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Rule-based Out-of-Distribution Detection
Giacomo De Bernardi, Sara Narteni, Enrico Cambiaso and Maurizio Mongelli Member, IEEE

Abstract—Out-of-distribution detection is one of the most
critical issue in the deployment of machine learning. The data
analyst must assure that data in operation should be compliant
with the training phase as well as understand if the environment
has changed in a way that autonomous decisions would not be
safe anymore. The method of the paper is based on eXplainable
Artificial Intelligence (XAI); it takes into account different
metrics to identify any resemblance between in-distribution and
out of, as seen by the XAI model. The approach is non-parametric
and distributional assumption free. The validation over complex
scenarios (predictive maintenance, vehicle platooning, covert
channels in cybersecurity) corroborates both precision in detec-
tion and evaluation of training-operation conditions proximity.

Impact Statement—Many sectors these days address safe AI:
automotive (SOTIF), avionics (SAE G-34/EUROCAE WG-114),
ISO/IEC (JTC 1/SC 42) and healthcare. Safe AI means under-
standing under which conditions autonomous actuations may
lead to hazards. The impact of research here is to make AI
aware of this, thus understanding under which conditions it
may operate without detrimental effect to the human or the
environment. Examples may involve the prevention of dangerous
manoeuvres by autonomous cars, inaccurate clinical diagnosis by
artificial doctors, wrong decision making in cyberwarfare and in
many other sectors (energy, finance). The theoretical analysis
here is empowered by computational and incremental groupwise
analysis in order to increase the readiness level of the proposed
approach.

Index Terms—Out-of-distribution detection, eXplainable AI,
mutual information, open data.

I. NOTATION AND LIST OF ACRONYMS
OoD Out of distribution
ODD OoD detection
ML Machine learning
XAI eXplainable Artificial Intelligence
TR Training set
OP Operational set
tri i-th training subset
opi i-th operational subset
ns number of data samples in a split
Nr Number of rules
Ntr Number of training splits
Nop Number of operational splits
Rtr Training reference ruleset
ri i-th rule
hj
i j-th hit for the i-th rule
lp lp norm
µI Mutual information

WµI Weighted mutual information
RBI Rule based information
H Entropy

The authors are with the Cnr-Istituto di Elettronica, Ingegneria
dell’Informazione e delle Telecomunicazioni (CNR-IEIIT), Corso F. M. Per-
rone 24, 16152, Genoa, Italy (e-mail: name.surname@ieiit.cnr.it)

G. De Bernardi is also with Università degli studi di Genova, The Electri-
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Fig. 1: Illustration of the work domains as reported in [4].
From central green bar to side yellow/orange/red bars, the
nominal domain shifts and the severity of the OoD increases
in parallel.

II. INTRODUCTION

THE problem of out-of-distribution (OoD) detection
(ODD) deals with comparing the working conditions

of a machine learning model with those considered during
the training process. The comparison is performed at the
operational level to understand if the new data belong to a
probability distribution different from that driving the data
collection of the training phase. In case of divergence be-
tween training and operation, the system must generate an
alarm because the performance of the model may no longer
conform to what was measured at the training stage (even
in case of successfully passed generalization tests1). The
problem represents a very important challenge for the secure
application of machine learning, and is fundamental in the
context of trustworthy AI [2], [3]. The recent standards in
avionics [4], [5], automotive [6], [7] and ISO/IEC, as well as
other regulatory initiatives in medical informatics [8], pose the
problem of identifying all those operating conditions that can
have an impact on safety.

The European Union Aviation Safety Agency (EASA) Fig. 1
shows the different levels of severity of the OoD on operational
data. The green bar denotes compliance with training data (in-
distribution), the yellow color reflects an OoD zone where
the autonomous function still produces accurate indications;
orange color indicates an OoD area where the autonomous
function is fallacious, but the system does not degenerate into
dangerous conditions (the surrounding conditions of the envi-
ronment are still compatible with safe actuations), while red
signals that the system may fall into dangerous conditions (if
driven by the autonomous function). The tests of autonomous
safety-critical actuation should include all the conditions in the
mentioned color gradations, at least by simulation analysis.

1Generalization bounds, see, e.g., [1], concern the gap that exists between
the empirical risk, calculated on the data actually available (on which the
model is trained) and the theoretical risk, calculated on the distribution of
probability that represents the data; this probability distribution is unknown
in closed-form and, in the ODD context, represents the ”in-distribution”.
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Although the literature in the field of OoD already poses
solutions based on labelled data or through anomaly detection,
as evidenced by [9], [10], the OoD according to distributional
assumption-free and OoD-agnostic criteria is still an open
problem2.

A. Contribution

The proposed method is designed under these criteria with
the added advantage of avoiding any parameter tuning. It is
based on the evaluation of the histogram generated by the
frequency of validation of a rule-based model by the data
themselves. The histogram generated during the training phase
represents a fingerprint to be verified at runtime. If the data at
runtime generates a histogram “significantly different” from
the training one, it means that the data are OoD. Unlike
K-NN [10] and Neural Networks distance [11], where a
single distance criterion is defined, the similarity measure can
be derived through multiple metrics. This offers support to
the tests mentioned by EASA, since the proposed method
measures incremental cases of departure from in-distribution.
In addition this is a groupwise method which makes the ODD
more robust as outlined in Sec VI.

III. RELATED WORK

ODD has become an important theme in ML field, since
the recognition of unseen data either “similar” or not (in- or
out) to the ones the ML system has been trained on may lead
to potentially fatal consequences.

Most of the solutions proposed to address the problem of
the OoD make strong distributional assumptions of the feature
space [12] or suppose they are given a training in and out prob-
ability density function (pdf) [13], but this not always holds
in practice. What is more, lots of statistic tests fail to estimate
the real distribution of training data (data are not enough and
the pdf are too coarse) [10]. There are lots of widespread
supervised methods used across OoD detection: model-based
methods such as the ODIN [14], distance-based methods like
OODL[15], density-based methods as the energy-based OoD
Detection method [16] and some threshold-based methods,
including Maximum Softmax Probability [17] or Autoencoder
[18]. Other approaches use outlier detection methods as the
Isolation Forest [19] and label shift in deep learning is also
considered in [20]. Under distributional assumptions free hy-
pothesis, unsupervised OoD detection methods need the right
tuning of some parameters as [10] and [21]. Starting from
eXplainability, our solution still maintains the former and does
not rely on any critical parameter setting.

IV. LOGIC LEARNING MACHINE

The rule-based model adopted in our work is called Logic
Learning Machine (LLM), an efficient implementation of

2Distributional assumption-free means no closed-form expressions of in-
and out- probability distributions are considered. OoD-agnostic means no
information about ODD conditions is considered. Another important issue,
which is related with the assumption of probabilistic Gaussian or mixed-
Gaussian functions, is to avoid calculating the covariance matrix from data,
which can be numerically unstable.

Switching Neural Networks [22], developed and available
in Rulex software platform 3. However, we remark that the
methods for OoD detection presented in the paper can be
easily extended to any other kind of rule-based model, such as
decision tree or tree ensembles like random forests or Skope-
Rules 4. Given some input data, the LLM provides a clas-
sification model represented by ruleset R = {rk}k=1,...,Nr ,
with each rule rk expressed through the following structure:
if <premise> then <consequence>. The <premise> is made
up of the logical conjunction (AND) of conditions on the
input features and the <consequence> constitutes the output
of the classification rule. Rule generation process occurs in
three steps. First, a discretization and binarization of the
feature space is performed by using the inverse-only-one
coding. The resulting binary strings are then concatenated
into a single large string representing the considered samples.
Shadow clustering is then used to build logical structures,
called implicants, which are finally transformed into simple
conditions and combined into a collection of intelligible rules
[23], [24].

V. RULE-BASED ODD

A. Rule hits histograms

Let us denote with Rtr a set of rules generated from a
training set and let Nr be the number of rules composing it. Let
Ntr and Nop be the numbers of splits of the training domain
and the operational one, respectively, and let Nh = Ntr+Nop

be the total number of splits. Let ns be the number of data
samples present in a split. For each split, samples 5 may (or
not) satisfy each rule a certain number of times. We refer to
this number as the number of hits for that rule. Therefore we
define Nh vectors, considering this number scaled by the split
size ns:

hj =
{
hj
i

}
, hj

i ∈ [0, 1], i = 1, . . . , Nr, j = 1, . . . , Nh (1)

Each vector hj can be thought as a histogram. Rule hits are
the key starting point of the proposed methods. Therefore,
particular care should be posed on the quality of the train-
ing reference ruleset generating them. For example, feature
reduction methods on the input data may provide a simplified
ruleset, thus more interpretable. Nevertheless, it would result
in less informative rule hits. That is, the less variables we
include in the model, the more general would be the support
of the resulting rules, which would be more likely to be
frequently verified by the data samples. As a result, histograms
shape would be flattened and the methods for OoD detection
would be less performing.

B. Data splits

At training stage, we exploit Ntr splits of the dataset TR =
{tr1, . . . , trNtr}. These splits become the baseline for building
the in-distribution histograms, as per Eq. 1, representing the
numbers of hits obtained by testing the rules in Rtr on each

3https://www.rulex.ai
4https://github.com/scikit-learn-contrib/skope-rules
5Samples can satisfy multiple rules and there may be operational samples

satisfying none of the rules.

https://www.rulex.ai
https://github.com/scikit-learn-contrib/skope-rules
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considered split. Two different algorithms are then studied,
based on the data organization in operation: Nop = 1 when
only one split is available and Nop > 1 with more than one
split. The first case is suitable for data scarcity in operation
and simplifies the calculations.

C. Adopted Metrics

The metrics driving ODD are as follows:
• Weighted mutual information WµI , used when only one

operational split is available (Nop = 1), as described in
Sec. V-D

• Rule-based information RBI , used when the operational
data are sufficient to perform multiple splits (Nop > 1),
as per Sec. V-E

• lp norm, with p = 1, 2; their computation is performed
in the same way for both scenarios (Nop ≥ 1)

The order of the hits with respect to the rules drives mod-
ification to canonical mutual information, WµI and RBI ,
as explained in Appendix IX. For all metrics, the idea is
to compare values computed in operation with the ranges
achieved in training (baseline). Specifically, we expect that
histograms generated at training or operational stages have dif-
ferent shapes, providing an indication of OoD. Thus, through
the Algorithms presented in the following Sections, we try to
quantify such a behavior. Algorithms 1-2 (for Nop = 1) and 3-
4 (for Nop > 1) both share the same methodological approach.
As per the training part, the reference ruleset Rtr is applied to
the training data splits to retrieve the rule hits histograms; then
the metrics of interest are computed over couples of training
histograms and a baseline is defined. At operational, rule hits
histograms are derived for the couples formed by training
and operational data split(s) and the values of the metrics
are computed as well. Eventually, an ODD is acknowledged
whenever the largest portion of operational values falls outside
the training baseline for at least one of the metrics (i.e.,
through minority voting of the metrics). We finally remark
that such methodologies are designed for working at runtime;
therefore, adding any pre-processing module, e.g. any instance
selection, would make the whole process slower, which would
not be always acceptable when dealing with safety-critical
scenarios.

D. First scenario: Nop = 1

1) Training setting: The first scenario deals with a single
operational split op1. We first present the procedure for the
training domain and then for the operational one. As to
Eq. 1, the training matrix-like structure shown in Table I
consequently arises. Based on that table, weighted mutual in-
formation and norms are computed as described in Algorithm
1.

2) Operational setting: We now present the procedure when
an operational set is considered. As to Eq. 1, we can build the
training-operational matrix as in Table II. Weighted mutual
information and norms are then computed as described in
Algorithm 2.

tr1 .... trNtr

r1 htr1
1 ... h

trNtr
1

r2 htr1
2 ... h

trNtr
2

. . . .

. . . .

rNr htr1
Nr

... h
trNtr
Nr

TABLE I: Training numbers of hits table. Each column refers
to a training split tri ∈ TR and each row to a rule ri ∈ Rtr.

Algorithm 1 Weighted Mutual Information and Norms at
Training Stage
i, j=1,. . .,Ntr , i ̸= j
Input: Table I
Output: Training baselines WµIbase and lp

base

1a. Define the weight associated with tri and trj , αi,j ∈ (0, 1), ∀i, ∀j:

αi,j =
1

Nr

Nr∑
r=1

(|htri
r − h

trj
r |)

1b. Compute the weighted entropies H(tri), H(trj), H(tri, trj) , ∀i, ∀j

H(tri) = −
Nr∑
r=1

[αi,jP (htri
r ) · log(αi,jP (htri

r ))]

H(trj) = −
Nr∑
r=1

[αi,jP (h
trj
r ) · log(αi,jP (h

trj
r ))]

H(tri, trj) = −
Nr∑
r=1

[αi,jP (htri
r , h

trj
r ) · log(αi,jP (htri

r , h
trj
r ))]

2. Compute the weighted mutual information (WµI):

WµI(tri, trj) = [H(tri) +H(trj)−H(tri, trj)],∀i, ∀j

3. Compute the baseline WµIbase:

WµIbase
.
= [min

i,j
(WµI(tri, trj)),max

i,j
(WµI(tri, trj))]

4. Compute lp (p=1,2) norms:

lp(tri, trj) =
[Nr∑
r=1

(|htri
r − h

trj
r |)p

] 1
p
,∀i, ∀j

5. Compute the baseline lp
base (p=1,2):

lp
base .

= [min
i,j

(lp(tri, trj),max
i,j

(lp(tri, trj))]

E. Second scenario: Nop > 1

Again by following the notation of section V-A, sev-
eral splits of the training domain TR are defined TR =
{tr1, . . . , trNtr

}, together with an analogous set for the op-
erational domain, OP = {op1, . . . , opNop

}. The training
splits are organized in two subsets: TR1 = {tr1, . . . , trk},
TR2 = {trk+1, . . . , trNtr} with k = Ntr − Nop − 1 and,
based on a leave-one-out cross-validation [25], we consider
TR2m = TR2 \ {trm}, m = k + 1, . . . , Ntr. These sets
drive the computation of the baseline according to the rule-
based information (RBI) (algorithm 3, table I as a reference).
Algorithm 4 defines the inherent ODD by taking table III as
a reference.
The estimation of the Gaussian distributions follows the max-
imum likelihood principle (see 2.5.1 of [26]). Building Nr
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tr1 .... trNtr op1

r1 htr1
1 ... h

trNtr
1 hop1

1

r2 htr1
2 ... h

trNtr
2 hop1

2
. . . .
. . . .

rNr htr1
Nr

... h
trNtr
Nr

hop1
Nr

TABLE II: Training-operational number of hits table with
Nop = 1. Columns refers to the training splits tri ∈ TR
and the operational split op1, each row to a rule ri ∈ Rtr.

Algorithm 2 Weighted Mutual Information and Norms at
Operational Stage
i = 1, . . . , Ntr , p = 1, 2
Input: Table II; baseline ranges WµIbase and lp

base

Output: ODD through WµI and lp

1. Compute the weighted entropies H(tri), H(op1) and H(tri, op1) as done
in the Algorithm 1 (steps 1a-1b) ∀i
2. Compute the weighted mutual information (WµI):

WµI(tri, op1) = [H(tri) +H(op1)−H(tri, op1)], ∀i

3.Compute lp norms:

lp(tri, op1) =
[Nr∑
r=1

(|htri
r − hop1

r |)p
] 1

p
, ∀i

4.OoD detection:

IF WµI(tri, op1) /∈ WµIbase for the majority of i THEN flag is on
IF lp(tri, op1) /∈ lp

base for the majority of i THEN flag is on,
IF {at least one flag is on} THEN op1 is OoD

separate Gaussian distributions (one for each row of the table)
allows to tackle with the curse of dimensionality problem in
parameters estimation, in place of building a single, multi-
dimensional Gaussian distribution for the entire table (see, e.g.,
2.5.7 of [26]). We remark that this methodology still complies
with the distributional assumption-free (as stated in Sec. II)
because the Gaussian distribution estimation concerns the rule
hits and not the data and furthermore thanks to the metodology
followed to construct each histogram we can take advantage
of the central limit theorem and the law of large numbers.

tr1 .... trNtr op1 ... opNop

r1 htr1
1 ... h

trNtr
1 hop1

1 ... h
opNop

1

r2 htr1
2 ... h

trNtr
2 hop1

2 ... h
opNop

2
. . . . . . .
. . . . . . .

rNr htr1
Nr

... h
trNtr
Nr

hop1
Nr

... h
opNop

Nr

TABLE III: Training-operational number of hits table with
Nop > 1. Columns tr1, . . . , trNtr

refer to training splits
(further organized in TR1 and TR2m sets, see Sec. V-E),
columns op1, . . . , opNop

are the splits in operation. Each row
refers to a rule ri ∈ Rtr.

VI. GROUPWISE IN OPERATION

A. Incremental technique

The method collects a bunch of operational data before
processing and classifying them as in or out of distribution.

Algorithm 3 Rule-based Information at Training Stage
i = 1, . . . , Ntr, p = 1, 2, j = 1, . . . , Nr, tri ∈ TR2m;
Inputs: TR1 and TR2m, m = k + 1, . . . , Ntr , k = Ntr −Nop − 1
Output: Training baselines RBIbase and lp

base

1. Compute µTR1
j = 1

k

∑k
i=1 h

tri
j and σTR1

j =

√∑k
i=1

(
htri−µTR1

j

)2
k

,∀j

2. Estimate Gaussian distributions {N (µTR1
j , σTR1

j )}, ∀j

3.Compute µTR2m
j = 1

Ntr−k−1

∑Ntr
i=k+1
i̸=m

h
tri
j and

σTR2m
j =

√√√√∑Ntr
i=k+1
i ̸=m

(
htri−µ

TR2m
j

)2
Ntr−k−1

, ∀j

4. Estimate Gaussian distributions {N (µTR2m
j , σTR2m

j )}, ∀j

5a. Considering N (µTR2m
j , σTR2m

j ), ∀j and ∀tri, compute:

PTR2m
ij

.
= P(x ∈ [h

tri
j − σTR2m

j , h
tri
j + σTR2m

j ]|rj),

CPTR2m
ij

.
= 1− PTR2m

ij

5b. Compute the entropy:

H(tri) = −
Nr∑
j=1

[PTR2m
ij

·log(PTR2m
ij

)+CPTR2m
ij

·log(CPTR2m
ij

)], ∀tri

6a. Considering N (µTR1
j , σTR1

j ), ∀j and ∀tri compute:

PTR1
ij

.
= P(x ∈ [h

tri
j − σTR1

j , h
tri
j + σTR1

j ]|rj), CPTR1
ij

.
= 1− PTR1

ij

6b. Compute the weighted conditional entropy, ∀tri:

H(tri|TR1) = −
Nr∑
j=1

γ
tri
j ·[PTR1

ij
·log(PTR1

ij
)+CPTR1

ij
·log(CPTR1

ij
)],

where γ
tri
j

.
=

P
TR2m
ij

PTR1
ij

7. Compute the average entropies:

H(TR2m) =
1

Ntr − k − 1

Ntr∑
i=k+1
i ̸=m

H(tri)

H(TR2m|TR1) =
1

Ntr − k − 1

Ntr∑
i=k+1
i ̸=m

H(tri|TR1)

8. Measure the similarity between TR2m and TR1 considering
RBITR1−TR2m :

RBITR1−TR2m
.
=

H(TR2m)

H(TR2m|TR1)

10. Construct the baseline range RBIbase:

RBIbase
.
= [min

m
(RBITR1−TR2m ),max

m
(RBITR1−TR2m )]

11. Compute the norms baselines lp
base as done in Algorithm 1.

For this reason, it falls in the category of groupwise methods
[27], [28]. Differently from pointwise, groupwise confirms
a type of situation (in or out), without relying on a single
point that could be a spike in a steady trend. The collection
phase in operation does not imply that one would wait for
new ns samples to register a new split and to provide the
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Algorithm 4 Rule-based Information at Operational Stage
i = 1, . . . , Ntr, p = 1, 2, j = 1, . . . , Nr, opi ∈ OP ;
Inputs: TR1 and OP (Table III); baseline ranges RBIbase and lbasep
Output: ODD through RBI and lp

1. Compute µTR1
j = 1

k

∑k
i=1 h

tri
j and σTR1

j =

√∑k
i=1

(
htri−µTR1

j

)2
k

, ∀j

2. Estimate Gaussian distributions {N (µTR1
j , σTR1

j )}, ∀j

3. Compute µOP
j = 1

Nop

∑Nop

i=1 h
opi
j and

σOP
j =

√∑Nop
i=1

(
hopi−µOP

j

)2
Nop

, ∀j

4. Estimate Gaussian distributions {N (µOP
j , σOP

j )}, ∀j

5a. Considering N (µOP
j , σOP

j ), ∀j and ∀opi, compute:

POP
ij

.
= P(x ∈ [h

opi
j − σOP

j , h
opi
j + σOP

j ]|rj), CPOP
ij

.
= 1− POP

ij

5b. Compute the entropy:

H(opi) = −
Nr∑
j=1

[POP
ij

· log(POP
ij

) + CPOP
ij

· log(CPOP
ij

)], ∀opi

6a. Considering N (µTR1
j , σTR1

j ), ∀j and ∀opi, compute:

PTR1
ij

.
= P(x ∈ [h

opi
j − σTR1

j , h
opi
j + σTR1

j ]|rj), CPTR1
ij

.
= 1−PTR1

ij

6b. Compute the weighted conditional entropy, ∀opi:

H(opi|TR1) = −
Nr∑
j=1

γ
opi
j ·[PTR1

ij
·log(PTR1

ij
)+CPTR1

ij
·log(CPTR1

ij
)],

where γ
opi
j

.
=

POP
ij

PTR1
ij

7. Compute the average entropies:

H(OP ) =
1

Nop

Nop∑
i=1

H(opi)

H(OP |TR1) =
1

Nop

Nop∑
i=1

H(opi|TR1)

8. Measure the similarity between TR1 and OP by considering
RBITR1−OP :

RBITR1−OP
.
=

H(OP )

H(OP |TR1)

9. OoD detection:

IF RBITR1−OP /∈ RBIbase THEN flag is on
IF lp(tri, opj) /∈ lp

base for the majority of i and j THEN flag is on
IF {at least one flag is on} THEN OP is OoD

ODD. Splits are generated continuously, as soon as new sam-
ples are collected. Incremental techniques may be also used
to accelerate the computation of statistically-based features
(mean, variance, skewness and kurtosis), as in the RUL and
DNS problems detailed later on [29]. Like in incremental
techniques, once a new sample is available, a new (operational)
bunch of ns samples is built, by adding the new sample and
by disregarding the most far away point in the past (of ns

positions). In turn, the bunch leads to the split collection,
by computing the inherent hits on the ruleset. The process
assumes a sample-by-sample incremental time window, over

which the following operations are performed. A new data
bunch is firstly registered, a new split is calculated and a new
ODD is then derived.

B. Computational issues

The computational speed of the bunch building process
depends on how fast the data samples are collected by the
system (the quantity is denoted by δt0). The speed of the
split building process depends on the time required to compute
the hits of the ruleset on the bunch, namely, on the latest ns

data samples (δt1). The speed of the ODD depends on the
computational time of algorithms 2 and 4 above (δta2 and
δta4, respectively).

The computational times of the baselines in algorithms 1
and 3 are less of interest as the algorithms work at design time,
in which enough computational resources are assumed to be
available; they however follow similar O(·) as their respective
operational versions. On the other hand, δta2 and δta4 are
of interest, as algorithms 2 and 4 work over the deployed
ML infrastructure, for which limited computational resources
may be assumed. The following considerations hold for the
δt quantities. δt0 is outside of the scope of the paper as it
depends on the environmental conditions and on the sensing
architecture of the system. δt1 is O(ns) (by assuming the time
to verify a rule on a data sample a constant, independently to
the complexity of the rule). By referring to the computations
inherent to the metrics involved in algorithm 2, δta2 is O(Nr ·
Ntr). Analogously, δta4 is O(Nr ·NOP ).

VII. CASE STUDIES

A. Datasets

Three application scenarios are considered with the inherent
datasets and relevance of the ODD problem.

1) RUL: The first dataset concerns damage propagation
modeling for aircraft engines and is taken from the NASA
repository [30]. It is an important benchmark in predictive
maintenance and includes four different subsets of data (tr1,
opa, opb, opc), corresponding to different machines of the
same factory family. The problem is interesting in the ODD
perspective because one may expect a model trained on a
machine (e.g., tr1) to be applicable (with limited error) to
another machine (e.g., opa). The features are: mean (m),
variance (v), kurtosis (k) and skewness (s) of the original
23 physical quantities over time. A preliminary analysis with
LLM feature ranking [23] individuated the following set of
7 most important features: sos2, mNc, vNc, vphi, mhtBleed,
shtBleed, mW31, whose corresponding physical quantities are
outlined in table IV.

Symbol Description
os2 Operational setting 2
Nc Physical core speed
phi Ratio of fuel flow to Ps30

htBleed Bleed enthalpy
W31 HTP coolant bleed

TABLE IV: RUL physical quantities.
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The target variable is the Remaining Useful Life (RUL),
which represents the time before the occurrence of a fault and
is binarized to assume either value ‘0 healthy’(RUL>150) or
‘1 fault’ (RUL≤150). A ML classifier through LLM predicts if
the engine would come into a fault state or not; tr1 constitutes
the in-distribution and Rtr1 the reference ruleset.

2) Platooning: The second dataset (platooning [31]) ad-
dresses collision avoidance in vehicle platooning, which is one
of the most celebrated application in autonomous driving. A
group of vehicles is interconnected via wireless, based on the
Cooperative Adaptive Cruise Control [32]. The behavior of
the platooning system is synthesised by the physical quantities
pointed out in table V. The physical quantities correspond to
the features of the problem, which identifies potential collision
in advance after a sudden brake.

Symbol Description
N Number of vehicles
F0 Breaking force applied by the leader

PER Probability of packet loss
d0 Initial mutual distance between vehicles
v0 Initial speed
d Communication delay in the inter-connection of vehicles

TABLE V: Platooning features.

We consider two datasets: in the first one (LOW) the
communication delay d parameter is bounded by 0.4 s; in the
second one (HIGH), d is larger than that threshold. As in the
RUL case, we set a training domain: trLOW (in-distribution)
as well as the reference ruleset RtrLOW

. A typical ODD
problem is thus posed (between LOW and HIGH) as d has a
significant impact on performance. The ODD has here a safety
preserving role as it recognizes if the delay in operation is
larger than the one in training. The algorithms are however not
aware that delay is the key for the datasets differentiation and
understand the ODD through the operational hits on RtrLOW

.
3) DNS: The third dataset (DNS) deals with a DNS tunnel-

ing detection problem [33]. The aim is detecting the presence
of Domain Name Server intruders by an aggregation-based
traffic monitoring. Silent intruders and quick statistical finger-
prints generation make the tunneling detection a hard task.
Table VI shows the physical quantities of the problem.

Symbol Description
q Size of a query packet
a Size of an answer packet
Dt Time interval intercurring between query and answer

TABLE VI: DNS tunneling physical quantities.

Again as in the RUL case, mean (m), variance (v), kurtosis
(k) and skewness (s) are extracted over the time series of
the system, thus leading to 12 features. The target variable
is a binary label denoting the ‘presence’ or ‘absence’ of a
tunneling attack. Two reference datasets are as follows: the
first one considers a tunneled peer-to-peer (p2p) application,
that is the training (in-distribution) domain trp2p (with Rtrp2p

as the reference ruleset), and the second refers to the tunneled
secure shell (ssh) application, which is the operational setting
(opssh). The ODD here is of interest once ssh is used in

operation under the trained p2p model. It is a quite realistic
situation in cybersecurity as not all attack configurations may
be anticipated at design time.

VIII. RESULTS

The first two subsections deal with understanding the ranges
of the metrics in OoD conditions. The baseline ranges are
reported in the first row of all the tables and represent the
reference to infer possible OoD in operation. An even partial
overlap between ranges in training and operation leads to a
missed detection, i.e., a false negative (FN). A false positive
(FP) consists of a wrong ODD for a training (in-distribution)
bunch of samples. Secondly, False Negative Rate (FNR) and
False Positive Rate (FPR) are reported in subsection VIII-C.
An operational sample of table II or table III constitutes a
FN in case no OoD is declared; a sample (column) of table I
constitutes a FP in case OoD is declared. Tables are built as
follows. Each column refers to a bunch of ns=5000 samples,
with values reflecting the number of hits for the reference
ruleset. We consider Ntr=50 and Nop=1 in table II while
Ntr=50 with TR1 = {tr1, . . . , tr39}, TR2 = {tr40, . . . , tr50}
and Nop=10 in table III. The total repetitions of the experi-
ments for computing FPR and FNR is 2500. The section ends
with subsection VIII-D and outlines incremental groupwise
detection in operation.

Example code and data for the experiments are avail-
able at the following link: https://github.com/giacomo97cnr/
Rule-based-ODD.

A. Nop = 1

Tables VII and VIII show norms, µI and WµI ranges over
the RUL datasets. The robustness of algorithm 2 is validated
by the fact that all OoD ranges are significantly far away from
the training baselines. The values with the norms are closer
to the respective training baselines with opb than with opa
and opc. This is an important indication about the similarity
of in (tr1) and out (opb) distributions. Coming back to the
EASA introductive figure, it happens that opb lies in the yellow
zone. Namely, the model trained on tr1 is good on opb data,
with FPR=18% and FNR = 27%, which is quite close to the
in-distribution performance (training and test on separate tr1
samples): FPR = 18% and FNR = 22%6. On the other hand,
opa and opc lie in the orange zone (i.e., the tr1 model is not
good anymore on opa and opc, being FPR = 0.03%, FNR
= 99.86% and FPR = 0.04%, FNR = 99.88%, respectively)7.
When the tr1 model is tested on opb, a good balance between
FPR and FNR is still achieved; the same does not hold for
opa and opc, which are far away from the tr1 baseline.

The rationale behind the tr1 and opb proximity is beyond the
knowledge of the authors (one may argue about some mechan-
ical similarity of the respective engines), but inferring such
proximity through ODD is quite an important achievement. In

6The mentioned FNR and FPR refer to the original RUL problem, namely,
they represent the errors in fault prediction.

7Large FNRs here may even lead to the red zone of EASA picture
(catastrophic event), depending on system resilience to wrong autonomous
decisions.

https://github.com/giacomo97cnr/Rule-based-ODD
https://github.com/giacomo97cnr/Rule-based-ODD
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this perspective, the method should use all the metrics jointly
to provide both ODD and a measure of the distance of the in
and out distributions.

Couples l1 FNR (l1) l2 FNR (l2)
tr1 − tr1 [0.09, 0.20] [0.02, 0.05]
tr1 − opa [3.16, 3.26] 0% [1.05, 1.06] 0%
tr1 − opb [1.16, 1.40] 0% [0.30, 0.34] 0%
tr1 − opc [3.16, 3.26] 0% [1.05, 1.06] 0%

TABLE VII: Algorithms 1 and 2: RUL. Norms.

Couples µI FNR (µI) WµI FNR (WµI)
tr1 − tr1 [0.707,1.442] [0.023, 0.045]
tr1 − opa [0.019,0.027] 0% [0.291, 0.297] 0%
tr1 − opb [0.182,0.278] 0% [0.159, 0.179] 0%
tr1 − opc [0.019,0.027] 0% [0.290, 0.297] 0%

TABLE VIII: Algorithms 1 and 2: RUL. µI and WµI .

Couples l1 FNR (l1) l2 FNR (l2)
trLOW − trLOW [0.02, 0.12] [0.01, 0.04]
trLOW − opHIGH [3.80, 3.90] 0% [1.37, 1.39] 0%

TABLE IX: Algorithms 1 and 2: platooning. Norms.

Couples µI FNR (µI) WµI FNR (WµI)
trLOW − trLOW [0.87,2.73] [0.02,0.06]
trLOW − opHIGH [0.04,0.97] 8% [0.51,0.73] 0%

TABLE X: Algorithms 1 and 2: platooning. µI and WµI .

Couples l1 FNR (l1) l2 FNR(l2)
trp2p − trp2p [0.002, 0.090] [0.002, 0.047]
trp2p − opssh [1.630, 1.770] 0% [0.820, 0.890] 0%

TABLE XI: Algorithms 1 and 2: DNS. Norms.

Couples µI FNR(µI) WµI FNR(WµI)
trp2p − trp2p [1.5, 2.2] [0.01, 0.15]
trp2p − opssh [0, 0.7] 0% [0.73, 0.96] 0%

TABLE XII: Algorithms 1 and 2: DNS. µI and WµI .

Couples l1 l2 RBI FNR
tr1 − tr1 [0.12, 0.19] [0.02, 0.03] [0.927, 0.944]
tr1 − opa [3.22, 3.24] [1.05, 1.06] 0 0%
tr1 − opb [1.24, 1.33] [0.30, 0.33] [0.040,0.041] 0%
tr1 − opc [3.22, 3.24] [1.05, 1.06] 0 0%

TABLE XIII: Algorithms 3 and 4: RUL.

Couples l1 l2 RBI FNR
trLOW − trLOW [0.03, 0.09] [0.01, 0.03] [0.886, 0.926]
trLOW − opHIGH [3.83, 3.90] [1.37, 1.39] [0.024,0.025] 0%

TABLE XIV: Algorithms 3 and 4: platooning.

Couples l1 l2 RBI FNR
trp2p − trp2p [0.008, 0.050] [0.005, 0.020] [0.821,0.972]
trp2p − opssh [1.670, 1.730] [0.830, 0.870] 0 0%

TABLE XV: Algorithms 3 and 4: DNS.

As far as platooning and DNS are concerned, good per-
formance are registered, except with µI in platooning (the
topic is discussed later through groupwise analysis and in the
Appendix).

B. Nop > 1

This section outlines the performance of algorithms 3 and 4,
whose results are shown in tables XIII, XIV and XV. Nop > 1
allows to exploit more information at the operational level and
thus finer separation of the OoD from the baseline.

C. Comparison with canonical methods

This section outlines a comparison with canonical super-
vised algorithms, such as K-Nearest Neighbours (KNN), Sup-
port Vector Machine with a RBF kernel (SVM) and Random
Forest as well as unsupervised ones like the unsupervised
KNN (u-KNN) and the Autoencoder. In particular, we first
present the results considering the pointwise structure and
then the groupwise counterpart. Supervised algorithms exploit
information about OoD data. A mix of the in and out data
are considered for training supervised approaches and then a
testing phase got the FPR and FNR values presented in table
XVI. In u-KNN we followed [10] yet revisiting it according
to the fact that we were not using images; hence, we have
first split up the training domain into a training set and a test
one and then we have tuned two parameters: the number of
neighbours (K) and a distance threshold (λ) used to determine
if test data are in-distribution or not; λ was set in order to have
a true negative rate of 95% in the training domain. Despite
including information about OoD data in their training, super-
vised algorithms fail the ODD and unsupervised methods work
even worse. This may denote that training and operational
data are confused in the original feature space. The proposed
algorithms, along with the above mentioned supervised and
unsupervised techniques, achieve better performance in virtue
of looking at in and out separation in a different space, namely,
through the ruleset hits in training. Thus, we repeated the same
experiments considering the groupwise structure (Table XVII)
inducted by the usage of the rule hits; specifically, we used
the rule hits as the input features (in place of the original
features) and verified a perfect separation between in and
out distributions with all the considered methods. Algorithms
2 and 4 are however still preferable for different reasons:
first they are not black box methods, secondly they do not
need significant tuning of critical parameters and finally for
its robustness due to the usage of multiple metrics [34]. In
table XVII, Algorithm 2 still experiences some FPR as the
weighted version of the mutual information is applied to a
smaller portion of operational data than with Algorithm 4.
Another rationale behind the sensible level of FPR comes from
the declaration of OoD if at least one of the metrics registers an
OoD. This minimizes FNR, but may increase FPR. Additional
results (not reported here for the sake of synthesis) confirm
that the algorithm is even more sensitive to FPR with values
of Ntr < 50. On the other hand, algorithm 4 decreases also
FPR (with respect to algorithm 2), in virtue of the (Gaussian)
statistical filter applied to several splits of operational data.



8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Platooning (trLOW − opHIGH ) DNS (trp2p − opssh) RUL (tr1 − opa) RUL (tr1 − opb) RUL(tr1 − opc)
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

KNN† 0.6% 0.7% 31% 30% 0% 0% 6.5% 7.5% 0% 0%
u-KNN [10] ≤ 5% 0.16% ≤ 5% 94% ≤ 5 % 0% ≤ 5% 96.3% ≤ 5% 0%

SVM† 0.3 % 0.9 % 49% 1.2% 0% 0% 26% 31.5% 0% 0%
Random Forest† 0% 0% 32% 37% 0% 0% 0.8% 5% 0% 0%

Autoencoder 3.6% 19.9% 14.7% 61.7% 4.1% 0% 12.5% 46.8% 4.1% 0%

TABLE XVI: ODD performance comparison considering the point-wise structure, in terms of FNRs and FPRs. Supervised
methods are marked with †, the other ones are unsupervised.

Platooning (trLOW − opHIGH ) DNS (trp2p − opssh) RUL (tr1 − opa) RUL (tr1 − opb) RUL(tr1 − opc)
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

KNN † 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
u-KNN [10] ≤ 5% 0% ≤ 5% 0% ≤ 5% 0% ≤ 5% 0% ≤ 5% 0%

SVM† 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Random Forest† 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Autoencoder 3.7% 0% 4% 0% 3.3% 0% 3.3% 0% 3.3% 0%
Algorithm 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Algorithm 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

TABLE XVII: ODD performance comparison considering the group-wise structure, in terms of FNRs and FPRs. Supervised
methods are marked with †, the other ones are unsupervised.

D. Incremental groupwise in operation

By referring to section VI, the following experiments high-
light the ODD when replacing in-distribution data with out-
of, in a sample-by-sample, incremental, way. The analysis is
relevant to the tracking of the OoD drift with both precision
and measurement of distributions proximity. Every figure in
the following contains the baseline derived at design time; the
curves represent the behaviours of the metrics in operation.
Increasing time windows with ns = 5 · 103 and 104 samples
are used to emphasize the speed of the drift inference over
time. The time size of the windows depends on the time
granularity of the arrival of the points in operation; for this
reason, the x-axis is not time, but it refers to the progressive
identifier of the operational samples. The drift starts at time
zero, that means the first operational sample derives from the
OoD and previous points (of the window) are compliant with
training conditions. As soon as the window collects more
data (over the last ns points), it senses more information
about the OoD. As to the WµI metric, the results confirm
that the shorter the window, the faster the detection. On the
other hand, the µI metric experiences a noise that can have
different meanings as detailed later on. The following evidence
arises for the case studies. In RUL, WµI (Fig. 2a) needs at
least 200 samples to exit the baseline; this happens with the
shortest window (ns = 5000) and with the most divergent
OoD (opa with respect to opb). The l1 norm (Fig. 2c) outlines
a similar behaviour. µI (Fig. 2b) does not trigger the expected
ODD; this seems in contrast with previous results in table
VIII, where ODD was successful. This is however due to the
limited horizon of the figure; the curves under ns = 5 ·103 are
actually approaching the baseline and, as expected, opa reveals
to be faster than opb, being more divergent from tr1 than opb.
The groupwise progression thus suggests the joint adoption of
the metrics to achieve both precision (WµI) and measure of
the distributions similarity (µI). In platooning, WµI matches
the ODD and, coherently with previous results (table IX), µI
is stuck in the baseline. Finally, DNS has good performance

with the two metrics as well. The difference between RUL
and platooning in µI is remarkable as it is very subtle. In
the former case, µI is sensitive to distributions similarity, still
being able to slowly proceed in the ODD direction. In the
latter, it experiences imprecise calculations (as shown in the
appendix), thus complicating the ODD task.

It is finally worth noting that the window of the incremental
groupwise should be coherent with the design setting with
ns = 5000. Other results may show several counterexamples
in RUL with ns = 1000 and tr1 − tr1, in which, though only
points in the baseline would have been expected, many false
positives take place.

IX. CONCLUSION AND FUTURE WORK

The paper deals with the identification of OoD through a
distributional assumption free rule-based model. The approach
also measures the proximity of in and out-of distributions
and is validated in challenging case studies. Future extensions
comprise further testing on additional longitudinal datasets,
as well as on image data. Alternative ways to the hits of the
ruleset to infer in-distribution behaviour are of interest, as well
as additional metrics to measure in and out of distribution
divergence. Also, a performance evaluation between the com-
plete ruleset and the one obtained on some selected features or
the one containing the most understandable rules could be of
great interest, as well as the investigation on how to enhance
the interpretability of the process, by studying how to properly
make the methods suitable for a reduced, more interpretable,
set of rules.

APPENDIX

Rationale of mutual information modification

When comparing couples of histograms, (µI) is useful to
identify the dependence but it does not capture the differences
among their values. Suppose we get these three histograms
A, B and C (Table XVIII). Considering the simple µI ,
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(a) RUL tr1-opa and tr1-opb with WµI . (b) RUL tr1-opa and tr1-opb with µI . (c) RUL tr1-opa and tr1-opb with l1 norm.

(d) Platooning with WµI . (e) Platooning with µI .

(f) DNS with WµI . (g) DNS µI .

Fig. 2: Incremental group-wise results

TABLE XVIII: Example of µI

A B C
r1 0.166 0.211 0.399
r2 0.182 0.214 0.387
r3 0.438 0.387 0.214
r4 0.424 0.399 0.211

histograms A and B are dependent and so A and C are;
but B and C are different (they have same values but in
different positions). Since each row of the tr and op his-
tograms corresponds to a rule, µI may have a detrimental
effect as the rule hits contain the information to the OoD.
The correction to overcome this issue consists of weighting
the probabilities (used in entropy calculations) through the
average of hits differences in each rule/row; this leads to
αi,j quantities in Algorithm 1. The more the histograms are
dependent and similar, the more WµI goes towards zero.
Similar considerations hold for RBI , with Nop > 1, the
weights (γ(·)

j quantities) are the fractions of the compared
probabilities.
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