on the activity 
of the targeted operation inside the GPU. In our experi-
ments, the configuration of the two instrumented GPUs 
(GPU1 and GPU2) includes one SM cluster, one SM per 
SM cluster, 32 parallel cores, and 4 SFUs per SM. Each 
SFU accounts for a total number of flip-flops (FFs) equal 
to 134 and 720 in SFU1 and SFU2, respectively, which are 
the targets during the fault injection campaigns. The reli-
ability evaluation experiments are performed on a server 
of 12 Intel Xeon CPUs running at 2.5 GHz and with 256 
GB of RAM.

We employ five representative parallel applications 
(NN, Back Propagation or ’BP,’ Euler3D, Gaussian, and 
Image Denoising or ’ImDen’) from the NVIDIA Samples 
SDK and the Rodinia Tool suites [8]. Each application 

includes one or several instructions explicitly addressing 
the SFUs. Similarly, we encoded five micro-benchmarks 
to excite specific structures performing each operation. 
More in detail, we applied a set of 2,048 sample oper-
ands following their operational ranges (i.e., FCOS and 
FSIN use operands in range [0,�∕2] , FEXP employs values 
in the range [0, 1), FRSQRT with values in range [1, 4), 
and FLG2 with values in range [1, 2)). During the evalu-
ation procedures, the selected operational ranges skip the 
dependency and use of additional operations and their 
associated hardware (e.g., range reduction operations 
or RRO instructions). The kernel configuration of each 
micro-benchmark exploits the maximum number of con-
current threads (1,024) per SM to excite each SFU. It is 
worth noting that we distribute the sample values to apply 
the same operands among the 4 SFUs per SM. Thus, a total 
of 8,192 threads are submitted per micro-benchmark to 
operate the sample values in the available SFUs per SM.

In the evaluation, we performed a total of 20 fault injec-
tion campaigns on both versions of the GPUs (accounting 
for the number of GPUs × number of workloads). Our 
evaluation considers the exhaustive fault injection of tran-
sient faults (SEUs) in all available sites (FFs) of one of the 
available SFUs in the GPU core, following the evaluation 
approach described in Subsection 3.1, so considering all 
possible fault impacts as the product of the architectural 
features on the evaluated SFUs.

We employ the approach described in [32] to deter-
mine the minimal amount of faults to be evaluated per fault 
campaign on a given workload, considering an interval of 
confidence of at least 95% for each evaluated workload. 
In practice, the total number of faults in a campaign is 
proportional to the number of faults injected per site across 
the execution time of the workloads. Thus, we injected, on 
average, a set of 26 faults per hardware site, representing 
a total of 3,484 fault injections in SFU1 and 18,720 fault 
injections in SFU2 (per evaluated application), and stem 
from more than 2.15x105 injected and characterized faults 
in both SFUs. The fault injection campaigns provide the 
reliability assessment of each flip-flop on both SFUs, as 
well as the fault effects on the running workloads. It is 
worth noting that each fault campaign considers a ran-
dom injection time targeting only those intervals when 
the SFUs are active.

We perform two evaluation on the SFU cores: 1) Struc-
tural evaluation of the SFUs and 2) Application level impact 
effects from faulty SFUs. First, we determined the impact 
affect of transient faults on the structures of the SFUs for 
each GPU. In this case, our main target is to analyze the 
micro-architecture vulnerability of each SFU architecture. 
Figure 3 reports the normalized AVF results for both SFU 
architectures, considering the number of identified error 
effects divided by the total number of injected faults. In 
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general and for all workloads, the reported results demon-
strate that the internal structures (in particular, the associated 
FFs) of fused SFUs (SFU1) are more vulnerable to faults 
than those in modular SFUs (SFU2). In some cases, the 
normalized percentage of SDCs increases from about 5% to 
47%. Our exhaustive evaluation of each FF, in both SFUs, 
suggests that faults affecting one of the input registers highly 
promote their propagation to the primary outputs and the 
result’s corruption.

In detail, the reiterated use of the same hardware struc-
tures in SFU1 to calculate different operations promotes 
equivalent fault effects for each operation. Furthermore, 
faults corrupting sites near the output ports in SFU1 directly 
corrupt the results. In contrast, faults in a modular SFU 
(SFU2) are mainly related to the type of an executed opera-
tion since each sub-unit processes different operations, so 
only those faults inside the hardware sub-units are prone 
to impact the result. In fact, the micro-benchmark results 
show that only faults affecting any hardware site used for 
the execution of a given operation are propagated and pro-
duce corruption effects. A deep analysis of the corrupted 
results and their fault source reveals that the ’Output selector 
logic’ (OSL) sub-unit (near the primary outputs) is highly 
vulnerable to faults (from 15% to 25% of observed faults for 
all workloads). Furthermore, the identified DUEs in SFU2 
(from 1% up to 4%) are the product of faults affecting the 
internal controllers (e.g., controller status, control signals, 
and iteration counters) in the implementation of an iterative 
CORDIC sub-unit for SIN and COS operations.

To observe the impact effects of faulty SFU at the appli-
cation and system level, we calculated the Mean Time 
Between Failures (MTBF) [42], considering a constant flux 
as 1/application_time(cc), and the cross-section of each SFU 
as the ratio between the total number of identified SDCs and 
the total amount of injected faults. The MTBF combines the 
timing effects from each evaluated application with reliabil-
ity assessment parameters. In particular, we consider those 
faults that propagate across the application and cause cor-
ruptions on the results (SDCs). In general, the experimental 
results, show that on most of the applications (BP, Gaussian, 
Euler3D, ImDem, LOG2, RSQRT and COS) using a modular 

SFU (SFU2) clearly have more operative time between fail-
ures (i.e., more reliable), in terms of clock cycles or (cc), 
than the same applications using a fused SFU (SFU1). These 
results suggest that applications are less susceptible to faults 
in a modular SFU architecture than in a fused one, so sup-
porting the idea that modular SFU architectures can be con-
sidered as feasible reliable alternatives for SFU integration 
in GPU architectures. In particular, the frequent use of the 
SFU cores by several of the analyzed parallel workloads 
(BP, Gaussian, Euler3D, and ImDem) seems to be a key 
factor for the propagation of fault effects on the results from 
an SFU affected by transient faults. Interestingly, we also 
observed that some micro-benchmarks (LOG2, RSQRT, 
and COS), which are focused on specific SFU operations, 
show equivalent rises in the execution time between failures. 
Thus, these preliminary experimental results indicate that 
the architecture of the SFU plays a crucial role on the activa-
tion and propagation of faults for heterogeneous applications 
(i.e., using several GPU resources and instructions), as well 
as in fully embarrassingly parallel applications devoted to 
use the targeted SFU cores. We also observed that some 
micro-benchmarks (e.g., EXP and SIN) show a minimal rise 
in the operative time between failures (MTBF). A detailed 
analysis on both benchmarks show that these are encoded 
and described as the others (e.g., using the same amount of 
machine instructions and number of operands). However, 
it seems that the analyzed data workload (uniformly dis-
tributed for the operative ranges on both workloads) affects 
the activation and propagation of faults effects. Although 
the difference of MTBF among SFUs is minimal for both 
micro-benchmarks, in comparison with other applications, 
the results still support the idea that modular SFU architec-
tures are feasible alternatives to improve the execution time 
between failures on applications.

An additional analysis was performed on the NN work-
load. In particular, this application presented a constant 
behavior of MTBF for both SFU architectures. Interestingly, 
the micro-architecture results show a considerable percent-
age of faults producing SDCs (46% in SFU1 and 19.5% 
in SFU2). However, the overall execution time (cc) of the 
application during the experiments reduced the structural 

Fig. 3   AVF and MTBF for the 
evaluated workloads in both 
SFU architectures
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impact of the SFU architecture when affected by transient 
faults. Our analysis indicates that the particular encoding 
of the application, as well as the limited amount of SFU 
instructions in the parallel application’s algorithm are the 
main factors masking the structural impacts of SFUs at the 
application level.

Our experimental results indicates that embarrassingly 
parallel micro-benchmarks on SFUs (that represent frag-
ments from large parallel applications) and heterogeneous 
parallel workloads, which use several GPU resources (e.g., 
SFUs, SPs, and FP32 cores) and their associated instruc-
tions, are more resilient to transient faults on modular SFU 
architectures than on fused ones. Furthermore, we observed 
that in some cases (e.g., NN application) the code descrip-
tion contributes to mask effects at the application level from 
soft-errors (i.e., transient faults) arising on the SFUs.

5 � Evaluation of Performance, Area, and Power 
Analysis of Architectures in SFUs

The first evaluation targets the individual implementation of 
each SFU (SFU1 and SFU2) considering a logic synthesis 
of 15nm technology library [35] targeting a frequency of 
500MHz.

Table 1 shows the relative percentage of area occupied by 
each SFU unit compared to other functional units (SP and 
FP32 cores) and the complete logic of a GPU core for the 
15nm logic synthesis. As the base for the area comparison, 
the synthesis of the GPU cores includes 8 FP32, and 8 SP 
cores. Thus, SFU cores are excluded from the GPU cores 
logic, and the obtained percentages represent the overhead 

cost of including SFUs from each architecture. Despite the 
relatively low area of SFUs in comparison to a complete 
GPU core (4.6% in SFU1 and 6.4% in SFU2), SFU units 
are crucial cores of fundamental importance. In particular, 
SFU1 cores might be feasible to improve area usage in large 
GPU designs. Moreover, the comparison of SFUs with other 
functional units shows that SFUs are comparable in area to 
SP cores (from three to more than four times the area) and 
FP32 units (almost third or half the size).

For the individual evaluation of performance, cells and 
area sizes, and power consumption of the SFUs, Table 2 
reports the obtained results of the 15nm synthesis of both 
SFUs targeting an operative frequency of 500MHz. To cal-
culate the performance effect of each architecture, we ana-
lyzed the longest path for both circuits. The results unsur-
prisingly suggest that modular SFUs are more costly in terms 
of size (area and used resources) than fused SFUs. In fact, 
as initially anticipated, fused SFUs are more area efficient 
than modular SFUs (in around 27% of area and resources). 
Moreover, the performance of fused SFUs is higher than the 
modular ones, which is mainly caused by bottlenecks on the 
iterative units for trigonometric operations (e.g., CORDIC 
algorithm). Interestingly, both implementations show that 
modular implementations are slightly more power efficient 
than fused SFUs (in around 36.6%). In the modular SFU, the 
used core is the only active (triggered) to perform a given 
operation, while the others remain inactive.

To analyze, correlate and compare the complete features 
of both SFU architectures, we associate four main features 
for comparison purposes: i) the relative size (RSize) of SFUs 
calculated as the ratio between each SFU unit and the total 
size of the complete GPU core, using the results from the 
logic synthesis implementation; ii) the power consumption 
(PWC), from the gate level implementation, iii) the Opera-
tional Latency (OPL), as a normalized average of the num-
ber of clock cycles required to execute each operation (SIN, 
COS, EXP2, LOG2, RSQRT) in the SFUs, and iv) the fault 
impact produced by each SFU architecture, and calculated 
as a preliminary average AVF ( AVFAVG ) from the analyzed 
applications (see Fig. 4).

The observed trends on both SFUs allow us to deter-
mine each unit’s possible advantages and constraints when 
integrated into a GPU. In particular, from the normalized 
behaviors, it can be observed that modular SFUs, see Fig. 4 

Table 1   A comparison of the relative size of SFUs and other func-
tional units and the GPU core

Area (�m�) Area w.r.t. a 
SP core (%)

Area w.r.t. 
a FP32 core 
(%)

Area w.r.t. 
a GPU core 
(%)

SFU1 3,651.4 317,5 37,5 4,6
SFU2 5,095.5 443,1 52,3 6,4
SP 1,149.9 100.0 - -
FP32 9,735.0 - 100.0 -
GPU core 315,347.9 - - 100.0

Table 2   Main features of Size, 
power, and performance of both 
gate-level SFUs implemented 
at 15nm

Frequency 
(MHz)

Size Power (mW) Performance 
(ns)

Area ( �m2) Cells

SFU1 (Fused) 500.0 3,651.4 11,423 756.1 1.7
SFU2 (Modular) 500.0 5,095.5 13,170 554.4 1.9
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(right), are less vulnerable to faults but increase a GPU’s 
relative area cost and power consumption. In contrast, fused 
SFUs, see Fig. 4 (left), are more area and energy efficient 
but more vulnerable to propagate fault effects. In addition, 
these architectures introduce minimal operational latency in 
the execution of the intended operations (i.e., better perfor-
mance). Current design approaches focus on performance, 
area, and power consumption, and the same applies to SFUs. 
Interestingly, our results suggest that GPU designs focused 
on reliability might consider alternative SFU architectures 
with better reliability features and feasible power budgets, 
such as modular architectures. Unfortunately, the operational 
latency (OPL) in the modular SFU is higher than in the fused 
one, mainly due to the iterative sub-units (Cordic core). 
Thus, competitive modular SFUs might require advanced 
and non-iterative algorithms to replace the Cordic code and 
reduce the overall operational latency of the SFU unit. Simi-
larly, Fused SFUs might exploit schemes of sub-unit gating 
approaches to reduce energy consumption.

6 � Fault Mitigation on SFUs: Evaluating 
Selective Hardening Approaches

In this Section, we explore and evaluate hardware-based hard-
ening mechanisms for SFUs. First, we analyze the architecture 
of both SFUs (SFU1 and SFU2), revealing the primary sub-
unit in both designs. The identification of the sub-units of each 
SFU considers the structural sources for most identified errors 
during the reliability characterization in Section 4. Hence, 
for our exploration, fused SFU comprise i) the ROM-tables 
(LUTs), ii) the square unit ( X2 ), iii) the array of partial prod-
ucts and fused accumulator (PPFAs), and iv) the normalization 
logic (NL), which was identified as a significant source or data 
corruption, see Fig. 1. Similarly, modular SFU includes i) indi-
vidual operational cores (e.g., Cordic, ALA, and FISR units) 
and ii) the output selector logic (OSL) that is highly sensitive 
to fault propagation. Figure 5 illustrates the occupied area for 
each sub-structure in both SFU cores.

According to the internal organization and occupancy 
of the sub-units in both SFUs, we define several targets to 
explore and estimate coarse-grain selective hardening. The 
complete hardening of the fused SFU1 is defined as the R11 
configuration for our analyses. A second hardening scheme 
considers the Rom-tables, the square unit, and the array of 
partial product units is R12. Moreover, the third harden-
ing scheme (R13) focuses only on the square unit and the 
array of partial product units. Similarly, we determine the 
complete hardening of the modular core (SFU2) as R21. 
One selective hardening scheme targets the operational cores 
only as R22. Finally, a third configuration targets the hard-
ening of the output selector logic only as R23.

We implement each selective hardening configuration 
(R12, R13, R22, and R23) and the complete hardening 
schemes (R11 and R21) on the RT-level descriptions of both 
SFUs (SFU1 and SFU2). Then, each hardened configura-
tion is verified and validated using an FPGA platform (Intel 
DE2-115, Cyclone IV EP4CE115F29). Table 3 reports the 
used area (in terms of Logic Elements or LEs), the Total 
Thermal Power Dissipation or TTPD, and the performance 
impacts for each hardening configuration.

Interestingly, in the case of SFU1, the reported results 
show that the complete hardening configuration (R11) 
affects the performance and reduces its maximum opera-
tive frequency by up to 15.5%. Moreover, R11 represents 
an overhead of 77.6% in area and 5.5% in additional power 
consumption in the FPGA implementation. In contrast, the 
complete hardening of SFU2 (R21) increases the area and 
power consumption overhead at 76.4% and 6.03%, respec-
tively, while affecting the performance at around 8.1%. A 
direct comparison of the relative impact in area and per-
formance shows that the overhead in the area and power 
consumption are similar for both SFUs. However, our results 
show that the evaluated implementation of R21 produces 
lower effects in performance than the equivalent hardening 
on SFU1 (R11). In contrast, the evaluation of the selective 
hardening configurations shows that the overhead costs for 
the SFU1 cases (R12 and R13) are relatively slower costs 

Fig. 4   A comparison of relative 
size (RSize), relative power con-
sumption (PWC), operational 
latency (OPL), and average 
Architectural Vulnerability Fac-
tor ( AVG

_AVF
 ) for the a Fused 

(SFU1) and b Modular (SFU2) 
architectures

(a) (b)
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than those for the selective hardening version of SFU2 (R22 
and R23). In particular, R13 and R23 configurations cost 
less than 10% of the additional area on both SFUs. On the 
other hand, aggressive selective hardening solutions, such 
as R12 and R22 increase the area and power costs by up to 
75.0% and 3.9%, respectively, while affecting the perfor-
mance in up to 11.1%.

In particular, R12 configuration includes the LUTs as 
part of the hardening in SFU1, which are the main ones 
responsible for the considerable overhead costs. Alternative 
methods for memory hardening, such as Error Correcting 
Codes (ECCs), would be more effective in the LUTs and can 
contribute to reducing the area overhead in this configura-
tion. In contrast, the observed area overhead in the R22 can 
hardly be reduced since custom logic for each operation is 
mainly involved.

To evaluate the impact on reliability and fault-tolerance of 
each hardened configuration, we estimate individual reliability 
functions based on the probability of correct operation of the 
units in combination with RBD analysis to include the structural 
composition of each SFU as part of our reliability model.

Since the operation of SFU1 requires the serial execution 
of several sub-units, we define the probability of correct 
execution as a serial relation of the probabilities for each 
sub-unit, as expressed in Eq. 1.

(1)RSFU1 = RLUTs ⋅ RX2 ⋅ RPPFAs ⋅ RNL

where RLUTs , RX2 , RPPFAs , and RNL are the probability func-
tions of the ROM-tables, square unit, array of partial prod-
ucts and fused accumulator, and normalization logic, respec-
tively. Thus, the probability function representing the TMR 
hardening of the complete SFU ( R11 ) is described in Eq 2.

Similarly, we determine the probability functions of 
reliability when hardening the ROM tables, square unit, 
and the array of partial products ( R12 ), as well as the prob-
ability function for the square unit and the array of par-
tial products ( R13 ), which are depicted in Eqs. 3 and 4, 
respectively.

As represented in R12 and R13 , the targeted units for 
hardening affect the computation of the equivalent prob-
ability function of reliability.

In the case of SFU2, we follow a similar procedure 
to determine the probability functions of reliability for 
the complete ( R20 ) and the selective hardening configu-
rations ( R21 and R22 ). In particular, the organization of 
the sub-units in a parallel and serial fashion implies that 

(2)R11 = 3R2
SFU1

− 2R3
SFU1

(3)
R12 =

(

3
(

RLUTs ⋅ RX2 ⋅ RPPFAs

)2
− 2

(

RLUTs ⋅ RX2 ⋅ RPPFAs

)3
)

⋅ RNL

(4)
R13 = RLUTs ⋅

(

3R2

X2 − 2R3

X2

)

⋅

(

3R2
PPFAs

− 2R3
PPFAs

)

⋅ RNL

Fig. 5   Percentage distribution 
of occupied FPGA’s area by the 
sub-modules of the fused SFU 
(a) and modular SFU (b)

(a) (b)

Table 3   Performance and overhead results for the hardening configurations

Config LEs TTPD (mW) Max. Frequency 
(MHz)

Config LEs TTPD (mW) Max. 
frequency 
(MHz)

SFU1 (Fused) 6,754 160.65 10.3 SFU2 (Modular) 8,639 158.61 9.9
R11 11,996 169.49 8.7 R21 15.243 168.18 9.1
R12 10,273 166.96 9.7 R22 15.124 164.09 8.8
R13 7,245 163.57 10.1 R23 9.075 159.88 9.7
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the operation of the SFU directly depends on the targeted 
operation (and its particular hardware unit) and the OSL 
unit. Equation 5 represents the probability function of reli-
ability for the SFU2, where RCordic , RFISR , RALA1 , RALA2 , and 
ROSL represent the probability of correct operation of the 
Cordic, FISR, ALA1 (logarithmic), ALA2 (power), and 
OSL units, respectively.

The reliability functions for the complete TMR hardening 
of SFU2 ( R21 ) is equal to the expression in Eq. 2. Further-
more, Eqs. 6 and 7 describe the probability functions for 
the reliability of the selective hardening targeting the opera-
tional units and the output selector logic (OSL), respectively.

To analyze and validate the main benefits in the reli-
ability of the different selective hardening configurations, 
we evaluate each probability function replacing the prob-
ability function for the typical function on time: R = e−�t . 
We employ a typical rate of failures in time of 10−6faults∕h. 
and the area occupation of each sub-unit in the SFUs, see 
Fig. 5, to calculate the individual probability function of the 

(5)
RSFU

2

=
{

1 −
[(

1 − RCordic

)

⋅

(

1 − RFISR

)

⋅

(

1 − RALA1

)

⋅

(

1 − RALA2

)]}

⋅ ROSL

(6)

R
22

= ROSL⋅

(
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[

1 −
(

3R2

Cordic
− 2R3

Cordic

)]

⋅

[

1 −
(

3R2

FISR
− 2R3

FISR

)]

⋅

[

1 −
(

3R2

ALA1
− 2R3

ALA1

)]
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[

1 −
(

3R2

ALA2
− 2R3

ALA2
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R
23

= 1 −
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1 − RCordic

)

⋅

(

1 − RFISR

)

⋅

(

1 − RALA1

)

⋅

(

1 − RALA2
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⋅
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3R2
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− 2R3
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)

sub-units. Thus, in SFU1, we determine �LUTs = 5.8x10−7 , 
�X2 = 4.0x10−8  ,  �PPFAs = 2.2x10−7  ,  �NL = 1.6x10−7  . 
Similarly, for SFU2, we determine �Cordic = 3.0x10−7 , 
�FISR = 4.2x10−7 , �ALA1 = 1.3x10−7 , �ALA2 = 1.3x10−7 , and 
�OSL = 2.0x10−8.

Figure 6 depicts the changes in reliability in time (Fail-
ures in Time or FIT) for each selective hardening configura-
tion in SFU1 and SFU2, respectively. As depicted in both 
cases, the complete hardening extends across the time the 
probability of correct operation of the SFUs. In general, 
The observed reliability degradation on SFU1 is associated 
with the structural organization of the fused SFU core. In 
this case, the probability of correct execution depends on 
the number of sub-units serially connected to process an 
operation and provide a result. Since SFU1 requires the 
proper operation of most of the units inside the core (four 
sub-units), its probability of correct operation (Reliability) 
is influenced by each sub-unit and behaves almost linearly 
for the observed time interval. Moreover, the probability of 
correct operation of SFU1 is lower than the probability of 
correct operation of SFU2, which only involves two serially 
connected sub-units for its correct operation.

Regarding the selective-hardening mechanisms for SFU1, 
R11 and R12 behave in similar proportions indicating that 
the latter could be a feasible configuration to provide equiva-
lent reliability benefits to the complete hardening on the 
SFU. On the other hand, for SFU2, its clear that R23 (pro-
tecting the OSL unit) provides more reliability benefits than 
R22 (protecting the individual operational cores) since all 
operations in the SFU employ the OSL structures and faults 
arising on this units can directly compromise the output 
results. Moreover, the minimal area overhead in R23 con-
figuration is a feasible candidate for selective hardening of 
the SFU2 core.

Fig. 6   Impact in the reliability 
of the different selective and 
complete hardening configura-
tions for a SFU1 and b SFU2

(a) (b)
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In our evaluation, we define several coarse-grain selective 
hardening configurations for both SFUs. As expected, our 
results suggest that the structural organization plays a crucial 
role in the reliability of SFUs. In fact, each sub-units in both 
SFUs impact differently the reliability of each core. In our 
exploration of selective hardening configurations, we focused 
on several units that are critical for the operation of the SFUs. 
In some cases, the protected units massively increased the over-
head costs (e.g., area) with moderate reliability benefits (e.g., 
LUTs in SFU1). Moreover, our analyses targeted critical units, 
such as the OSL structures, employed in each SFU2 operation. 
In this case, modeling results demonstrate an increase in the 
reliability benefits with minor overhead costs.

Although we mainly focused our evaluation on the reliabil-
ity of SFU architectures as a vital non-functional property, our 
results in Figs. 4 and 6, determine the importance of evaluat-
ing and modeling the reliability in SFUs as a complementary 
instrument and parameter for the design and integration of 
modern systems. Interestingly, our results suggest that fused 
SFUs are adequate solutions in terms of performance and size. 
However, other emerging design alternatives, such as modular 
SFUs, might become feasible solutions when considering reli-
ability features. In fact, a comparison between the reliability 
features of both SFUs ( RSFU1 and RSFU2 ), see Fig. 6 shows that 
the probability functions for the modular SFUs behave better 
in time and increase the reliability of the unit in up to one order 
of magnitude.

7 � Conclusion and Future Work

This work focused on evaluating and investigating the inci-
dence of the structural features of two SFU architectures for 
GPUs and the impacts of transient faults effects on reliabil-
ity. According to the results, the fault characterization and 
evaluation shows that fused SFU architectures (base of com-
mercial devices) are adequate solutions in terms of area and 
performance, but these architectures are more vulnerable to 
fault effects than modular SFUs. The multi-functional use 
of the internal structures in fused SFUs seems to be the main 
factor increasing the sensitivity to faults.

A comparison of area, power, and operational latency in 
relation to the complete GPU core suggests that fused SFUs are 
more area and performance efficient, but demand more power 
budget than modular SFUs. The outcomes of our analyses are 
intended to include reliability features of the architecture as 
a relevant design parameter, such as area, power, and perfor-
mance, in the design of functional units for hardware accelera-
tors, such as GPUs, for the safety-critical domain.

Our exploration, modeling, and evaluation of selective 
hardening solutions for SFUs show that modular architectures 
behave better in time in up to one order of magnitude when 

compared to fused ones. Furthermore, the evaluated harden-
ing configurations show that some sub-units directly affect the 
overall reliability of an SFU, so aiming at more effectively pro-
tecting the unit against faults with minor overhead costs.

In the future, we plan to evaluate the fine-grain reliability 
of other crucial structures in hardware accelerators, such as 
the Tensor Core units for the proposal of multi-level error 
models and hardware-based hardening solutions.
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