
17 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Memory Integrity Techniques for Memory-Unsafe Languages: A Survey / EFTEKHARI MOGHADAM, Vahid; Serra,
Gabriele; Aromolo, Federico; Buttazzo, Giorgio; Prinetto, Paolo. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 12:(2024), pp. 43201-43221. [10.1109/ACCESS.2024.3380478]

Original

Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

Publisher:

Published
DOI:10.1109/ACCESS.2024.3380478

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987203 since: 2024-03-22T11:32:26Z

IEEE

Received 8 February 2024, accepted 11 March 2024, date of publication 21 March 2024, date of current version 27 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380478

Memory Integrity Techniques for Memory-Unsafe
Languages: A Survey
VAHID EFTEKHARI MOGHADAM 1, GABRIELE SERRA 2, (Member, IEEE),
FEDERICO AROMOLO 2, GIORGIO BUTTAZZO 2, (Member, IEEE),
AND PAOLO PRINETTO 1, (Senior Member, IEEE)
1Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
2TeCIP Institute, Scuola Superiore Sant’Anna, 56124 Pisa, Italy

Corresponding author: Vahid Eftekhari Moghadam (vahid.eftekhari@polito.it)

The Ph.D. research program of TIM S.p.A. (Italy) partially supports the work described in this paper. This work was partially supported by
project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union–NextGenerationEU.

ABSTRACT The complexity of modern software systems, the integration of several software components,
and the increasing exposure to public networks make systems more susceptible to cyber-attacks, especially
those targeting memory. Memory error exploitation received worldwide attention thanks to the Morris worm
in 1988 and has been around for over 30 years. As a matter of fact, attacks that involve memory safety,
such as buffer overflows, are still a plague in modern software. The research in countering those kinds of
attacks has gone in several directions. This work surveys memory integrity techniques developed during the
last quarter century for embedded or general-purpose open-source operating systems, ranging from older
mechanisms to state-of-the-art solutions. A comparison of various memory integrity techniques is presented
to examine their effectiveness and technical significance. Insights into ongoing trends and developments are
also provided to assess their potential impact in the foreseeable future.

INDEX TERMS Memory overflows, memory safety, security, unsafe languages, memory safety techniques,
security techniques comparison, memory integrity.

I. INTRODUCTION
Software security is today a primary requirement for
computer systems and no longer an issue that is only inherent
to servers or personal computers. Nowadays, embedded
computing systems are employed in diverse application
domains to control safety-critical cyber-physical systems
including automotive, railway, and avionics systems, nuclear
power plants, air traffic control systems, autonomous robots,
andmilitary devices, thus playing an extremely important role
in our society. The typical software controlling these systems
is continuously growing in both size and complexity, thus
creating a larger and larger attack surface due to the inevitable
introduction of subtle software vulnerabilities. In addition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Rakesh Matam .

access to the public network increases their vulnerability,
which can be exploited to accomplish malicious actions and
cyber-crimes.

Operating systems, from those developed for server
computing to those conceived for embedded systems, are
typically written in low-level languages, such as C or
C++. Undoubtedly, these languages offer flexibility and
high performance, and, in many cases, they are often
the only language supported by the toolchain provided
by hardware manufacturers for a specific target platform.
However, those languages are known to be memory-unsafe.
A memory-unsafe language is a programming language
that lacks features or constraints designed to prevent
common programming errors related to the freedom in
accessing memory. In memory-unsafe languages, program-
mers have more direct control over the memory, but this

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 43201

https://orcid.org/0000-0002-2483-1648
https://orcid.org/0000-0003-0225-6731
https://orcid.org/0009-0007-3537-8782
https://orcid.org/0000-0003-4959-4017
https://orcid.org/0000-0003-2400-8245
https://orcid.org/0000-0002-1825-2914

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

freedom can lead to unintended consequences and side-
effects, such as memory leaks, buffer overflows, and other
vulnerabilities.

Indeed, applications and operating systems written using
memory-unsafe languages could be the target of mem-
ory error exploits [1]. As a matter of fact, memory
corruption vulnerabilities are among the most frequent
potential problems. Dangling pointers, heap meta-data
overwrites, uninitialized reads, and invalid or double-free
vulnerabilities are common examples of such problems.
Consequently, security researchers and system designers
developed various protection techniques to address these
concerns.

The adoption of hardware memory protection and vir-
tualization support mechanisms allow operating systems to
counter several attacks. Nonetheless, exploitable vulnerabili-
ties related to memory management are still present in mod-
ern software. Even considering classic buffer overflows only,
this class of memory corruption vulnerability has kept its
position on the podium of the Common Weakness Enumera-
tion (CWE) SANS top 25 most dangerous software errors for
years. A recent eminent example of buffer overflow exploit
enabling unrestricted privilege escalation in Linux-based
operating systems dates back to January 2022 [2], when
Qualys Security Advisory identified a buffer overflow in
the management of C arguments in Polkit (formerly Poli-
cyKit), a software component controlling system-wide user
privileges, leading to a local privilege escalation from any
user to root privileges. Interestingly, this recently discovered
vulnerability is technically amemory corruption that has been
potentially exploitable since 2009 but has remained latent
until its discovery 2022. This example demonstrates that
memory corruption vulnerabilities still represent a very seri-
ous threat in computer security, and that the related technical
and scientific problem of finding adequate countermeasures
is far from resolved. Academic and industrial security
researchers are still focused on designing countermeasures
that can eventually be implemented. However, despite the
huge amount of research effort spent in the field, only a
few defensive techniques have been actually implemented
at the production level, especially due to performance
reasons.

In this work, we survey memory safety techniques that
have been integrated into production-level systems, ranging
from older mechanisms to state-of-the-art solutions. We aim
at gathering and analyzing a wide range of techniques
that have been proposed and implemented to enhance
memory safety, thus providing a comprehensive overview
of the advancements in the field. Furthermore, we present a
comparative analysis that can aid in evaluating the potential
of these techniques for future applications, also identify-
ing areas where further research and improvements are
needed.
Contributions: This work provides the following
contributions:

• It presents a comprehensive survey of memory safety
techniques developed over the past twenty-five years.

• It performs a comparative analysis of the different mem-
ory safety techniques identified in the survey, providing
valuable insights into the trends and developments
within the field.

Survey scope: In examining the multitude of available
options, the survey focuses on the most significant tech-
niques employed over the past two decades that have been
implemented, or are currently in production, by one or more
open-source operating systems and that are supported by one
or more major compiler toolchains (i.e., GCC or Clang).
The selection criteria prioritize techniques implemented and
adopted in the Linux kernel, which stands out due to its
widespread adoption for both embedded and general-purpose
applications. In Section III, the set of requirements used to
center the scope of the survey are explicitly listed.
Paper structure: The remainder of this paper is organized
as follows. Section II introduces the necessary background
to properly understand the presented methods. Section III
sets out a taxonomy for existing techniques and provides
a concise explanation of the working principle behind each
technique. Section IV presents a comparison of the surveyed
techniques considering different evaluation perspectives.
Section V shows the limitations of the considered techniques
and provides a concrete road map for memory safety in
the context of future research. Section VI concludes the
paper.

II. BACKGROUND
Memory errors have been investigated since the 1970s,
and new memory-related vulnerabilities are discovered ever
year. This section presents an overview on the history
of memory errors and vulnerabilities and introduces the
necessary background concepts.

A. A BRIEF HISTORY OF MEMORY INTEGRITY
Historically, memory errors were first publicly discussed in
the 1970s. Specifically, the idea of reading/writing outside
the allowed boundaries of a buffer became known and was
publicly disclosed in early 1972 by James Anderson in the
pivotal Computer Security Technology Planning Study [3].
The ability to gain control of a process by overwriting data
received worldwide attention thanks to the Morris worm in
1988 [4]. Since then, buffer overflows have been widely
recognized as the most well-known exploitation technique in
computer security history. In response to the Morris worm
exploitation, DARPA founded the Computer Emergency
Response Center (CERT). The main goal of CERT is to
collect reports about vulnerabilities discovered by users and
forward them to software/hardware vendors. Subsequently,
numerous mailing lists and public archives of vulnerabilities
were created, such as Bugtraq and Full Disclosure [1], [5],
[6].

43202 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

Nevertheless, until 1995, memory error countermeasures
were not heavily researched and discussed. In 1996, Elias
Levy published a blog post on Phrack Magazine [7] describ-
ing thoroughly how to take advantage of stack smashing.
Since then, discussions on protection mechanisms have
proliferated, and defending from memory-targeted attacks
has been part of security research, with several techniques
developed over the years.

B. THE ROLE OF COMPILERS AND LIBRARIES
Software vulnerabilities frequently arise due to either
improper checking of input parameters or the presence
of unexpected input values. Therefore, the presence of
vulnerabilities in a program is strongly related to the software
development process, which is itself heavily dependent
on the selected development tools. Given a programming
language of choice, the key components of a toolchain, such
as assemblers, compilers, and debuggers, play a vital role
in the development and execution of software programs.
Following their significant impact on achieving a high-
quality and/or valid result, a software developer should
thoroughly understand the behavior of such tools, their capa-
bilities, and their shortcomings, especially when developing
software in the security and/or the safety domains [8]. In the
following, we provide an overview of necessary background
concepts related to the components of the compilation
toolchain.

Machine-independent optimizations occur in the optimizer
stage of the compilation process. These generic optimization
techniques are common among programming languages and
are the common placewhere some unwanted behaviors can be
introduced to the programs. Optimizations like reachability
analysis and dead-code elimination, constant propagation,
or code relocation based on context are some examples of
these transformations. At the end of this stage, the code will
be passed for further analysis and transformations to the
backend phase, in which specific features of the instruction
set architecture are exploited.

Indeed, compiler implementations provide their users with
many options to allow better tuning of the parameters, such as
those targeting memory safety. On the other hand, parameters
driving different levels of optimizations (e.g., to improve
program performance or to reduce code size when adhering to
given memory requirements) could introduce vulnerabilities
when used carelessly.

Unwanted alterations and optimization could affect the
structure of a program, potentially introducing unwanted
side effects. This aspect is particularly critical when data
security and integrity are among the main design goals [9],
[10]. For instance, one such compiler optimization is dead
store elimination (DSE), which removes data store operations
into memory locations that are not read by any subsequent
instruction. This feature can potentially introduce security
vulnerabilities into a program. For instance, consider the
following pseudo-code, which performs encryption of some

data using an encryption key which is later explicitly
overwritten in memory by a sequence of zeros using a
memory write operation:

Since the allocated memory buffer, encrypt_key, is not
used after the call to the memset function, the compiler can
consider the set memory operation redundant and eliminate
it for when applying DSE optimizations. However, if the
buffer contains sensitive data, the optimization will cause
the data to be left in memory. Attackers can exploit such
memory vulnerabilities to disclose information and get access
to secret data, which can be leveraged to further compromise
the system. Although this compiler behavior is well-known
to many developers, it is still a relevant issue when security
is a crucial requirement. The developer should be aware
of any kind of potentially dangerous optimizations which
could jeopardize the security of the application, and consider
either disabling those optimizations altogether or applying
workarounds to preserve the security of the software [11],
[12].

Another important aspect to be considered to improve
functional safety and security is software libraries. Com-
monly used functionalities are generally provided by the
development toolchain in the form of libraries to be included
in the design flow. Third-party libraries are often subject to
targeted security exploits in the software development as well
(e.g., cryptographic libraries like OpenSSL1). As with any
software, the functionalities provided by these libraries could
potentially present flaws in their design, and not properly
addressing such flaws can introduce vulnerabilities to the
programs utilizing a third-party library [13], [14]. A few
examples of memory techniques targeting common libraries
(such as glibc) are presented in the next sections.

C. COMMON ATTACKS
Since the release of the Morris worm, numerous memory
vulnerabilities have been discovered and often exploited
thanks to carefully crafted attack techniques. The following
section briefly presents some of the most common attack
patterns employed by such attacks.

1) CONTROL-FLOW HIJACKING
Control-flow hijacking is a common technique used in
many exploits, irrespective of the specific vulnerability being
exploited. The control-flow graph (CFG) of a program

1https://www.openssl.org

VOLUME 12, 2024 43203

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

FIGURE 1. Graphical representation of a buffer overflow in a C program.

represents the valid sequence of control transfers within the
program, and is represented as a directed graph where nodes
represent routines or basic blocks, while edges represent
control transfer instructions such as branches, function calls,
and returns. The CFG can be constructed offline by analyzing
the source code or binary executable, or it can be dynamically
discovered during program execution.

Control-flow hijacking attacks try to divert the legal
execution path of a program, for instance, by modifying the
target of an indirect branch instruction (which jumps to a
value computed at runtime) or by forcing a function to return
to an address that differs from the expected return address
within the calling function.

Control-Flow Integrity (CFI) is a set of security measures
aimed at ensuring that the execution flow of a program
follows the intended paths defined by its canonical CFG [15].
CFI techniques focus on monitoring the execution of a
program to ensure that control transfers adhere to the
CFG, and have been proven to be effective against many
well-known attacks and are considered advanced security
countermeasures [16].

2) BUFFER OVERFLOWS
A buffer overflow (or overrun) is an anomaly occurring
when a portion of memory allocated to store a given number
of bytes is insufficient to contain a larger-sized payload.
Therefore, the excessive bytes are written to adjacent
portions of memory [17]. This anomaly often occurs when
applications are written in languages such as C and C++,
which, for instance, have input functions or array copy
functions that only consist in writing values starting from
a certain address, with no explicit limit on the amount of
memory to be copied (e.g., refer to Figure 1). Standard
versions of C and C++ do not have any memory-bound
checking. This design choice enhanced the portability of the
language but, on the other hand, made overruns possible.

Overwriting memory locations adjacent to a buffer cor-
rupts program variables, which can contain control data (e.g.,
pointers to functions or stored program addresses). Therefore,
when a buffer overflow occurs, it can lead to the manipulation
and corruption of the intended address to be jumped to,
effectively hijacking the program’s control flow.

Furthermore, by leveraging buffer overflow, the attacker
may hijack the program to execute code stored in the
corrupted memory region itself, where it has previously
injected bytes corresponding to valid machine code for that
architecture (e.g., with the samememory copy operation used

to trigger the buffer overflow vulnerability). This is attack
technique is known as code injection. The attacker may also
construct a sequence of return values by code injection, each
pointing to an instruction already in memory, to result in an
arbitrary chain of function calls, in what is known as a code
reuse attack. Well-known code-reuse attacks include return-
to-libc attacks [18] and Return-Oriented Programming (ROP)
[19].

3) RETURN-ORIENTED ATTACKS
The first class of return-oriented attack is the return-to-
libc attack, initially contributed by Alexander Peslyak in
1997 [20]. The return-to-libc attack consists in replacing the
return address on the current call stack with the address of a
function that is found within the executable memory of the
process (e.g., within the libc C standard library), such as
by properly exploiting a buffer overflow.

Later, more complex return-oriented attacks were devel-
oped. Generally, when exploiting return-oriented strategies,
an attacker hijacks the control flow by exploiting a vulnera-
bility such as a buffer overflow. Instead of injecting malicious
code directly into the call stack, which may be detected
and prevented from executing, ROP utilizes existing code
snippets that are present in the benign program’s memory,
called gadgets, in order to perform the desired operations
and reproduce arbitrary program behavior. Specifically, each
gadget is a sequence of instructions ending with a return
instruction. By chaining these gadgets together in the call
stack, the attacker can redirect the program’s execution to
perform actions like modifying memory, executing system
calls, or bypassing security mechanisms.

4) SIDE-CHANNEL ATTACKS
A side-channel attack is a security vulnerability that exploits
unintended information leakage from auxiliary channels,
allowing an attacker to infer sensitive data or access
cryptographic keys. One aspect of side-channel attacks
involves shared cache, a component in modern processors
that stores data accessed by multiple cores.

In a shared cache side-channel attack, an attacker utilizes
the behavior of the shared cache to extract useful information.
When multiple cores access the cache simultaneously, their
interactions can create observable patterns in their access
times or state transitions. By carefully monitoring these side-
channel effects, an attacker can deduce information about the
data being processed by other cores [21].

One common shared cache side-channel attack is known as
a cache timing attack. In this scenario, an attacker measures
the time it takes to access specific cache lines, which can
vary depending on whether the data is already present in
the cache or needs to be fetched from the main memory.
By repeatedly accessing certain cache lines and observing the
access times, an attacker can determine patterns that reveal
sensitive information, such as cryptographic keys.

Mitigating shared cache side-channel attacks often
involves implementing countermeasures during system

43204 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

design and software development. Techniques like cache
partitioning, which segregates cache resources into different
security domains, can help preventing leakage between
processes or threads. Additionally, ensuring constant-time
implementations and avoiding data-dependent control flows
can reduce cache-related side-channel vulnerabilities.

Protecting against shared cache side-channel attacks
requires a multi-faceted approach that combines hardware
design, software development practices, and security-
conscious programming techniques. To this end, this
survey considers hardware facilities and software techniques
designed to deal with memory integrity. Isolation or
segregation techniques were analyzed by Gracioli et al. [22].

5) BRANCH TARGET INJECTION
The branch target injection exploit targets a processor’s
indirect branch predictor. Direct branches occur when the
destination of the branch is known from the instruc-
tion alone at compile time. Indirect branches, on the
other hand, occur when the destination of the branch
is not known a priori, such as when the destination is
read from a register or a memory location. The indirect
branch predictor uses information about previously executed
branches to predict the destinations of future indirect
branches.

The utilization of indirect function calls is necessary when
employing function pointers in compiled languages such as
C and C++. For instance, function pointers are often used as
an argument to sorting functions, in order to select a suitable
comparison function, as shown in the following example.
In the example, each call to compare() occurring within
the sort() function will likely result in an indirect function
call.

In addition to indirect branches explicitly performed by
programmers, the compiler sometimes incorporates addi-
tional indirect branches without the programmer’s explicit
instruction. For example, in C++, calls to object functions
often incorporate indirect calls, particularly when inheritance
is applied. The following is an example of a scenario where
the compiler might insert an indirect call, even without the
presence of function pointers.

The branch target injection exploit relies on influenc-
ing the speculated targets of indirect branches which

allows the processor to execute instructions ahead of time.
Under specific circumstances, attackers can manipulate the
prediction mechanisms to redirect speculative execution to
unintended target addresses.

Indirect JMP and CALL instructions consult the indirect
branch predictor to direct speculative execution to the most
likely target of the branch. By influencing these mechanisms,
the attacker misleads the processor into speculatively exe-
cuting instructions from the malicious code in a location
accessible to the target process.

Indeed, the indirect branch predictor is a hardware
structure, mostly transparent to the operating system,
which is used to predict the destination of indirect
branches ahead of actual instruction execution. The exe-
cution of malicious code through speculative means might
allow accessing sensitive data or performing unauthorized
operations. Although the outcomes of speculative exe-
cution are eventually disregarded if the speculation was
incorrect, the processor’s cache and other side channels
could still expose sensitive information to the attacker
[21], [23].

III. MEMORY SAFETY TECHNIQUES
A. RESEARCH SCOPE
In general, the purpose of a technique for memory safety
is to prevent the attacker from writing to or reading
from a protected memory area by exploiting vulnerabilities
in the software or the hardware. Despite the amount
of research in developing countermeasures, only a few
protection techniques actually end up being implemented
at the production level. Indeed, many of them remain
research prototypes, often due to excessive overhead or
complexity.

Requirements.Due to the variety of solutions proposed in
the literature, this work focuses on techniques that satisfy the
following requirements:

• The proposed technique has been adopted in production
by one or more open-source operating systems, whether
they are general-purpose operating systems (GPOS) or
real-time operating systems (RTOS);

• At the production level, one or more toolchains
(such as GCC and Clang) for C-family languages (C,
C++, Objective-C, etc.) have provided support for the
proposed technique

• The technique, if hardware-assisted, is fully imple-
mented at the processor level, without requiring any
specific external mechanism such as a Trusted Platform
Module (TPM) or other specialized modules that are
only available on certain commercial platforms.

Threatmodels.Wehave listed a set of assumptions that we
used to restrict the scope of our research, setting the bounds
of the possible threat model with the assumed capabilities
of the attacker. The survey does not cover protection
techniques against other types of threats that require different
capabilities.

VOLUME 12, 2024 43205

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

FIGURE 2. Taxonomy of the considered protection mechanisms.

FIGURE 3. Timeline of protection techniques.

43206 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

Software threat model:
• The user space memory content and layout are readable
by the attacker;

• Memory errors (such as buffer overflows or dangling
pointers) can be present inside the program due to bad
programming practices or vulnerabilities in imported
dependencies;

• The attacker can write non-code segments by exploiting
a memory error or other vulnerabilities.

Hardware threat model:
• The hardware is trusted (e.g., the hardware has not been
substituted with faulty or modified hardware);

• The attacker cannot obtain physical access to the device;
• Hardware glitches cannot occur (i.e., unexpected faulty
behaviors occurring spontaneously or by tampering with
the hardware and leading to temporary vulnerability to
certain attack classes).

Taxonomy and timeline. Figure 2 provides a visual
taxonomy of the techniques investigated by this survey.
Figure 3 provides a timeline starting from 1985 representing
the years in which the most relevant countermeasures
discussed in this survey were first developed.

In the following, relevant techniques are presented, starting
from techniques implemented fully in software before mov-
ing to hardware-assisted countermeasures requiring specific
functionality at the processor level.

B. FULL SOFTWARE PROTECTIONS
1) RUNTIME CHECKERS
StackProtector: The first proposal of a mechanism to
prevent stack overflow attacks dates back to 1998, when
Cowan et al. [24] presented StackGuard, which was then
released as a set of patches for the GCC compiler toolchain.
Themain idea of StackGuard is to place a randomly generated
integer, called stack canary, between any stack-allocated
buffers and the return address saved on the stack. Then, before
a routine uses the return pointer on the stack, the value of the
canary is checked to make sure that it has not been changed
This makes it more difficult to correctly execute a stack
overflow attack, because overwriting the return pointer by
exploiting a stack overflow vulnerability would also require
overwriting the value of the stack canary. The terminology is
due to an analogy with coal mine canaries, given that stack
canaries are used to determine whether it is safe to carry on
the execution of the program.

At the beginning of the 2000s, Etoh [25] from IBM
implemented ProPolice, improving the idea of StackGuard
by placing buffers after local pointers and function arguments
in the stack frame. In 2005, Henderson suggested a less
intrusive implementation of the mechanism [26], which has
been included as a compile option in GCC starting with
version 4.1 [27].

This implementation has been optimized over the years
and is now tunable to enable management of performance
tradeoffs [28], but still retains the same overall working
principle. Indeed, the current version of the GCC stack

FIGURE 4. Conventional stack frame layout when stack protector is
enabled.

protector works by inserting stack canaries on the stack frame
of certain functions and is still used today due to its simplicity
and low runtime overhead. In the current implementation,
as illustrated in Figure 4, the canary is placed right after
local variables, protecting both the old frame base pointer
and the return addresses from direct overflows. Furthermore,
the mechanism arranges the local stack variables to ensure
char buffers are always allocated next to the canary. This
assumption prevents a direct overflow from corrupting other
local variables.

Dang et al. [29] reported the results of an experimental
evaluation of the overheads incurred when using the GCC
stack protector, and found that when protecting all functions
it can reach a cost of up to 10% overhead, expressed in terms
of additional CPU time.

2) RUNTIME SANITIZERS
AddressSanitizer: The AddressSanitizer (also known as
ASan) is an open-source memory error detector originally
introduced by Serebryany et al. from Google [30]. ASan
works as a compiler instrumentation module and is currently
implemented in Clang (starting from version 3.1 [31]) and
GCC (starting from version 4.8 [32]). ASan targets the
most common instruction set architectures, including x86
and ARM, both in their 32-bit and 64-bit variants. The tool
consists of an additional compiler pass and a related runtime
library. It was designed to find and catch memory errors such
as use after free, stack and heap overflows, use-after-return or
use-after-scope vulnerabilities.

The basic idea of ASan is to divide the virtual address
space into two disjoint classes, the main application memory
(Mem) and the shadow memory (Shadow). The regular
application code uses the main application memory. On the
other hand, shadow memory consists of a memory area
hidden from the application and used to record information
about the main memory. The shadow memory contains the
shadow values, namely a set of shadow bytes. Shadow
bytes are mapped to one or more bytes in the main
memory. ASan maps 8 bytes of the application memory
into 1 byte of the shadow memory. Therefore, the two
memory classes have a correspondence built so that the

VOLUME 12, 2024 43207

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

shadow memory mapping (called mem_to_shadow) can
be computed efficiently. ASan also introduced the idea of
poisoned bytes. Poisoned bytes (or redzones) are memory
areas that cannot be referenced. ASan runtime library can
detect accesses to red zones; hence, the wider the red
zone, the larger the overflows or underflows that will be
detected. Poisoning a byte of the memory will result in
a particular value written into the corresponding shadow
memory.

During the compiler pass, functions such as malloc
and free are replaced with a customized implemen-
tation that allocates extra poisoned bytes around the
allocated memory region. Furthermore, each memory access
that involves a reference to the pointer is transformed.
The memory around the area accessed is poisoned,
too.

To make a simple example, suppose that the program
accesses a pointer as follows:

If the same program is instrumented by means of ASan, the
compiled code will result in the following:

That instrumentation causes a runtime error report when
the accessed address is not legal.
Heap Consistency Checking: Heap Consistency Check-
ing [33] is an extension of the libc library to help
debug and detect memory-related errors in C programs
by performing consistency checks on allocated dynamic
memory blocks. These consistency checks, implemented in
the libc_malloc_debug library, aim at detecting errors
related to memory management. For example, they can
identify if a memory block is freed more than once or
if the bookkeeping data structures preceding an allocated
memory block are corrupted. To enable the consistency
check, the programmer must call the mcheck() function
before performing a memory allocation with malloc(),
and preload the malloc debug library. The mcheck()
function installs debugging hooks for the memory-allocation
functions. These hooks enable occasional consistency checks
on the state of the heap. Linking a program with the
-mcheck flag inserts an implicit call to mcheck() (with a
NULL argument) before the first memory allocation function
call. The mcheck_pedantic() function is similar to

mcheck(), but it performs checks on all allocated blocks
whenever anymemory allocation function is called. However,
this thorough checking can significantly slow down the
program’s execution. If the system detects an inconsistency in
a heap while performing the checks, a user-defined function
provided is invoked. as in the following example:

The usage of additional consistency checks, such as those
provided by libc_malloc_debug, can help prevent the
exploitation of numerous vulnerabilities, especially when
used in conjunction with a memory allocator debugging
tool [34].
Pointer Obfuscation: Pointer obfuscation encompasses a
range of security techniques employed in common pro-
gramming languages that support explicit usage of pointers.
These methods play a crucial role in complicating the task
of discerning which function is invoked when a function
pointer is utilized. Their primary objective is to obscure both
pointers and memory addresses, rendering it challenging for
potential adversaries to anticipate or manipulate these critical
elements.

One such technique is pointer encryption, where pointers
are encrypted before being stored in memory and decrypted
only when loaded into CPU registers. This method sig-
nificantly complicates an attacker’s ability to interpret or
manipulate pointer values [35].

Another approach to obfuscate function pointers is the
creation of a globally accessible array to store pointers for
each function. This technique replaces conventional function
calls by utilizing array indexing to access the relevant
function pointer, ensuring the execution of the desired
function [36].

These obfuscation techniques can be fortified with supple-
mentary methods, including value encoding/aliasing and data
structure/code obfuscation, to further mask the underlying
structure of the function pointer [37], [38], [39], [40].
glibc fortification: The FORTIFY_SOURCE macro, offered
by the GNU C library (glibc), provides a lightweight form
of protection against buffer overflows by adding an extra
validation layer to glibc functions that operate onmemory and
strings. The macro can be set to three different levels. When
the macro is enabled, the number of bytes that will be copied
from a source to a destination during certain operations are
computed in advance and then checked during the memory
copy operation. For instance, when using strcpy() to
copy the contents of a string to another memory location,
the macro calculates the size of the data being copied.
If an attacker tries to copy more bytes than can fit into the
destination buffer, the macro detects this attempt and halts

43208 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

the execution of the program. The macro was first introduced
in 2004 by Red Hat engineers as a set of GCC patches [41].
Then, after being merged in the GCC mainline, it is still
developed and maintained by Red Hat in GCC/Clang on
Linux [42]. The implementation of a function fortified with
FORTIFY_SOURCE is conceptually similar to a wrapper
function like the following:

In the example, the strncpy() wrapper accepts three
parameters: a pointer to the destination memory buffer
(d), a pointer to the source memory buffer (s), and the
number of bytes to be copied (n). Then, if the size of the
destination buffer is smaller than the number of bytes to
be copied from the source buffer, then the copy operation
is aborted. Otherwise, the original version of strncpy(),
__original_strncpy(), is invoked.

The core functionality is based around the object size
built-in function (__builtin_object_size), which
returns a constant estimate for the size of an object,
computed at compile time. A dynamic built-in function
(dynamic_object_size) is provided in the LLVM
compiler toolchain, starting with version 9 [43]. This function
is used in substitution to the constant object size function
when the protection level of FORTIFY_SOURCE is set
to 3, which is the maximum level. FORTIFY_SOURCE
levels 1 and 2 rely on constant object sizes; therefore,
the runtime overhead is negligible. On the other hand,
FORTIFY_SOURCE with protection level 3 uses dynamic
expression computation. Given that computing the object
size can become arbitrarily complex depending on the data
structures selected by the programmer, the runtime overhead
can also increase significantly with an increase in object
complexity.

An alternative to FORTIFY_SOURCE, named OpenOSC
(which stands for Open Object Size Checking), was proposed
by Cisco engineers [44]. OpenOSC and FORTIFY_SOURCE
are both built upon the compiler’s built-in function to
determine object size, thus provide equivalent memory
overflow detection and protection capabilities. Although the
two protection mechanisms can coexist in a Linux-based
system, each specific package can only be compiled with

either OpenOSC or FORTIFY_SOURCE protection, but not
both.
ShadowCallStack: ShadowCallStack is a compiler instru-
mentation pass designed primarily for the ARM 64-bit
architecture (aarch64), aimed at safeguarding programs
against return address overwrites, typical of stack buffer
overflows. ShadowCallStack is available for both GCC and
Clang. When ShadowCallStack is enabled, the function’s
return address is stored into a separately allocated shadow call
stack during the function prologue of each non-leaf function.
Then, the return address is retrieved from the shadow call
stack during the function epilogue. The return address is also
stored on the regular stack to ensure compatibility with stack
unwinding, but remains otherwise unused by the function call
and return mechanisms.

The aarch64 implementation of ShadowCallStack is con-
sidered ready for production use and has been integrated
into the Android libc runtime. An implementation of
ShadowCallStack for the x86_64 architecture was initially
provided in LLVM but exhibited critical performance and
security shortcomings, leading to its removal from LLVM
starting with version 9 [45].

3) COMPILE TIME MITIGATIONS
Retpoline: Return trampoline (Retpoline) is a protection
measure against branch target injection exploits, primarily
targeting indirect branches [46]. These indirect branches are
predicted using information from prior branch executions,
and the attack in question involves tampering with the
execution of such indirect branches, like the JMP instruction,
to extract sensitive data that resides outside the user’s
authorized permissions. This sensitive data could include
confidential cryptographic keys, and the attack is achieved
by influencing the anticipated destinations of these indirect
branches [46].

Consider the following example, where a jump is executed
to an instruction address stored in the %rax register.
The retpoline sequence functions through multiple stages
to disentangle speculative execution from non-speculative
execution.

The call escape_speculation instruction pushes
the address of non_vulnerable_sequences onto the
stack and the Return Stack Buffer (RSB). Then, the mov
instruction writes over the return address stored on the stack.

VOLUME 12, 2024 43209

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

At this point, there is a divergence between the in-memory
stack and the RSB. If the processor speculates, it utilizes the
RSB entry it created and jumps at the pause instruction,
where it becomes trapped in an infinite loop. Eventually, the
processor realizes that the speculative return does not match
the in-memory stack value, leading to the halt of speculative
execution [47]. The performance assessment of retpoline
indicates that the instructions have a negligible impact on
overall performance, a factor heavily contingent on the
specific implementation strategy of a given architecture [47],
[48].
ASLR: Address Space Layout Randomization (ASLR) is
defense techniquewhich is based on randomizing the position
of key data areas within the address space of a process.
By doing so, ASLR makes it difficult for an attacker to
predict the location of specific memory regions, such as
functions to be exploited, making it more difficult for them
to carry out successful attacks. ASLR works by rearranging
the positions of important data areas in the address space of a
process. These areas typically include the base address of the
executable, the stack, the heap, and libraries. By randomizing
their positions, ASLR ensures that these key components are
located at differentmemory addresses each time the process is
run. The concept of ASLR was first introduced by the Linux
PaX project, which coined the term and released the initial
design and implementation of ASLR as a patch for the Linux
kernel in July 2001 [49]. The main goal of ASLR is to
increase the security of a system by significantly reducing
the likelihood of successful attacks. Since an attacker
needs to know the exact memory addresses of specific
components to exploit vulnerabilities, the randomization
introduced by ASLR makes it highly improbable for them
to guess the correct locations. By increasing the search
space and making it harder to predict memory layouts,
ASLR adds an extra layer of defense against memory-based
attacks.

ASLR is highly effective against many types of attack;
however, since the majority of modern processors have at
least one shared level of cache, several research papers
showed that ASLR can be bypassed on modern cache-based
architecture [50], [51], [52]. As a result, an attacker can
derandomize virtual addresses of a victim’s code and data by
locating the cache lines that store the page-table entries used
for address translation.

C. HARDWARE-ASSISTED
The relevance of security in modern operating systems
pushed chip designers to introduce several security-related
hardware facilities in their processors. Historically, hardware
vendors introduced a general memory protection mechanism
(e.g., MMU, MPU). In recent years, on the other hand,
hardware manufacturers have tried to introduce transparent
and lightweight mechanisms to enforce memory protection
and control-flow integrity. Some relevant examples are ARM

Pointer Authentication or Intel Control-flow Enforcement,
detailed in the following section.

1) RUNTIME CHECKERS
ARMPointer Authentication:ARMPointer Authentication
(PA) is a hardware feature that is included in version 8.3 of
the ARMv8 processor architecture [53]. In a nutshell, ARM
PAworks by cryptographically authenticating the content of a
register before using it. Indeed, it is conceived as a protection
against modification of code pointers such as return addresses
stored in memory. For instance, PA represents a valuable
protection mechanism to ensure that functions only return to
legal locations as expected by the program according to the
CFG, hence preventing stack overflow attacks.

In 64-bit architectures, not all 64 bits of a pointer are
used to address memory locations. Typically, a smaller
number of bits, such as 48, are sufficient to address
the entire memory space. This means that a significant
portion of the 64-bit pointers remains unused. For example,
on an ARMv8-A Linux kernel (aarch64), only the least
significant 48 bits of a pointer are used for addressing.
ARM’s PA implementation takes advantage of the unused
most significant bits of memory addresses. It uses a
portion of these bits, specifically 16 bits, to store a
Pointer Authentication Code (PAC). PA embeds an authen-
tication code, the PAC, within the authenticated pointer
itself.

ARM PA leverages the Qualcomm ARM Authenticator
(QARMA), which is a specialized lightweight tweakable
block cipher. Specifically, the PAC is a cryptographic
checksum obtained by truncating the QARMA algorithm’s
output. QARMA ensures authenticity and integrity through
tweaks, where the permutation computed by the algorithm
on the plaintext depends on a secret key and an additional
salt value. The PAC is computed using three inputs: (i) the
memory pointer value to be authenticated, (ii) a secret key
stored in dedicated processor registers, and (iii) context
information that specifies where the authenticated pointer
can be used. An example of context information is the stack
pointer, which associates the authenticated pointer with the
stack frame of a specific function.

Pointers that include both the memory pointer and the
PAC are referred to as signed pointers. Before using signed
pointers, they need to be authenticated. The authentication
process involves recomputing the PAC for the pointer using
the key and context information and comparing it with the
PAC stored in the signed pointer. This ensures the integrity
and validity of the pointer.

To support the creation and authentication of PACs,
ARMv8.3-A introduced a set of processor registers to store
the required keys. The specification defines five 128-bit
registers for this purpose. The keys are categorized as either
type A or type B, and their specific semantics are left to
the programmer to define. The ARMv8.3-A architecture
extends the instruction set architecture (ISA) with additional

43210 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

instructions to facilitate the creation and authentication
of PACs. Two sets of instructions, PAC* and AUT*, are
introduced for this purpose. The PAC* instructions are used
for creating PACs, while the AUT* instructions are used for
authenticating PACs. Linux and GCC/LLVM support ARM
Pointer Authentication. An attempt to extend the support
was proposed by various research groups [54], [55]. This
mechanism is known to be weak against timing attacks [56].
Additionaly, an attempt to emulate the mechanism to
support older generations of processors was proposed and
implemented for FPGA-enabled SoCs [57].
ARM Branch Target Identification: ARM also introduced
a Branch Target Identification (BTI) extension to their
architecture, which is accessed with the BTI instruction [58].
This instruction must be used to mark valid targets of indirect
branches. When the memory page is set as guarded, the
processor traps to an exception if a control-flow instruction
performs an indirect branch to any instruction other than those
marked as valid with BTI. The BTI mechanism can secure
indirect branches, enforcing that the destination location of
the branch contains only instructions from an acceptable
list. Combining the PA and BTI countermeasures allows for
solid forward-backward control-flow integrity, reducing the
possibility of an attacker hijacking the execution flow to
execute arbitrary code. Nonetheless, the RET instruction is
not considered an indirect branch control-flow instruction;
thus, the BTI mechanism does not protect it. Furthermore,
direct branches and calls are also left unprotected as the code
segment is assumed to be non-writable.
Execution Disable XN: Since version 6 of their architecture,
ARM introduced the XN (eXecute-Never) [59] bit feature,
which prevents the execution of bytes from specific memory
ranges directly by hardware. Such protection removes the
attacker’s ability to inject arbitrary code (e.g., into the data
memory of the application) and then redirect the flow to
execute this payload. A similar feature is provided by other
chip designers, including Intel [60], which offers the Execute
Disable Bit (XD-bit), while AMD calls it the NX-bit in their
implementations.
ARM MTE: ARM Memory Tagging Extension (MTE)
is a security feature introduced in ARMv8.5, providing a
hardware memory tagging (memory coloring) mechanism.
MTE provides enhanced protection against memory vul-
nerabilities (e.g., buffer overflow) by associating tags for
each memory operation (e.g., pointer referencing a memory
location). On each load/store operation, the associated tags
for the memory and the referenced address are validated
for uniformity, and, upon mismatch, a memory violation is
detected.

The implementation of MTE is only available on 64-bit
systems, since it requires the Top-Byte-Ignore feature, which
is only available on 64-bit architectures and results in the
hardware ignoring the top byte of a pointer when accessing
memory. The MTE design divides physical memory into

16-byte granules with 4-bit associated tags. These 4-bit
tag values are associated with any memory operation
targeting that specific memory area. MTE can be used to
detect/mitigate memory errors like buffer overflows and use-
after-free in memory-unsafe languages such as C and C++.
To take advantage of MTE, software stacks must be updated
to guarantee proper functionality and interoperability. For
example, in Glibc, functions such as malloc, free, realloc
are rewritten to interact with tag values, whereas operating
system kernels such as Linux provide explicit support for
MTE capabilities [61], [62].

As per specification, MTE introduces a set of new
processor registers to configure and retrieve information
on the tagging mechanism. MTE can offer two modes
of operation: synchronous and asynchronous. Following
any tag mismatch, a hardware exception is raised in the
synchronous mode, allowing precisely determining the faulty
instruction. This mode provides better granularity in error
detection at the cost of introducing a higher performance
overhead. On the contrary, when the configuration is set
to be asynchronous, certain information is accumulated in
system registers (TFSR_ELx), enabling the system to react to
tag mismatches in an asynchronous manner (e.g., in context
switch). This allows reducing the overhead at a cost of a loss
in accuracy, since the violations are isolated to a particular
thread of execution [63], [64]. Nonetheless, in terms of
performance, some CPUs demonstrate comparable MTE
performance between stricter and less strict tag checking
modes, making a small performance slowdown acceptable.
IntelMPX: Intel MPX (Memory Protection Extensions) [65]
was a set of extensions introduced by Intel for the x86
instruction set architecture. It aimed to enhance software
security by providing runtime checks on pointer references
that could be maliciously exploited due to buffer overflows.
Intel MPX, with compiler [66], runtime library, and operating
system support [67], attempted to enhance the security
of software by checking pointer references whose normal
compile-time intentions are maliciously exploited at runtime
due to buffer overflows by detecting and preventing runtime
memory corruption vulnerabilities by validating pointer
accesses.

The extensions introduced new bounds registers and
instruction set extensions that operated on these registers.
Additionally, there were bound tables to store bounds beyond
what could fit in the bounds registers. Intel MPX utilized
four new 128-bit bounds registers. Each of these registers
stored 64-bit values representing the lower and upper bound
for the memory areas of a buffer. Specific instructions were
provided to store (bndmk) and check (bndcl, bndcu)
values from those registers. The architecture also included
configuration registers and a status register. These registers
facilitated the management of bounds, provided information
about memory addresses, and reported error codes in case of
exceptions.

VOLUME 12, 2024 43211

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

Intel MPX utilized a two-level address translation
approach to store bounds in memory. The top layer was a
Bounds Directory (BD) created during application startup.
Each BD entry was either empty or contained a pointer to a
dynamically created Bounds Table (BT). The BT contained
a set of pointer bounds and the linear addresses of the
pointers. Special instructions like bndldx (bounds load) and
bndstx (bounds store) transparently performed the address
translation and accessed bounds in the appropriate BT
entry.

An example application of Intel MPX to protect access
to a memory buffer is given in the following piece of
code.

However, despite its initial promise, Intel MPX faced
several flaws and limitations in its design. As a result, support
for Intel MPX has been deprecated or removed from most
compilers and operating systems. Intel officially listed MPX
as removed in 2019 [68]. Oleksenko et al. [69] performed
a detailed root cause analysis of issues in the Intel MPX
architecture design through a cross-layer dissection involving
the hardware, operating system, compilers, and applications,
showing program slowdown up to 2x when using Intel MPX.
Intel CET: Control-Flow Enforcement Technology (CET)
is a security feature developed by Intel [70] to enhance
protection against exploits that target the control flow of run-
ning programs, such as Return-Oriented Programming (ROP)
and Jump-Oriented Programming (JOP). CET introduces two
primary securitymechanisms that can be individually enabled

for different privilege levels [71], [72]. CET includes the
following features:

• Indirect Branch Tracking (IBT): IBT is a feature
designed to mitigate control-flow hijacking attacks.
It enforces that indirect branches within the program
(branches without fixed targets at compile time) can
only jump to valid and authorized destinations. This
prevents attackers from diverting the control flow to
arbitrary code locations. IBT introduces new instruc-
tions (ENDBR32 and ENDBR64) to be used by the
compiler to mark legitimate targets for indirect jumps.
These instructions are decoded as NOP on legacy
processors to preserve backward compatibility. Indirect
jumps not marked by ENDBR32/64 will trigger an
exception. Separate state machines are used to track
indirect calls for both user and supervisor modes, and
they can be set to ’no_track’mode to reduce system
resource utilization. Compilers also offer the option to
limit the usage of ENDBR instructions to reduce code
size.

• Shadow Stack (SHSTK): Shadow stack is a hardware-
managed stack created by the operating system along-
side the standard call stack, which is unique for
each privilege level. During execution, each CALL
instruction pushes the return address onto both the
normal and the shadow stacks, and the RET instruction
then pops these return values from both stacks. This
configuration enables the generation of Controlflow
Protection (CP) exceptions in cases of conflicting val-
ues, providing enhanced protection against control-flow
attacks.

One notable advantage of CET lies in its seamless inte-
gration, requiring no code instrumentation by programmers.
Thanks to its negligible overhead, this method does not
have a significant impact on application performance [73].
Moreover, the incorporation of CET functionality into
the Linux kernel and mainstream compilers demonstrates
its increasing adoption and integration in development
workflows.
Intel LAM: The Intel Linear Address Masking (LAM)
feature [74] introduces a modification to the validation
process for 64-bit linear addresses, enabling software to
utilize the unaltered address bits for metadata purposes.
In the context of 64-bit mode, where linear addresses
consist of 64 bits, they undergo translation using either
4-level paging (which translates the lower 48 bits) or 5-
level paging (translating 57 bits). The upper bits of linear
addresses are set aside for canonicality. A linear address
is considered 48-bit canonical when bits 63 to 47 of the
address are the same, whereas it is 57-bit canonical when
bits 63 to 56 are identical. Importantly, any linear address
that is 48-bit canonical is automatically 57-bit canonical.
In scenarios where 4-level paging is active, the processor
mandates that all linear addresses used for memory access

43212 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

must be 48-bit canonical. Similarly, 5-level paging ensures
that all linear addresses are 57-bit canonical. However, for
software applications that link metadata to a pointer, there is
a potential advantage in positioning metadata in the upper
(untouched) bits of the pointer itself. The challenge arises
from the requirement of canonicality enforcement, which
implies that software would need to mask the metadata bits
in a pointer to make it canonical before using it as a linear
address for memory access. LAM addresses this issue by
allowing software to employ pointers with metadata without
requiring manual masking of the metadata bits. With LAM
enabled, the processor automatically masks the metadata bits
in a pointer before using it as a linear address for memory
access.
ARM Cheri: The Capability Hardware Enhanced RISC
Instructions (CHERI) feature extends the ARM architecture
with the primary goal of enhancing security and memory pro-
tection to address widely exploited vulnerabilities. CHERI
diverges from conventional approaches by introducing capa-
bilities that are unforgeable and constrained references for
memory access. These capabilities are associated with every
data object in memory, encompassing information about
the object’s type, permissions, validity status, and bounds
(defining the address space within which the capability
authorizes loads, stores, and/or instruction fetches). Addi-
tionally, CHERI introduces capability-aware instructions that
facilitate interactions with capabilities attached to each object
[75], [76].

It is worth highlighting that CHERI is still in the
research phase and has not yet seen full integration into
commercial systems. Nonetheless, it is designed to coexist
with established security practices and can serve as an
additional protective layer alongside traditional methods like
segmentation and paging. CHERI introduces two distinct
operating modes: (i) the hybrid mode [77] and (ii) the pure-
capability mode [78]. In the hybrid mode, only part of the
system code is converted to using capabilities. In the pure-
capability mode, the system exclusively relies on capabilities
for managing memory access, eliminating the need for
conventional memory protection mechanisms. However, the
transition to a pure-capability model may entail software
modifications, including adjustments to the operating system
and application code to benefit from this security model fully.
The CHERI capability model implementation complexity is
sufficiently low for consideration on modern processors, and
performance is noticeably faster than weaker enforcement in
software.

Moreover, the introduction of broader data pipelines has an
impact on reducing the system’s clock speed and degrading
the overall computational performance. Woodruff et al. [78]
compared the overhead introduced by the CHERI model
against different memory protection hardware techniques,
such as Intel MPX, in terms of memory footprint and the
number of memory references.

HWASan: Hardware-assisted AddressSanitizer (HWASan)
functions as a memory error detection tool similar to
AddressSanitizer. It uses the hardware memory tagging
feature to reduce the memory consumption footprint of
AddressSanitizer (AS) significantly. The fundamental idea
behind HWASan bears similarities to the coloringmechanism
introduced in memory tagging (MT) [61], wherein both
pointers and memory addresses are associated with a random
tag value. The validity of a memory access in HWASan
hinges on the matching of these tags between pointers
and memory. Its primary aim is to ensure the integrity
of data and memory, such as keeping addresses within
predefined bounds and preventing references of pointers
after they have been freed. To accomplish this, HWASan
leverages the ARM architecture’s Top-Byte-Ignore [79]
feature, which enables the insertion of compiler-time checks
for load and store operations. As an example, the
tagging of heap memory and pointers involves the use
of a modified version of the malloc function to instru-
ment memory allocation and monitor how that memory is
utilized.

Consequently, proper compiler support is essential to
insert the requisite instructions, enabling memory checking,
and delivering detailed information about memory errors
[80], [81]. HWASan demonstrates strong compatibility with
existing code bases, particularly when compared to pure
hardware solutions. Nonetheless, it is important to highlight
that HWASan does introduce some CPU overhead, approxi-
mately doubling the overhead in comparison to conventional
operations, along with a moderate increase in code size
and memory footprint (RAM) [82], [83]. An avenue for
improvement lies in optimizing compilers further to avoid
unnecessary tagging of variables that are not affected by
vulnerabilities.

IV. EVALUATION
Over the years, researchers have designed several kinds of
protection techniques. Consequently, together with vulner-
ability databases, security testbeds were also developed to
measure the effectiveness of those defence techniques. While
most of defense methods can be evaluated from the point
of view of runtime overhead, no standard benchmark allows
assessing the effectiveness and robustness of a countermea-
sure. This section presents an overview of existing techniques
utilized for evaluating memory integrity techniques and a
qualitative comparison among the techniques surveyed in
Section III.

A. DATABASES OF FLAWED SOFTWARE
Several databases encompassing flawed software were cre-
ated over the years to test the effectiveness of protection
techniques. The Software Assurance Reference Dataset
(SARD) [84] is a growing database maintained by the
National Institute of Standards and Technology (NIST),

VOLUME 12, 2024 43213

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

consisting of approximately 170,000 test programs with
a set of known security flaws. These test cases include
designs, source code, and binaries from all the phases of the
software life cycle, mainly written in C, C++, Java, PHP,
and C# and covering over 150 vulnerabilities. The dataset
includes production, synthetic, and academic test cases. The
dataset intends to encompass various possible vulnerabilities,
languages, platforms, and compilers. Users can view test
cases and suites via the SARD online interface or search
for test cases by vulnerability kind, name, size, keywords,
and other parameters. Many tests include non-vulnerable or
benign program code to test for false positives, in which
flaws are resolved in advance. Each test case is described
in SARD using metadata, encompassing most information
regarding the specific flaw or defect. Weaknesses are
classified using the CommonWeakness Enumeration (CWE)
ID and name. The SARD database is archival, meaning that
once a case is added, it cannot be modified or removed.
However, if there are issues with a case, it may be tagged as
deprecated and a replacement can be added to supersede it.
Among the SARDdatabase, the Juliet test suite [85], targeting
the C and C++ languages, is one of the most relevant and
comprehensive datasets.

Another popular database was created by the Intelligence
Advanced Research Projects Activity (IARPA) in the context
of the Securely Taking On New Executable Software of
Uncertain Provenance (STONESOUP) project [86]. For that
project, MITRE created a test infrastructure and a test suite
consisting of test programs purposely containing memory
errors. In the database (which is currently available on the
SARD webpage, under the STONESOUP name), multiple
test cases are available for each class of vulnerability, and
relevant sets of benign and malicious inputs are provided
for each test case. This database was utilized to evaluate
numerous tools, including advanced prototypes developed
by Symantec [87]. While both the Juliet Test Suite and
IARPA STONESOUP Test Suite involve similar classes of
vulnerabilities, the Juliet Test Suite comprehends a broader
range of cases, while the latter is more tailored to evaluating
the security of software through dynamic analysis, especially
when dealing with data from untrusted sources (i.e. network,
file, etc.).

B. SYNTHETIC BENCHMARK SUITES
When assessing the resistance of defense mechanisms
against vulnerabilities, the absence of standard benchmarks
poses a challenge. A database of flawed software and
vulnerabilities, such as those mentioned above, can be used to
construct customized testbeds to evaluate resistance against
a specific flaw or vulnerability. However, this approach
is lacking in terms of generality and automation, as it
heavily relies on the specific subset of tests chosen for the
evaluation. Therefore, besides test databases, other research
efforts have been spent into trying to standardize test
benchmarks for general-purpose computing and emerging

embedded platforms through synthetic benchmarking. Syn-
thetic benchmarks, generally, are benchmarking tools created
artificially and run in a monitored environment, to assess
the performance or capabilities of a solution. They offer
a straightforward solution and an easy setup, providing a
standardized basis for comparing different approaches. This
not only simplifies the evaluation process but also ensures
consistent and comparable assessments across different
scenarios. The leading example is represented by the Runtime
Intrusion Prevention Evaluator (RIPE), developed in 2011 by
Wilander et al. [88] as an extension of a previous prototype
released in 2003. RIPE is a synthetic testbed suite comprising
more than 800 buffer overflow patterns. The purpose of RIPE
is to evaluate the coverage of any given countermeasure
by performing a range of buffer overflow attacks and
recording their success or failure. RIPE has been used to
demonstrate the effectiveness of several tools and security
techniques [89], [90], [91]. RIPE was released under the MIT
License to facilitate the comparison between different coun-
termeasures; however, it only supports the i386 processor
architecture.

Since the release of RIPE, a consistent number of derived
extensions and research works have been produced. RIPE-
ARM [93], released in 2020, is an implementation of
the RIPE benchmark targeting ARMv7 32-bit platforms.
Unfortunately, RIPE-ARM was not publicly released. In
2022, Calatayud and Meany [94] worked on a comparative
analysis of buffer overflow vulnerabilities in high-end IoT
devices. The authors modified the original RIPE by replacing
the architecture-specific shellcode for code injection attacks
implemented in RIPE with shellcode compatible with
architectures typical of the IoT domain, although still only
targeting 32-bit operating systems. The resulting framework,
however, is only compatible with a specific set of IoT plat-
forms and with the FreeRTOS operating system. Wang et al.
[95] presented a port of RIPE for platforms based on the
RISC-V architecture, for the purpose of evaluating a defense
technique presented in the same paper. Unfortunately, the
related source code is not publicly available. Roascio et al.
[96] presented Em-RIPE, a tool that extends the original
RIPE approach to ARM-based microcontrollers. The code of
Em-RIPE is publicly available2 and is organized as a proof-
of-concept for 32-bit ARM architectures, empowered by
the FreeRTOS operating system. The most recent extension
of the RIPE benchmark is X-RIPE [97]. X-RIPE is an
overhaul of the original RIPE project to target multiple
processor architectures, with the objective of providing a
quantitative evaluation of the protection coverage offered
by a specific mechanism against buffer overflows. X-RIPE
supports i386, x86-64 and aarch64 architectures. These
quantitative benchmarking tools, however, are synthesized
testbeds, deliberately vulnerable with the sole purpose of
conducting attacks against themselves. Therefore, they

2https://github.com/RHESGroup/embedded-ripe

43214 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

TA
B

LE
1.

Co
m

pa
ri

so
n

of
th

e
pr

es
en

te
d

te
ch

ni
qu

es
.T

he
co

m
pa

ri
so

n
is

bo
th

qu
al

it
at

iv
e

an
d

qu
an

ti
ta

ti
ve

(w
he

ne
ve

r
po

ss
ib

le
).

VOLUME 12, 2024 43215

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

provide a valuable benchmark only when dealing with basic
attack techniques. Compared to other approaches, they offer
no evaluation of complexity or performance. Therefore, they
can be used as automatic testing instruments only if coupled
with qualitative and performance evaluations.

C. QUALITATIVE COMPARISONS
Several works tried to compare defense techniques from the
qualitative point of view. Szekeres et al. [98] attempted to
organize the knowledge about various protection techniques
by setting up a general model for memory corruption
attacks, comparing differentmethods to help designers of new
protection mechanisms in finding the right balance between
effectiveness and efficiency. Another notable example is the
work by Kisore [99], which tried to formalize the general
requirements that a protection technique shall implement,
such as interoperability with legacy software, scalability, and
low overhead. Then, the set of requirements was applied to
evaluate well-known buffer overflow protection techniques
from the qualitative point of view, providing an overall
summary of the strengths and weaknesses of each technique.

D. OUR COMPARISON - HYBRID APPROACH
When considered individually, qualitative and quantitative
approaches do not offer a complete way of evaluating a
technique. In Table 1, we provide a summary and comparison
of the techniques presented in this work, from both the
quantitative and qualitative point of view. Note that it was
not possible to gather all the information for some of the
techniques due to missing hardware or lack of support by
evaluation existing tools.

V. FUTURE PERSPECTIVES
Throughout the years, software engineers have devised
numerous measures to address memory safety. The various
techniques presented in this survey represent only a tiny part
of the research and effort put in place by researchers and
companies during these years. This section delves into pivotal
insights and emerging trends regarding memory safety.
From hardware advancements to the rise of memory-safe
programming languages, evolving strategies for mitigating
vulnerabilities are considered, and an overall outline is
defined for addressing memory safety concerns.

A. CURRENT LIMITATIONS AND FUTURE ROADMAP
Despite their widespread use, current techniques did not
completely solve the intrinsic problem of achieving memory
safety in non-memory-safe programming languages. The
C programming language and its descendants are widely
utilized for compelling economic reasons, including their
remarkable compatibility with almost every processor archi-
tecture, the generation of efficient and transparent compiled
code, their ability to create compact code, adherence to ISO
standards, seamless access to hardware, proven reliability
in critical systems, as well as comprehensive support from
a wide range of tools. Moreover, most of the techniques

discussed in this survey were not extensively adopted
due to the need for specific software support or due to
the performance penalty caused by the additional runtime
overhead.

Researchers and experts in the security domain are
exploring several directions to solve the issue at its core.
In December 2023, the U.S. Cybersecurity and Infras-
tructure Security Agency (CISA) and other international
cybersecurity agencies published The Case for Memory Safe
Roadmaps: Why both C-Suite Executives and Technical
Experts Need to Take Memory Safe Coding Seriously [100],
a report specifically designed to address the critical issue
of memory safety vulnerabilities in programming languages,
encouraging software manufacturers to prioritize the use
of memory-safe programming languages. In the report,
some hardware-assisted techniques presented in the present
survey are strongly suggested as a reasonable trade-off
between security and performance. While some of these
hardware-based mechanisms are still transitioning from
research prototypes to deployed products, CISA and other
experts anticipate their significance in an overarching strat-
egy to eliminate memory safety vulnerabilities. Secondly, the
usage of memory-safe programming languages is strongly
encouraged. Unlike other mitigation strategies that demand
ongoing maintenance, such as developing new defenses or
sifting through vulnerability scans, using a memory-safe
programming language requires no additional effort con-
cerning memory safety once the code is prepared. Until a
few years ago, the software development industry lacked
a programming language that combined the flexibility and
performance of C with built-in memory safety assurances.
In 2006, a Mozilla software engineer initiated the develop-
ment of Rust, a new programming language that achieves
memory safety through a unique ownership system where
variables follow ownership rules and lifetimes are explicitly
managed. This approach effectively eliminates common
memory-related issues, such as null pointer dereferences
and data races. Additionally, the Rust compiler enforces
strict rules at compile time, ensuring that references adhere
to a set of safety guarantees, making it a robust choice
for systems programming with minimal runtime overhead.
Rust version 1.0 was officially released in 2015, gaining
widespread adoption by prominent software organizations
such as Amazon, Facebook, Google, Microsoft, Mozilla, and
other key industry players. Since version 6.1 of the Linux
kernel, Rust has been officially integrated into the kernel
development [101]. Other researchers, influenced by Rust,
also proposed extensions to the C language to incorporate
memory safety checks at compile time [102].

B. INFLUENCE OF EMERGING TECHNOLOGIES
1) MACHINE LEARNING
With the rise of deep learning, machine learning algorithms
have quickly gained prominence in various domains, includ-
ing cybersecurity, where the ability to analyze large datasets,

43216 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

learn recurrent patterns, and make precise predictions can
effectively enhance security measures [103], [104], [105],
[106], [107], [108]. Typical machine learning techniques
adopted in cybersecurity include deep neural networks
(DNNs), recurrent neural networks (RNNs), convolutional
neural networks (CNNs), deep belief networks (DBNs),
and restricted Boltzmann machines (RBMs), often arranged
in autoencoder architectures [103], [109]. A well-known
application of machine learning in cybersecurity consists in
detecting anomalies in network intrusion detection systems
(NIDS), where deep learning techniques are employed to
monitor a computer network and detect anomalous or
spurious traffic, which may indicate the presence of a
cyberattack. Such techniques achieve an accuracy level which
often surpasses that of traditional signature-based intrusion
detection systems [107], [108], [110], [111], [112], [113],
[114].

Deep learning techniques have also been widely adopted in
system-level malware detection to accompany or potentially
supersede traditional signature-based methods [104], [105],
[106], [115], [116], [117]. In the context of memory integrity
techniques, recent investigations have focused on applying
machine learning techniques to mitigate return-oriented
programming and achieve control flow integrity. On this
front, Pfaff et al. [118] introduced HadROP, a ROP attack
detection technique leveraging a support vector machine
(SVM) learning method trained on statistical data extracted
from hardware performance counters. Elsabagh et al. [119]
presented EigenROP, an unsupervised anomaly detection
mechanism to defend against ROP attacks that uses
microarchitecture-agnostic program features (e.g., memory
locality, register traffic, memory reuse distance) and lever-
ages a dynamic instrumentation framework (Intel Pin).
Li et al. [120] later presented ROPNN, which surpasses
the performance of EigenROP using a CNN-based classifier
with minimal runtime overhead and is also effective against
attack patterns not represented in the training dataset.
DeepCheck [121] is a CFI technique to classify Intel ISA
execution traces by extracting relevant execution states using
the Intel Processor Trace (IPT) performance analysis feature
and processing them with a DNN classifier. Although the
classifier used in DeepCheck is trained on data extracted from
the Control Flow Graphs (CFGs) of numerous programs,
CFG information is not required for classification at runtime.
Like DeepCheck, HeNet [122] is a CFI technique that
leverages IPT to analyze the execution state of a program,
but adopts a hierarchical ensemble of DNNs to enhance
ROP detection accuracy. More recently, Koranek et al. [123]
developed specialized LSTMmodels to analyze RISC-V ISA
execution traces and determine whether they were subject to
ROP exploitation.

Security-oriented program analysis is another signif-
icant branch of security research leveraging machine
learning applications. In this domain, static program
analyzers are enhanced with machine learning tech-
niques to detect and analyze vulnerabilities related

to control flow and data flow [104], [124], [125],
[126], [127].

A significant challenge in adopting machine-learning
techniques in cybersecurity is the generation of relevant
datasets to train, validate, and test deep neural networks.
In fact, in order to be effective, such data should be
compatible with the selected learning method in terms of
learnable features and should also be representative of a
large number of possible attack patterns to enable a model to
generalize [104]. Therefore, investigating suitable techniques
to generate relevant datasets is crucial to most of the works
discussed above.

2) QUANTUM COMPUTING
Quantum computing is another emerging technology that
is having a strong impact on the domain of cyber-security.
Traditional cryptographic protocols (e.g., public-key cryp-
tosystems such as RSA [128]) often rely on the assumption
that traditional computers cannot efficiently solve complex
computing problems such as factorization of large prime
numbers. However, a number of quantum algorithms were
devised to efficiently solve such problems when executed
on a large enough quantum computer. For instance, Shor’s
algorithm [129] can quickly solve integer factorization,
thus easily breaking the RSA cryptosystem. The potential
prospect of powerful quantum computers becoming widely
available has led to the need for developing quantum-resistant
cryptographic protocols, in what is known as post-quantum
cryptography [130], [131]. When considering the specific
domain of memory integrity, which is the subject of this
survey, the impact of quantum algorithms mostly pertains
to the requirement of ensuring that any defense technique
utilizing encryption or hashing as part of its specification
(e.g., ARMPointer Authentication [53]) is updated to employ
post-quantum cryptographic protocols [130], [131].

VI. CONCLUSION
This paper presented a survey on memory safety tech-
niques for memory-unsafe languages ranging from older
mechanisms to state-of-the-art solutions, thus providing a
comprehensive overview of the advancements in the field
during the last twenty years. A comparative analysis of
the investigated techniques was presented to assess their
applicability, identifying areas where further research and
improvements are required. Furthermore, a roadmap for
memory safety in the context of future research was also pro-
vided, highlighting current challenges and emerging trends.
Overall, this survey highlighted that memory corruption
vulnerabilities still persist in modern software and constitute
a serious security issue after years of specialized research.
Each specific software product may require a unique
investment strategy to address the vulnerabilities related to
memory-unsafe code and minimize the related security risks,
at the cost of a potential decrease in performance.While there
is no universal solution to enhance the security of modern
software systems, it is crucial for software developers and

VOLUME 12, 2024 43217

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

hardware manufacturers to be aware of the related problems
and properly address them by employing the most recent
security countermeasures and development strategies.

REFERENCES
[1] V. Van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, ‘‘Memory

errors: The past, the present, and the future,’’ in Research in Attacks,
Intrusions, and Defenses. Berlin, Germany: Springer, 2012, pp. 86–106.

[2] Qualys Security Advisory, PWNKIT: Local Privilege Escalation in
Polkit’s PKEXEC (CVE-2021–4034), Qualys, Foster City, CA, USA,
2022.

[3] J. P. Anderson, ‘‘Computer security technology planning study,’’ Deputy
Command Manag. Syst., Electron. Syst. Division, Bedford, MS, USA,
Tech. Rep. ESD-TR-73-51, 1972.

[4] E. H. Spafford, ‘‘The internet worm program: An analysis,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 19, no. 1, pp. 17–57, Jan. 1989.

[5] S. Chasin, ‘‘Bugtraq mailing list,’’ to be published.
[6] G. Lyon, ‘‘Fulldisclosure—Improving network security through full

disclosure,’’ to be published.
[7] E. Levy, ‘‘Smashing the stack for fun and profit,’’ 1996.
[8] C. Sun, V. Le, Q. Zhang, and Z. Su, ‘‘Toward understanding compiler

bugs in GCC and LLVM,’’ in Proc. 25th Int. Symp. Softw. Test. Anal.,
New York, NY, USA, Jul. 2016, pp. 294–305.

[9] V. D’Silva, M. Payer, and D. Song, ‘‘The correctness-security gap
in compiler optimization,’’ in Proc. IEEE Secur. Privacy Workshops,
May 2015, pp. 73–87.

[10] X.Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, ‘‘Towards
optimization-safe systems: Analyzing the impact of undefined behavior,’’
in Proc. 24th ACM Symp. Operating Syst. Princ., New York, NY, USA,
Nov. 2013, pp. 260–275.

[11] Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner, and K. Levchenko,
‘‘Dead store elimination (still) considered harmful,’’ in Proc. 26th
USENIX Secur. Symp., 2017, pp. 1025–1040.

[12] (2023). Erasing Sensitive Data—String and Array Utilities—The GNU
C Library Manual. Accessed: Jan. 23, 2023. [Online]. Available:
https://www.gnu.org/software/libc/manual/html_node/Erasing-
Sensitive-Data.html

[13] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman,
‘‘The matter of heartbleed,’’ in Proc. 2014 Conf. Internet Meas. Conf.,
New York, NY, USA, 2014, pp. 475–488.

[14] (2021). Buffer Overflow and Underflow in Getcwd()—Glibc. Accessed:
Jan. 23, 2023. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-
2021-3999

[15] M.Abadi,M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘‘Control-flow integrity
principles, implementations, and applications,’’ ACM Trans. Inf. Syst.
Secur., vol. 13, no. 1, pp. 1–40, Nov. 2009.

[16] J. Pincus and B. Baker, ‘‘Beyond stack smashing: Recent advances in
exploiting buffer overruns,’’ IEEE Secur. Privacy, vol. 2, no. 4, pp. 20–27,
Jul. 2004.

[17] (2022).CWE-119: Improper Restriction of Operations Within the Bounds
of a Memory Buffer. Accessed: May 22, 2022. [Online]. Available:
https://cwe.mitre.org/data/definitions/119.html

[18] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
‘‘On the expressiveness of return-into-libc attacks,’’ in Proc. Int.
Workshop Recent Adv. Intrusion Detection. Berlin, Germany: Springer,
2011, pp. 121–141.

[19] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, ‘‘Return-oriented
programming: Systems, languages, and applications,’’ ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 1–34, Mar. 2012.

[20] A. Peslyak, ‘‘LPR libc return exploit,’’ Solar Designer, 1997.
[21] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, ‘‘Branch

history injection: On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks,’’ in Proc. 31st USENIX Secur. Symp.,
Boston, MA, USA, Aug. 2022, pp. 971–988.

[22] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and
R. Pellizzoni, ‘‘A survey on cache management mechanisms for real-
time embedded systems,’’ ACM Comput. Surv., vol. 48, no. 2, pp. 1–36,
Nov. 2015.

[23] M. H. Islam Chowdhuryy, H. Liu, and F. Yao, ‘‘BranchSpec: Information
leakage attacks exploiting speculative branch instruction executions,’’
in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), Oct. 2020,
pp. 529–536.

[24] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, ‘‘StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,’’ in Proc. 7th
USENIX Secur. Symp., vol. 98, Jan. 1998, p. 5.

[25] H. Etoh, ‘‘GCC extension for protecting applications from stack-
smashing attacks,’’ IBM, Armonk, NY, USA, Tech. Rep., Jan. 2004.

[26] R. Henderson, ‘‘Reimplementation of ibm stack-smashing protector,’’
Red Hat, Raleigh, NC, USA, 2005.

[27] GCC Team, GCC 4.1 Release Series Changes, New Features, and Fixes,
Free Softw. Found. Inc, Boston, MA, USA, 2005.

[28] H. Shen, ‘‘Add a new option ‘-fstack-protector-strong,’’’ Google LLC,
Menlo Park, CA, USA, 2012.

[29] T. H. Y. Dang, P. Maniatis, and D. Wagner, ‘‘The performance cost
of shadow stacks and stack canaries,’’ in Proc. 10th ACM Symp. Inf.,
Comput. Commun. Secur., New York, NY, USA, Apr. 2015, pp. 555–566.

[30] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ‘‘Address-
Sanitizer: A fast address sanity checker,’’ in Proc. USENIX Annu.
Tech. Conf., Boston, MA, USA, 2012, pp. 309–318.

[31] LLVM Team, LLVM 3.1 Release Notes, LLVM Found., Los Altos, CA,
USA, 2012.

[32] GCC Team, GCC 4.8 Release Changes, Free Softw. Found. Inc, Boston,
MA, USA, 2014.

[33] GCC Team,Heap Consistency Checking, Free Softw. Found. Inc, Boston,
MA, USA, 2003.

[34] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, ‘‘HeapHopper: Bringing bounded model checking to heap
implementation security,’’ in Proc. 27th USENIX Conf. Secur. Symp.,
2018, pp. 99–116.

[35] C. Cowan, S. Beattie, J. E. Johansen, and P. Wagle, ‘‘PointGuard:
Protecting pointers from buffer overflow vulnerabilities,’’ in Proc.
USENIX Secur. Symp., 2003, pp. 91–104.

[36] Platform Independent Code Obfuscation. Accessed:
Oct. 22, 2023. [Online]. Available: https://www.divaportal.
org/smash/get/diva2:699631/FULLTEXT01.pdf

[37] B. Anckaert, M. Jakubowski, R. Venkatesan, and N. Saw, ‘‘Practical data
location obfuscation,’’ Microsoft Res., Redmond, WA, USA, Tech. Rep.
MSR-TR-2009-3, Jan. 2009.

[38] S. Bhatkar, D. C. DuVarney, and R. Sekar, ‘‘Address obfuscation:
An efficient approach to combat a broad range of memory error exploits,’’
in Proc. 12th USENIX Secur. Symp., Washington, DC, USA, Aug. 2003,
pp. 1–17.

[39] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, ‘‘Software obfuscation
on a theoretical basis and its implementation,’’ IEICE Trans. Fundam.
Electron., Commun. Comput. Sci., vol. 86, no. 1, pp. 176–186, 2003.

[40] H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P.-C. Yew, ‘‘Control
flow obfuscation with information flow tracking,’’ in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), NewYork, NY, USA,
Dec. 2009, pp. 391–400.

[41] J. Jelinek, ‘‘Object size checking to prevent (some) buffer overflows,’’
Red Hat, Raleigh, NC, USA, 2004.

[42] S. Poyarekar, ‘‘Broadening compiler checks for buffer overflows in
fortify_source,’’ Red Hat, Raleigh, NC, USA, 2021.

[43] E. Pilkington, ‘‘A new builtin: Builtin_dynamic_object_size,’’ Independ.
Res., 2019.

[44] Y. Han, P. Shah, V. Nguyen, L. Ma, and R. Livingston, ‘‘OpenOSC: Open
source object size checking library with built-in metrics,’’ in Proc. IEEE
Cybersecurity Develop. (SecDev), Sep. 2019, p. 143.

[45] The Clang Team, Shadow Call Stack, LLVM Found., Los Altos, CA,
USA, 2019.

[46] P. Turner, ‘‘Retpoline: A software construct for preventing branch-target-
injection,’’ Google LLC, Menlo Park, CA, USA, 2018.

[47] Retpoline: A Branch Target Injection Mitigation, Intel, Santa Clara, CA,
USA, 2018.

[48] Retpoline: A Software Construct for Preventing Branch-Target-Injection.
Accessed: Aug. 21, 2023. [Online]. Available: https://support.google.
com/faqs/answer/7625886

[49] PaX Team, PaX: Address Space Layout Randomization, Open Source
Secur., Inc, Lancaster, PA, USA, 2003.

[50] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, ‘‘Jump over
ASLR: Attacking branch predictors to bypass ASLR,’’ in Proc. 49th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1–13.

[51] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, ‘‘ASLR on the
line: Practical cache attacks on the MMU,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., San Diego, CA, USA, 2017, p. 26.

43218 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

[52] R. Hund, C. Willems, and T. Holz, ‘‘Practical timing side channel
attacks against kernel space ASLR,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 191–205.

[53] Pointer Authentication on ARMv8.3: Design and Analysis of the New
Software Security Instructions, QualcommTechnologies, San Diego, CA,
USA, 2017.

[54] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, ‘‘PAC it up: Towards pointer integrity using ARM pointer
authentication,’’ in Proc. 28th USENIX Conf. Secur. Symp., 2019,
pp. 177–194.

[55] S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim, ‘‘In-kernel control-flow
integrity on commodity OSes using ARM pointer authentication,’’ in
Proc. USENIX Secur. Symp., 2021, pp. 89–106.

[56] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, ‘‘PACMAN: Attacking
ARM pointer authentication with speculative execution,’’ in Proc. 49th
Annu. Int. Symp. Comput. Archit., New York, NY, USA, Jun. 2022,
pp. 685–698.

[57] G. Serra, P. Fara, G. Cicero, F. Restuccia, and A. Biondi, ‘‘PAC-PL:
Enabling control-flow integrity with pointer authentication in FPGA SoC
platforms,’’ in Proc. IEEE 28th Real-Time Embedded Technol. Appl.
Symp. (RTAS), Giorgiomaria Cicero, France, May 2022, pp. 241–253.

[58] ARM A-Profile Architecture Developments 2018: ARMV8.5-A, ARM,
Cambridge, U.K., 2018.

[59] ARMV8-A Reference Manual, ARM, Cambridge, U.K., 2023.
[60] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,

Santa Clara, CA, USA, 2023.
[61] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and

D. Vyukov, ‘‘Memory tagging and how it improves C/C++ memory
safety,’’ Google LLC, Menlo Park, CA, USA, 2018.

[62] The ARM64Memory Tagging Extension in Linux. Accessed:May 1, 2023.
[Online]. Available: https://lwn.net/Articles/834289/

[63] ARMV8.5-A Memory Tagging Extension, ARM, Cambridge, U.K., 2019.
[64] M. Unterguggenberger, D. Schrammel, P. Nasahl, R. Schilling,

L. Lamster, and S. Mangard, ‘‘Multi-tag: A hardware–software co-
design for memory safety based on multi-granular memory tagging,’’
in Proc. ACM Asia Conf. Comput. Commun. Secur., Jul. 2023,
pp. 177–189.

[65] R. Ramakesavan, D. Zimmerman, P. Singaravelu, G. Kuan, B. Vajda,
S. Gibbons, and G. Beeraka, ‘‘Intel memory protection extensions
enabling guide,’’ Intel, Santa Clara, CA, USA, Tech. Rep. 751866, 2015.

[66] GCC Team, Intel® Memory Protection Extensions (Intel® MPX)
Support in theGCCCompiler, Free Softw. Found. Inc, Boston,MA,USA,
2016.

[67] The Linux Kernel Documentation, Intel(R) Memory Protection Exten-
sions (MPX), Linux Found., San Francisco, CA, USA, 2016.

[68] Support for Intel® Memory Protection Extensions (Intel® MPX)
Technology, Intel, Santa Clara, CA, USA, 2019.

[69] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, ‘‘Intel
MPX explained: A cross-layer analysis of the Intel MPX system stack,’’
Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 2, pp. 1–30, Jun. 2018.

[70] Control-Flow Enforcement Technology Specification, Intel, Santa Clara,
CA, USA, 2019.

[71] S. Tauner and M. Telesklav, ‘‘Comparative analysis and
enhancement of CFG-based hardware-assisted CFI schemes,’’
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5s, pp. 1–25,
Sep. 2021.

[72] V. Shanbhogue, D. Gupta, and R. Sahita, ‘‘Security analysis of processor
instruction set architecture for enforcing control-flow integrity,’’ in
Proc. 8th Int. Workshop Hardw. Architectural Support Secur. Privacy,
Jun. 2019, pp. 1–11.

[73] M. Kucab, P. Borylo, and P. Cholda, ‘‘Performance impact of control
flow enforcement technology (CET),’’ in Proc. 25th Conf. Innov. Clouds,
Internet Netw. (ICIN), Mar. 2022, pp. 96–100.

[74] Intel Architecture Instruction Set Extensions and Future Features, Intel,
Santa Clara, CA, USA, 2023.

[75] R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann, ‘‘An intro-
duction to cheri,’’ Univ. Cambridge, Cambridge, U.K., Tech. Rep.
UCAM-CL-TR-941, 2019.

[76] CHERI C/C++ Programming Guide. Accessed: Jul. 15, 2023. [Online].
Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
947.pdf

[77] R. N. M.Watson, J. Woodruff, P. G. Neumann, S. W.Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton,M. Roe, S. Son, andM. Vadera, ‘‘CHERI: A hybrid capability-
system architecture for scalable software compartmentalization,’’ inProc.
IEEE Symp. Secur. Privacy, May 2015, pp. 20–37.

[78] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, ‘‘The
CHERI capability model: Revisiting RISC in an age of risk,’’ in
Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014,
pp. 457–468.

[79] ARM Virtual Address Tagging. Accessed: Aug. 18, 2023. [Online].
Available: https://developer.arm.com/documentation/den0024/a/The-
Memory-Management-Unit/Translation-table-configuration/Virtual-
Address-tagging3

[80] LLVM Hardware-Assisted AddressSanitizer Design Documentation.
Accessed: Oct. 18, 2023. [Online]. Available: https://clang.llvm.
org/docs/HardwareAssistedAddressSanitizerDesign.html

[81] Understanding HWASan Reports. Accessed: Oct. 22, 2023. [Online].
Available: https://source.android.com/docs/security/test/memory-
safety/hwasan-reports

[82] HWAddressSanitizer—Android. Accessed: Oct. 22, 2023. [Online].
Available: https://source.android.com/docs/security/test/hwasan

[83] A. Partap and D. Boneh, ‘‘Memory tagging: A memory efficient design,’’
2022, arXiv:2209.00307.

[84] P. E. Black, ‘‘SARD: A software assurance reference dataset,’’ in
Anonymous Cybersecurity Innovation Forum. Cybersecurity Innovation
Forum, Federal Business Council, 2017.

[85] Juliet Test Suite V1.2 for C/C++. NSA Center for Assured Software.
Accessed: Mar. 20, 2024. [Online]. Available: https://samate.nist.gov/
SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_C_Cpp_-
_User_Guide.pdf

[86] IARPA: Intelligence Advanced Research Projects Activity,
STONESOUP—Securely Taking On New Executable Software of
Uncertain Provenance, Office Director Nat. Intell. (ODNI), Washington,
DC, USA, 2009.

[87] A. Benameur, N. S. Evans, and M. C. Elder, ‘‘MINESTRONE: Testing
the SOUP,’’ in Proc. CSET, 2013, pp. 1–8.

[88] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
‘‘RIPE: Runtime intrusion prevention evaluator,’’ in Proc. 27th Annu.
Comput. Secur. Appl. Conf., Dec. 2011, pp. 41–50.

[89] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, ‘‘Code-pointer integrity,’’ in The Continuing Arms Race:
Code-Reuse Attacks and Defenses. New York, NY, USA: ACM, 2018,
pp. 81–116.

[90] M. Zhang and R. Sekar, ‘‘Control flow and code integrity for COTS
binaries: An effective defense against real-world ROP attacks,’’ in Proc.
31st Annu. Comput. Secur. Appl. Conf., 2015, pp. 91–100.

[91] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, ‘‘SGX-
shield: Enabling address space layout randomization for SGX programs,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1–15.

[92] J. C. Detter and R. Mutschlechner, ‘‘Performance and entropy of various
aslr implementations,’’ Dept. Comput. Sci., Univ. Wisconsin-Madison,
Madison, WI, USA, Tech. Rep., 2015.

[93] S. Zhou and J. Chen, ‘‘Experimental evaluation of the defense capability
of ARM-based systems against buffer overflow attacks in wireless
networks,’’ in Proc. IEEE 10th Int. Conf. Electron. Inf. Emergency
Commun. (ICEIEC), Jul. 2020, pp. 375–378.

[94] B. M. Calatayud and L. Meany, ‘‘A comparative analysis of buffer
overflow vulnerabilities in high-end IoT devices,’’ in Proc. IEEE
12th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2022,
pp. 0694–0701.

[95] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, ‘‘RetTag: Hardware-
assisted return address integrity on RISC-V,’’ in Proc. 15th Eur. Workshop
Syst. Secur., New York, NY, USA, Apr. 2022, pp. 50–56.

[96] G. Roascio, G. Serra, and V. Eftekhari Moghadam, ‘‘Em-RIPE: Runtime
intrusion prevention evaluator for ARM microcontroller systems,’’
in Proc. Int. Conf. Electr., Comput., Commun. Mechatronics Eng.
(ICECCME), Nov. 2022, pp. 1–6.

[97] G. Serra, S. Di Leonardi, and A. Biondi, ‘‘X-RIPE: A modern
cross-platform runtime intrusion prevention evaluator,’’ in Proc. 17th
Annu. Workshop Operating Syst. Platforms Embedded Real-Time Appl.
(OSPERT), 2022, pp. 49–55.

[98] L. Szekeres, M. Payer, T. Wei, and D. Song, ‘‘SoK: Eternal war in
memory,’’ in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 48–62.

[99] N. R. Kisore, ‘‘A qualitative framework for evaluating buffer overflow
protection mechanisms,’’ Int. J. Inf. Comput. Secur., vol. 8, no. 3,
pp. 272–307, 2016.

[100] CISA: Cybersecurity Infrastructure Security Agency. The Case for
Memory Safe Roadmaps. Accessed: Mar. 20, 2024. [Online]. Available:
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-
Safe-Roadmaps-508c.pdf

VOLUME 12, 2024 43219

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

[101] Kees Cook. Rust Introduction for V6.1-rc1. Accessed:
Mar. 20, 2024. [Online]. Available: https://lore.kernel.org/lkml/
202210010816.1317F2C@keescook/

[102] R. Bagnara, A. Bagnara, and F. Serafini, ‘‘C-rusted: The advantages of
rust, in C, without the disadvantages,’’ 2023, arXiv:2302.05331.

[103] D. Berman, A. Buczak, J. Chavis, and C. Corbett, ‘‘A survey of deep
learning methods for cyber security,’’ Information, vol. 10, no. 4, p. 122,
Apr. 2019.

[104] Y.-H. Choi, P. Liu, Z. Shang, H. Wang, Z. Wang, L. Zhang,
J. Zhou, and Q. Zou, ‘‘Using deep learning to solve computer
security challenges: A survey,’’ Cybersecurity, vol. 3, no. 1, pp. 1–32,
Dec. 2020.

[105] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surv., vol. 53, no. 6, pp. 1–36, Nov. 2021.

[106] K. Liu, S. Xu, G. Xu,M. Zhang, D. Sun, andH. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020.

[107] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
‘‘Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,’’ Trans. Emerg. Telecommun.
Technol., vol. 32, no. 1, p. e4150, Jan. 2021.

[108] J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S. H. T. Karim,
S. Rashidi, M. Hosseinzadeh, and A. M. Rahmani, ‘‘Deep learning-based
intrusion detection systems: A systematic review,’’ IEEE Access, vol. 9,
pp. 101574–101599, 2021.

[109] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, andM. Xu, ‘‘A survey
on machine learning techniques for cyber security in the last decade,’’
IEEE Access, vol. 8, pp. 222310–222354, 2020.

[110] Y. Chen, Y. Li, X.-Q. Cheng, and L. Guo, ‘‘Survey and taxonomy
of feature selection algorithms in intrusion detection system,’’ in
Information Security and Cryptology, H. Lipmaa, M. Yung, and D. Lin,
Eds. Berlin, Germany: Springer, 2006, pp. 153–167.

[111] G. Kathareios, A. Anghel, A. Mate, R. Clauberg, and M. Gusat, ‘‘Catch it
if you can: Real-time network anomaly detection with low false alarm
rates,’’ in Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2017, pp. 924–929.

[112] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
‘‘Autoencoder-based feature learning for cyber security applications,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3854–3861.

[113] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, ‘‘Kitsune:
An ensemble of autoencoders for online network intrusion detection,’’
2018, arXiv:1802.09089.

[114] N. Borgioli, L. Thi Xuan Phan, F. Aromolo, A. Biondi, and G. Buttazzo,
‘‘Real-time packet-based intrusion detection on edge devices,’’ in Proc.
Cyber-Physical Syst. Internet Things Week, New York, NY, USA,
May 2023, pp. 234–240.

[115] I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, ‘‘Analysis of machine
learning techniques used in behavior-based malware detection,’’ in Proc.
2nd Int. Conf. Adv. Comput., Control, Telecommun. Technol., Dec. 2010,
pp. 201–203.

[116] J. Sahs and L. Khan, ‘‘A machine learning approach to Android malware
detection,’’ in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,
pp. 141–147.

[117] U.-E.-H. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee,
‘‘A survey of the recent trends in deep learning based malware
detection,’’ J. Cybersecurity Privacy, vol. 2, no. 4, pp. 800–829,
Sep. 2022.

[118] D. Pfaff, S. Hack, and C. Hammer, ‘‘Learning how to prevent
return-oriented programming efficiently,’’ in Engineering Secure Soft-
ware and Systems, Milan, Italy. Cham, Switzerland: Springer, 2015,
pp. 68–85.

[119] M. Elsabagh, D. Barbara, D. Fleck, and A. Stavrou, ‘‘Detecting
ROP with statistical learning of program characteristics,’’ in
Proc. 7th ACM Conf. Data Appl. Secur. Privacy, Mar. 2017,
pp. 219–226.

[120] X. Li, Z. Hu, H. Wang, Y. Fu, P. Chen, M. Zhu, and P. Liu,
‘‘ROPNN: Detection of ROP payloads using deep neural networks,’’
2018, arXiv:1807.11110.

[121] J. Zhang, W. Chen, and Y. Niu, ‘‘DeepCheck: A non-intrusive
control-flow integrity checking based on deep learning,’’ 2019,
arXiv:1905.01858.

[122] L. Chen, S. Sultana, and R. Sahita, ‘‘HeNet: A deep learning
approach on Intel processor trace for effective exploit detection,’’
in Proc. IEEE Secur. Privacy Workshops (SPW), May 2018,
pp. 109–115.

[123] D. F. Koranek, S. R. Graham, B. J. Borghetti, and W. C. Henry,
‘‘Identification of return-oriented programming attacks using RISC-V
instruction trace data,’’ IEEE Access, vol. 10, pp. 45347–45364, 2022.

[124] E. C. R. Shin, D. Song, and R. Moazzezi, ‘‘Recognizing functions in
binaries with neural networks,’’ in Proc. 24th USENIX Secur. Symp.,
2015, pp. 611–626.

[125] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, ‘‘Neural nets can learn
function type signatures from binaries,’’ in Proc. 26th USENIX Secur.
Symp., 2017, pp. 99–116.

[126] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity
detection,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 363–376.

[127] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, ‘‘LEMNA:
Explaining deep learning based security applications,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 364–379.

[128] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’Commun. ACM, vol. 26, no. 1,
pp. 96–99, Jan. 1983.

[129] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms
and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[130] D. J. Bernstein and L. Tanja, ‘‘Post-quantum cryptography,’’ Nature,
vol. 549, no. 7671, pp. 188–194, 7671.

[131] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta,
R. A. Perlner, and D. Smith-Tone, ‘‘Report on post-quantum cryptogra-
phy, volume 12,’’ US Dept. Commerce, Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. NIST IR 8105, 2016.

VAHID EFTEKHARI MOGHADAM is a Ph.D.
student at the Department of Computer & Control
Engineering (DAUIN) at Politecnico di Torino
(PoliTO), located in Turin, Italy. He works as a
security researcher in the Hardware & Embedded
Security Group (RHESGroup) under the supervi-
sion of Prof. Paolo Prinetto. He received his M.Sc.
in computer engineering (Embedded Systems)
from PoliTO in 2020. Thenceforth he joined the
joint collaboration between TIM S.p.A. (Telecom

Italia) Ph.D. Academy & PoliTO, where he’s working on the security
vulnerabilities of embedded devices targeting architectural solutions to
improve their resilience and vulnerability tolerance.

GABRIELE SERRA (Member, IEEE) received
the joint M.Sc. degree in embedded computing
systems from Università di Pisa and Scuola
Superiore Sant’Anna, Pisa, Italy, and the Ph.D.
degree in embedded systems from Scuola Supe-
riore Sant’Anna. He is a Postdoctoral Researcher
with Scuola Superiore Sant’Anna. He is with the
Real-Time System Laboratory (ReTiS), under the
supervision of Prof. Giorgio Buttazzo. In May
2019, he started working on an ongoing project

in partnership with Rete Ferroviaria Italiana, targeting the design of a
safety-critical real-time operating systems to be used in the railway scenario.

43220 VOLUME 12, 2024

V. E. Moghadam et al.: Memory Integrity Techniques for Memory-Unsafe Languages: A Survey

FEDERICO AROMOLO received the M.Sc. degree in embedded computing
systems from Scuola Superiore Sant’Anna, Pisa, and the University of
Pisa, and the Ph.D. degree in computer engineering from Scuola Superiore
Sant’Anna. He is anAssistant Professor with the Real-Time Systems (ReTiS)
Laboratory, Scuola Superiore Sant’Anna. His research interests include
real-time scheduling algorithms, schedulability analysis, real-time operating
systems, and cyber-security for embedded systems.

GIORGIO BUTTAZZO (Member, IEEE) received
the degree in electronic engineering from the
University of Pisa, the M.S. degree in computer
science from the University of Pennsylvania,
and the Ph.D. degree in computer engineering
from Scuola Superiore Sant’Anna, Pisa. He is
a Full Professor of computer engineering with
Scuola Superiore Sant’Anna. He has authored
seven books on real-time systems and more than
300 papers in the field of real-time systems,

robotics, and neural networks. He received 11 best paper awards. He is the
Editor-in-Chief of Real-Time Systems and an Associate Editor of the ACM
Transactions on Cyber-Physical Systems.

PAOLO PRINETTO (Senior Member, IEEE)
received the M.S. degree in electronic engineering
from Politecnico di Torino, Italy, in 1997. He is
a Full Professor of computer engineering with
Politecnico di Torino (50%) and the IMT–Institute
for Advanced Studies Lucca, Italy, (50%). He is
also the Director of the CINI–Cybersecurity
National Laboratory; and a Coordinator of the
Programs CyberChallenge, OliCyber, and Cyber-
HighSchools. His research activities are mainly

focused on hardware security, digital systems design and test, system
dependability. From 2010 to 2014, he served as an Appointed Member for
the Scientific Committee of the French ‘‘Centre National de la Recherche
Scientifique’’ (CNRS). In 2012, he was honored of the title ‘‘Doctor
Honoris Causa’’ of the Technical University of Cluj-Napoca, Romania.
He is serving as an Italian Representative with the Civil Security for
Society Sub-Group of the EU Shadow Strategic Program Committee of
Horizon Europe–the Framework Program for Research and Innovation.
From 2013 to 2019, he was the President of CINI (Italian National Inter
University Consortium for Informatics). From 2013 to 2019, he was the
Vice-Chair of the International Federation for Information Processing (IFIP)
Technical Committee TC 10–Computer Systems Technology. In 2000 and
2003, he served as the Elected Chair for the IEEE Computer Society Test
Technology Technical Council (TTTC).

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

VOLUME 12, 2024 43221

