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Rule-Based Out-of-Distribution Detection
Giacomo De Bernardi , Sara Narteni , Enrico Cambiaso , and Maurizio Mongelli , Member, IEEE

Abstract—Out-of-distribution detection is one of the most crit-
ical issue in the deployment of machine learning. The data ana-
lyst must assure that data in operation should be compliant with
the training phase as well as understand if the environment has
changed in a way that autonomous decisions would not be safe any-
more. The method of the paper is based on eXplainable Artificial
Intelligence (XAI); it takes into account different metrics to identify
any resemblance between in-distribution and out of, as seen by
the XAI model. The approach is nonparametric and distributional
assumption free. The validation over complex scenarios (predictive
maintenance, vehicle platooning, covert channels in cybersecurity)
corroborates both precision in detection and evaluation of training-
operation conditions proximity.

Impact Statement—Many sectors these days address safe AI:
automotive (SOTIF), avionics (SAEG-34/EUROCAE WG-114),
ISO/IEC (JTC 1/SC 42), and healthcare. Safe AI means under-
standing under which conditions autonomous actuations may lead
to hazards. The impact of research here is to make AI aware of
this, thus understanding under which conditions it may operate
without detrimental effect to the human or the environment. Ex-
amples may involve the prevention of: dangerous manoeuvres by
autonomous cars, inaccurate clinical diagnosis by artificial doctors,
wrong decision making in cyberwarfare and in many other sectors
(energy, finance). The theoretical analysis here is empowered by
computational and incremental groupwise analysis in order to
increase the readiness level of the proposed approach.

Index Terms—EXplainable AI, mutual information, open data,
out-of-distribution detection.

NOTATION AND LIST OF ACRONYMS

OoD Out of distribution.
ODD OoD detection.
ML Machine learning.
XAI eXplainable Artificial Intelligence.
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TR Training set.
OP Operational set.
tri ith training subset.
opi ith operational subset.
ns Number of data samples in a split.
Nr Number of rules.
Ntr Number of training splits.
Nop Number of operational splits.
Rtr Training reference ruleset.
ri ith rule.
hj
i jth hit for the ith rule.

lp lp norm.
μI Mutual information.
WμI Weighted mutual information.
RBI Rule based information.
H Entropy.

I. INTRODUCTION

T he problem of out-of-distribution (OoD) detection (ODD)
deals with comparing the working conditions of a machine

learning model with those considered during the training pro-
cess. The comparison is performed at the operational level to
understand if the new data belong to a probability distribution
different from that driving the data collection of the training
phase. In case of divergence between training and operation,
the system must generate an alarm because the performance of
the model may no longer conform to what was measured at the
training stage (even in case of successfully passed generalization
tests1) The problem represents a very important challenge for the
secure application of machine learning, and is fundamental in
the context of trustworthy AI [2], [3]. The recent standards in
avionics [4], [5], automotive [6], [7], and ISO/IEC, as well as
other regulatory initiatives in medical informatics [8] pose the
problem of identifying all those operating conditions that can
have an impact on safety.

The European Union Aviation Safety Agency (EASA) (Fig. 1)
shows the different levels of severity of the OoD on operational
data. The green bar denotes compliance with training data (in-
distribution), the yellow color reflects an OoD zone where the
autonomous function still produces accurate indications; orange
color indicates an OoD area where the autonomous function is
fallacious, but the system does not degenerate into dangerous
conditions (the surrounding conditions of the environment are

1Generalization bounds, see, e.g., [1], concern the gap that exists between the
empirical risk, calculated on the data actually available (on which the model is
trained) and the theoretical risk, calculated on the distribution of probability that
represents the data; this probability distribution is unknown in closed-form and,
in the ODD context, represents the “in-distribution.”

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Illustration of the work domains as reported in [4]. From central green
bar to side yellow/orange/red bars, the nominal domain shifts and the severity
of the OoD increases in parallel.

still compatible with safe actuations), while red signals that the
system may fall into dangerous conditions (if driven by the
autonomous function). The tests of autonomous safety-critical
actuation should include all the conditions in the mentioned
color gradations, at least by simulation analysis. Although the
literature in the field of OoD already poses solutions based on
labeled data or through anomaly detection, as evidenced by [9],
[10], the OoD according to distributional assumption-free and
OoD-agnostic criteria is still an open problem.2

A. Contribution

The proposed method is designed under these criteria with the
added advantage of avoiding any parameter tuning. It is based
on the evaluation of the histogram generated by the frequency
of validation of a rule-based model by the data themselves.
The histogram generated during the training phase represents
a fingerprint to be verified at runtime. If the data at runtime
generate a histogram “significantly different” from the training
one, it means that the data are OoD. Unlike K-NN [10] and
neural networks distance [11], where a single distance crite-
rion is defined, the similarity measure can be derived through
multiple metrics. This offers support to the tests mentioned by
EASA, since the proposed method measures incremental cases
of departure from in-distribution. In addition this is a groupwise
method, which makes the ODD more robust as outlined in
Section V.

II. RELATED WORK

ODD has become an important theme in ML field, since the
recognition of unseen data either “similar” or not (in- or out)
to the ones the ML system has been trained on may lead to
potentially fatal consequences.

Most of the solutions proposed to address the problem of
the OoD make strong distributional assumptions of the feature
space [12] or suppose they are given a training in and out
probability density function (pdf) [13], but this not always holds
in practice. What is more, lots of statistic tests fail to estimate
the real distribution of training data (data are not enough and

2Distributional assumption-free means no closed-form expressions of in- and
out- probability distributions are considered. OoD-agnostic means no infor-
mation about ODD conditions is considered. Another important issue, which
is related with the assumption of probabilistic Gaussian or mixed-Gaussian
functions, is to avoid calculating the covariance matrix from data, which can
be numerically unstable.

the pdf are too coarse) [10]. There are lots of widespread
supervised methods used across OoD detection: model-based
methods such as the ODIN [14], distance-based methods like
OODL [15], density-based methods as the energy-based OoD
Detection method [16] and some threshold-based methods, in-
cluding maximum softmax probability [17] or autoencoder [18].
Other approaches use outlier detection methods as the Isolation
Forest [19] and label shift in deep learning is also considered
in [20]. Under distributional assumptions free hypothesis, unsu-
pervised OoD detection methods need the right tuning of some
parameters as [10] and [18]. Starting from eXplainability, our
solution still maintains the former and does not rely on any
critical parameter setting.

III. LOGIC LEARNING MACHINE

The rule-based model adopted in our work is called logic
learning machine (LLM), an efficient implementation of switch-
ing neural networks [22], developed and available in Rulex
software platform.3

However, we remark that the methods for OoD detection
presented in the article can be easily extended to any other kind
of rule-based model, such as decision tree or tree ensembles like
random forests or Skope-Rules.4

Given some input data, the LLM provides a classification
model represented by ruleset R = {rk}k=1,...,Nr

, with each
rule rk expressed through the following structure: if<premise>
then<consequence>. The<premise> is made up of the logical
conjunction (AND) of conditions on the input features and the
<consequence> constitutes the output of the classification rule.
Rule generation process occurs in three steps. First, a discretiza-
tion and binarization of the feature space is performed by using
the inverse-only-one coding. The resulting binary strings are
then concatenated into a single large string representing the con-
sidered samples. Shadow clustering is then used to build logical
structures, called implicants, which are finally transformed into
simple conditions and combined into a collection of intelligible
rules [23], [24].

IV. RULE-BASED ODD

A. Rule Hits Histograms

Let us denote withRtr a set of rules generated from a training
set and let Nr be the number of rules composing it. Let Ntr and
Nop be the numbers of splits of the training domain and the
operational one, respectively, and let Nh = Ntr +Nop be the
total number of splits. Let ns be the number of data samples
present in a split. For each split, samples5 may (or not) satisfy
each rule a certain number of times. We refer to this number as
the number of hits for that rule. Therefore we define Nh vectors,

3[Online]. Available: https://www.rulex.ai
4[Online]. Available: https://github.com/scikit-learn-contrib/skope-rules
5Samples can satisfy multiple rules and there may be operational samples

satisfying none of the rules.

https://www.rulex.ai
https://github.com/scikit-learn-contrib/skope-rules
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considering this number scaled by the split size ns:

hj =
{
hj
i

}
, hj

i ∈ [0, 1], i = 1, . . . , Nr, j = 1, . . . , Nh.

(1)
Each vector hj can be thought as a histogram. Rule hits are
the key starting point of the proposed methods. Therefore,
particular care should be posed on the quality of the training
reference ruleset generating them. For example, feature reduc-
tion methods on the input data may provide a simplified ruleset,
thus more interpretable. Nevertheless, it would result in less
informative rule hits. That is, the less variables we include in the
model, the more general would be the support of the resulting
rules, which would be more likely to be frequently verified
by the data samples. As a result, histograms shape would be
flattened and the methods for OoD detection would be less
performing.

B. Data Splits

At training stage, we exploit Ntr splits of the dataset
TR = {tr1, . . . , trNtr

}. These splits become the baseline for
building the in-distribution histograms, as per (1), representing
the numbers of hits obtained by testing the rules in Rtr on
each considered split. Two different algorithms are then studied,
based on the data organization in operation: Nop = 1 when only
one split is available and Nop > 1 with more than one split. The
first case is suitable for data scarcity in operation and simplifies
the calculations.

C. Adopted Metrics

The metrics driving ODD are as follows:
� Weighted mutual information WμI , used when only one

operational split is available (Nop = 1), as described in
Section IV-D.

� Rule-based information RBI used when the operational
data are sufficient to perform multiple splits (Nop > 1), as
per Section IV-E.

� lp norm, with p = 1, 2; their computation is performed in
the same way for both scenarios (Nop ≥ 1).

The order of the hits with respect to the rules drives mod-
ification to canonical mutual information, WμI and RBI , as
explained in Appendix. For all metrics, the idea is to compare
values computed in operation with the ranges achieved in train-
ing (baseline). Specifically, we expect that histograms generated
at training or operational stages have different shapes, providing
an indication of OoD. Thus, through the Algorithms presented
in the following sections, we try to quantify such a behavior.
Algorithms 1–2 (for Nop = 1) and 3, 4 (for Nop > 1) both share
the same methodological approach. As per the training part, the
reference ruleset Rtr is applied to the training data splits to
retrieve the rule hits histograms; then the metrics of interest are
computed over couples of training histograms and a baseline is
defined. At operational, rule hits histograms are derived for the
couples formed by training and operational data split(s) and the
values of the metrics are computed as well. Eventually, an ODD
is acknowledged whenever the largest portion of operational

TABLE I
TRAINING NUMBERS OF HITS TABLE

values falls outside the training baseline for at least one of the
metrics (i.e., through minority voting of the metrics). We finally
remark that such methodologies are designed for working at
runtime; therefore, adding any preprocessing module, e.g., any
instance selection, would make the whole process slower, which
would not be always acceptable when dealing with safety-critical
scenarios.

D. First Scenario: Nop = 1

1) Training Setting: The first scenario deals with a single
operational split op1. We first present the procedure for the
training domain and then for the operational one. As in (1),
the training matrix-like structure shown in Table I consequently
arises. Based on that table, weighted mutual information and
norms are computed as described in Algorithm 1.

2) Operational Setting: We now present the procedure when
an operational set is considered. As in (1), we can build the
training-operational matrix as in Table II.

Weighted mutual information and norms are then computed
as described in Algorithm 2.

E. Second Scenario: Nop > 1

Again by following the notation of Section IV-A, sev-
eral splits of the training domain TR are defined TR =
{tr1, . . . , trNtr

}, together with an analogous set for the op-
erational domain, OP = {op1, . . . , opNop

}. The training splits
are organized in two subsets: TR1 = {tr1, . . . , trk}, TR2 =
{trk+1, . . . , trNtr

} with k = Ntr −Nop − 1 and, based on
a leave-one-out cross-validation [25], we consider TR2m =
TR2 \ {trm}, m = k + 1, . . . , Ntr. These sets drive the com-
putation of the baseline according to the rule-based information
(RBI) (Algorithm 3, Table I as a reference). Algorithm 4 defines
the inherent ODD by taking Table III as a reference.

The estimation of the Gaussian distributions follows the
maximum likelihood principle (see [26, 2.5.1]). Building Nr

separate Gaussian distributions (one for each row of the table)
allows us to tackle with the curse of dimensionality problem in
parameters estimation, in place of building a single, multidimen-
sional Gaussian distribution for the entire table (see, e.g., [26,
2.5.7]). We remark that this methodology still complies with the
distributional assumption-free (as stated in Section I) because
the Gaussian distribution estimation concerns the rule hits and
not the data and furthermore thanks to the methodology followed
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Algorithm 1: Weighted Mutual Information and Norms at
Training Stage.
i, j = 1,. . . , Ntr , i �= j
Input: Table I
Output: Training baselines WμIbase and lbasep

1a. Define the weight associated with tri and trj , αi,j ∈ (0, 1),
∀i, ∀j:

αi,j =
1

Nr

Nr∑
r=1

(|htri
r − h

trj
r |).

1b. Compute the weighted entropies
H(tri), H(trj), H(tri, trj) , ∀i, ∀j

H(tri) = −
Nr∑
r=1

[
αi,jP (htri

r ) · log(αi,jP (htri
r ))

]

H(trj) = −
Nr∑
r=1

[αi,jP (h
trj
r ) · log(αi,jP (h

trj
r ))]

H(tri, trj) = −
Nr∑
r=1

[
αi,jP

(
htri
r , h

trj
r

)

·log
(
αi,jP (htri

r , h
trj
r )

)]
.

2. Compute the weighted mutual information (WμI):

WμI(tri, trj) = [H(tri) +H(trj)

−H(tri, trj)], ∀i, ∀j.
3. Compute the baseline WμIbase:

WμIbase
.
=

[
min
i,j

(WμI(tri, trj)),

max
i,j

(WμI(tri, trj))

]
.

4. Compute lp (p = 1,2) norms:

lp(tri, trj) =

[
Nr∑
r=1

(|htri
r − h

trj
r |)p

] 1
p

, ∀i, ∀j.

5. Compute the baseline lbasep (p = 1,2):

lp
base .

=

[
min
i,j

(lp(tri, trj),max
i,j

(lp(tri, trj))

]
.

to construct each histogram we can take advantage of the central
limit theorem and the law of large numbers.

V. GROUPWISE IN OPERATION

A. Incremental Technique

The method collects a bunch of operational data before pro-
cessing and classifying them as in or out of distribution. For
this reason, it falls in the category of groupwise methods [27],
[28]. Differently from pointwise, groupwise confirms a type of
situation (in or out), without relying on a single point that could
be a spike in a steady trend. The collection phase in operation

TABLE II
TRAINING-OPERATIONAL NUMBER OF HITS TABLE WITH Nop = 1

TABLE III
TRAINING-OPERATIONAL NUMBER OF HITS TABLE WITH Nop > 1

Algorithm 2: Weighted Mutual Information and Norms at
Operational Stage.
i = 1, . . . , Ntr , p = 1, 2
Input: Table II; baseline ranges WμIbase and lp

base

Output: ODD through WμI and lp

1. Compute the weighted entropies H(tri), H(op1) and
H(tri, op1) as done in the Algorithm 1 (steps 1a-1b) ∀i.

2. Compute the weighted mutual information (WμI):

WμI(tri, op1) = [H(tri) +H(op1)−H(tri, op1)], ∀i.
3. Compute lp norms:

lp(tri, op1) =

[
Nr∑
r=1

(|htri
r − hop1

r |)p
] 1

p

, ∀i.

4. OoD detection:
IF WμI(tri, op1) /∈ WμIbase for the majority of i THEN
flag is on

IF lp(tri, op1) /∈ lp
base for the majority of i THEN flag is

on,
IF {at least one flag is on} THEN op1 is OoD.

does not imply that one would wait for new ns samples to
register a new split and to provide the ODD. Splits are generated
continuously, as soon as new samples are collected. Incremental
techniques may be also used to accelerate the computation
of statistically based features (mean, variance, skewness, and
kurtosis), as in the RUL and DNS problems detailed later on [29].
Like in incremental techniques, once a new sample is available,
a new (operational) bunch of ns samples is built, by adding
the new sample and by disregarding the most far away point in
the past (of ns positions). In turn, the bunch leads to the split
collection, by computing the inherent hits on the ruleset. The
process assumes a sample-by-sample incremental time window,
over which the following operations are performed. A new data
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Algorithm 3: Rule-Based Information At Training Stage.
i = 1, . . . , Ntr, p = 1, 2, j = 1, . . . , Nr, tri ∈ TR2m;
Inputs: TR1 and TR2m, m = k + 1, . . . , Ntr ,
k = Ntr −Nop − 1

Output: Training baselines RBIbase and lp
base

1. Compute μTR1
j = 1

k

∑k
i=1 h

tri
j and

σTR1
j =

√∑k

i=1
(htri−µTR1

j
)2

k
,∀j

2. Estimate Gaussian distributions {N (μTR1
j , σTR1

j )}, ∀j
3. Compute μTR2m

j = 1
Ntr−k−1

∑Ntr
i=k+1
i �=m

htri
j and

σTR2m
j =

√∑Ntr
i=k+1
i �=m

(htri−µTR2m
j

)2

Ntr−k−1
, ∀j

4. Estimate Gaussian distributions {N (μTR2m
j , σTR2m

j )}, ∀j
5a. Considering N (μTR2m

j , σTR2m
j ), ∀j and ∀tri, compute:

PTR2m
ij

.
= P

(
x ∈ [

htri
j − σTR2m

j , htri
j + σTR2m

j

] |rj) ,
CPTR2m

ij

.
= 1− PTR2m

ij

5b. Compute the entropy:

H(tri) = −
Nr∑
j=1

[
PTR2m
ij

· log
(
PTR2m
ij

)
+ CPTR2m

ij

·log(CPTR2m
ij

)
]
, ∀tri

6a. Considering N (μTR1
j , σTR1

j ), ∀j and ∀tri compute:

PTR1
ij

.
= P (x ∈ [htri

j − σTR1
j , htri

j + σTR1
j ]|rj),

CPTR1
ij

.
= 1− PTR1

ij

6b. Compute the weighted conditional entropy, ∀tri:

H(tri|TR1) = −
Nr∑
j=1

γtri
j · [PTR1

ij
· log(PTR1

ij
)

+ CPTR1
ij

· log(CPTR1
ij

)],

where γtri
j

.
=

PTR2m
ij

PTR1
ij

7. Compute the average entropies:

H(TR2m) =
1

Ntr − k − 1

Ntr∑
i=k+1
i �=m

H(tri)

H(TR2m|TR1) =
1

Ntr − k − 1

Ntr∑
i=k+1
i �=m

H(tri|TR1)

8. Measure the similarity between TR2m and TR1 considering
RBITR1−TR2m :

RBITR1−TR2m
.
=

H(TR2m)

H(TR2m|TR1)

10. Construct the baseline range RBIbase:

RBIbase
.
=
[
min
m

(RBITR1−TR2m),max
m

(RBITR1−TR2m)
]

11. Compute the norms baselines lp
base as done in Algorithm 1.

Algorithm 4: Rule-based Information at Operational Stage.
i = 1, . . . , Ntr, p = 1, 2, j = 1, . . . , Nr, opi ∈ OP ;
Inputs: TR1 and OP (Table III); baseline ranges RBIbase and
lbasep

Output: ODD through RBI and lp

1. Compute μTR1
j = 1

k

∑k
i=1 h

tri
j and

σTR1
j =

√∑k

i=1
(htri−µTR1

j
)2

k
, ∀j

2. Estimate Gaussian distributions {N (μTR1
j , σTR1

j )}, ∀j
3. Compute μOP

j = 1
Nop

∑Nop

i=1 hopi
j and

σOP
j =

√∑Nop

i=1
(hopi−µOP

j
)2

Nop
, ∀j

4. Estimate Gaussian distributions {N (μOP
j , σOP

j )}, ∀j
5a. Considering N (μOP

j , σOP
j ), ∀j and ∀opi, compute:

POP
ij

.
= P (x ∈ [hopi

j − σOP
j , hopi

j + σOP
j ]|rj),

CPOP
ij

.
= 1− POP

ij

5b. Compute the entropy:

H(opi) = −
Nr∑
j=1

[
POP
ij

· log
(
POP
ij

)

+CPOP
ij

· log(CPOP
ij

)
]
, ∀opi

6a. Considering N (μTR1
j , σTR1

j ), ∀j and ∀opi, compute:

PTR1
ij

.
= P (x ∈ [hopi

j − σTR1
j , hopi

j + σTR1
j ]|rj),

CPTR1
ij

.
= 1− PTR1

ij

6b. Compute the weighted conditional entropy, ∀opi:

H(opi|TR1) = −
Nr∑
j=1

γopi
j · [PTR1

ij
· log(PTR1

ij
)

+ CPTR1
ij

· log(CPTR1
ij

)],

where γopi
j

.
=

POP
ij

PTR1
ij

7. Compute the average entropies:

H(OP ) =
1

Nop

Nop∑
i=1

H(opi)

H(OP |TR1) =
1

Nop

Nop∑
i=1

H(opi|TR1)

8. Measure the similarity between TR1 and OP by considering
RBITR1−OP :

RBITR1−OP
.
=

H(OP )

H(OP |TR1)

9. OoD detection:
IF RBITR1−OP /∈ RBIbase THEN flag is on

IF lp(tri, opj) /∈ lp
base for the majority of i and j THEN

flag is on
IF {at least one flag is on} THEN OP is OoD
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TABLE IV
RUL PHYSICAL QUANTITIES

bunch is first registered, a new split is calculated and a new ODD
is then derived.

B. Computational Issues

The computational speed of the bunch building process de-
pends on how fast the data samples are collected by the system
(the quantity is denoted by δt0). The speed of the split building
process depends on the time required to compute the hits of
the ruleset on the bunch, namely, on the latest ns data samples
(δt1). The speed of the ODD depends on the computational time
of Algorithms 2 and 4 above (δta2 and δta4, respectively).

The computational times of the baselines in Algorithms 1
and 3 are less of interest as the algorithms work at design time,
in which enough computational resources are assumed to be
available; they however follow similar O(·) as their respective
operational versions. On the other hand, δta2 and δta4 are of
interest, as Algorithms 2 and 4 work over the deployed ML
infrastructure, for which limited computational resources may
be assumed. The following considerations hold for the δt quanti-
ties. δt0 is outside of the scope of this article as it depends on the
environmental conditions and on the sensing architecture of the
system. δt1 is O(ns) (by assuming the time to verify a rule on a
data sample a constant, independently to the complexity of the
rule). By referring to the computations inherent to the metrics
involved in Algorithm 2, δta2 isO(Nr ·Ntr). Analogously, δta4
is O(Nr ·NOP ).

VI. CASE STUDIES

A. Datasets

Three application scenarios are considered with the inherent
datasets and relevance of the ODD problem.

1) RUL: The first dataset concerns damage propagation
modeling for aircraft engines and is taken from the NASA reposi-
tory [30]. It is an important benchmark in predictive maintenance
and includes four different subsets of data (tr1, opa, opb, opc),
corresponding to different machines of the same factory family.
The problem is interesting in the ODD perspective because
one may expect a model trained on a machine (e.g., tr1) to
be applicable (with limited error) to another machine (e.g.,
opa). The features are: mean (m), variance (v), kurtosis (k),
and skewness (s) of the original 23 physical quantities over
time. A preliminary analysis with LLM feature ranking [23]
individuated the following set of seven most important features:
sos2, mNc, vNc, vphi, mhtBleed, shtBleed, mW31, whose corre-
sponding physical quantities are outlined in Table IV.

TABLE V
PLATOONING FEATURES

TABLE VI
DNS TUNNELING PHYSICAL QUANTITIES

The target variable is the remaining useful life (RUL), which
represents the time before the occurrence of a fault and is
binarized to assume either value “0 healthy” (RUL>150) or “1
fault” (RUL≤150). A ML classifier through LLM predicts if the
engine would come into a fault state or not; tr1 constitutes the
in-distribution and Rtr1 the reference ruleset.

2) Platooning: The second dataset (platooning [31]) ad-
dresses collision avoidance in vehicle platooning, which is one
of the most celebrated application in autonomous driving. A
group of vehicles is interconnected via wireless, based on the
cooperative adaptive cruise control [32]. The behavior of the
platooning system is synthesized by the physical quantities
pointed out in Table V. The physical quantities correspond to
the features of the problem, which identifies potential collision
in advance after a sudden brake.

We consider two datasets: in the first one (LOW) the commu-
nication delay d parameter is bounded by 0.4 s; in the second
one (HIGH), and d is larger than that threshold. As in the RUL
case, we set a training domain: trLOW (in-distribution) as well
as the reference ruleset RtrLOW

. A typical ODD problem is thus
posed (between LOW and HIGH) as d has a significant impact
on performance. The ODD has here a safety preserving role as
it recognizes if the delay in operation is larger than the one in
training. The algorithms are however not aware that delay is
the key for the datasets differentiation and understand the ODD
through the operational hits on RtrLOW

.
3) DNS: The third dataset (DNS) deals with a DNS tunneling

detection problem [33]. The aim is to detect the presence of
Domain Name Server intruders by an aggregation-based traffic
monitoring. Silent intruders and quick statistical fingerprints
generation make the tunneling detection a hard task. Table VI
shows the physical quantities of the problem.

Again as in the RUL case, mean (m), variance (v), kurtosis
(k), and skewness (s) are extracted over the time series of the
system, thus leading to 12 features. The target variable is a binary
label denoting the “presence” or “absence” of a tunneling attack.
Two reference datasets are as follows: the first one considers
a tunneled peer-to-peer (p2p) application, that is the training
(in-distribution) domain trp2p (with Rtrp2p as the reference
ruleset), and the second refers to the tunneled secure shell (ssh)
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TABLE VII
ALGORITHMS 1 AND 2: RUL. NORMS

TABLE VIII
ALGORITHMS 1 AND 2: RUL. µI AND WµI

application, which is the operational setting (opssh). The ODD
here is of interest once ssh is used in operation under the trained
p2p model. It is a quite realistic situation in cybersecurity as not
all attack configurations may be anticipated at design time.

VII. RESULTS

The first two sections deal with understanding the ranges of
the metrics in OoD conditions. The baseline ranges are reported
in the first row of all the tables and represent the reference to
infer possible OoD in operation. An even partial overlap between
ranges in training and operation leads to a missed detection,
i.e., a false negative (FN). A false positive (FP) consists of a
wrong ODD for a training (in-distribution) bunch of samples.
Second, false negative rate (FNR) and false positive rate (FPR)
are reported in Section VII-C. An operational sample of Table II
or Table III constitutes a FN in case no OoD is declared; a
sample (column) of Table I constitutes a FP in case OoD is
declared. Tables are built as follows. Each column refers to a
bunch of ns = 5000 samples, with values reflecting the number
of hits for the reference ruleset. We consider Ntr = 50 and Nop

= 1 in Table II while Ntr = 50 with TR1 = {tr1, . . . , tr39},
TR2 = {tr40, . . . , tr50}, and Nop = 10 in Table III. The total
repetitions of the experiments for computing FPR and FNR
is 2500. The section ends with Section VII-D and outlines
incremental groupwise detection in operation. Example code
and data for the experiments are available at the following link:
https://github.com/giacomo97cnr/Rule-based-ODD.

A. Nop = 1

Tables VII and VIII show norms, μI and WμI range over
the RUL datasets. The robustness of Algorithm 2 is validated
by the fact that all OoD ranges are significantly far away from
the training baselines. The values with the norms are closer to
the respective training baselines with opb than with opa and opc.
This is an important indication about the similarity of in (tr1) and
out (opb) distributions. Coming back to the EASA introductive
figure, it happens that opb lies in the yellow zone. Namely, the
model trained on tr1 is good on opb data, with FPR = 18%
and FNR = 27%, which is quite close to the in-distribution
performance (training and test on separate tr1 samples): FPR =

TABLE IX
ALGORITHMS 1 AND 2: PLATOONING. NORMS

TABLE X
ALGORITHMS 1 AND 2: PLATOONING. µI AND WµI

TABLE XI
ALGORITHMS 1 AND 2: DNS NORMS

TABLE XII
ALGORITHMS 1 AND 2: DNS. µI AND WµI

18% and FNR = 22%.6 On the other hand, opa and opc lie in the
orange zone (i.e., the tr1 model is not good anymore on opa and
opc, being FPR = 0.03%, FNR = 99.86%, and FPR = 0.04%,
FNR = 99.88%, respectively).7 When the tr1 model is tested on
opb, a good balance between FPR and FNR is still achieved; the
same does not hold for opa and opc, which are far away from
the tr1 baseline.

The rationale behind the tr1 and opb proximity is beyond
the knowledge of the authors (one may argue about some me-
chanical similarity of the respective engines), but inferring such
proximity through ODD is quite an important achievement. In
this perspective, the method should use all the metrics jointly to
provide both ODD and a measure of the distance of the IN and
OUT distributions.

As far as platooning (Tables IX–X) and DNS (Tables XI–XII)
are concerned, good performance are registered, except with μI
in platooning (the topic is discussed later through groupwise
analysis and in the Appendix).

B. Nop > 1

This section outlines the performance of Algorithms 3 and 4,
whose results are shown in Tables XIII, XIV, and XV. Nop > 1
allows us to exploit more information at the operational level
and thus finer separation of the OoD from the baseline.

C. Comparison With Canonical Methods

This section outlines a comparison with canonical supervised
algorithms, such as K-nearest neighbors (KNN), support vector

6The mentioned FNR and FPR refer to the original RUL problem, namely,
they represent the errors in fault prediction.

7Large FNRs here may even lead to the red zone of EASA picture (catastrophic
event), depending on system resilience to wrong autonomous decisions.

https://github.com/giacomo97cnr/Rule-based-ODD
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TABLE XIII
ALGORITHMS 3 AND 4: RUL

TABLE XIV
ALGORITHMS 3 AND 4: PLATOONING

TABLE XV
ALGORITHMS 3 AND 4: DNS

machine with a RBF kernel (SVM) and random forest as well as
unsupervised ones like the unsupervised KNN (u-KNN) and the
autoencoder. In particular, we first present the results considering
the pointwise structure and then the groupwise counterpart.
Supervised algorithms exploit information about OoD data. A
mix of the IN and OUT data are considered for training supervised
approaches and then a testing phase got the FPR and FNR
values presented in Table XVI. In u-KNN we followed [10]
yet revisiting it according to the fact that we were not using
images; hence, we have first split up the training domain into a
training set and a test one and then we have tuned two parameters:
the number of neighbors (K) and a distance threshold (λ) used
to determine if test data are in-distribution or not; λ was set
in order to have a true negative rate of 95% in the training
domain. Despite including information about OoD data in their
training, supervised algorithms fail the ODD and unsupervised
methods work even worse. This may denote that training and
operational data are confused in the original feature space. The
proposed algorithms, along with the above mentioned super-
vised and unsupervised techniques, achieve better performance
in virtue of looking at IN and OUT separation in a different space,
namely, through the ruleset hits in training. Thus, we repeated
the same experiments considering the groupwise structure (see
Table XVII) inducted by the usage of the rule hits; specifically,
we used the rule hits as the input features (in place of the original
features) and verified a perfect separation between IN and OUT

distributions with all the considered methods. Algorithms 2
and 4 are however still preferable for different reasons: First, they
are not black box methods, second, they do not need significant
tuning of critical parameters and finally for its robustness due to
the usage of multiple metrics [34]. In Table XVII, Algorithm 2
still experiences some FPR as the weighted version of the mutual
information is applied to a smaller portion of operational data
than with Algorithm 4. Another rationale behind the sensible
level of FPR comes from the declaration of OoD if at least one
of the metrics registers an OoD. This minimizes FNR, but may
increase FPR. Additional results (not reported here for the sake

of synthesis) confirm that the algorithm is even more sensitive to
FPR with values of Ntr < 50. On the other hand, Algorithm 4
decreases also FPR (with respect to Algorithm 2), in virtue of the
(Gaussian) statistical filter applied to several splits of operational
data.

D. Incremental Groupwise in Operation

By referring to Section V, the following experiments highlight
the ODD when replacing in-distribution data with out-of, in
a sample-by-sample, incremental, way. The analysis is rele-
vant to the tracking of the OoD drift with both precision and
measurement of distributions proximity. Every figure in the
following contains the baseline derived at design time; the curves
represent the behaviors of the metrics in operation. Increasing
time windows with ns = 5 · 103 and 104 samples are used to
emphasize the speed of the drift inference over time. The time
size of the windows depends on the time granularity of the
arrival of the points in operation; for this reason, the x-axis
is not time, but it refers to the progressive identifier of the
operational samples. The drift starts at time zero, which means
the first operational sample derives from the OoD and previous
points (of the window) are compliant with training conditions.
As soon as the window collects more data (over the last ns

points), it senses more information about the OoD. As to the
WμI metric, the results confirm that the shorter the window, the
faster the detection. On the other hand, theμI metric experiences
a noise that can have different meanings as detailed later on. The
following evidence arises for the case studies. In RUL, WμI
[see Fig. 2(a)] needs at least 200 samples to exit the baseline;
this happens with the shortest window (ns = 5000) and with
the most divergent OoD (opa with respect to opb). The l1 norm
[see Fig. 2(b)] outlines a similar behavior. μI [see Fig. 2(c)]
does not trigger the expected ODD; this seems in contrast with
previous results in Table VIII, where ODD was successful. This
is however due to the limited horizon of the figure; the curves
under ns = 5 · 103 are actually approaching the baseline and, as
expected, opa reveals to be faster than opb, being more divergent
from tr1 than opb. The groupwise progression thus suggests the
joint adoption of the metrics to achieve both precision (WμI)
and measure of the distributions similarity (μI). In platooning,
WμI matches the ODD and, coherently with previous results
(see Table IX), μI is stuck in the baseline. Finally, DNS has
good performance with the two metrics as well. The difference
between RUL and platooning in μI is remarkable as it is very
subtle. In the former case, μI is sensitive to distributions simi-
larity, still being able to slowly proceed in the ODD direction.
In the latter, it experiences imprecise calculations (as shown in
the Appendix), thus complicating the ODD task.

It is finally worth noting that the window of the incremental
groupwise should be coherent with the design setting with
ns = 5000. Other results may show several counterexamples
in RUL with ns = 1000 and tr1 − tr1, in which, though only
points in the baseline would have been expected, many false
positives take place.



DE BERNARDI et al.: RULE-BASED OUT-OF-DISTRIBUTION DETECTION 2635

TABLE XVI
ODD PERFORMANCE COMPARISON CONSIDERING THE POINTWISE STRUCTURE, IN TERMS OF FNRS AND FPRS

TABLE XVII
ODD PERFORMANCE COMPARISON CONSIDERING THE GROUPWISE STRUCTURE, IN TERMS OF FNRS AND FPRS

Fig. 2. Incremental groupwise results. (a) RUL tr1-opa and tr1-opb with WµI. (b) RUL tr1-opa and tr1-opb with µI. (c) RUL tr1-opa and tr1-opb with l1 norm.
(d) Platooning with WµI. (e) Platooning with µI. (f) DNS with WµI. (g) DNS µI.
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TABLE XVIII
EXAMPLE OF µI

VIII. CONCLUSION AND FUTURE WORK

The article deals with the identification of OoD through a
distributional assumption free rule-based model. The approach
also measures the proximity of IN and OUT-of distributions
and is validated in challenging case studies. Future extensions
comprise further testing on additional longitudinal datasets, as
well as on image data. Alternative ways to the hits of the ruleset to
infer in-distribution behavior are of interest, as well as additional
metrics to measure IN and OUT of distribution divergence. Also,
a performance evaluation between the complete ruleset and the
one obtained on some selected features or the one containing the
most understandable rules could be of great interest, as well as
the investigation on how to enhance the interpretability of the
process, by studying how to properly make the methods suitable
for a reduced, more interpretable, set of rules.

APPENDIX

RATIONALE OF MUTUAL INFORMATION MODIFICATION

When comparing couples of histograms, (μI) is useful to
identify the dependence, but it does not capture the differences
among their values. Suppose we get these three histograms A,
B, and C (see Table XVIII).

Considering the simpleμI , histogramsA andB are dependent
and so A and C are; but B and C are different (they have same
values but in different positions). Since each row of the tr and
op histograms corresponds to a rule, μI may have a detrimental
effect as the rule hits contain the information to the OoD. The
correction to overcome this issue consists of weighting the
probabilities (used in entropy calculations) through the average
of hits differences in each rule/row; this leads to αi,j quantities
in Algorithm 1. The more the histograms are dependent and
similar, the moreWμI goes toward zero. Similar considerations
hold for RBI , with Nop > 1, the weights (γ(·)

j quantities) are
the fractions of the compared probabilities.
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