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ABSTRACT
The complexity of modern software systems, the integration of several software components, and the
increasing exposure to public networks make systems more susceptible to cyber-attacks, especially those
targeting memory. Memory error exploitation received worldwide attention thanks to the Morris worm
in 1988 and has been around for over 30 years. As a matter of fact, attacks that involve memory safety,
such as buffer overflows, are still a plague in modern software. The research in countering those kinds of
attacks has gone in several directions. This work surveys memory integrity techniques developed during the
last quarter century for embedded or general-purpose open-source operating systems, ranging from older
mechanisms to state-of-the-art solutions. A comparison of various memory integrity techniques is presented
to examine their effectiveness and technical significance. Insights into ongoing trends and developments are
also provided to assess their potential impact in the foreseeable future.

INDEX TERMS Memory overflows, Memory safety, Security, Unsafe languages, Memory safety tech-
niques, Security techniques comparison, Memory integrity.

I. INTRODUCTION
Software security is today a primary requirement for com-
puter systems and no longer an issue that is only inherent to
servers or personal computers. Nowadays, embedded com-
puting systems are employed in diverse application domains
to control safety-critical cyber-physical systems including
automotive, railway, and avionics systems, nuclear power
plants, air traffic control systems, autonomous robots, and
military devices, thus playing an extremely important role in
our society. The typical software controlling these systems
is continuously growing in both size and complexity, thus
creating a larger and larger attack surface due to the inevitable
introduction of subtle software vulnerabilities. In addition,
access to the public network increases their vulnerability,
which can be exploited to accomplish malicious actions and
cyber-crimes.

Operating systems, from those developed for server com-
puting to those conceived for embedded systems, are typ-
ically written in low-level languages, such as C or C++.
Undoubtedly, these languages offer flexibility and high per-
formance, and, in many cases, they are often the only lan-
guage supported by the toolchain provided by hardware man-

ufacturers for a specific target platform. However, those lan-
guages are known to be memory-unsafe. A memory-unsafe
language is a programming language that lacks features or
constraints designed to prevent common programming errors
related to the freedom in accessing memory. In memory-
unsafe languages, programmers have more direct control
over the memory, but this freedom can lead to unintended
consequences and side-effects, such as memory leaks, buffer
overflows, and other vulnerabilities.

Indeed, applications and operating systems written using
memory-unsafe languages could be the target of memory
error exploits [1]. As a matter of fact, memory corruption
vulnerabilities are among the most frequent potential prob-
lems. Dangling pointers, heap meta-data overwrites, unini-
tialized reads, and invalid or double-free vulnerabilities are
common examples of such problems. Consequently, security
researchers and system designers developed various protec-
tion techniques to address these concerns.

The adoption of hardware memory protection and vir-
tualization support mechanisms allow operating systems to
counter several attacks. Nonetheless, exploitable vulnera-
bilities related to memory management are still present in
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modern software. Even considering classic buffer overflows
only, this class of memory corruption vulnerability has kept
its position on the podium of the Common Weakness Enu-
meration (CWE) SANS top 25 most dangerous software
errors for years. A recent eminent example of buffer overflow
exploit enabling unrestricted privilege escalation in Linux-
based operating systems dates back to January 2022 [2],
when Qualys Security Advisory identified a buffer overflow
in the management of C arguments in Polkit (formerly Pol-
icyKit), a software component controlling system-wide user
privileges, leading to a local privilege escalation from any
user to root privileges. Interestingly, this recently discovered
vulnerability is technically a memory corruption that has
been potentially exploitable since 2009 but has remained
latent until its discovery 2022. This example demonstrates
that memory corruption vulnerabilities still represent a very
serious threat in computer security, and that the related tech-
nical and scientific problem of finding adequate countermea-
sures is far from resolved. Academic and industrial security
researchers are still focused on designing countermeasures
that can eventually be implemented. However, despite the
huge amount of research effort spent in the field, only a few
defensive techniques have been actually implemented at the
production level, especially due to performance reasons.

In this work, we survey memory safety techniques that
have been integrated into production-level systems, ranging
from older mechanisms to state-of-the-art solutions. We aim
at gathering and analyzing a wide range of techniques that
have been proposed and implemented to enhance memory
safety, thus providing a comprehensive overview of the ad-
vancements in the field. Furthermore, we present a com-
parative analysis that can aid in evaluating the potential
of these techniques for future applications, also identifying
areas where further research and improvements are needed.
Contributions: This work provides the following contribu-
tions:

• It presents a comprehensive survey of memory safety
techniques developed over the past twenty-five years.

• It performs a comparative analysis of the different mem-
ory safety techniques identified in the survey, provid-
ing valuable insights into the trends and developments
within the field.

Survey scope: In examining the multitude of available op-
tions, the survey focuses on the most significant techniques
employed over the past two decades that have been im-
plemented, or are currently in production, by one or more
open-source operating systems and that are supported by one
or more major compiler toolchains (i.e., GCC or Clang).
The selection criteria prioritize techniques implemented and
adopted in the Linux kernel, which stands out due to its
widespread adoption for both embedded and general-purpose
applications. In Section III, the set of requirements used to
center the scope of the survey are explicitly listed.
Paper structure: The remainder of this paper is organized
as follows. Section II introduces the necessary background

to properly understand the presented methods. Section III
sets out a taxonomy for existing techniques and provides
a concise explanation of the working principle behind each
technique. Section IV presents a comparison of the sur-
veyed techniques considering different evaluation perspec-
tives. Section V shows the limitations of the considered
techniques and provides a concrete road map for memory
safety in the context of future research. Section VI concludes
the paper.

II. BACKGROUND
Memory errors have been investigated since the 1970s, and
new memory-related vulnerabilities are discovered ever year.
This section presents an overview on the history of memory
errors and vulnerabilities and introduces the necessary back-
ground concepts.

A. A BRIEF HISTORY OF MEMORY INTEGRITY
Historically, memory errors were first publicly discussed in
the 1970s. Specifically, the idea of reading/writing outside
the allowed boundaries of a buffer became known and was
publicly disclosed in early 1972 by James Anderson in the
pivotal Computer Security Technology Planning Study [3].
The ability to gain control of a process by overwriting data
received worldwide attention thanks to the Morris worm
in 1988 [4]. Since then, buffer overflows have been widely
recognized as the most well-known exploitation technique in
computer security history. In response to the Morris worm
exploitation, DARPA founded the Computer Emergency Re-
sponse Center (CERT). The main goal of CERT is to collect
reports about vulnerabilities discovered by users and forward
them to software/hardware vendors. Subsequently, numerous
mailing lists and public archives of vulnerabilities were cre-
ated, such as Bugtraq and Full Disclosure [1], [5], [6].

Nevertheless, until 1995, memory error countermeasures
were not heavily researched and discussed. In 1996, Elias
Levy published a blog post on Phrack Magazine [7] de-
scribing thoroughly how to take advantage of stack smash-
ing. Since then, discussions on protection mechanisms have
proliferated, and defending from memory-targeted attacks
has been part of security research, with several techniques
developed over the years.

B. THE ROLE OF COMPILERS AND LIBRARIES
Software vulnerabilities frequently arise due to either im-
proper checking of input parameters or the presence of unex-
pected input values. Therefore, the presence of vulnerabilities
in a program is strongly related to the software development
process, which is itself heavily dependent on the selected
development tools. Given a programming language of choice,
the key components of a toolchain, such as assemblers, com-
pilers, and debuggers, play a vital role in the development and
execution of software programs. Following their significant
impact on achieving a high-quality and/or valid result, a
software developer should thoroughly understand the behav-
ior of such tools, their capabilities, and their shortcomings,
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especially when developing software in the security and/or
the safety domains [8]. In the following, we provide an
overview of necessary background concepts related to the
components of the compilation toolchain.

Machine-independent optimizations occur in the optimizer
stage of the compilation process. These generic optimization
techniques are common among programming languages and
are the common place where some unwanted behaviors can
be introduced to the programs. Optimizations like reachabil-
ity analysis and dead-code elimination, constant propagation,
or code relocation based on context are some examples of
these transformations. At the end of this stage, the code will
be passed for further analysis and transformations to the
backend phase, in which specific features of the instruction
set architecture are exploited.

Indeed, compiler implementations provide their users with
many options to allow better tuning of the parameters, such as
those targeting memory safety. On the other hand, parameters
driving different levels of optimizations (e.g., to improve pro-
gram performance or to reduce code size when adhering to
given memory requirements) could introduce vulnerabilities
when used carelessly.

Unwanted alterations and optimization could affect the
structure of a program, potentially introducing unwanted
side effects. This aspect is particularly critical when data
security and integrity are among the main design goals [9],
[10]. For instance, one such compiler optimization is dead
store elimination (DSE), which removes data store operations
into memory locations that are not read by any subsequent
instruction. This feature can potentially introduce security
vulnerabilities into a program. For instance, consider the
following pseudo-code, which performs encryption of some
data using an encryption key which is later explicitly over-
written in memory by a sequence of zeros using a memory
write operation:

uint* encrypt_key = malloc(KEY_SIZE);

// ... execute encryption algorithm

memset(encrypt_key, 0, KEY_SIZE);

free(encrypt_key);

Since the allocated memory buffer, encrypt_key, is not
used after the call to the memset function, the compiler can
consider the set memory operation redundant and eliminate it
for when applying DSE optimizations. However, if the buffer
contains sensitive data, the optimization will cause the data
to be left in memory. Attackers can exploit such memory
vulnerabilities to disclose information and get access to se-
cret data, which can be leveraged to further compromise the
system. Although this compiler behavior is well-known to
many developers, it is still a relevant issue when security
is a crucial requirement. The developer should be aware

of any kind of potentially dangerous optimizations which
could jeopardize the security of the application, and consider
either disabling those optimizations altogether or applying
workarounds to preserve the security of the software [11],
[12].

Another important aspect to be considered to improve
functional safety and security is software libraries. Com-
monly used functionalities are generally provided by the
development toolchain in the form of libraries to be included
in the design flow. Third-party libraries are often subject to
targeted security exploits in the software development as well
(e.g., cryptographic libraries like OpenSSL1). As with any
software, the functionalities provided by these libraries could
potentially present flaws in their design, and not properly
addressing such flaws can introduce vulnerabilities to the
programs utilizing a third-party library [13], [14]. A few
examples of memory techniques targeting common libraries
(such as glibc) are presented in the next sections.

C. COMMON ATTACKS

Since the release of the Morris worm, numerous memory vul-
nerabilities have been discovered and often exploited thanks
to carefully crafted attack techniques. The following section
briefly presents some of the most common attack patterns
employed by such attacks.

1) Control-flow hijacking

Control-flow hijacking is a common technique used in many
exploits, irrespective of the specific vulnerability being ex-
ploited. The control-flow graph (CFG) of a program rep-
resents the valid sequence of control transfers within the
program, and is represented as a directed graph where nodes
represent routines or basic blocks, while edges represent
control transfer instructions such as branches, function calls,
and returns. The CFG can be constructed offline by analyzing
the source code or binary executable, or it can be dynamically
discovered during program execution.

Control-flow hijacking attacks try to divert the legal ex-
ecution path of a program, for instance, by modifying the
target of an indirect branch instruction (which jumps to a
value computed at runtime) or by forcing a function to return
to an address that differs from the expected return address
within the calling function.

Control-Flow Integrity (CFI) is a set of security measures
aimed at ensuring that the execution flow of a program
follows the intended paths defined by its canonical CFG [15].
CFI techniques focus on monitoring the execution of a pro-
gram to ensure that control transfers adhere to the CFG, and
have been proven to be effective against many well-known
attacks and are considered advanced security countermea-
sures [16].

1https://www.openssl.org
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2) Buffer overflows
A buffer overflow (or overrun) is an anomaly occurring when
a portion of memory allocated to store a given number of
bytes is insufficient to contain a larger-sized payload. There-
fore, the excessive bytes are written to adjacent portions of
memory [17]. This anomaly often occurs when applications
are written in languages such as C and C++, which, for
instance, have input functions or array copy functions that
only consist in writing values starting from a certain address,
with no explicit limit on the amount of memory to be copied
(e.g., refer to Figure 1). Standard versions of C and C++ do
not have any memory-bound checking. This design choice
enhanced the portability of the language but, on the other
hand, made overruns possible.

Overwriting memory locations adjacent to a buffer cor-
rupts program variables, which can contain control data
(e.g., pointers to functions or stored program addresses).
Therefore, when a buffer overflow occurs, it can lead to the
manipulation and corruption of the intended address to be
jumped to, effectively hijacking the program’s control flow.

FIGURE 1. Graphical representation of a buffer overflow in a C program.

Furthermore, by leveraging buffer overflow, the attacker
may hijack the program to execute code stored in the cor-
rupted memory region itself, where it has previously injected
bytes corresponding to valid machine code for that archi-
tecture (e.g., with the same memory copy operation used
to trigger the buffer overflow vulnerability). This is attack
technique is known as code injection. The attacker may also
construct a sequence of return values by code injection, each
pointing to an instruction already in memory, to result in an
arbitrary chain of function calls, in what is known as a code
reuse attack. Well-known code-reuse attacks include return-
to-libc attacks [18] and Return-Oriented Programming (ROP)
[19].

3) Return-oriented attacks
The first class of return-oriented attack is the return-to-
libc attack, initially contributed by Alexander Peslyak in
1997 [20]. The return-to-libc attack consists in replacing the
return address on the current call stack with the address of a
function that is found within the executable memory of the
process (e.g., within the libc C standard library), such as
by properly exploiting a buffer overflow.

Later, more complex return-oriented attacks were devel-
oped. Generally, when exploiting return-oriented strategies,
an attacker hijacks the control flow by exploiting a vulnera-
bility such as a buffer overflow. Instead of injecting malicious

code directly into the call stack, which may be detected
and prevented from executing, ROP utilizes existing code
snippets that are present in the benign program’s memory,
called gadgets, in order to perform the desired operations
and reproduce arbitrary program behavior. Specifically, each
gadget is a sequence of instructions ending with a return
instruction. By chaining these gadgets together in the call
stack, the attacker can redirect the program’s execution to
perform actions like modifying memory, executing system
calls, or bypassing security mechanisms.

4) Side-channel attacks
A side-channel attack is a security vulnerability that exploits
unintended information leakage from auxiliary channels, al-
lowing an attacker to infer sensitive data or access crypto-
graphic keys. One aspect of side-channel attacks involves
shared cache, a component in modern processors that stores
data accessed by multiple cores.

In a shared cache side-channel attack, an attacker utilizes
the behavior of the shared cache to extract useful information.
When multiple cores access the cache simultaneously, their
interactions can create observable patterns in their access
times or state transitions. By carefully monitoring these side-
channel effects, an attacker can deduce information about the
data being processed by other cores [21].

One common shared cache side-channel attack is known as
a cache timing attack. In this scenario, an attacker measures
the time it takes to access specific cache lines, which can
vary depending on whether the data is already present in
the cache or needs to be fetched from the main memory. By
repeatedly accessing certain cache lines and observing the
access times, an attacker can determine patterns that reveal
sensitive information, such as cryptographic keys.

Mitigating shared cache side-channel attacks often in-
volves implementing countermeasures during system design
and software development. Techniques like cache partition-
ing, which segregates cache resources into different security
domains, can help preventing leakage between processes or
threads. Additionally, ensuring constant-time implementa-
tions and avoiding data-dependent control flows can reduce
cache-related side-channel vulnerabilities.

Protecting against shared cache side-channel attacks re-
quires a multi-faceted approach that combines hardware de-
sign, software development practices, and security-conscious
programming techniques. To this end, this survey considers
hardware facilities and software techniques designed to deal
with memory integrity. Isolation or segregation techniques
were analyzed by Gracioli et al. [22].

5) Branch target injection
The branch target injection exploit targets a processor’s
indirect branch predictor. Direct branches occur when the
destination of the branch is known from the instruction
alone at compile time. Indirect branches, on the other hand,
occur when the destination of the branch is not known a
priori, such as when the destination is read from a register
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or a memory location. The indirect branch predictor uses
information about previously executed branches to predict
the destinations of future indirect branches.

The utilization of indirect function calls is necessary when
employing function pointers in compiled languages such as
C and C++. For instance, function pointers are often used as
an argument to sorting functions, in order to select a suitable
comparison function, as shown in the following example. In
the example, each call to compare() occurring within the
sort() function will likely result in an indirect function
call.

int compare(int a, int b)
{

return a < b;
}
sort(array, &compare);

In addition to indirect branches explicitly performed by
programmers, the compiler sometimes incorporates addi-
tional indirect branches without the programmer’s explicit
instruction. For example, in C++, calls to object functions
often incorporate indirect calls, particularly when inheritance
is applied. The following is an example of a scenario where
the compiler might insert an indirect call, even without the
presence of function pointers.

Vehicle *car = new Car();
car->drive();

The branch target injection exploit relies on influencing
the speculated targets of indirect branches which allows the
processor to execute instructions ahead of time. Under spe-
cific circumstances, attackers can manipulate the prediction
mechanisms to redirect speculative execution to unintended
target addresses.

Indirect JMP and CALL instructions consult the indirect
branch predictor to direct speculative execution to the most
likely target of the branch. By influencing these mechanisms,
the attacker misleads the processor into speculatively exe-
cuting instructions from the malicious code in a location
accessible to the target process.

Indeed, the indirect branch predictor is a hardware struc-
ture, mostly transparent to the operating system, which is
used to predict the destination of indirect branches ahead of
actual instruction execution. The execution of malicious code
through speculative means might allow accessing sensitive
data or performing unauthorized operations. Although the
outcomes of speculative execution are eventually disregarded
if the speculation was incorrect, the processor’s cache and
other side channels could still expose sensitive information
to the attacker [21] [23].

III. MEMORY SAFETY TECHNIQUES

A. RESEARCH SCOPE
In general, the purpose of a technique for memory safety
is to prevent the attacker from writing to or reading from a
protected memory area by exploiting vulnerabilities in the
software or the hardware. Despite the amount of research
in developing countermeasures, only a few protection tech-
niques actually end up being implemented at the production
level. Indeed, many of them remain research prototypes,
often due to excessive overhead or complexity.

Requirements. Due to the variety of solutions proposed in
the literature, this work focuses on techniques that satisfy the
following requirements:

• The proposed technique has been adopted in production
by one or more open-source operating systems, whether
they are general-purpose operating systems (GPOS) or
real-time operating systems (RTOS);

• At the production level, one or more toolchains (such
as GCC and Clang) for C-family languages (C, C++,
Objective-C, etc.) have provided support for the pro-
posed technique

• The technique, if hardware-assisted, is fully imple-
mented at the processor level, without requiring any
specific external mechanism such as a Trusted Platform
Module (TPM) or other specialized modules that are
only available on certain commercial platforms.

Threat models. We have listed a set of assumptions that
we used to restrict the scope of our research, setting the
bounds of the possible threat model with the assumed capa-
bilities of the attacker. The survey does not cover protection
techniques against other types of threats that require different
capabilities.
Software threat model:

• The user space memory content and layout are readable
by the attacker;

• Memory errors (such as buffer overflows or dangling
pointers) can be present inside the program due to bad
programming practices or vulnerabilities in imported
dependencies;

• The attacker can write non-code segments by exploiting
a memory error or other vulnerabilities.

Hardware threat model:
• The hardware is trusted (e.g., the hardware has not been

substituted with faulty or modified hardware);
• The attacker cannot obtain physical access to the device;
• Hardware glitches cannot occur (i.e., unexpected faulty

behaviors occurring spontaneously or by tampering with
the hardware and leading to temporary vulnerability to
certain attack classes).

Taxonomy and timeline. Figure 2 provides a visual tax-
onomy of the techniques investigated by this survey. Figure 3
provides a timeline starting from 1985 representing the years
in which the most relevant countermeasures discussed in this
survey were first developed.

In the following, relevant techniques are presented, starting
from techniques implemented fully in software before mov-
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Techniques

Full-SW

Run-time

Checkers Stackprotector

Sanitizers

AddressSanitizer

Heap Consistency Checking

PointerObfuscation

ShadowCallStack

Compile-time

Checkers LibcFortify

Sanitizers

Mitigations
Address Space Layout Randomization (ASLR)

Retpoline

HW-Assisted

Run-time

Checkers

Intel Memory Protection Extensions (MPX)

Execute-disable-bit (XN-bit)

ARM Pointer Authentication (PA)

ARM Branch Target Identification (BTI)

ARM Memory Tagging Extension (MTE)

Intel Control-flow Enforcement Technology (CET)

Intel Linear Address Masking (LAM)

Memory Protection (MP Unit)

Memory Virtualization (MM Unit)

Sanitizers
Hardware-assisted AddressSanitizer (HWASan)

ARM Capability Hardware Enhanced RISC Instructions (CHERI)

Compile-time

Checkers

Sanitizers

Mitigations

FIGURE 2. Taxonomy of the considered protection mechanisms.

1985 1990 1995 2000 2005 2010 2015 2020

1987
Memory Management Unit (MMU)

2015
Intel Memory Protection Extensions (MPX)

1999
Execution Disable

2016
ARM Pointer Authentication (PA)

2017
ARM Branch Target Identification (BTI)

2018
Memory Tagging Extension (MTE)

2017
Intel Control-Flow Enforcement Technology (CET)

1994
Memory Protection Unit (MPU)

1998
Pointer Obfuscation

2001
Address Space layout Randomization (ASLR)

2004
LibcFortify

2002
Heap Checking

2004
Stack Protector

2012
Address Sanitizer

2018
Retpoline

2015
Shadowstack

2018
Retpoline

2018

Hardware-assisted AddressSanitizer (HWASan)

2012

ARM Capability Hardware Enhanced RISC Instructions (CHERI)

2017
ARM pointer authentication (PA)

2020
Intel linear address masking (LAM)

FIGURE 3. Timeline of protection techniques.
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ing to hardware-assisted countermeasures requiring specific
functionality at the processor level.

B. FULL SOFTWARE PROTECTIONS
1) Runtime checkers
StackProtector: The first proposal of a mechanism to pre-
vent stack overflow attacks dates back to 1998, when Cowan
et al. [24] presented StackGuard, which was then released as
a set of patches for the GCC compiler toolchain. The main
idea of StackGuard is to place a randomly generated integer,
called stack canary, between any stack-allocated buffers and
the return address saved on the stack. Then, before a routine
uses the return pointer on the stack, the value of the canary
is checked to make sure that it has not been changed This
makes it more difficult to correctly execute a stack overflow
attack, because overwriting the return pointer by exploiting a
stack overflow vulnerability would also require overwriting
the value of the stack canary. The terminology is due to an
analogy with coal mine canaries, given that stack canaries are
used to determine whether it is safe to carry on the execution
of the program.

At the beginning of the 2000s, Hiroaki Etoh [25] from IBM
implemented ProPolice, improving the idea of StackGuard
by placing buffers after local pointers and function arguments
in the stack frame. In 2005, Richard Henderson suggested a
less intrusive implementation of the mechanism [26], which
has been included as a compile option in GCC starting with
version 4.1 [27].

This implementation has been optimized over the years
and is now tunable to enable management of performance
tradeoffs [28], but still retains the same overall working
principle. Indeed, the current version of the GCC stack pro-
tector works by inserting stack canaries on the stack frame of
certain functions and is still used today due to its simplicity
and low runtime overhead. In the current implementation,
as illustrated in Figure 4, the canary is placed right after
local variables, protecting both the old frame base pointer
and the return addresses from direct overflows. Furthermore,
the mechanism arranges the local stack variables to ensure
char buffers are always allocated next to the canary. This
assumption prevents a direct overflow from corrupting other
local variables.

Dang et al. [29] reported the results of an experimental
evaluation of the overheads incurred when using the GCC
stack protector, and found that when protecting all functions
it can reach a cost of up to 10% overhead, expressed in terms
of additional CPU time.

2) Runtime sanitizers
AddressSanitizer: The AddressSanitizer (also known as
ASan) is an open-source memory error detector originally
introduced by Serebryany et al. from Google [30]. ASan
works as a compiler instrumentation module and is currently
implemented in Clang (starting from version 3.1 [31]) and
GCC (starting from version 4.8 [32]). ASan targets the
most common instruction set architectures, including x86

Saved PC

Saved FP

Canary

Local
variables

….
….

Higher 
addresses

Lower 
addresses

Stack grows 
downwards

FIGURE 4. Conventional stack frame layout when stack protector is enabled.

and ARM, both in their 32-bit and 64-bit variants. The tool
consists of an additional compiler pass and a related runtime
library. It was designed to find and catch memory errors such
as use after free, stack and heap overflows, use-after-return
or use-after-scope vulnerabilities.

The basic idea of ASan is to divide the virtual address
space into two disjoint classes, the main application memory
(Mem) and the shadow memory (Shadow). The regular appli-
cation code uses the main application memory. On the other
hand, shadow memory consists of a memory area hidden
from the application and used to record information about
the main memory. The shadow memory contains the shadow
values, namely a set of shadow bytes. Shadow bytes are
mapped to one or more bytes in the main memory. ASan
maps 8 bytes of the application memory into 1 byte of the
shadow memory. Therefore, the two memory classes have a
correspondence built so that the shadow memory mapping
(called mem_to_shadow) can be computed efficiently.

ASan also introduced the idea of poisoned bytes. Poisoned
bytes (or redzones) are memory areas that cannot be refer-
enced. ASan runtime library can detect accesses to red zones;
hence, the wider the red zone, the larger the overflows or
underflows that will be detected. Poisoning a byte of the
memory will result in a particular value written into the
corresponding shadow memory.

During the compiler pass, functions such as malloc and
free are replaced with a customized implementation that
allocates extra poisoned bytes around the allocated memory
region. Furthermore, each memory access that involves a
reference to the pointer is transformed. The memory around
the area accessed is poisoned, too.

To make a simple example, suppose that the program
accesses a pointer as follows:

*address = ...; // or: ... = *address;

If the same program is instrumented by means of ASan, the
compiled code will result in the following:
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shadow_addr = mem_to_shadow(address);

if (shadow_is_poisoned(shadow_addr))
{

reportError(address);
}

*address = ...; // or: ... = *address;

That instrumentation causes a runtime error report when
the accessed address is not legal.
Heap Consistency Checking: Heap Consistency Check-
ing [33] is an extension of the libc library to help de-
bug and detect memory-related errors in C programs by
performing consistency checks on allocated dynamic mem-
ory blocks. These consistency checks, implemented in the
libc_malloc_debug library, aim at detecting errors re-
lated to memory management. For example, they can iden-
tify if a memory block is freed more than once or if the
bookkeeping data structures preceding an allocated memory
block are corrupted. To enable the consistency check, the
programmer must call the mcheck() function before per-
forming a memory allocation with malloc(), and preload
the malloc debug library. The mcheck() function installs
debugging hooks for the memory-allocation functions. These
hooks enable occasional consistency checks on the state
of the heap. Linking a program with the -mcheck flag
inserts an implicit call to mcheck() (with a NULL argu-
ment) before the first memory allocation function call. The
mcheck_pedantic() function is similar to mcheck(),
but it performs checks on all allocated blocks whenever any
memory allocation function is called. However, this thorough
checking can significantly slow down the program’s execu-
tion. If the system detects an inconsistency in a heap while
performing the checks, a user-defined function provided is
invoked. as in the following example:

mcheck();
p = malloc(N);

free(p);
free(p); // Aborted (block freed twice)

The usage of additional consistency checks, such as those
provided by libc_malloc_debug, can help prevent the
exploitation of numerous vulnerabilities, especially when
used in conjunction with a memory allocator debugging
tool [34].
Pointer Obfuscation: Pointer obfuscation encompasses a
range of security techniques employed in common pro-
gramming languages that support explicit usage of pointers.
These methods play a crucial role in complicating the task
of discerning which function is invoked when a function

pointer is utilized. Their primary objective is to obscure both
pointers and memory addresses, rendering it challenging for
potential adversaries to anticipate or manipulate these critical
elements.

One such technique is pointer encryption, where pointers
are encrypted before being stored in memory and decrypted
only when loaded into CPU registers. This method signifi-
cantly complicates an attacker’s ability to interpret or manip-
ulate pointer values [35].

Another approach to obfuscate function pointers is the cre-
ation of a globally accessible array to store pointers for each
function. This technique replaces conventional function calls
by utilizing array indexing to access the relevant function
pointer, ensuring the execution of the desired function [36].

These obfuscation techniques can be fortified with supple-
mentary methods, including value encoding/aliasing and data
structure/code obfuscation, to further mask the underlying
structure of the function pointer [37]–[40].
glibc fortification: The FORTIFY_SOURCE macro, offered
by the GNU C library (glibc), provides a lightweight form of
protection against buffer overflows by adding an extra vali-
dation layer to glibc functions that operate on memory and
strings. The macro can be set to three different levels. When
the macro is enabled, the number of bytes that will be copied
from a source to a destination during certain operations are
computed in advance and then checked during the memory
copy operation. For instance, when using strcpy() to
copy the contents of a string to another memory location,
the macro calculates the size of the data being copied. If
an attacker tries to copy more bytes than can fit into the
destination buffer, the macro detects this attempt and halts
the execution of the program. The macro was first introduced
in 2004 by Red Hat engineers as a set of GCC patches [41].
Then, after being merged in the GCC mainline, it is still
developed and maintained by Red Hat in GCC/Clang on
Linux [42]. The implementation of a function fortified with
FORTIFY_SOURCE is conceptually similar to a wrapper
function like the following:

strncpy(d, s, n)
{

d_sz = __builtin_object_size(d);

if (d_sz == ESTIMATE_FAIL)
// built-in fallback policy
return;

if (d_sz < n)
__chk_fail();

else
__original_strncpy(d, s, n);

}

In the example, the strncpy() wrapper accepts three
parameters: a pointer to the destination memory buffer (d),
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a pointer to the source memory buffer (s), and the number
of bytes to be copied (n). Then, if the size of the des-
tination buffer is smaller than the number of bytes to be
copied from the source buffer, then the copy operation is
aborted. Otherwise, the original version of strncpy(),
__original_strncpy(), is invoked.

The core functionality is based around the object size
built-in function (__builtin_object_size), which
returns a constant estimate for the size of an object,
computed at compile time. A dynamic built-in function
(dynamic_object_size) is provided in the LLVM com-
piler toolchain, starting with version 9 [43]. This function is
used in substitution to the constant object size function when
the protection level of FORTIFY_SOURCE is set to 3, which
is the maximum level. FORTIFY_SOURCE levels 1 and 2
rely on constant object sizes; therefore, the runtime overhead
is negligible. On the other hand, FORTIFY_SOURCE with
protection level 3 uses dynamic expression computation.
Given that computing the object size can become arbitrarily
complex depending on the data structures selected by the
programmer, the runtime overhead can also increase signifi-
cantly with an increase in object complexity.

An alternative to FORTIFY_SOURCE, named OpenOSC
(which stands for Open Object Size Checking), was proposed
by Cisco engineers [44]. OpenOSC and FORTIFY_SOURCE
are both built upon the compiler’s built-in function to de-
termine object size, thus provide equivalent memory over-
flow detection and protection capabilities. Although the two
protection mechanisms can coexist in a Linux-based system,
each specific package can only be compiled with either
OpenOSC or FORTIFY_SOURCE protection, but not both.
ShadowCallStack: ShadowCallStack is a compiler instru-
mentation pass designed primarily for the ARM 64-bit ar-
chitecture (aarch64), aimed at safeguarding programs against
return address overwrites, typical of stack buffer overflows.
ShadowCallStack is available for both GCC and Clang.
When ShadowCallStack is enabled, the function’s return
address is stored into a separately allocated shadow call
stack during the function prologue of each non-leaf function.
Then, the return address is retrieved from the shadow call
stack during the function epilogue. The return address is also
stored on the regular stack to ensure compatibility with stack
unwinding, but remains otherwise unused by the function call
and return mechanisms.

The aarch64 implementation of ShadowCallStack is con-
sidered ready for production use and has been integrated into
the Android libc runtime. An implementation of Shadow-
CallStack for the x86_64 architecture was initially provided
in LLVM but exhibited critical performance and security
shortcomings, leading to its removal from LLVM starting
with version 9 [45].

3) Compile time mitigations
Retpoline: Return trampoline (Retpoline) is a protection
measure against branch target injection exploits, primarily
targeting indirect branches. These indirect branches are pre-

dicted using information from prior branch executions, and
the attack in question involves tampering with the execution
of such indirect branches, like the JMP instruction, to ex-
tract sensitive data that resides outside the user’s authorized
permissions. This sensitive data could include confidential
cryptographic keys, and it’s achieved by influencing the
anticipated destinations of these indirect branches [46].

Consider the following pseudo-example, where a jump is
executed to an instruction address stored in the %rax register.
The retpoline sequence functions through multiple stages
to disentangle speculative execution from non-speculative
execution:

// ...
// indirect call instruction
call escape_speculation

.non_vulnerable_sequences:
pause ; LFENCE
jmp non_vulnerable_sequences

.escape_speculation:
mov %rax, (%rsp)
ret

The call escape_speculation instruction pushes
the address of non_vulnerable_sequences onto the
stack and the Return Stack Buffer (RSB). Following, the
mov instruction writes over the return address stored on the
stack. At this point, there is a divergence between the in-
memory stack and the RSB. If the processor speculates, it
utilizes the RSB entry it created and jumps to "pause"
where it becomes trapped in an infinite loop. Eventually, the
processor realizes that the speculative return does not match
the in-memory stack value, leading to the halt of speculative
execution [47]. The performance assessment of retpoline
indicates that the instructions have a negligible impact on
overall performance, a factor heavily contingent on the spe-
cific implementation strategy of a given architecture [47],
[48].
ASLR: Address Space Layout Randomization (ASLR) is a
technique of randomizing key data area positions within a
process’s address space. By doing so, ASLR makes it difficult
for an attacker to predict the location of specific memory
regions, such as exploited functions and makes it harder for
them to carry out successful attacks. ASLR works by rear-
ranging the positions of important data areas in a process’s
address space. These areas typically include the base of the
executable, the stack, the heap, and libraries. By randomizing
their positions, ASLR ensures that these key components are
located at different memory addresses each time the process
is run. The concept of ASLR was first introduced by the
Linux PaX project, which coined the term and released the
initial design and implementation of ASLR as a patch for the
Linux kernel in July 2001 [49]. The main goal of ASLR is
to increase the security of a system by significantly reducing
the likelihood of successful attacks. Since an attacker needs
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to know the exact memory addresses of specific components
to exploit vulnerabilities, the randomization introduced by
ASLR makes it highly improbable for them to guess the
correct locations. By increasing the search space and making
it harder to predict memory layouts, ASLR adds an extra
layer of defense against memory-based attacks.

ASLR is highly effective against many attacks; however,
since the majority of modern processors have at least one
shared level of cache, several research papers showed that
ASLR is fundamentally breakable on modern cache-based ar-
chitecture [50]–[52]. As a result, an attacker can derandomize
virtual addresses of a victim’s code and data by locating the
cache lines that store the page-table entries used for address
translation.

C. HARDWARE-ASSISTED
The relevance of security in modern operating systems
pushed chip designers to introduce several security-related
hardware facilities in their processors. Historically, hardware
vendors introduced a general memory protection mechanism
(e.g., MMU, MPU). In the last year, on the other hand, each
hardware manufacturer has tried to introduce a transparent
and lightweight mechanism to enforce memory protection
and control-flow integrity. Some relevant examples are ARM
Pointer Authentication or Intel Control-flow Enforcement,
detailed in the following section.

1) Runtime checkers
ARM Pointer Authentication: ARM Pointer Authentication
is a hardware feature ARM includes in version 8.3 of their
ARMv8 processor architecture [53]. In a nutshell, ARM’s PA
works by cryptographically authenticating the content of a
register before using it. Indeed, it is conceived as a protection
against modification of code pointers such as return addresses
stored in memory. For instance, PA represents a valuable
protection mechanism to ensure that functions only return to
legal locations as expected by the program according to the
CFG, hence preventing stack overflow attacks.

In 64-bit architectures, not all 64 bits of a pointer are used
to address memory. Typically, a smaller number of bits, such
as 48, are sufficient to address the entire memory space.
This means that a significant portion of the 64-bit pointers
remains unused. For example, on an ARMv8-A Linux kernel
(aarch64), only the least significant 48 bits of a pointer are
used for addressing. The ARM’s PA implementation takes
advantage of the unused most significant bits of memory
addresses. It uses a portion of these bits, specifically 16 bits,
to store a Pointer Authentication Code (PAC). PA embeds
an authentication code, the PAC, within the authenticated
pointer itself.

The PAC is a cryptographic checksum obtained by truncat-
ing the QARMA algorithm’s output, a lightweight tweakable
block cipher. QARMA ensures authenticity and integrity
through tweaks, where the permutation computed by the
algorithm on the plaintext depends on a secret key and
an additional salt value. The PAC is computed using three

inputs: (i) the memory pointer value to be authenticated, (ii)
a secret key stored in dedicated processor registers, and (iii)
context information that specifies where the authenticated
pointer can be used. An example of context information is
the stack pointer, which associates the authenticated pointer
with the stack frame of a specific function.

Pointers that include both the memory pointer and the
PAC are referred to as signed pointers. Before using signed
pointers, they need to be authenticated. The authentication
process involves recomputing the PAC for the pointer using
the key and context information and comparing it with the
PAC stored in the signed pointer. This ensures the integrity
and validity of the pointer.

To support the creation and authentication of PACs,
ARMv8.3-A introduced a set of processor registers to store
the required keys. The specification defines five 128-bit reg-
isters for this purpose. The keys are categorized as type A or
B, and their specific semantics are left to the programmer to
define. The ARMv8.3-A architecture extends the instruction
set architecture (ISA) with additional instructions to facilitate
the creation and authentication of PACs. Two sets of in-
structions, PAC* and AUT*, are introduced for this purpose.
The PAC* instructions are used for creating PACs, while the
AUT* instructions are used for authenticating PACs. Linux
and GCC/LLVM support ARM Pointer Authentication. An
attempt to extend the support was proposed by various re-
searcher groups [54], [55]. The mechanism is weak against
timing attacks [56]. An attempt to emulate the mechanism to
support older processors was proposed and implemented [57]
on top of FPGA-enabled SoCs.
ARM Branch Target Identification: The BTI extension,
instead, introduced the BTI instruction [58], which must be
used to mark valid targets of indirect branches. When the
memory page is set as guarded, the processor trap to an
exception if a control-flow instruction performs an indirect
branch to any instruction other than BTI. The RET is not
considered an indirect branch control-flow instruction; thus,
the BTI mechanism does not protect it. Furthermore, direct
branches and calls are also left unprotected as the code
segment is assumed to be unwritable. The BTI mechanism
can secure indirect branches, enforcing that the destination
location of the branch contains only instructions from an
acceptable list. Combining both instruments allows for a
complete forward-backward control-flow integrity, reducing
the possibility of an attacker hijacking the execution flow to
execute arbitrary code.
Execution Disable XN: Since version 6, ARM introduced
the XN (eXecute-Never) [59] bit feature, which prevents
the execution of bytes from specific memory ranges directly
by hardware. Such protection removes the attacker’s ability
to inject arbitrary code e.g., into the data memory of the
application, and then redirect the flow to execute this payload.
For our evaluation, we directly set XN options with appro-
priate flags on the linker script (.ld file) provided to the
compiler, marking regions that contain data as not executable.
The compiler already supports data execution prevention by
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default. Therefore, it has been necessary to specify the oppo-
site, i.e., execution from data sections has been specifically
allowed when we needed to evaluate a vulnerable setup. A
similar feature is provided by other chip designers, including
Intel [60], which offers the Execute Disable Bit (XD-bit),
while Advanced Micro Devices (AMD) calls it the NX-bit.
ARM MTE: ARM Memory Tagging Extension (MTE)
is a security feature introduced in ARMv8.5, providing
hardware’s memory tagging (memory coloring) mechanism.
MTE enhances on the safety of memory vulnerabilities (e.g.,
buffer overflow) by associating tags for each memory oper-
ation (e.g., pointer referencing a memory location). On each
load/store operation, the associated tags for the memory and
the referenced address are validated for uniformity, and upon
mismatch, memory violation is alerted.

The implementation of MTE is only available on 64-
bit systems, as the top byte of an address is ineffective in
address translation. MTE design divides physical memory
into 16-byte granules with 4-bit associated tags. These 4-
bit tag values are associated with any memory operation
targeting that specific memory area. MTE can be used to de-
tect/mitigate memory errors like buffer overflows, use-after-
free, etc., in memory-unsafe languages such as C and C++.
To take advantage of MTE, software stacks must be updated
to guarantee proper functionality and interoperability. For
example, in Glibc, functions such as malloc, free, realloc
are rewritten to interact with tag values, and/or operating
system kernels (e.g., Linux) have provided support for MTE
capabilities [61], [62].

As per specification, MTE introduces a set of new pro-
cessor registers to configure and retrieve information on the
tagging mechanism. MTE can offer two modes of operation:
synchronous and asynchronous. Following any tag mismatch,
a hardware exception is raised in the synchronous mode,
allowing precisely determining the faulty instruction. This
mode provides better granularity in error detection while
paying a higher performance overhead. On the contrary,
when the configuration is set to be asynchronous, certain
information is accumulated in system registers (TFSR_ELx),
enabling the system to react for tag mismatches in an asyn-
chronous manner (e.g., in context switch). This allows reduc-
ing the overhead at a cost of a loss in accuracy (the violations
are isolated to a particular thread of execution) [63], [64],
although in terms of performance, some CPUs demonstrate
comparable MTE performance between stricter and less strict
tag checking modes, making a small performance slowdown
acceptable.
Intel MPX: Intel MPX (Memory Protection Extensions) [65]
was a set of extensions introduced by Intel for the x86
instruction set architecture. It aimed to enhance software
security by providing runtime checks on pointer references
that could be maliciously exploited due to buffer overflows.
Intel MPX, with compiler [66], runtime library, and operating
system support [67], claimed to enhance the security of soft-
ware by checking pointer references whose normal compile-
time intentions are maliciously exploited at runtime due to

buffer overflows aimed to detect and prevent runtime memory
corruption vulnerabilities by validating pointer accesses.

The extensions introduced new bounds registers and in-
struction set extensions that operated on these registers. Ad-
ditionally, there were bound tables to store bounds beyond
what could fit in the bounds registers. Intel MPX utilized
four new 128-bit bounds registers. Each of these registers
stored 64-bit values representing a buffer’s lower and upper
bound. Specific instructions were provided to store (bndmk)
and check (bndcl, bndcu) values from those registers.
The architecture also included configuration registers and a
status register. These registers facilitated the management of
bounds, provided information about memory addresses, and
reported error codes in case of exceptions.

Intel MPX utilized a two-level address translation ap-
proach to store bounds in memory. The top layer was a
Bounds Directory (BD) created during application startup.
Each BD entry was either empty or contained a pointer to
a dynamically created Bounds Table (BT). The BT contained
a set of pointer bounds and the linear addresses of the
pointers. Special instructions like bndldx (bounds load) and
bndstx (bounds store) transparently performed the address
translation and accessed bounds in the appropriate BT entry.

// Original code
type_t t[10]
type_t* pt = t;
type_t val;

for (i = 0; i < N; i++) {
pt = pt + i;
val = *pt;

}

// MPX enabled
type_t t[10]
t_b = bndmk t, t+79 // bound in bytes
type_t* pt = t;
bndcl t_b, pt // load lower bound
bndcu t_b, pt+7 // load upper bound
type_t val;

for (i = 0; i < N; i++) {
pt = pt + i;
bndcl t_b, pt
bndcu t_b, pt+7
val = *pt;
val_b = bndldx pt; // bound check

}
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However, despite its initial promise, Intel MPX faced sev-
eral flaws and limitations in its design. As a result, support for
Intel MPX has been deprecated or removed from most com-
pilers and operating systems. Intel officially listed MPX as
removed in 2019 [68]. Oleksenko et al. performed a detailed
root cause analysis of issues in the Intel MPX architecture de-
sign through a cross-layer dissection involving the hardware,
operating system, compilers, and applications [69], showing
program slowdown up to 2x.
Intel CET: Control-Flow Enforcement Technology (CET) is
a security feature developed by Intel [70] to enhance protec-
tion against exploits that target the control flow of running
programs, such as Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP). CET introduces two pri-
mary security mechanisms that can be individually enabled
for different privilege levels [71] [72].

• Indirect Branch Tracking (IBT): IBT is a feature de-
signed to mitigate against control-flow hijacking at-
tacks. It enforces that indirect branches within the pro-
gram (branches without fixed targets at compile time)
can only jump to valid and authorized destinations. This
prevents attackers from diverting the control flow to
arbitrary code locations. IBT introduces new instruc-
tions, ENDBR32/ENDBR64, to be used by the compiler
to mark legitimate targets for indirect jumps. These
instructions are decoded as NOP on legacy processors
to preserve backward compatibility. Indirect jumps not
marked by ENDBR32/64 will trigger an exception.
Separate state machines are used to track indirect calls
for both user and supervisor modes, and they can be set
to ’no_track’ to reduce system resource utilization.
Compilers also offer the option to limit the usage of
ENDBR instructions to reduce the attack landing surface
and code size.

• Shadow Stack (SHSTK): Shadow stack is a hardware-
managed stack created by the operating system along-
side the standard call stack and is unique for each priv-
ilege level. During execution, each CALL instruction
pushes the return address onto both stacks, and the RET
instruction pops these values from both stacks. This con-
figuration enables the generation of Controlflow Pro-
tection (CP) exceptions in cases of conflicting values,
providing protection against CFI attacks.

One notable advantage of CET lies in its seamless inte-
gration, requiring no code instrumentation by programmers.
Thanks to its negligible overhead, this method does not have
a significant impact on application performance [73]. More-
over, the incorporation of CET functionality into the Linux
kernel and mainstream compilers demonstrates its increasing
adoption and integration in development workflows.
Intel LAM: LAM, or Linear Address Masking [74], in-
troduces a modification to the validation process for 64-bit
linear addresses, enabling software to utilize the unaltered
address bits for metadata purposes. In the context of 64-bit
mode, where linear addresses consist of 64 bits, they undergo

translation using either 4-level paging (which translates the
lower 48 bits) or 5-level paging (translating 57 bits). The
upper bits of linear addresses are set aside for "canonicality."
A linear address is considered 48-bit canonical when bits 63
to 47 of the address are the same; it is 57-bit canonical when
bits 63 to 56 are identical. Importantly, any linear address
that is 48-bit canonical is automatically 57-bit canonical.
In scenarios where 4-level paging is active, the processor
mandates that all linear addresses used for memory access
must be 48-bit canonical. Similarly, 5-level paging ensures
that all linear addresses are 57-bit canonical. However, for
software applications that link metadata to a pointer, there
is a potential advantage in positioning metadata in the upper
(untouched) bits of the pointer itself. The challenge arises
from the requirement of canonicality enforcement, which
implies that software would need to mask the metadata bits
in a pointer to make it canonical before using it as a linear
address for memory access. LAM addresses this issue by
allowing software to employ pointers with metadata without
requiring manual masking of the metadata bits. With LAM
enabled, the processor automatically masks the metadata bits
in a pointer before using it as a linear address for memory
access.
ARM Cheri: Capability Hardware Enhanced RISC Instruc-
tions (CHERI) extends the Arm architecture with the primary
goal of bolstering security and memory protection efficiency
to address vulnerabilities widely exploited in computing
systems. CHERI diverges from conventional approaches by
introducing capabilities that are unforgeable and constrained
references for memory access. These capabilities are as-
sociated with every data object in memory, encompassing
information about the object’s type, bounds (defining the
address space within which the capability authorizes loads,
stores, and/or instruction fetches), permissions, and valid-
ity status. Additionally, CHERI introduces capability-aware
instructions that facilitate interactions with capabilities at-
tached to each object [75] [76].

It’s worth highlighting that CHERI is still in the research
phase and hasn’t yet seen full integration into commercial
systems. Consequently, it is designed to coexist with es-
tablished security practices and can serve as an additional
protective layer alongside traditional methods like segmen-
tation and paging. CHERI introduces two distinct operating
modes: (i) hybrid mode [77] and (ii) pure-capability mode
[78]. In "pure-capability" mode, the system exclusively relies
on capabilities for managing memory access, eliminating
the need for conventional memory protection mechanisms.
However, the transition to a pure-capability model may entail
software modifications, including adjustments (adoption &
recompilation) to the operating system and applications code
to benefit from this security model fully. The CHERI capa-
bility model implementation complexity is sufficiently low
for consideration on modern processors, and performance is
noticeably faster than weaker enforcement in software.

Moreover, the introduction of broader data pipelines has an
impact on reducing the system’s clock speed and degrading
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the overall computational performance. Woodruff et al. com-
pared the overhead introduced by the CHERI model against
different memory protection hardware techniques, such as
Intel MPX, in terms of memory footprint and the number of
memory references [78].
HWASan: Hardware-assisted AddressSanitizer (HWASan)
functions as a memory error detection tool similar to Ad-
dressSanitizer. It uses the hardware memory tagging feature
to reduce the memory consumption footprint of Address-
Sanitizer (AS) significantly. The fundamental idea behind
HWASan bears similarities to the coloring mechanism intro-
duced in memory tagging (MT) [61] wherein both pointers
and memory addresses are associated with a random tag
value. The validity of a memory access in HWASan hinges
on the matching of these tags between pointers and memory.
Its primary aim is to ensure the integrity of data and memory,
such as keeping addresses within predefined bounds and
preventing references of pointers after they have been freed.
To accomplish this, HWASan leverages the ARM architec-
ture’s Top-Byte-Ignore [79] feature, which enables the
insertion of compiler-time checks for load and store
operations. As an example, the tagging of heap memory
and pointers involves the use of a modified version of the
malloc function to instrument memory allocation and mon-
itor how that memory is utilized.

Consequently, proper compiler support is essential to in-
sert the requisite instructions, enabling memory checking,
and delivering detailed information about memory errors
[80] [81]. HWASan demonstrates strong compatibility with
existing code bases, particularly when compared to pure
hardware solutions. Nonetheless, it is important to highlight
that HWASan does introduce some CPU overhead, approx-
imately doubling the overhead in comparison to conven-
tional operations, along with a moderate increase in code
size and memory footprint (RAM) [82] [83]. An avenue for
improvement lies in optimizing compilers further to avoid
unnecessary tagging of variables that are not affected by such
bugs.

IV. EVALUATION
Over the years, researchers have designed several kinds of
protection techniques. Consequently, together with vulner-
ability databases, security testbeds were also developed to
measure the effectiveness of those defence techniques. While
most of defense methods can be evaluated from the point
of view of runtime overhead, no standard benchmark allows
assessing the effectiveness and robustness of a countermea-
sure. This section presents an overview of existing techniques
utilized for evaluating memory integrity techniques and a
qualitative comparison among the techniques surveyed in
Section III.

A. DATABASES OF FLAWED SOFTWARE
Several databases encompassing flawed software were cre-
ated over the years to test the effectiveness of protec-
tion techniques. The Software Assurance Reference Dataset

(SARD) [84] is a growing database maintained by the Na-
tional Institute of Standards and Technology (NIST), con-
sisting of approximately 170,000 test programs with a set
of known security flaws. These test cases include designs,
source code, and binaries from all the phases of the software
life cycle, mainly written in C, C++, Java, PHP, and C#
and covering over 150 vulnerabilities. The dataset includes
production, synthetic, and academic test cases. The dataset
intends to encompass various possible vulnerabilities, lan-
guages, platforms, and compilers. Users can view test cases
and suites via the SARD online interface or search for test
cases by vulnerability kind, name, size, keywords, and other
parameters. Many tests include non-vulnerable or benign
program code to test for false positives, in which flaws are
resolved in advance. Each test case is described in SARD
using metadata, encompassing most information regarding
the specific flaw or defect. Weaknesses are classified using
the Common Weakness Enumeration (CWE) ID and name.
The SARD database is archival, meaning that once a case is
added, it cannot be modified or removed. However, if there
are issues with a case, it may be tagged as deprecated and a
replacement can be added to supersede it. Among the SARD
database, the Juliet test suite [85], targeting the C and C++
languages, is one of the most relevant and comprehensive
datasets.

Another popular database was created by the Intelligence
Advanced Research Projects Activity (IARPA) in the context
of the Securely Taking On New Executable Software of
Uncertain Provenance (STONESOUP) project [86]. For that
project, MITRE created a test infrastructure and a test suite
consisting of test programs purposely containing memory
errors. In the database (which is currently available on the
SARD webpage, under the STONESOUP name), multiple
test cases are available for each class of vulnerability, and
relevant sets of benign and malicious inputs are provided
for each test case. This database was utilized to evaluate
numerous tools, including advanced prototypes developed
by Symantec [87]. While both the Juliet Test Suite and
IARPA STONESOUP Test Suite involve similar classes of
vulnerabilities, the Juliet Test Suite comprehends a broader
range of cases, while the latter is more tailored to evaluating
the security of software through dynamic analysis, especially
when dealing with data from untrusted sources (i.e. network,
file, etc.).

B. SYNTHETIC BENCHMARK SUITES
When assessing the resistance of defense mechanisms against
vulnerabilities, the absence of standard benchmarks poses a
challenge. A database of flawed software and vulnerabilities,
such as those mentioned above, can be used to construct cus-
tomized testbeds to evaluate resistance against a specific flaw
or vulnerability. However, this approach is lacking in terms of
generality and automation, as it heavily relies on the specific
subset of tests chosen for the evaluation. Therefore, besides
test databases, other research efforts have been spent into
trying to standardize test benchmarks for general-purpose
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computing and emerging embedded platforms through syn-
thetic benchmarking. Synthetic benchmarks, generally, are
benchmarking tools created artificially and run in a moni-
tored environment, to assess the performance or capabilities
of a solution. They offer a straightforward solution and an
easy setup, providing a standardized basis for comparing
different approaches. This not only simplifies the evaluation
process but also ensures consistent and comparable assess-
ments across different scenarios. The leading example is
represented by the Runtime Intrusion Prevention Evaluator
(RIPE), developed in 2011 by Wilander et al. [88] as an
extension of a previous prototype released in 2003. RIPE is
a synthetic testbed suite comprising more than 800 buffer
overflow patterns. The purpose of RIPE is to evaluate the
coverage of any given countermeasure by performing a range
of buffer overflow attacks and recording their success or
failure. RIPE has been used to demonstrate the effectiveness
of several tools and security techniques [89]–[91]. RIPE was
released under the MIT License to facilitate the comparison
between different countermeasures; however, it only supports
the i386 processor architecture.

Since the release of RIPE, a consistent number of de-
rived extensions and research works have been produced.
RIPE-ARM [93], released in 2020, is an implementation
of the RIPE benchmark targeting ARMv7 32-bit platforms.
Unfortunately, RIPE-ARM was not publicly released. In
2022, Calatayud and Meany [94] worked on a comparative
analysis of buffer overflow vulnerabilities in high-end IoT
devices. The authors modified the original RIPE by replacing
the architecture-specific shellcode for code injection attacks
implemented in RIPE with shellcode compatible with ar-
chitectures typical of the IoT domain, although still only
targeting 32-bit operating systems. The resulting framework,
however, is only compatible with a specific set of IoT plat-
forms and with the FreeRTOS operating system. Wang et
al. [95] presented a port of RIPE for platforms based on the
RISC-V architecture, for the purpose of evaluating a defense
technique presented in the same paper. Unfortunately, the
related source code is not publicly available. Roascio et
al. [96] presented Em-RIPE, a tool that extends the original
RIPE approach to ARM-based microcontrollers. The code
of Em-RIPE is publicly available2 and is organized as a
proof-of-concept for 32-bit ARM architectures, empowered
by the FreeRTOS operating system. The most recent ex-
tension of the RIPE benchmark is X-RIPE [97]. X-RIPE is
an overhaul of the original RIPE project to target multiple
processor architectures, with the objective of providing a
quantitative evaluation of the protection coverage offered
by a specific mechanism against buffer overflows. X-RIPE
supports i386, x86-64 and aarch64 architectures. These
quantitative benchmarking tools, however, are synthesized
testbeds, deliberately vulnerable with the sole purpose of
conducting attacks against themselves. Therefore, they pro-
vide a valuable benchmark only when dealing with basic

2https://github.com/RHESGroup/embedded-ripe

attack techniques. Compared to other approaches, they offer
no evaluation of complexity or performance. Therefore, they
can be used as automatic testing instruments only if coupled
with qualitative and performance evaluations.

C. QUALITATIVE COMPARISONS
Several works tried to compare defense techniques from the
qualitative point of view. Szekeres et al. [98] attempted to
organize the knowledge about various protection techniques
by setting up a general model for memory corruption at-
tacks, comparing different methods to help designers of new
protection mechanisms in finding the right balance between
effectiveness and efficiency. Another notable example is the
work by Kisore [99], which tried to formalize the general
requirements that a protection technique shall implement,
such as interoperability with legacy software, scalability, and
low overhead. Then, the set of requirements was applied to
evaluate well-known buffer overflow protection techniques
from the qualitative point of view, providing an overall sum-
mary of the strengths and weaknesses of each technique.

D. OUR COMPARISON - HYBRID APPROACH
When considered individually, qualitative and quantitative
approaches do not offer a complete way of evaluating a
technique. In Table IV-B, we provide a summary and com-
parison of the techniques presented in this work, from both
the quantitative and qualitative point of view. Note that it
was not possible to gather all the information for some of
the techniques due to missing hardware or lack of support by
evaluation existing tools.

V. FUTURE PERSPECTIVES
Throughout the years, software engineers have devised nu-
merous measures to address memory safety. The various
techniques presented in this survey represent only a tiny part
of the research and effort put in place by researchers and
companies during these years. This section delves into pivotal
insights and emerging trends regarding memory safety. From
hardware advancements to the rise of memory-safe program-
ming languages, evolving strategies for mitigating vulnera-
bilities are considered, and an overall outline is defined for
addressing memory safety concerns.

A. CURRENT LIMITATIONS AND FUTURE ROADMAP
Despite their widespread use, current techniques did not
completely solve the intrinsic problem of achieving mem-
ory safety in non-memory-safe programming languages. The
C programming language and its descendants are widely
utilized for compelling economic reasons, including their
remarkable compatibility with almost every processor archi-
tecture, the generation of efficient and transparent compiled
code, their ability to create compact code, adherence to ISO
standards, seamless access to hardware, proven reliability in
critical systems, as well as comprehensive support from a
wide range of tools. Moreover, most of the techniques dis-
cussed in this survey were not extensively adopted due to the
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need for specific software support or due to the performance
penalty caused by the additional runtime overhead.

Researchers and experts in the security domain are ex-
ploring several directions to solve the issue at its core.
In December 2023, the U.S. Cybersecurity and Infrastruc-
ture Security Agency (CISA) and other international cy-
bersecurity agencies published The Case for Memory Safe
Roadmaps: Why both C-Suite Executives and Technical Ex-
perts Need to Take Memory Safe Coding Seriously [100],
a report specifically designed to address the critical issue
of memory safety vulnerabilities in programming languages,
encouraging software manufacturers to prioritize the use of
memory-safe programming languages. In the report, some
hardware-assisted techniques presented in the present survey
are strongly suggested as a reasonable trade-off between se-
curity and performance. While some of these hardware-based
mechanisms are still transitioning from research prototypes
to deployed products, CISA and other experts anticipate their
significance in an overarching strategy to eliminate memory
safety vulnerabilities. Secondly, the usage of memory-safe
programming languages is strongly encouraged. Unlike other
mitigation strategies that demand ongoing maintenance, such
as developing new defenses or sifting through vulnerability
scans, using a memory-safe programming language requires
no additional effort concerning memory safety once the code
is prepared. Until a few years ago, the software development
industry lacked a programming language that combined the
flexibility and performance of C with built-in memory safety
assurances. In 2006, a Mozilla software engineer initiated
the development of Rust, a new programming language that
achieves memory safety through a unique ownership system
where variables follow ownership rules and lifetimes are ex-
plicitly managed. This approach effectively eliminates com-
mon memory-related issues, such as null pointer dereferences
and data races. Additionally, the Rust compiler enforces
strict rules at compile time, ensuring that references adhere
to a set of safety guarantees, making it a robust choice
for systems programming with minimal runtime overhead.
Rust version 1.0 was officially released in 2015, gaining
widespread adoption by prominent software organizations
such as Amazon, Facebook, Google, Microsoft, Mozilla, and
other key industry players. Since version 6.1 of the Linux
kernel, Rust has been officially integrated into the kernel
development [101]. Other researchers, influenced by Rust,
also proposed extensions to the C language to incorporate
memory safety checks at compile time [102].

B. INFLUENCE OF EMERGING TECHNOLOGIES
1) Machine learning
With the rise of deep learning, machine learning algorithms
have quickly gained prominence in various domains, includ-
ing cybersecurity, where the ability to analyze large datasets,
learn recurrent patterns, and make precise predictions can
effectively enhance security measures [103]–[108]. Typical
machine learning techniques adopted in cybersecurity in-
clude deep neural networks (DNNs), recurrent neural net-

works (RNNs), convolutional neural networks (CNNs), deep
belief networks (DBNs), and restricted Boltzmann machines
(RBMs), often arranged in autoencoder architectures [103],
[109]. A well-known application of machine learning in
cybersecurity consists in detecting anomalies in network
intrusion detection systems (NIDS), where deep learning
techniques are employed to monitor a computer network and
detect anomalous or spurious traffic, which may indicate the
presence of a cyberattack. Such techniques achieve an accu-
racy level which often surpasses that of traditional signature-
based intrusion detection systems [107], [108], [110]–[114].

Deep learning techniques have also been widely adopted in
system-level malware detection to accompany or potentially
supersede traditional signature-based methods [104]–[106],
[115]–[117].

In the context of memory integrity techniques, recent in-
vestigations have focused on applying machine learning tech-
niques to mitigate return-oriented programming and achieve
control flow integrity. On this front, Pfaff et al. [118] intro-
duced HadROP, a ROP attack detection technique leveraging
a support vector machine (SVM) learning method trained on
statistical data extracted from hardware performance coun-
ters. Elsabagh et al. [119] presented EigenROP, an unsuper-
vised anomaly detection mechanism to defend against ROP
attacks that uses microarchitecture-agnostic program features
(e.g., memory locality, register traffic, memory reuse dis-
tance) and leverages a dynamic instrumentation framework
(Intel Pin). Li et al. [120] later presented ROPNN, which
surpasses the performance of EigenROP using a CNN-based
classifier with minimal runtime overhead and is also effective
against attack patterns not represented in the training dataset.
DeepCheck [121] is a CFI technique to classify Intel ISA
execution traces by extracting relevant execution states using
the Intel Processor Trace (IPT) performance analysis feature
and processing them with a DNN classifier. Although the
classifier used in DeepCheck is trained on data extracted from
the Control Flow Graphs (CFGs) of numerous programs,
CFG information is not required for classification at run-
time. Like DeepCheck, HeNet [122] is a CFI technique that
leverages IPT to analyze the execution state of a program,
but adopts a hierarchical ensemble of DNNs to enhance
ROP detection accuracy. More recently, Koranek et al. [123]
developed specialized LSTM models to analyze RISC-V ISA
execution traces and determine whether they were subject to
ROP exploitation.

Security-oriented program analysis is another significant
branch of security research leveraging machine learning
applications. In this domain, static program analyzers are
enhanced with machine learning techniques to detect and
analyze vulnerabilities related to control flow and data flow
[104], [124]–[127].

A significant challenge in adopting machine-learning tech-
niques in cybersecurity is the generation of relevant datasets
to train, validate, and test deep neural networks. In fact, in
order to be effective, such data should be compatible with the
selected learning method in terms of learnable features and
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should also be representative of a large number of possible
attack patterns to enable a model to generalize [104]. There-
fore, investigating suitable techniques to generate relevant
datasets is crucial to most of the works discussed above.

2) Quantum computing
Quantum computing is another emerging technology that
is having a strong impact on the domain of cyber-security.
Traditional cryptographic protocols (e.g., public-key cryp-
tosystems such as RSA [128]) often rely on the assumption
that traditional computers cannot efficiently solve complex
computing problems such as factorization of large prime
numbers. However, a number of quantum algorithms were
devised to efficiently solve such problems when executed
on a large enough quantum computer. For instance, Shor’s
algorithm [129] can quickly solve integer factorization,
thus easily breaking the RSA cryptosystem. The potential
prospect of powerful quantum computers becoming widely
available has led to the need for developing quantum-resistant
cryptographic protocols, in what is known as post-quantum
cryptography [130], [131]. When considering the specific
domain of memory integrity, which is the subject of this
survey, the impact of quantum algorithms mostly pertains
to the requirement of ensuring that any defense technique
utilizing encryption or hashing as part of its specification
(e.g., ARM Pointer Authentication [53]) is updated to employ
post-quantum cryptographic protocols [130], [131].

VI. CONCLUSIONS
This paper presented a survey on memory safety techniques
for memory-unsafe languages ranging from older mecha-
nisms to state-of-the-art solutions, thus providing a compre-
hensive overview of the advancements in the field during the
last twenty years. A comparative analysis of the investigated
techniques was presented to assess their applicability, iden-
tifying areas where further research and improvements are
required. Furthermore, a roadmap for memory safety in the
context of future research was also provided, highlighting
current challenges and emerging trends. Overall, this survey
highlighted that memory corruption vulnerabilities still per-
sist in modern software and constitute a serious security issue
after years of specialized research. Each specific software
product may require a unique investment strategy to address
the vulnerabilities related to memory-unsafe code and min-
imize the related security risks, at the cost of a potential
decrease in performance. While there is no universal solution
to enhance the security of modern software systems, it is
crucial for software developers and hardware manufacturers
to be aware of the related problems and properly address
them by employing the most recent security countermeasures
and development strategies.
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