
20 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for GPUs / Rodriguez
Condia, Josie E.; Guerrero-Balaguera, Juan-David; Patiño Núñez, Edwar J.; Limas, Robert; Sonza Reorda, Matteo. - In:
JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-8174. - ELETTRONICO. - 40:(2024), pp. 215-228.
[10.1007/s10836-024-06107-9]

Original

Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for
GPUs

Publisher:

Published
DOI:10.1007/s10836-024-06107-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987204 since: 2024-03-21T15:20:51Z

Springer

Vol.:(0123456789)

Journal of Electronic Testing (2024) 40:215–228
https://doi.org/10.1007/s10836-024-06107-9

Investigating and Reducing the Architectural Impact of Transient
Faults in Special Function Units for GPUs

Josie E. Rodriguez Condia1  · Juan‑David Guerrero‑Balaguera1  · Edwar J. Patiño Núñez2 · Robert Limas1  ·
Matteo Sonza Reorda1 

Received: 30 July 2023 / Accepted: 14 February 2024 / Published online: 21 March 2024
© The Author(s) 2024

Abstract
Ensuring the reliability of GPUs and their internal components is paramount, especially in safety-critical domains like
autonomous machines and self-driving cars. These cutting-edge applications heavily rely on GPUs to implement complex
algorithms due to their implicit programming flexibility and parallelism, which is crucial for efficient operation. However,
as integration technologies advance, there is a growing concern regarding the potential increase in fault sensitivity of the
internal components of current GPU generations. In particular, Special Function Unit (SFU) cores inside GPUs are used in
multimedia, High-Performance Computing, and neural network training. Despite their frequent usage and critical role in
several domains, reliability evaluations on SFUs and the development of effective mitigation solutions have yet to be studied
and remain unexplored. This work evaluates the impact of transient faults in the main hardware structures of SFUs in GPUs.
In addition, we analyze the main overhead costs and benefits of developing selective-hardening mechanisms for SFUs. We
focus on evaluating and analyzing two SFU architectures for GPUs (’fused’ and ’modular’) and their relations to energy,
area, and reliability impact on parallel applications. The experiments resort to fine-grain fault injection campaigns on an
RTL GPU model (FlexGripPlus) instrumented with both SFUs. The results on both SFU architectures indicate that fused
SFUs (in commercial-grade devices) require lower area overhead (about 27%) for their integration in GPUs but are more
vulnerable to transient faults (in up to 47% for the analyzed cases) and less power efficient (in up to 36.6%) than modular
SFUs. Moreover, the reliability estimation shows that Modular SFUs are structurally more resilient than Fused ones in up
to one order of magnitude. Similarly, selective-hardening mechanism based on Triple-Modular Redundancy (TMR) shows
that coarse-grain strategies might increase the reliability of the overall SFUs under feasible overhead costs.

Keywords  Graphics processing units (GPUs) · Fault-tolerance · Reliability evaluation · Special function unit (SFU) ·
T-Stream core

1  Introduction

The programming flexibility and the structural parallelism
of Graphics Processing Units (GPUs) boost their vertiginous
adoption in several domains, from multimedia and gaming

to aerospace, automotive, military, and High-Performance
Computing (HPC) applications. In fact, (GPUs) are massively
deployed to implement complex algorithms in safety-critical
applications, such as those in the automotive and autonomous
machines domains (e.g., Deep Neural Networks, Advanced
Driver-Assistance Systems or ’ADAS’, and sensor fusion

Responsible Editor: L. M. Bolzani Poehls

 *	 Josie E. Rodriguez Condia
	 josie.rodriguez@polito.it

	 Juan‑David Guerrero‑Balaguera
	 juan.guerrero@polito.it

	 Edwar J. Patiño Núñez
	 edwar.patino@uptc.edu.co

	 Robert Limas
	 robert.limassierra@polito.it

	 Matteo Sonza Reorda
	 matteo.sonzareorda@polito.it

1	 Department of Control and Computer Engineering,
Politecnico di Torino, Corso Duca degli Abruzzi, 24,
Turin 10129, Italy

2	 Electronics Engineering School, Universidad Pedagogica
y Tecnologica de Colombia (UPTC), Av. Central del Norte
39‑115, Tunja 150003, Colombia

https://orcid.org/0000-0001-5957-5624
http://orcid.org/0000-0001-6852-2372
http://orcid.org/0000-0001-5206-3757
http://orcid.org/0000-0003-2899-7669
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-024-06107-9&domain=pdf

216	 Journal of Electronic Testing (2024) 40:215–228

systems), where device reliability and functional safety are
significant concerns. In detail, industrial functional safety
standards and norms, such as the ISO 26262 in automotive,
demand safety mechanisms and reliability evaluations deter-
mining fault effects in a device.

Despite the use of cutting-edge transistor technologies
in GPUs to increase performance and reduce power
consumption, the "International Roadmap for Devices and
Systems - 2022" (IRDS) and several independent studies [24,
34] suggest that modern digital devices, such as GPUs, are
highly susceptible to Electromigration and Time-Dependent-
Dielectric-Breakdown, both major sources of in-field and
accelerated fault effects [25]. In particular, IRDS emphasizes
that the lifetime of a device decreases by half at each new
manufacturing process generation [25], exacerbating the
importance of reliability evaluations and mitigation solutions
in GPUs and their internal units. Unfortunately, the limited
structural information and the missing architectural details
from real devices interfere with deep reliability evaluations
(e.g., on the architecture and applications), as well as the
exploration and validation of mitigation solutions.

Among the available functional units and cores in GPUs,
the Special Function Units (SFUs) [46], or T-Stream cores
[3] are essential accelerators calculating (in hardware!) effi-
cient trigonometric and transcendental operations for several
domains (e.g., pre-processing, handling, and correlation of
images, sensor fusion, and training/inference of Neural Net-
work algorithms). Unfortunately, most of the previous works
on GPU’s functional units reliability targets Floating-Point
Units [39], Integer cores [48], and Tensor units [2, 33, 47],
leaving fault effects in SFUs largely unexplored.

Most works in literature analyze the reliability of processor-
based systems and hardware accelerators (e.g., CPUs and
GPUs) by resorting to three strategies: i) Beam experiments,
exposing a device to radiation and analyzing their effects
on targeted workloads, ii) Software-based error injection,
representing faults as instruction errors in software, and iii),
architectural/functional and low-level microarchitectural
simulations, by injecting faults on a functional, RTL- or gate-
level implementation of a design [6, 7]. The first two methods
employ real devices but can hardly analyze fault effects on
focused units. In contrast, the last method provides accurate
and fine-grain evaluations when descriptions are available.
Authors in [37, 45] analyzed the reliability assessment of
the main memory elements in GPU and CPU devices. Their
results demonstrate that available low-level structures of a
target device increase the accuracy in evaluating reliability.
Similarly, authors in [29] exploited functional simulators
to evaluate the reliability assessment of multiple GPU
architectures in mainly memory hierarchy units. Other works
[9, 14–16, 19, 21, 40] evaluated the reliability features of
several GPU units (pipeline registers and block schedulers).
Unfortunately, most works neglected to evaluate transient

fault effects on SFUs. Moreover, some of them are limited
by missing structural details of the units, i.e., functional
simulators provide acceptable evaluations of memory and
data-path units. Still, these can barely describe and evaluate
(at fine-grain) functional units, such as SFUs. Authors in
[12] analyzed the incidence of SFUs in the application’s
sensitivity to fault effects. In this case, two versions of the
workloads (with and without SFU) are evaluated to observe
the workload’s impact on transient fault effects injected as
instruction errors. This work also introduced a first approach
to analyzing the structure of SFUs. Another work [17]
provided a first attempt to analyze the effects of faults in
SFUs. However, the evaluation was limited to permanent
transition path delay faults. To the best of our knowledge, no
works in the literature evaluate and analyze the architectural
effects of transient faults on the reliability of SFUs for the later
exploration of selective hardening solutions.

This manuscript extends a preliminary work [13] that
explored the evaluation, analyses, and trade-off among the area,
power consumption, and reliability of two SFU architectures.
We focused on evaluating the impacts of transient faults (Sin-
gle Event Upsets or SEUs) in the structures of two hardware
implementations of SFUs for GPUs: 1) a fused SFU (SFU1),
and 2) a modular SFU (SFU2). In detail, Fused SFUs are
commercial-grade designs exploiting Piece-wise Polynomial
Approximations (PPA) [38] to implement highly area-efficient
architectures reusing sub-units and process several operations.
Moreover, Modular SFUs comprise simple, optimized, and
independent units (organized in parallel) that implement in
hardware compacted algorithms to calculate specific operations
[11]. This work extends the reliability analyses on several paral-
lel workloads and micro-benchmarks for SFU cores. Moreover,
this work evaluates the impact of the architectural features of
both SFUs on their performance operation. In addition, this
work proposes, implements, and evaluates the modeling of
coarse-grain selective hardening mechanisms for the SFU
architectures in GPUs. In particular, we analyze the impact,
main benefits, and overhead costs of passive fault-tolerance
selective-hardening mechanisms (i.e., based on Triple Modu-
lar Redundancy or TMR approaches) to mitigate transient fault
effects in SFUs.

To evaluate and validate the impacts on the reliability of
SFUs and implement the passive selective hardening mecha-
nisms, we resort to one open-source GPU model (FlexGrip-
Plus) [10] instrumented with both SFU architectures. We use
two available open-source SFUs (with modular1 and fused2
architectures) developed and released in previous works [11,
22]. A total of 20 statistical fault injection campaigns deter-
mined the most vulnerable structures in both SFUs and

1  https://​openc​ores.​org/​proje​cts/​speci​al_​funct​ions_​unit.
2  https://​openc​ores.​org/​proje​cts/​speci​al_​funct​ion_​unit_​ppa.

https://opencores.org/projects/special_functions_unit
https://opencores.org/projects/special_function_unit_ppa

217Journal of Electronic Testing (2024) 40:215–228	

provide the impacts at the application levels. Those vulner-
able structures are the main targets for the selective hardening
analysis in both SFU architectures.

Our results suggest that modular SFUs are more struc-
turally resilient to transient faults than fused ones by their
implicit architecture (workload corruption effects reduced
from about 5% to 47%). The multi-functional operation in
fused SFUs (reusing hardware sub-units) seems to be the
main factor in increasing their fault vulnerability. In con-
trast, using independent units per operation increases the
fault resilience in modular SFUs. The area and power budget
analyses on both SFUs show that fused ones demand an
additional moderate percentage of power (about 36.6%)
in comparison with modular ones for the same amount
of operations in the complete GPU core. Unsurprisingly,
modular SFUs are less area efficient than fused SFUs (in
around 27% of area and resources). The analysis shows that
SFU’s architecture is vital in its implicit fault vulnerability.
Moreover, the association of fault impacts, power budget,
operational latency, and area overhead highlights the main
benefits and possible disadvantages of each SFU architec-
ture. Then, we modeled and developed selective-hardening
solutions for SFUs. For our validation, we employ FPGA-
based platforms to evaluate parameters of area and power
consumption overhead. Our reliability models suggest that
Fused SFUs are less structurally reliable than Modular ones
in up to one order of magnitude.

The document is organized as follows. Section 2 intro-
duces a background of the architectural organization
of GPUs and SFUs. Section 3 describes the evaluation
approach to characterize fault effects on both SFU archi-
tectures. Then, Section 4 reports the fault characterization
experiments and their impacts. Section 5 discusses the area
and power analyses on both SFU architectures and relates
the impacts regarding reliability. Then, Section 6 modulates
and evaluates passive selective hardening mechanisms for
the vulnerable structures in SFU architectures. Finally, Sec-
tion 7 draws future works and provides conclusions.

2 � Background

This section describes the organization and main features of
GPUs and SFU cores.

2.1 � GPU Organization

GPUs are homogeneous arrays of Parallel Processors (also
known as Streaming Multiprocessors or SMs) grouped in
clusters to operate one or several parallel tasks exploiting
the Multiple-Instruction Multiple-Data (MIMD) paradigm.
Each SM implements Single-Instruction Multiple-Data/
Thread (SIMD or SIMT) schemes to execute groups of threads

(i.e., Warps) in parallel. More in detail, the SM comprises a
pipeline of one or more scheduler controllers, a fetch unit, an
instruction’s decoder, memory controllers, local memories,
register files, and several execution units devoted to process
arithmetic and logic operations for multiple Warps. Current
GPU generations include arrays of Floating-point units (FPUs)
in single- (FP32) and double-precision (FP64) sizes, Integer/
Streaming cores (INT/SP), and special-purpose accelerators,
such as SFUs, which are devoted to performing trigonometric
and transient operations, as part of each SM core.

In particular, SFUs are vital units in two main domains: i)
general purpose computing and ii) graphics rendering [30].
In the first case, the SFU cores perform general-purpose
operations (e.g., the reciprocal, exponent, logarithm, square
root, and trigonometric functions) highly used in CNN’s
training and the implementation of image processing algo-
rithms (e.g., using CUDA). In the second case, the SFUs are
a crucial engine of the graph data path in GPUs (i.e., hard-
ware operations of coordinate transformation, perspective
division, and vector normalization), which are commonly
configured through Graphics ’Application Programming
Interface’ (APIs).

2.2 � Organization of SFU Cores

SFUs (or T-Stream cores) are crucial in-chip hardware accelera-
tors intended to efficiently execute complex functions. The SFUs
in GPUs perform a fast approximation of several transcendental
functions, such as ( sin(x) , cos(x) , 1

√

x
 , 2x , and log2(x) ) on real

value operands expressed in floating-point IEEE-754 formats.
In hardware, SFUs use a wide variety of approximation

algorithms to describe transcendental and special functions
directly implying in the final core’s structures. The algo-
rithms are classified according to its operation as i) iterative
when require several steps to provide a result (i.e., Cordic
algorithms), and ii) non-iterative that compute results using
efficient and compacted combinational hardware. Both algo-
rithms can be combined according to different SFU design
goals, always looking for a balance among performance,
area, precision, and scalability.

Typically, SFUs in commercial products adopt non-iterative
approximation algorithms leading to ’Fused’ architectures reus-
ing the same hardware to implement more than one operation
[27, 44]. Furthermore, alternative design strategies adopt Mod-
ular approaches to employ independent and optimized hard-
ware (implementing one or several iterative and non-iterative
algorithms) to compute individual operations [11].

2.2.1 � Architecture of Fused SFUs

These cores implement the Piece-wise Polynomial
Approximation (PPA) [27] approach to calculate

218	 Journal of Electronic Testing (2024) 40:215–228

transcendental operations. The PPA approach splits the
input value into a set of equal-size sub-segments and eval-
uates a polynomial expression using per-segment coef-
ficients stored in lookup tables (LUTs) (i.e., Quadratic
Polynomial Approximation [44]).

Figure 1 (left) depicts the scheme of an SFU employ-
ing the polynomial expression f (x) = C0 + C1Xl + C2X

2
l
 .

Where C0 , C1 , and C2 are the segment coefficients
indexed by the Xu input that describes the segment where
the approximation happens, and Xl represents the point
inside the segment at which the approximation is made.
The general organization of the computation core com-
prises five main components: a square unit [26], two
partial product generators (PProd), a Fused Accumula-
tion Tree, a set of LUTs (one per function to be evalu-
ated), and the normalization and output logic (NL). PPA
architectures provide multi-functional operation allow-
ing optimized implementations of an SFU, in terms of
area, and latency. Since PPA schemes are highly flex-
ible, several nonlinear functions can be implemented in
an SFU by reusing the same hardware and only resort-
ing to specific coefficients in the LUTs per operation.
In addition, the PPA strategy is the common base for
commercial implementations of SFUs and several works
in literature addressed optimization targets by resorting
to analyses on their structural parameters to improve the
performance of PPA-based SFU cores [41, 4]. In [20],
the authors introduce a Dual-Channel Multiplier that
focuses on optimizing the hardware multipliers (P Prod)
to reduce energy and area. Other strategies include sev-
eral pipeline stages to improve performance [5], while
different approaches focus on compressing and reducing
the memory tables (LUTs) through bank partitions [43],
bit partitioning [28], and through the adjustment (i.e.,
assignation of special constraints) of the polynomial
coefficients ( C0 , C1 , and C2 ) of adjacent segments to
reduce the overall LUT size [18]. In [31], the authors
combine functional units (e.g., ADD and MUL cores)
with PPA-based SFU structures to improve the system’s
data path, as well as reduce the overall area and power of
large parallel processors.

2.2.2 � Architecture of Modular SFUs

Modular SFUs integrate multi-functional architectures,
implementing each function as an individual hardware
unit. Each function adopts the most suitable approximation
algorithms to guarantee the best balance between accuracy
and performance in the core. Figure 1 (right) illustrates
the scheme of a modular SFU implementing five transcen-
dental functions sin(x) , cos(x) , 1

√

x
 , 2x , and log2(x) resorting

to four computational sub-units.
The first sub-unit implements the CORDIC algorithm [49]

to evaluate the sin(x) and cos(x) operations. The 1
√

x
 operation

employs the Fast Inverse Square Root algorithm (FISR)
implementing an approximation step by evaluating the func-
tion 1

√

x
= 2−0.5×log2(x) , taking advantage of the logarithmic

representation when the bit-wise floating-point operand is
interpreted as an integer. Then, a Newton-Raphson iteration
refines the output result to reduce the error. The log2(x) and
2x functions employ an Adaptable Logarithm Approximation
(ALA) [1], which is a PPA variation for the execution of expo-
nential and logarithm operations in hardware.

3 � Methodology for Evaluating, Analyzing
and Reducing the Impact of Transient
Faults in SFUs

Our evaluation is divided into three stages: i) the evaluation and
analysis of transient fault effects in SFUs and their relation with
their internal structures. ii) A combined analysis of the area,
power, performance, and reliability of both SFU architectures.
iii) The exploration, modeling, and evaluation of coarse-grain
selective-hardening mechanisms for SFUs. Figure 2 depicts
a general scheme of the method to characterize fault effects
and explore selective-hardening mechanisms for both SFU
architectures in GPUs. For our evaluation, two versions of the
FlexGripPlus GPU have been created, each including a different
SFU implementation (GPU1 with the SFU1, and GPU2 using
SFU2). The following subsections describe the primary targets
for each stage of the evaluation.

Fig. 1   A general scheme of the
architectures of the fused SFU
using a PPA structure (a) and
the modular SFU (b)

(a) Fused SFU (SFU1) (b) Modular SFU (SFU2)

219Journal of Electronic Testing (2024) 40:215–228	

3.1 � Reliability Evaluation of the SFU’s Architecture

The characterization of fault effects on the SFU architec-
tures exploits an statistical-based fault injection approach
that comprises fault-injection campaigns determining the
Architectural Vulnerability Factor (AVF) [36] on both GPUs
(GPU1 and GPU2). Each injection campaign involves sev-
eral logic faulty simulations that exhaustively target all avail-
able flip-flops (FFs) in both SFUs. In detail, every campaign
randomly inject (in time) an individual Single Event Upset
(SEU) on one targeted fault site and then a complete simu-
lation is executed. This procedure is exhaustively repeated
for each fault site in the SFU core. In modern generation
devices, the SEU fault model represents state changes in
the system’s structures caused by one single ionizing parti-
cle (e.g., ions, electrons, photons) striking a sensitive node.
Since, these changes temporarily affect and modify the con-
tent of memory cells or storage elements (e.g., FFs) in a sys-
tem, we represent a SEU as the bit-flip on one targeted site
(flip-flop) of an SFU. Then, we observe the hardware fault
effects at the output of the GPU system, considering the fault
propagation and the corruption on a running application. We
employ an RT Level description of the GPU and SFU units
for the experiments.

We used two application types as input workloads for
the fault characterization: 1) Representative GPU applica-
tions employing SFUs (i.e., from the Rodinia tool suite and
NVIDIA SDK samples), and 2) carefully designed micro-
benchmarks to address individual SFU operations (FSIN,
FCOS, RSQRT, EXP2, and LOG2). Each micro-benchmark
includes exclusive instructions for every operation and
resorts to a considerable amount of input data operands to
excite the SFU’s sub-units and propagate faults.

For the experimental evaluation, we adapted a custom
fault injection environment [9] to target each flip-flop in
the SFUs of both GPUs. Our approach takes advantage of
the operative times of the SFUs on the parallel workloads
an only inject faults on these operative intervals, so reducing

the overall simulation times. In particular, our environment
randomly selects a fault-injection time (clock cycle) accord-
ing to the active execution times of the SFUs per application
(i.e., only when executing SFU instructions/operations) [50].
Then, a fault site is targeted and the fault is placed. The sim-
ulation resumes and continues until it is finished. It must be
noted that preliminary fault-free profiling executions, on the
parallel workloads, provide the active intervals of the SFU
cores that support the selection of the injection times (clock
cycles) to be used during the fault injection campaigns. The
output results (from the GPU’s memory) are collected and
retrieved for later evaluation and fault classification.

Faults are classified according to the output effect on the
applications as: i) Detected Unrecoverable Error (DUE) that
is caused when the fault hangs or crashes the execution of the
application and results are not available, ii) Silent Data Cor-
ruption (SDC) when the impact of a fault is propagated to the
outputs of the applications and corrupts the results, and iii)
masked when the fault effect does not affect the application’s
operation and the module’s functionality in the GPU.

3.2 � Evaluation of Area, Power, and Performance
in SFU’s Architectures

To evaluate the cost of area, power, and performance of both
SFU architectures, we consider the SFU gate-level imple-
mentations in two cases: i) stand-alone evaluation (i.e.,
determining their individual architectural features) and ii)
evaluation when integrated with the complete GPU core
(SM cores instrumented with each SFU).

We perform the logic synthesis on both SFUs, using the
same technology library for the units inside the GPU cores
and targeting the same operative performance (e.g., maxi-
mum operative frequency). In the evaluation, we employ
the instrumented GPUs (GPU1 and GPU2) to evaluate the
architectural features. The power consumption analysis
considers the 50% of switching activity and the maximum

Fig. 2   A general scheme of
the method used to character-
ize fault effects, analyze their
impacts on the architecture of
SFUs and develop selective
hardening mechanisms

1. Evaluation of fault effects 2. Analysis 3. Development and evaluation
of selective hardening

sdaolkro
W

skra
mhcneborci

M

SFU1

GPU1

SFU2

GPU2

SEU

• Area • Power

SFU1

GPU1

FF
s

SFU2

GPU2

FF
s

GPU1

S

S

GPU2

S

220	 Journal of Electronic Testing (2024) 40:215–228

obtained operative frequency per unit. Similarly, we com-
pare the relative area cost of each SFU inside a GPU core.

As a result of the comparisons, we correlate four main
parameters: the relative area size, the power budget, the opera-
tional latency, and the fault vulnerability for both SFU archi-
tectures to analyze the best trade-off of both SFUs for GPUs.

3.3 � Exploring and Evaluating Selective hardening
mechanisms for SFUs

Our evaluation and analysis of fault-tolerance structures
aim at identifying internal structures and crucial targets to
increase the reliability of an SFU unit, considering their
internal organization. For this purpose, this stage explores
and evaluates hardware-based hardening mechanisms for
SFUs by resorting to one passive hardening strategy (i.e.,
Triple Modular Redundancy or TMR).

First, we characterize the structures of the sub-units in
both SFU cores. Then, we identify the primary and alter-
native hardening configurations following coarse-grain
schemes according to the SFU’s internal structures and the
results from the reliability evaluation performed in the first
stage, see Subsection 3.1. Consecutively, we implement
each hardening configuration to evaluate each hardening
configuration’s structural features (e.g., area, power, and
performance). Finally, we characterize, model, and evalu-
ate the reliability features of each hardening configuration
by resorting to reliability functions of probability and Reli-
ability Block Diagram (RBD) [23] analyses. As a reference
for comparison, we apply the complete passive hardening on
both SFU architectures.

4 � Reliability Evaluation of SFUs

This section describes the experiments and the result anal-
yses of the reliability evaluation on SFU architectures. We
consider the workloads and their impact on the activity
of the targeted operation inside the GPU. In our experi-
ments, the configuration of the two instrumented GPUs
(GPU1 and GPU2) includes one SM cluster, one SM per
SM cluster, 32 parallel cores, and 4 SFUs per SM. Each
SFU accounts for a total number of flip-flops (FFs) equal
to 134 and 720 in SFU1 and SFU2, respectively, which are
the targets during the fault injection campaigns. The reli-
ability evaluation experiments are performed on a server
of 12 Intel Xeon CPUs running at 2.5 GHz and with 256
GB of RAM.

We employ five representative parallel applications
(NN, Back Propagation or ’BP,’ Euler3D, Gaussian, and
Image Denoising or ’ImDen’) from the NVIDIA Samples
SDK and the Rodinia Tool suites [8]. Each application

includes one or several instructions explicitly addressing
the SFUs. Similarly, we encoded five micro-benchmarks
to excite specific structures performing each operation.
More in detail, we applied a set of 2,048 sample oper-
ands following their operational ranges (i.e., FCOS and
FSIN use operands in range [0,�∕2] , FEXP employs values
in the range [0, 1), FRSQRT with values in range [1, 4),
and FLG2 with values in range [1, 2)). During the evalu-
ation procedures, the selected operational ranges skip the
dependency and use of additional operations and their
associated hardware (e.g., range reduction operations
or RRO instructions). The kernel configuration of each
micro-benchmark exploits the maximum number of con-
current threads (1,024) per SM to excite each SFU. It is
worth noting that we distribute the sample values to apply
the same operands among the 4 SFUs per SM. Thus, a total
of 8,192 threads are submitted per micro-benchmark to
operate the sample values in the available SFUs per SM.

In the evaluation, we performed a total of 20 fault injec-
tion campaigns on both versions of the GPUs (accounting
for the number of GPUs × number of workloads). Our
evaluation considers the exhaustive fault injection of tran-
sient faults (SEUs) in all available sites (FFs) of one of the
available SFUs in the GPU core, following the evaluation
approach described in Subsection 3.1, so considering all
possible fault impacts as the product of the architectural
features on the evaluated SFUs.

We employ the approach described in [32] to deter-
mine the minimal amount of faults to be evaluated per fault
campaign on a given workload, considering an interval of
confidence of at least 95% for each evaluated workload.
In practice, the total number of faults in a campaign is
proportional to the number of faults injected per site across
the execution time of the workloads. Thus, we injected, on
average, a set of 26 faults per hardware site, representing
a total of 3,484 fault injections in SFU1 and 18,720 fault
injections in SFU2 (per evaluated application), and stem
from more than 2.15x105 injected and characterized faults
in both SFUs. The fault injection campaigns provide the
reliability assessment of each flip-flop on both SFUs, as
well as the fault effects on the running workloads. It is
worth noting that each fault campaign considers a ran-
dom injection time targeting only those intervals when
the SFUs are active.

We perform two evaluation on the SFU cores: 1) Struc-
tural evaluation of the SFUs and 2) Application level impact
effects from faulty SFUs. First, we determined the impact
affect of transient faults on the structures of the SFUs for
each GPU. In this case, our main target is to analyze the
micro-architecture vulnerability of each SFU architecture.
Figure 3 reports the normalized AVF results for both SFU
architectures, considering the number of identified error
effects divided by the total number of injected faults. In

221Journal of Electronic Testing (2024) 40:215–228	

general and for all workloads, the reported results demon-
strate that the internal structures (in particular, the associated
FFs) of fused SFUs (SFU1) are more vulnerable to faults
than those in modular SFUs (SFU2). In some cases, the
normalized percentage of SDCs increases from about 5% to
47%. Our exhaustive evaluation of each FF, in both SFUs,
suggests that faults affecting one of the input registers highly
promote their propagation to the primary outputs and the
result’s corruption.

In detail, the reiterated use of the same hardware struc-
tures in SFU1 to calculate different operations promotes
equivalent fault effects for each operation. Furthermore,
faults corrupting sites near the output ports in SFU1 directly
corrupt the results. In contrast, faults in a modular SFU
(SFU2) are mainly related to the type of an executed opera-
tion since each sub-unit processes different operations, so
only those faults inside the hardware sub-units are prone
to impact the result. In fact, the micro-benchmark results
show that only faults affecting any hardware site used for
the execution of a given operation are propagated and pro-
duce corruption effects. A deep analysis of the corrupted
results and their fault source reveals that the ’Output selector
logic’ (OSL) sub-unit (near the primary outputs) is highly
vulnerable to faults (from 15% to 25% of observed faults for
all workloads). Furthermore, the identified DUEs in SFU2
(from 1% up to 4%) are the product of faults affecting the
internal controllers (e.g., controller status, control signals,
and iteration counters) in the implementation of an iterative
CORDIC sub-unit for SIN and COS operations.

To observe the impact effects of faulty SFU at the appli-
cation and system level, we calculated the Mean Time
Between Failures (MTBF) [42], considering a constant flux
as 1/application_time(cc), and the cross-section of each SFU
as the ratio between the total number of identified SDCs and
the total amount of injected faults. The MTBF combines the
timing effects from each evaluated application with reliabil-
ity assessment parameters. In particular, we consider those
faults that propagate across the application and cause cor-
ruptions on the results (SDCs). In general, the experimental
results, show that on most of the applications (BP, Gaussian,
Euler3D, ImDem, LOG2, RSQRT and COS) using a modular

SFU (SFU2) clearly have more operative time between fail-
ures (i.e., more reliable), in terms of clock cycles or (cc),
than the same applications using a fused SFU (SFU1). These
results suggest that applications are less susceptible to faults
in a modular SFU architecture than in a fused one, so sup-
porting the idea that modular SFU architectures can be con-
sidered as feasible reliable alternatives for SFU integration
in GPU architectures. In particular, the frequent use of the
SFU cores by several of the analyzed parallel workloads
(BP, Gaussian, Euler3D, and ImDem) seems to be a key
factor for the propagation of fault effects on the results from
an SFU affected by transient faults. Interestingly, we also
observed that some micro-benchmarks (LOG2, RSQRT,
and COS), which are focused on specific SFU operations,
show equivalent rises in the execution time between failures.
Thus, these preliminary experimental results indicate that
the architecture of the SFU plays a crucial role on the activa-
tion and propagation of faults for heterogeneous applications
(i.e., using several GPU resources and instructions), as well
as in fully embarrassingly parallel applications devoted to
use the targeted SFU cores. We also observed that some
micro-benchmarks (e.g., EXP and SIN) show a minimal rise
in the operative time between failures (MTBF). A detailed
analysis on both benchmarks show that these are encoded
and described as the others (e.g., using the same amount of
machine instructions and number of operands). However,
it seems that the analyzed data workload (uniformly dis-
tributed for the operative ranges on both workloads) affects
the activation and propagation of faults effects. Although
the difference of MTBF among SFUs is minimal for both
micro-benchmarks, in comparison with other applications,
the results still support the idea that modular SFU architec-
tures are feasible alternatives to improve the execution time
between failures on applications.

An additional analysis was performed on the NN work-
load. In particular, this application presented a constant
behavior of MTBF for both SFU architectures. Interestingly,
the micro-architecture results show a considerable percent-
age of faults producing SDCs (46% in SFU1 and 19.5%
in SFU2). However, the overall execution time (cc) of the
application during the experiments reduced the structural

Fig. 3   AVF and MTBF for the
evaluated workloads in both
SFU architectures

222	 Journal of Electronic Testing (2024) 40:215–228

impact of the SFU architecture when affected by transient
faults. Our analysis indicates that the particular encoding
of the application, as well as the limited amount of SFU
instructions in the parallel application’s algorithm are the
main factors masking the structural impacts of SFUs at the
application level.

Our experimental results indicates that embarrassingly
parallel micro-benchmarks on SFUs (that represent frag-
ments from large parallel applications) and heterogeneous
parallel workloads, which use several GPU resources (e.g.,
SFUs, SPs, and FP32 cores) and their associated instruc-
tions, are more resilient to transient faults on modular SFU
architectures than on fused ones. Furthermore, we observed
that in some cases (e.g., NN application) the code descrip-
tion contributes to mask effects at the application level from
soft-errors (i.e., transient faults) arising on the SFUs.

5 � Evaluation of Performance, Area, and Power
Analysis of Architectures in SFUs

The first evaluation targets the individual implementation of
each SFU (SFU1 and SFU2) considering a logic synthesis
of 15nm technology library [35] targeting a frequency of
500MHz.

Table 1 shows the relative percentage of area occupied by
each SFU unit compared to other functional units (SP and
FP32 cores) and the complete logic of a GPU core for the
15nm logic synthesis. As the base for the area comparison,
the synthesis of the GPU cores includes 8 FP32, and 8 SP
cores. Thus, SFU cores are excluded from the GPU cores
logic, and the obtained percentages represent the overhead

cost of including SFUs from each architecture. Despite the
relatively low area of SFUs in comparison to a complete
GPU core (4.6% in SFU1 and 6.4% in SFU2), SFU units
are crucial cores of fundamental importance. In particular,
SFU1 cores might be feasible to improve area usage in large
GPU designs. Moreover, the comparison of SFUs with other
functional units shows that SFUs are comparable in area to
SP cores (from three to more than four times the area) and
FP32 units (almost third or half the size).

For the individual evaluation of performance, cells and
area sizes, and power consumption of the SFUs, Table 2
reports the obtained results of the 15nm synthesis of both
SFUs targeting an operative frequency of 500MHz. To cal-
culate the performance effect of each architecture, we ana-
lyzed the longest path for both circuits. The results unsur-
prisingly suggest that modular SFUs are more costly in terms
of size (area and used resources) than fused SFUs. In fact,
as initially anticipated, fused SFUs are more area efficient
than modular SFUs (in around 27% of area and resources).
Moreover, the performance of fused SFUs is higher than the
modular ones, which is mainly caused by bottlenecks on the
iterative units for trigonometric operations (e.g., CORDIC
algorithm). Interestingly, both implementations show that
modular implementations are slightly more power efficient
than fused SFUs (in around 36.6%). In the modular SFU, the
used core is the only active (triggered) to perform a given
operation, while the others remain inactive.

To analyze, correlate and compare the complete features
of both SFU architectures, we associate four main features
for comparison purposes: i) the relative size (RSize) of SFUs
calculated as the ratio between each SFU unit and the total
size of the complete GPU core, using the results from the
logic synthesis implementation; ii) the power consumption
(PWC), from the gate level implementation, iii) the Opera-
tional Latency (OPL), as a normalized average of the num-
ber of clock cycles required to execute each operation (SIN,
COS, EXP2, LOG2, RSQRT) in the SFUs, and iv) the fault
impact produced by each SFU architecture, and calculated
as a preliminary average AVF ( AVFAVG ) from the analyzed
applications (see Fig. 4).

The observed trends on both SFUs allow us to deter-
mine each unit’s possible advantages and constraints when
integrated into a GPU. In particular, from the normalized
behaviors, it can be observed that modular SFUs, see Fig. 4

Table 1   A comparison of the relative size of SFUs and other func-
tional units and the GPU core

Area (�m�) Area w.r.t. a
SP core (%)

Area w.r.t.
a FP32 core
(%)

Area w.r.t.
a GPU core
(%)

SFU1 3,651.4 317,5 37,5 4,6
SFU2 5,095.5 443,1 52,3 6,4
SP 1,149.9 100.0 - -
FP32 9,735.0 - 100.0 -
GPU core 315,347.9 - - 100.0

Table 2   Main features of Size,
power, and performance of both
gate-level SFUs implemented
at 15nm

Frequency
(MHz)

Size Power (mW) Performance
(ns)

Area ( �m2) Cells

SFU1 (Fused) 500.0 3,651.4 11,423 756.1 1.7
SFU2 (Modular) 500.0 5,095.5 13,170 554.4 1.9

223Journal of Electronic Testing (2024) 40:215–228	

(right), are less vulnerable to faults but increase a GPU’s
relative area cost and power consumption. In contrast, fused
SFUs, see Fig. 4 (left), are more area and energy efficient
but more vulnerable to propagate fault effects. In addition,
these architectures introduce minimal operational latency in
the execution of the intended operations (i.e., better perfor-
mance). Current design approaches focus on performance,
area, and power consumption, and the same applies to SFUs.
Interestingly, our results suggest that GPU designs focused
on reliability might consider alternative SFU architectures
with better reliability features and feasible power budgets,
such as modular architectures. Unfortunately, the operational
latency (OPL) in the modular SFU is higher than in the fused
one, mainly due to the iterative sub-units (Cordic core).
Thus, competitive modular SFUs might require advanced
and non-iterative algorithms to replace the Cordic code and
reduce the overall operational latency of the SFU unit. Simi-
larly, Fused SFUs might exploit schemes of sub-unit gating
approaches to reduce energy consumption.

6 � Fault Mitigation on SFUs: Evaluating
Selective Hardening Approaches

In this Section, we explore and evaluate hardware-based hard-
ening mechanisms for SFUs. First, we analyze the architecture
of both SFUs (SFU1 and SFU2), revealing the primary sub-
unit in both designs. The identification of the sub-units of each
SFU considers the structural sources for most identified errors
during the reliability characterization in Section 4. Hence,
for our exploration, fused SFU comprise i) the ROM-tables
(LUTs), ii) the square unit ( X2 ), iii) the array of partial prod-
ucts and fused accumulator (PPFAs), and iv) the normalization
logic (NL), which was identified as a significant source or data
corruption, see Fig. 1. Similarly, modular SFU includes i) indi-
vidual operational cores (e.g., Cordic, ALA, and FISR units)
and ii) the output selector logic (OSL) that is highly sensitive
to fault propagation. Figure 5 illustrates the occupied area for
each sub-structure in both SFU cores.

According to the internal organization and occupancy
of the sub-units in both SFUs, we define several targets to
explore and estimate coarse-grain selective hardening. The
complete hardening of the fused SFU1 is defined as the R11
configuration for our analyses. A second hardening scheme
considers the Rom-tables, the square unit, and the array of
partial product units is R12. Moreover, the third harden-
ing scheme (R13) focuses only on the square unit and the
array of partial product units. Similarly, we determine the
complete hardening of the modular core (SFU2) as R21.
One selective hardening scheme targets the operational cores
only as R22. Finally, a third configuration targets the hard-
ening of the output selector logic only as R23.

We implement each selective hardening configuration
(R12, R13, R22, and R23) and the complete hardening
schemes (R11 and R21) on the RT-level descriptions of both
SFUs (SFU1 and SFU2). Then, each hardened configura-
tion is verified and validated using an FPGA platform (Intel
DE2-115, Cyclone IV EP4CE115F29). Table 3 reports the
used area (in terms of Logic Elements or LEs), the Total
Thermal Power Dissipation or TTPD, and the performance
impacts for each hardening configuration.

Interestingly, in the case of SFU1, the reported results
show that the complete hardening configuration (R11)
affects the performance and reduces its maximum opera-
tive frequency by up to 15.5%. Moreover, R11 represents
an overhead of 77.6% in area and 5.5% in additional power
consumption in the FPGA implementation. In contrast, the
complete hardening of SFU2 (R21) increases the area and
power consumption overhead at 76.4% and 6.03%, respec-
tively, while affecting the performance at around 8.1%. A
direct comparison of the relative impact in area and per-
formance shows that the overhead in the area and power
consumption are similar for both SFUs. However, our results
show that the evaluated implementation of R21 produces
lower effects in performance than the equivalent hardening
on SFU1 (R11). In contrast, the evaluation of the selective
hardening configurations shows that the overhead costs for
the SFU1 cases (R12 and R13) are relatively slower costs

Fig. 4   A comparison of relative
size (RSize), relative power con-
sumption (PWC), operational
latency (OPL), and average
Architectural Vulnerability Fac-
tor ( AVG

_AVF
 ) for the a Fused

(SFU1) and b Modular (SFU2)
architectures

(a) (b)

224	 Journal of Electronic Testing (2024) 40:215–228

than those for the selective hardening version of SFU2 (R22
and R23). In particular, R13 and R23 configurations cost
less than 10% of the additional area on both SFUs. On the
other hand, aggressive selective hardening solutions, such
as R12 and R22 increase the area and power costs by up to
75.0% and 3.9%, respectively, while affecting the perfor-
mance in up to 11.1%.

In particular, R12 configuration includes the LUTs as
part of the hardening in SFU1, which are the main ones
responsible for the considerable overhead costs. Alternative
methods for memory hardening, such as Error Correcting
Codes (ECCs), would be more effective in the LUTs and can
contribute to reducing the area overhead in this configura-
tion. In contrast, the observed area overhead in the R22 can
hardly be reduced since custom logic for each operation is
mainly involved.

To evaluate the impact on reliability and fault-tolerance of
each hardened configuration, we estimate individual reliability
functions based on the probability of correct operation of the
units in combination with RBD analysis to include the structural
composition of each SFU as part of our reliability model.

Since the operation of SFU1 requires the serial execution
of several sub-units, we define the probability of correct
execution as a serial relation of the probabilities for each
sub-unit, as expressed in Eq. 1.

(1)RSFU1 = RLUTs ⋅ RX2 ⋅ RPPFAs ⋅ RNL

where RLUTs , RX2 , RPPFAs , and RNL are the probability func-
tions of the ROM-tables, square unit, array of partial prod-
ucts and fused accumulator, and normalization logic, respec-
tively. Thus, the probability function representing the TMR
hardening of the complete SFU ( R11 ) is described in Eq 2.

Similarly, we determine the probability functions of
reliability when hardening the ROM tables, square unit,
and the array of partial products ( R12 ), as well as the prob-
ability function for the square unit and the array of par-
tial products ( R13 ), which are depicted in Eqs. 3 and 4,
respectively.

As represented in R12 and R13 , the targeted units for
hardening affect the computation of the equivalent prob-
ability function of reliability.

In the case of SFU2, we follow a similar procedure
to determine the probability functions of reliability for
the complete ( R20 ) and the selective hardening configu-
rations ( R21 and R22 ). In particular, the organization of
the sub-units in a parallel and serial fashion implies that

(2)R11 = 3R2
SFU1

− 2R3
SFU1

(3)
R12 =

(

3
(

RLUTs ⋅ RX2 ⋅ RPPFAs

)2
− 2

(

RLUTs ⋅ RX2 ⋅ RPPFAs

)3
)

⋅ RNL

(4)
R13 = RLUTs ⋅

(

3R2

X2 − 2R3

X2

)

⋅

(

3R2
PPFAs

− 2R3
PPFAs

)

⋅ RNL

Fig. 5   Percentage distribution
of occupied FPGA’s area by the
sub-modules of the fused SFU
(a) and modular SFU (b)

(a) (b)

Table 3   Performance and overhead results for the hardening configurations

Config LEs TTPD (mW) Max. Frequency
(MHz)

Config LEs TTPD (mW) Max.
frequency
(MHz)

SFU1 (Fused) 6,754 160.65 10.3 SFU2 (Modular) 8,639 158.61 9.9
R11 11,996 169.49 8.7 R21 15.243 168.18 9.1
R12 10,273 166.96 9.7 R22 15.124 164.09 8.8
R13 7,245 163.57 10.1 R23 9.075 159.88 9.7

225Journal of Electronic Testing (2024) 40:215–228	

the operation of the SFU directly depends on the targeted
operation (and its particular hardware unit) and the OSL
unit. Equation 5 represents the probability function of reli-
ability for the SFU2, where RCordic , RFISR , RALA1 , RALA2 , and
ROSL represent the probability of correct operation of the
Cordic, FISR, ALA1 (logarithmic), ALA2 (power), and
OSL units, respectively.

The reliability functions for the complete TMR hardening
of SFU2 ( R21 ) is equal to the expression in Eq. 2. Further-
more, Eqs. 6 and 7 describe the probability functions for
the reliability of the selective hardening targeting the opera-
tional units and the output selector logic (OSL), respectively.

To analyze and validate the main benefits in the reli-
ability of the different selective hardening configurations,
we evaluate each probability function replacing the prob-
ability function for the typical function on time: R = e−�t .
We employ a typical rate of failures in time of 10−6faults∕h.
and the area occupation of each sub-unit in the SFUs, see
Fig. 5, to calculate the individual probability function of the

(5)
RSFU

2

=
{

1 −
[(

1 − RCordic

)

⋅

(

1 − RFISR

)

⋅

(

1 − RALA1

)

⋅

(

1 − RALA2

)]}

⋅ ROSL

(6)

R
22

= ROSL⋅

(

1 −
[

1 −
(

3R2

Cordic
− 2R3

Cordic

)]

⋅

[

1 −
(

3R2

FISR
− 2R3

FISR

)]

⋅

[

1 −
(

3R2

ALA1
− 2R3

ALA1

)]

⋅

[

1 −
(

3R2

ALA2
− 2R3

ALA2

)])

(7)

R
23

= 1 −
[(

1 − RCordic

)

⋅

(

1 − RFISR

)

⋅

(

1 − RALA1

)

⋅

(

1 − RALA2

)]

⋅

(

3R2

OSL
− 2R3

OSL

)

sub-units. Thus, in SFU1, we determine �LUTs = 5.8x10−7 ,
�X2 = 4.0x10−8  , �PPFAs = 2.2x10−7  , �NL = 1.6x10−7  .
Similarly, for SFU2, we determine �Cordic = 3.0x10−7 ,
�FISR = 4.2x10−7 , �ALA1 = 1.3x10−7 , �ALA2 = 1.3x10−7 , and
�OSL = 2.0x10−8.

Figure 6 depicts the changes in reliability in time (Fail-
ures in Time or FIT) for each selective hardening configura-
tion in SFU1 and SFU2, respectively. As depicted in both
cases, the complete hardening extends across the time the
probability of correct operation of the SFUs. In general,
The observed reliability degradation on SFU1 is associated
with the structural organization of the fused SFU core. In
this case, the probability of correct execution depends on
the number of sub-units serially connected to process an
operation and provide a result. Since SFU1 requires the
proper operation of most of the units inside the core (four
sub-units), its probability of correct operation (Reliability)
is influenced by each sub-unit and behaves almost linearly
for the observed time interval. Moreover, the probability of
correct operation of SFU1 is lower than the probability of
correct operation of SFU2, which only involves two serially
connected sub-units for its correct operation.

Regarding the selective-hardening mechanisms for SFU1,
R11 and R12 behave in similar proportions indicating that
the latter could be a feasible configuration to provide equiva-
lent reliability benefits to the complete hardening on the
SFU. On the other hand, for SFU2, its clear that R23 (pro-
tecting the OSL unit) provides more reliability benefits than
R22 (protecting the individual operational cores) since all
operations in the SFU employ the OSL structures and faults
arising on this units can directly compromise the output
results. Moreover, the minimal area overhead in R23 con-
figuration is a feasible candidate for selective hardening of
the SFU2 core.

Fig. 6   Impact in the reliability
of the different selective and
complete hardening configura-
tions for a SFU1 and b SFU2

(a) (b)

226	 Journal of Electronic Testing (2024) 40:215–228

In our evaluation, we define several coarse-grain selective
hardening configurations for both SFUs. As expected, our
results suggest that the structural organization plays a crucial
role in the reliability of SFUs. In fact, each sub-units in both
SFUs impact differently the reliability of each core. In our
exploration of selective hardening configurations, we focused
on several units that are critical for the operation of the SFUs.
In some cases, the protected units massively increased the over-
head costs (e.g., area) with moderate reliability benefits (e.g.,
LUTs in SFU1). Moreover, our analyses targeted critical units,
such as the OSL structures, employed in each SFU2 operation.
In this case, modeling results demonstrate an increase in the
reliability benefits with minor overhead costs.

Although we mainly focused our evaluation on the reliabil-
ity of SFU architectures as a vital non-functional property, our
results in Figs. 4 and 6, determine the importance of evaluat-
ing and modeling the reliability in SFUs as a complementary
instrument and parameter for the design and integration of
modern systems. Interestingly, our results suggest that fused
SFUs are adequate solutions in terms of performance and size.
However, other emerging design alternatives, such as modular
SFUs, might become feasible solutions when considering reli-
ability features. In fact, a comparison between the reliability
features of both SFUs ( RSFU1 and RSFU2 ), see Fig. 6 shows that
the probability functions for the modular SFUs behave better
in time and increase the reliability of the unit in up to one order
of magnitude.

7 � Conclusion and Future Work

This work focused on evaluating and investigating the inci-
dence of the structural features of two SFU architectures for
GPUs and the impacts of transient faults effects on reliabil-
ity. According to the results, the fault characterization and
evaluation shows that fused SFU architectures (base of com-
mercial devices) are adequate solutions in terms of area and
performance, but these architectures are more vulnerable to
fault effects than modular SFUs. The multi-functional use
of the internal structures in fused SFUs seems to be the main
factor increasing the sensitivity to faults.

A comparison of area, power, and operational latency in
relation to the complete GPU core suggests that fused SFUs are
more area and performance efficient, but demand more power
budget than modular SFUs. The outcomes of our analyses are
intended to include reliability features of the architecture as
a relevant design parameter, such as area, power, and perfor-
mance, in the design of functional units for hardware accelera-
tors, such as GPUs, for the safety-critical domain.

Our exploration, modeling, and evaluation of selective
hardening solutions for SFUs show that modular architectures
behave better in time in up to one order of magnitude when

compared to fused ones. Furthermore, the evaluated harden-
ing configurations show that some sub-units directly affect the
overall reliability of an SFU, so aiming at more effectively pro-
tecting the unit against faults with minor overhead costs.

In the future, we plan to evaluate the fine-grain reliability
of other crucial structures in hardware accelerators, such as
the Tensor Core units for the proposal of multi-level error
models and hardware-based hardening solutions.

Funding  Open access funding provided by Politecnico di Torino within
the CRUI-CARE Agreement. This work has been supported by the
National Resilience and Recovery Plan (PNRR) through the National
Center for HPC, Big Data and Quantum Computing.

Data Availibility  The low-level micro-architecture SFU cores (Fused
and Modular) that were used in the current study are open-source and
available following the links included in manuscript. The datasets gen-
erated during the experiments of the current study are available from
the corresponding author upon reasonable request.

Declarations 

Conflicts of Interests/Competing Interests  The authors declare no
relevant financial or non-financial conflict interests. This work was
partially sponsored and funded by the National Resilience and Recov-
ery Plan (PNRR) under the Fondazione ICSC Centro Nazionale di
Ricerca in High Performance Computing, Big Data e Quantum Com-
puting (National Center for HPC, Big Data and Quantum Computing)
- SPOKE 1 FUTURE HPC & BIG DATA.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Bariamis D, Maroulis D, Iakovidis DK (2010) Adaptable, fast,
area-efficient architecture for logarithm approximation with arbi-
trary accuracy on fpga. J Signal Process Syst 58(3):301–310

	 2.	 Basso PM, Santos FFd, Rech P (2020) Impact of tensor cores and
mixed precision on the reliability of matrix multiplication in gpus.
IEEE Trans Nucl Sci 67(7):1560–1565

	 3.	 Bayoumi A, Chu M, Hanafy Y et al (2009) Scientific and engi-
neering computing using ati stream technology. Comput Sci Eng
11(6):92–97

	 4.	 Bellal R, lamini ES, Belbachir H, et al (2019) Improved affine
arithmetic-based precision analysis for polynomial function evalu-
ation. IEEE Trans Comput 68(5):702–712

	 5.	 Chang Y, Wei J, Zhao G et al (2013) A novel architecture of
special arithmetic function unit for area-efficient programmable
vertex shader

http://creativecommons.org/licenses/by/4.0/

227Journal of Electronic Testing (2024) 40:215–228	

	 6.	 Chatzidimitriou A, Kaliorakis M, Gizopoulos D et al (2017) Rt
level vs. microarchitecture-level reliability assessment: Case study
on arm(r) cortex(r)-a9 cpu. In: Proceeding of the 47th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), p 117–120

	 7.	 Chatzidimitriou A, Gizopoulos D (2016) Anatomy of microarchi-
tecture-level reliability assessment: Throughput and accuracy. In:
Proceeding of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), p 69–78

	 8.	 Che S, Boyer M, Meng J et al (2009) Rodinia: A benchmark
suite for heterogeneous computing. In: Proceeding of the 2009
IEEE International Symposium on Workload Characterization
(IISWC), p 44–54

	 9.	 Condia JER, Azambuja JR, Sonza Reorda M et al (2020) Analyz-
ing the sensitivity of gpu pipeline registers to single events upsets.
In: Proceeding of the 2020 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), p 380–385

	10.	 Condia JER, Du B, Sonza Reorda M et al (2020) Flexgripplus:
An improved gpgpu model to support reliability analysis. Micro-
electron Reliab 109(113):660

	11.	 Condia JER, Guerrero-Balaguera J, Moreno-Manrique C et al
(2020) Design and verification of an open-source sfu model for
gpgpus. In: Proceeding of the 17th Biennial Baltic Electronics
Conference (BEC 2020), p 1–6

	12.	 Condia JER, Guerrero-Balaguera JD, Patiño Núñez EJ et al (2023)
Evaluating the prevalence of sfus in the reliability of gpus. In: Pro-
ceeding of the 2023 IEEE European Test Symposium (ETS), p 1–6

	13.	 Condia JER, Guerrero-Balaguera JD, Patiño Núñez EJ et al (2023)
Analyzing the architectural impact of transient fault effects in sfus
of gpus. In: Proceeding of the 2023 IEEE 24th Latin American
Test Symposium (LATS), p 1–6

	14.	 Condia JER, Faggiano R, Sonza Reorda M (2022) Microarchi-
tectural reliability evaluation of a block scheduling controller in
gpus. In: Proceeding of the IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), p 26–31

	15.	 Condia JER, Rech P, Santos FFD et al (2022) An effective method
to identify microarchitectural vulnerabilities in gpus. IEEE Trans
Device Mater Reliab 22(2):129–141

	16.	 Condia JER, Santos FFd, Sonza Reorda M et al (2021) Combining
architectural simulation and software fault injection for a fast and
accurate cnns reliability evaluation on gpus. In: Proceeding of the
IEEE 39th VLSI Test Symposium (VTS), p 1–7

	17.	 Condia JER, Sonza Reorda M (2023) Evaluating the impact of
transition delay faults in gpus. In: Proceeding of the 36th Inter-
national Conference on VLSI Design and 22nd International
Conference on Embedded Systems (VLSID), p 353–358

	18.	 De Caro D, Petra N, Strollo AGM (2009) High-performance
special function unit for programmable 3-d graphics processors.
IEEE Trans Circuits Syst I Regul Pap 56(9):1968–1978

	19.	 Du B, Condia JER, Sonza Reorda M et al (2019) On the evalu-
ation of seu effects in gpgpus. In: Proceeding of the 2019 IEEE
Latin American Test Symposium (LATS), p 1–6

	20.	 Ellaithy DM, El-Moursy MA, Zaki A et al (2019) Dual-channel
multiplier for piecewise-polynomial function evaluation for
low-power 3-d graphics. IEEE Trans Very Large Scale Integr
(VLSI) Syst 27(4):790–798

	21.	 Gonçalves M, Saquetti M, Azambuja JR (2018) Evaluating the
reliability of a gpu pipeline to seu and the impacts of software-
based and hardware-based fault tolerance techniques. Micro-
electronics Reliability / Proc of the 29th European Symposium
on Reliability of Electron Devices, Failure Physics and Analysis
(ESREF 2018) 88-90:931–935

	22.	 Guerrero-Balaguera JD, Condia JER, Sonza Reorda M (2021)
On the functional test of special function units in gpus. In:
Proceeding of the 24th International Symposium on Design

and Diagnostics of Electronic Circuits & Systems (DDECS), p
81–86

	23.	 Guo H, Yang X (2007) A simple reliability block diagram
method for safety integrity verification. Reliab Eng Syst Safety
92(9):1267–1273. Critical Infrastructures

	24.	 Hamdioui S, Gizopoulos D, Guido G et al (2013) Reliability chal-
lenges of real-time systems in forthcoming technology nodes. In:
Proceeding of the 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), p 129–134

	25.	 Hennessy JL, Patterson DA (2012) Computer architecture: a quan-
titative approach - Fifth Edition, 4th. Chapter - Data-Level Paral-
lelism in Vector, SIMD, and GPU Architectures

	26.	 Hsiao SF, Li SY, Tsao KH (2015) Low-power and high-
performance design of opengl es 2.0 graphics processing unit for
mobile applications. In: Proceeding of the 2015 IEEE International
Conference on Digital Signal Processing (DSP), p 110–114

	27.	 Hsiao SF, Wen CS, Chen YH et al (2017) Hierarchical multipartite
function evaluation. IEEE Trans Comput 66(1):89–99

	28.	 IEEE (2022) The international roadmap for devices and systems:
2022. In: Institute of Electrical and Electronics Engineers (IEEE)

	29.	 Jayashree Basu (1976) On binary multiplication using the quarter
square algorithm. IEEE Trans Comput C–25(9):957–960

	30.	 Kim YJ, Chung K, Kim LS et al (2009) Bank-partition and multi-
fetch scheme for floating-point special function units in multi-core
systems. In: Proceeding of the IEEE International Symposium on
Circuits and Systems (ISCAS), p 1803–1806

	31.	 Kim YJ, Kim HE, Kim SH et al (2012) Homogeneous stream pro-
cessors with embedded special function units for high-utilization
programmable shaders. IEEE Trans Very Large Scale Integr (VLSI)
Syst 20(9):1691–1704

	32.	 Leveugle R, Calvez A, Maistri P et al (2009) Statistical fault
injection: Quantified error and confidence. In: Proceeding of the
Design, Automation & Test in Europe Conference & Exhibition
(DATE), p 502–506

	33.	 Limas Sierra R, Guerrero-Balaguera JD, Condia JER et al (2023)
Analyzing the impact of different real number formats on the
structural reliability of tcus in gpus. In: Proceeding of the IFIP/
IEEE 31st International Conference on Very Large Scale Integra-
tion (VLSI-SoC), p 1–6

	34.	 Limas Sierra R, Guerrero-Balaguera JD, Condia JER et al (2024)
Exploring hardware fault impacts on different real number represen-
tations of the structural resilience of tcus in gpus. Electronics 13(3)

	35.	 Martins M, Matos JM, Ribas RP et al (2015) Open cell library in
15nm freepdk technology. In: Proceeding of the 2015 Symposium
on International Symposium on Physical Design (ISPD ’15), p
171-178

	36.	 Mukherjee S, Weaver C, Emer J et al (2003) A systematic meth-
odology to compute the architectural vulnerability factors for a
high-performance microprocessor. In: Proceeding of the 36th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-36), p 29–40

	37.	 Osudin D, Child C, He YH (2019) Rendering non-euclidean space
in real-time using spherical and hyperbolic trigonometry. Compu-
tational Science - ICCS 2019. Springer International Publishing,
Cham, p 543–550

	38.	 Papadimitriou G, Gizopoulos D (2021) Demystifying the system
vulnerability stack: Transient fault effects across the layers. In:
Proceeding of the ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), pp 902–915

	39.	 Pineiro JA, Oberman S, Muller JM et al (2005) High-speed func-
tion approximation using a minimax quadratic interpolator. IEEE
Trans Comput 54(3):304–318

	40.	 Qoutb AEG, El-Gunidy AM, Tolba MF et al (2014) High speed spe-
cial function unit for graphics processing unit. In: Proceeding of the
9th International Design and Test Symposium (IDT), p 24–29

228	 Journal of Electronic Testing (2024) 40:215–228

	41.	 Rech P, Navaux P, Carro L (2013) Neutron sensitivity of integer
and floating point operations executed in gpus. In: Proceeding of
the 2013 14th Latin American Test Workshop (LATW), p 1–6

	42.	 Santini T, Rech P, Nazar G et al (2014) Reducing embedded software
radiation-induced failures through cache memories. In: Proceeding
of the 19th IEEE European Test Symposium (ETS), p 1–6

	43.	 Santos FFd, Condia JER, Carro L et al (2021) Revealing gpus vul-
nerabilities by combining register-transfer and software-level fault
injection. In: Proceeding of the 51st Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN),
p 292–304

	44.	 Santos FFd, Navaux P, Carro L et al (2019) Impact of reduced pre-
cision in the reliability of deep neural networks for object detec-
tion. In: Proceeding of the 2019 IEEE European Test Symposium
(ETS), p 1–6

	45.	 Schulte M, Swartzlander E (1994) Hardware designs for
exactly rounded elementary functions. IEEE Trans Comput
43(8):964–973

	46.	 Strojwas AJ, Doong K, Ciplickas D (2019) Yield and reliability chal-
lenges at 7nm and below. In: Proceeding of the 2019 Electron Devices
Technology and Manufacturing Conference (EDTM), p 179–181

	47.	 Tselonis S, Gizopoulos D (2016) Gufi: A framework for gpus reli-
ability assessment. In: Proceeding of the 2016 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), p 90–100

	48.	 Vallero A, Tselonis S, Gizopoulos D et al (2018) Multi-faceted micro-
architecture level reliability characterization for nvidia and amd gpus.
In: Proceeding of the IEEE 36th VLSI Test Symposium (VTS), p 1–6

	49.	 Walther S (1971) A unified algorithm for elementary functions.
In: Proceeding of the International Workshop on Managing
Requirements Knowledge, p 379-385

	50.	 Ziade H, Ayoubi RA, Velazco R (2004) A survey on fault injection
techniques. Int Arab J Inf Technol 1(2):171–186

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Josie E. Rodriguez Condia  received the M.Sc. degree in electronics
engineering from Universidad Pedagogica y Tecnologica de Colom-
bia (UPTC), Colombia in 2017, and the Ph.D. degree in Computer
Engineering from Politecnico di Torino, Turin, Italy in 2021. He is now
an Assistant professor at the same institution. His research interests
include functional testing, parallel architectures, Graphics Processing
Units, and embedded system design.

Juan‑David Guerrero‑Balaguera  is currently pursuing a PhD in the
Department of Control and Computer Engineering at Politecnico di
Torino, Torino, Italy. His research interests include functional tests,
artificial intelligence, and parallel architectures. Guerrero-Balaguera
has an MSc in electronics from the Universidad Pedagógica y Tec-
nológica de Colombia (UPTC), Sogamoso, Colombia.

Edwar J. Patiño Nuñez  received a BSc in electronics from the Univer-
sidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colom-
bia. His research interests include digital design, computer arithmetic
circuit design, and testing.

Robert Limas  is currently pursuing a PhD in the Department of Con-
trol and Computer Engineering at Politecnico di Torino, Torino, Italy.
He received a MSc in electronics from the Universidad Pedagógica y
Tecnológica de Colombia (UPTC), Sogamoso, Colombia. His research
interests include artificial intelligence, High-Performance Computing
and parallel architectures.

Matteo Sonza Reorda  received the M.Sc. degree in electronics in 1986
and the Ph.D. degree in computer engineering in 1990, respectively,
both from Politecnico di Torino, Italy. Currently he is a full professor
in the Department of Control and Computer Engineering of the same
Institution. His research interests include test of SoCs and fault tolerant
electronic system design.

	Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 GPU Organization
	2.2 Organization of SFU Cores
	2.2.1 Architecture of Fused SFUs
	2.2.2 Architecture of Modular SFUs

	3 Methodology for Evaluating, Analyzing and Reducing the Impact of Transient Faults in SFUs
	3.1 Reliability Evaluation of the SFU’s Architecture
	3.2 Evaluation of Area, Power, and Performance in SFU’s Architectures
	3.3 Exploring and Evaluating Selective hardening mechanisms for SFUs

	4 Reliability Evaluation of SFUs
	5 Evaluation of Performance, Area, and Power Analysis of Architectures in SFUs
	6 Fault Mitigation on SFUs: Evaluating Selective Hardening Approaches
	7 Conclusion and Future Work
	References

