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Abstract

Explainable Artificial Intelligence (XAI) is becoming a disruptive trend in healthcare,
allowing for transparency and interpretability of autonomous decision-making. In this
study, we present an innovative application of a rule-based classification model to
identify the main causes of chronic cough-related quality of life (QoL) impairment in a
cohort of asthmatic patients. The proposed approach first involves the design of a
suitable symptoms questionnaire and the subsequent analyses via XAI. Specifically,
feature ranking, derived from statistically validated decision rules, helped in
automatically identifying the main factors influencing an impaired QoL: pharynx/larynx
and upper airways when asthma is under control, and asthma itself and digestive trait
when asthma is not controlled. Moreover, the obtained if-then rules identified specific
thresholds on the symptoms associated to the impaired QoL. These results, by finding
priorities among symptoms, may prove helpful in supporting physicians in the choice of
the most adequate diagnostic/therapeutic plan.

Introduction 1

Nowadays Artificial Intelligence (AI) is revolutionizing medicine by leveraging powerful 2

technologies and advanced learning algorithms. This has the potential to support 3

several clinical processes, from prognostics to diagnostics, from treatment management 4

to drug discovery, and also can aid hospital administrative tasks. However, AI real 5

application in healthcare needs to be approached very carefully, since failures may cause 6

harm to human lives. For this reason, AI research is increasing its interests in 7

trustworthy AI [1], a broad paradigm establishing how to properly design, develop and 8

deploy real-world AI applications. Between its principles, transparency requires 9

providing the user with an understanding of the autonomous decisions generated by the 10

model: this topic is subject of eXplainable AI (XAI) research [2, 3]. XAI comprehends a 11

wide range of methodologies, which can be broadly categorized as post-hoc explanations 12

of black box models and transparent-by-design techniques [4]. In the latter category, 13

rule-based models are characterized by understandable decision rules expressed in the 14

if-then format. These kinds of models are particularly suitable in medicine, since their 15

intrinsic interpretability allows clinicians to enter models’ logic and increase trust in 16

them. In light of this, our work focuses on the usage of such techniques to characterize 17

the quality of life of asthmatic patients with chronic cough. 18
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Asthma is a frequent cause of cough in adults [5]. In addition to coughing, asthmatic 19

patients may also wheeze or feel short of breath. However, some people have a condition 20

known as cough variant asthma, in which cough is the only symptom of asthma. For 21

these reasons, tools for the assessment of asthma, such as Asthma Control Test 22

(ACT) [6], consider cough among the asthma features. While in patients with 23

uncontrolled asthma the disease itself can be the cause of cough, the persistence of 24

cough despite good asthma control can be related to concomitant disorders (i.e., 25

postnasal drip, pharynx/larynx disorders, and acid reflux from the stomach [7]) or 26

inability of asthma drugs to fully remove the symptoms. 27

In light of these considerations, it is very useful to design a method that allows to 28

define the priority of choice among different diagnostic techniques, starting from 29

patients’ self-reported presence and entity of symptoms and their impact on the quality 30

of life. Methods based on XAI, thanks to their transparent and interpretable methods, 31

can offer a great opportunity in this direction. 32

Contribution 33

In this study, we propose the usage of a rule-based XAI model to support clinicians in 34

the diagnostic procedure for determining the origins of chronic cough in asthmatic 35

patients. More precisely, our main contributions are the following: 36

• We introduce a new block-based questionnaire, devoted to collect (respiratory) 37

symptoms perceived by asthmatic patients with chronic cough. 38

• We train a rule-based model, the Logic Learning Machine (LLM), for predicting 39

chronic cough-related quality of life based only on self-reported responses to the 40

questionnaire of symptoms, by distinguishing patients with high or low asthma 41

control level. 42

• By validating and analyzing the model, we discover which symptoms and 43

corresponding values are mainly involved in a quality of life exacerbation. 44

The remaining part of the paper is organized as follows. In Section Related Work we 45

report some recent examples of machine learning for chronic cough. Section 46

Methodology describes the workflow, the dataset structure and the adopted 47

methodologies. Section Results shows and discusses the obtained results. Finally, 48

Section Conclusion concludes the paper and reports future research on the topic. 49

Related Work 50

Different machine learning (ML) and AI-based studies on chronic cough and asthma 51

have been carried out in recent years, by leveraging the newest medical technologies [8]. 52

An AI-based cough count, CoughyTM [9], system was recently developed that quantifies 53

cough sounds collected through a smartphone application. Study results showed that 54

suggest that CoughyTM could be a novel solution for objectively monitoring cough in a 55

clinical setting. A vocal biomarker-based machine learning approaches have shown 56

promising results in the detection of various health conditions, including respiratory 57

diseases, such as asthma [10]. Also, a deep learning model for identifying chronic cough 58

patients with even higher sensitivity and specificity when structured and unstructured 59

electronic health records EHR data are utilized has been proposed [11]. 60

In [12], well established ML models like gradient boost and random forest were 61

adopted in a retrospective study to predict the risk of persistent chronic cough (PCC) 62

in patients with chronic cough (CC). The work proposed in [13] used a statistical 63

approach (Latent Class Analysis) on the Swedish Twin study On Prediction and 64
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Prevention of Asthma (STOPPA [14]) and the Child and Adolescent Twin Study in 65

Sweden (CATSS) questionnaires responses to identify asthma and wheeze phenotypes in 66

children. In [15], four adult chronic cough phenotypes were identified through a cluster 67

analysis method applied to questionnaire data such as the COugh Assessment Test 68

(COAT) [16] and the Korean version of the Leicester Cough Questionnaire [17]. 69

However, all these literature examples do not provide their outcomes in an 70

explainable way. 71

Methodology 72

Workflow 73

The overall methodology followed in the proposed analyses is depicted in Fig. 1. The

Fig 1. Workflow of the analyses carried out in the proposed XAI-based
approach.

74

dataset was first split in a 70% training and 30% test sets, then an explainable Artificial 75

Intelligence (XAI) model was considered for data classification. The adopted classifier is 76

called Logic Learning Machine and provides its predictions through a set of rules. In 77

order to verify the statistical significance of the resulting ruleset, this was validated 78

through a statistical test. Rules that did not pass the test were then filtered out from 79

the model, thus obtaining a final, validated, set of rules. Also, feature ranking was 80

investigated to identify which of the inputs have the higher impact on the model 81

outcome. Finally, the overall performance of the validated ruleset was measured on the 82

test set, by considering some common metrics for machine learning models evaluation. 83

Next Sections provide the description of the dataset and some fundamentals about 84

the adopted XAI, the rule validation test and the definition of the evaluation metrics. 85

Dataset Description 86

We implemented a retrospective study on a cohort of asthmatic patients [from the 87

NCT04796844 trial approved by local ethical committee (CER Liguria: 456/2020 - DB 88

id 10481)], who have been asked to answer to three different kinds of questionnaires 89

(data were accessed on 2023/03/08; the authors had no access to information that could 90

allow to identify individual participants during or after data collection). 91

The first questionnaire collects patients’ feedback about a variety of symptoms. 92

Specifically, it contains 19 items relating to four domains related to the more frequent 93

causes of chronic cough, as shown in the diagram of Fig. 2.

Fig 2. Symptoms questionnaire. Schematic representation of the four blocks
(AsthmaRelated, PharynxLarynx, RhinoSinusitis, GastroEsoReflux ) of the symptoms
questionnaire and their related items.

94

For each item, the patients answered to the question “How intense/annoying has the 95

symptom been in the last month?”, by self-reporting a level between None and Very 96

Much expressing the perceived entity of the corresponding symptom. These levels were 97

then proportionally converted to a score in the 0-100 scale. The average of the responses 98

within each block was computed, thus individuating a set of four features that will be 99

used as input to the ML model, each referred to a different body organ. 100

The second questionnaire involved in this study is the Chronic Cough Impact 101

Questionnaire (CCIQ) [18]. It is useful to measure the impact of cough on 102
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health-related quality of life, namely impact on daily life (CCIQ IDL), on 103

sleep/concentration (CCIQ SC), on mood (CCIQ M) and relationship (CCIQ R). A 104

score for each group is derived and contributes to compute a global score, called CCIQ 105

GLS : based on this, we defined two classes of patients. Those scoring CCIQ GLS≥20 106

were labelled as impaired Quality of Life (QoL), while those with CCIQ GLS<20 were 107

associated to a near normal QoL. This threshold value choice and the subsequent 108

labelling follows previous studies on the same questionnaire [19]. 109

The last questionnaire considered is the Asthma Control Test (ACT) [6]. It is a 110

5-item questionnaire aimed at assessing at which extent the asthmatic patient has 111

control of the pathology. We used the score obtained from this test to further 112

distinguish patients between two populations: subjects with ACT ≥ 20 were identified 113

as the controlled asthma group, whereas those scoring ACT < 20 formed the not 114

controlled asthma group. 115

The analyses carried out in this work thus considered three different cases: i) all 116

patients were included; ii) only controlled asthma patients were included; iii) only not 117

controlled asthma patients were included. 118

The Adopted eXplainable AI classifier 119

For each patients group, we trained a XAI classifier that, fed with the 4 input features 120

(referred to as AsthmaRelated, PharynxLarynx, RhinoSinusitis and GastroEsoReflux ) 121

representing the average scores on each block of the symptoms questionnaire (Fig. 2), 122

provided a prediction of the patient’s cough-related QoL, which can be either impaired 123

or near normal. 124

The analyses on the first group (i.e., all patients) did not explicitly use the knowledge 125

acquired from the ACT questionnaire. Indeed, the classification model that is designed 126

for this group represents a tool to individuate which areas and values of symptoms drive 127

an impaired QoL in a generic asthmatic population, but without any previous 128

knowledge on the asthma control level. Conversely, the analyses performed on the 129

controlled asthma and not controlled asthma groups also exploited the information from 130

the ACT, thus the results of the XAI predictive models provide indications that are 131

specifically tailored to the different asthma control level. 132

Logic Learning Machine 133

In this Section, we provide some basic description of the adopted classifier, the Logic 134

Learning Machine (LLM). It is a rule-based explainable AI model, designed and 135

developed by Rulex [20] as the efficient implementation of Switching Neural 136

Networks [21]. 137

Given the input data, the LLM provides a classification model described by a set of 138

rules R = {rk}k=1,...,Nr
, where each rk is expressed with the form: if premise then 139

consequence. The premise constitutes the antecedent of the rule and is a logical 140

conjunction (and) of conditions on the input features. The consequence reports the 141

outcome of the classification, i.e. the predicted class label. 142

The performance of any rule rk ∈ R can be evaluated by covering C(rk) and error 143

E(rk) metrics, defined as: 144

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(1)

145

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(2)
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where TP (rk) and FP (rk) are the number of patients that, respectively, correctly and 146

wrongly verify rule rk; TN(rk) and FN(rk) are the number of patients that, 147

respectively, correctly and wrongly do not verify the rule. The covering quantifies how 148

many patients correctly satisfy the rule with respect to all the patients belonging to the 149

same output label expressed by the rule consequence: therefore the larger it is, the 150

higher is the probability that the rule is valid on new unseen patients. On the contrary, 151

the error E(rk) measures how many patients wrongly satisfy the rule with respect to all 152

patients not belonging to the same output label expressed by the rule consequence and 153

its maximum value is usually fixed as a model hyperparameter (by default, it is of 5%). 154

Both covering and error are useful to define feature ranking. It allows to gain insights on 155

which input attributes contribute the most to predict a given class; to this aim, values 156

of relevance for each feature are computed and typically represented in bar plots in 157

descending order. 158

Given a feature Xj and a rule rk (predicting class label ỹ) containing in its premise a 159

condition cj on variable Xj , covering and error are first combined to compute the 160

relevance of cj as R(cj) = (E(r′k)− E(rk))C(rk), where r′k is the rule obtained by 161

removing condition cj from rk. The relevance Rỹ
j for feature Xj is then derived by the 162

following equation 3: 163

Rỹ
j = 1−

∏
k

(1−R (cj)) , (3)

where the product is computed on the rules rk that include a condition cj on the 164

feature of interest. 165

Given a patient characterized by measurements x (i.e., the collection his/her scores 166

for AsthmaRelated, PharynxLarynx, RhinoSinusitis and GastroEsoReflux), the LLM 167

makes a final decision about his/her QoL status, by assigning a class label ŷ, which can 168

either be near normal QoL or impaired QoL. Such label assignment depends on the 169

(possibly multiple) rules, generated by the LLM inner process, that are verified by the 170

patient. 171

Consider the set Rnear normal QoL
x of all rules rk satisfied by x predicting class label 172

near normal QoL, and the set Rnear normal QoL of all rules generated by the model and 173

predicting near normal QoL class (i.e., not necessarily satisfied by the considered 174

patient); then, the following quantity expresses a score for the near normal QoL label 175

w(x)near normal QoL =

∑
rk∈Rnear normal QoL

x
C(rk)(1− E(rk))∑

rk∈Rnear normal QoL C(rk)(1− E(rk))

In the very same way, a score w(x)impaired QoL can be computed for the other class 176

label. At the end, the label corresponding to the highest score is assigned as the final 177

label ŷ for the considered patient. 178

Rules Statistical Validation 179

In order to assess the statistical significance of the set of rules generated by the LLM, 180

we decided to use the Pearson’s χ2 independence test [22]. 181

The statistical validation of the rules aims at verifying which of the XAI-generated 182

rules can be associated to the output class they predict for a real dependence, and not 183

by chance. In particular, we considered two binary events involving the available data 184

samples, namely their membership to an output class and their satisfaction of the rules 185

in R. Since these are categorical events, we considered Pearson’s χ2 independence 186

test [22] a suitable statistical test for this purpose. 187
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A 2×2 contingency table was built for each rule rk belonging to ruleset R, as shown 188

in Table 1, reporting the counts of how many samples of the two classes are covered or 189

not by the rule. 190

Let the input dataset be T = {(xi, yi)}i=1,...,N , with binary output labels yi = 0 191

(i.e., near normal QoL class in our case) or yi = 1 (i.e., impaired QoL class). 192

The following quantities are defined for each point: 193

ai =

{
1 if yi = 1 and xi satisfies rk

0 otherwise
bi =

{
1 if yi = 1 and xi does not satisfy rk

0 otherwise

ci =

{
1 if yi = 0 and xi satisfies rk

0 otherwise
di =

{
1 if yi = 0 and xi does not satisfy rk

0 otherwise

Finally, the elements of Table 1 can be computed as: 194

a =

N∑
i=1

ai, b =

N∑
i=1

bi, c =

N∑
i=1

ci, d =

N∑
i=1

di

Table 1. 2×2 contingency matrix for rule rk.

rk satisfied rk not satisfied

y = 1 a b

y = 0 c d

195

χ2 statistic was then computed starting from the matrix. The test was carried out 196

with a null hypothesis of independence between class label and rule membership, with a 197

significance level of 0.05 for the p-value. Rules with a p-value < 0.05 were then proved 198

as statistically significant [23] and those that did not pass the test were removed from 199

the ruleset R, giving rise to a set of validated rules Rval ⊆ R. 200

Model Performance Evaluation 201

To evaluate the overall performance of the validated ruleset, the confusion matrix 202

reporting the True Positives (TP, i.e., patients correctly predicted as impaired QoL ), 203

False Positives (FP, i.e., near normal QoL patients wrongly predicted as impaired QoL), 204

True Negatives (TN, i.e., patients correctly predicted as near normal QoL) and False 205

Negatives (FN, i.e., impaired QoL patients wrongly predicted as near normal QoL) 206

obtained by applying such rules to a test set was first built. It is the basis to define the 207

following measurements, particularly useful when evaluating the outcomes of a clinical 208

ML model [24]: 209

ACC = TP+TN
TP+FP+TN+FN F1 =

2TP

2TP + FP + FN

PPV = TP
TP+FP NPV =

TN

TN + FN

TPR = TP
TP+FN TNR =

TN

TN + FP

While accuracy (ACC) and F1-score (F1) provide an evaluation of the model taking into 210

account its performance on both the classes, the other ones assess the performance on 211
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single classes. In detail, Positive Predictive Value (or precision, PPV) and True Positive 212

Rate (or sensitivity or recall, TPR) reflect the number of TPs over the total amount of 213

positive predictions and the total amount of positive samples, respectively. Viceversa, 214

Negative Predictive Value (NPV) and True Negative Rate (or specificity, TNR) 215

represent the number of TNs over the total amount of negative predictions and the total 216

quantity of negative samples, respectively. 217

Results 218

This study involved a population of 283 asthmatic patients (i.e., the all group), with 219

age 11-79 years old and characterized by a Forced Expiratory Volume in the first second 220

(FEV1) of 96.5% ± 19.09 (i.e, varying in the 27-143 range, with a median value of 94%), 221

and an ACT score of 19.09±4.98. 146 patients belong to the controlled asthma group 222

(i.e., the 52% of the whole population), while the remaining 137 patients form the not 223

controlled asthma group. 224

The dataset is available at the following link: 225

https://github.com/saranrt95/Cough_QoL_In_Asthma 226

Data statistics at a first glance 227

Figure 3 provides a first glance on how the four blocks of symptoms are distributed 228

between the two classes (impaired QoL and near normal QoL) both in the controlled 229

and not controlled asthma patients. Each colored bar individuates a different group of 230

patients and its length (the interquartile range, or IQR) varies between the 25th and 231

75th percentiles, while the vertical dashed lines (i.e., the whiskers) range from the 232

minimum to the maximum values and, finally, the horizontal dot-dashed black line 233

points out the median value of the corresponding symptoms group. The red ‘+’ markers 234

represent outlier points. By observing the plots the following points arise.

Fig 3. Box plots. Graphs showing the class distributions in the controlled versus not
controlled patients groups, for each of the considered features.

235

AsthmaRelated median values and the related IQRs are pretty different among all the 236

groups. As expected, the median scores for the not controlled asthma (purple and green 237

boxes) are higher than for the patients with controlled asthma (pink and orange boxes). 238

Also, the values are larger for the impaired QoL than the near normal QoL class. 239

PharynxLarynx can help distinguishing the two classes both in the controlled and not 240

controlled asthma groups, since the median values for the impaired QoL class in the two 241

groups are 21 and 27, respectively, against the 11.75 and 11.25 values for the near 242

normal groups. Analyzing the box for RhinoSinusitis variable, we can observe that the 243

medians of the not controlled asthma group are very close to each other (around 30) in 244

both impaired and near normal QoL classes. In the controlled group, the median of the 245

impaired QoL class (23.64) is slightly larger than for the other class (17.00), suggesting 246

some role of this feature in differentiating the classes in this group. Lastly, the 247

GastroEsoReflux factor shows higher values for the impaired QoL class in the not 248

controlled asthma group, while the other boxes are aligned over the same range of 249

values. 250

However, this kind of evaluation is based on visual analytics and simple statistics, 251

and the results do not provide any guarantee of validity on new, unseen, patients. Also, 252

such kind of exploration only accounts for one variable at a time, and not for the 253

relationships among them. This is why we decided to explore a machine learning-based 254

approache. 255
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Explainable AI-based analysis 256

For each of the considered cases, the LLM algorithm was trained on a 70% training set 257

and generated a set of rules. In particular, for the all group, 19 rules were generated (8 258

predicting impaired QoL class and 11 the near normal QoL); from the controlled asthma 259

case, we got 13 rules (4 for the impaired QoL and 9 for the near normal QoL class); 260

lastly, 9 rules derived from the not controlled asthma group (5 referring to the impaired 261

QoL and 4 to the near normal QoL class). 262

The Pearson’s χ2 validation test was then carried out to statistically proof the 263

obtained rulesets, as per the procedure detailed in Section . After the test, 2 rules out 264

of 8 for the impaired QoL class and 4 out of 11 for the near normal QoL class were 265

validated in the all case; 2 of the 4 rules predicting the impaired QoL class in the 266

controlled asthma group resulted significant, while 3 out of 9 rules for the other class 267

was validated in the same group; similarly, in the not controlled asthma patients, 2 rules 268

out of 5 for the impaired QoL class passed the test, while 3 out of 4 rules related to the 269

near normal QoL did. 270

Model performance metrics 271

After validating the rules, we thus have been able to define a final set of rules for each 272

case, by leaving out from the original rulesets all those which tested not significant. The 273

predictive performance of the validated rulesets was assessed on the test set, by 274

computing the metrics described in Sec. Model Performance Evaluation; their values are 275

depicted and compared in Fig. 4 for the three groups.

Fig 4. Validated rules performance. Percentage values of the accuracy (ACC),
F1-score (F1), Positive Predictive Value (PPV), Negative Predictive Value (NPV), True
Positive Rate (TPR) and True Negative Rate (TNR) of the LLM in the three patients’
groups.

276

The accuracy reached at least 70% in all cases, thus showing good performance of 277

the validated rulesets. While also F1 score value was high for the all and not controlled 278

asthma groups (75% and 83%, respectively), it was lower (57%) for the controlled 279

asthma group, denoting both poorer precision and recall. Indeed, PPV and TPR 280

metrics, related to the positive class (i.e., impaired QoL), were found 66% and 50%, 281

respectively, whereas NPV and TNR (reflecting the model’s performance on the 282

negative class, i.e., the near normal QoL) were sensitively larger (74% and 85%, 283

respectively). In contrast, the not controlled asthma reached a high F1 due to larger 284

values of precision and recall, with a PPV of 77% and TPR of 89%; on the other hand, 285

NPV and TNR resulted in lower values. A similar reasoning holds for the all group, 286

even if the model performance on the two classes was more balanced, with less 287

difference among the metrics for the positive and the negative class. 288

Most relevant symptoms questionnaire items 289

Further insights on the LLM results were obtained by visualizing the feature ranking. 290

Bar plots, obtained for the three cases under analysis, are shown in Fig. 5, representing 291

the impaired QoL class feature ranking, that highlights which of the features influenced 292

more the LLM decision towards that class. Concerning the all group, from Fig. 5A

Fig 5. Feature Ranking. LLM feature ranking for the impaired QoL class in
the three cases. (A): all group; (B): controlled asthma group; (C): Not
controlled asthma group.
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293

AsthmaRelated and PharynxLarynx were individuated as the main factors leading to an 294

impaired cough-related quality of life. In contrast, the main attributes for the controlled 295

asthma group (Fig.5B) were PharynxLarynx and RhinoSinusitis. Finally, dominant 296

features for the not controlled asthma resulted AsthmaRelated and GastroEsoReflux 297

(Fig. 5C). 298

The presence of AsthmaRelated as a relevant factor for the not controlled asthma 299

group is in line with our expectation, since the deterioration of these patients’ QoL 300

reasonably depends on the asthma itself and the clinical investigation should be 301

primarily addressed to it. Secondarily, the digestive tract should be considered. 302

Conversely, the feature ranking for the controlled asthma patients provides the 303

indication that further clinical assessments should focus first on the throat and, then, on 304

the nose. By using the symptoms questionnaire, in absence of any information about 305

the patient’s asthma control level, results suggest to first consider the asthma and then 306

the nose. 307

Symptoms questionnaire scores driving impaired QoL 308

While previous Section provided which are the main factors involved in the impaired 309

QoL, in this Section our focus is posed on the information we can derive by inspecting 310

the validated rules predicting the impaired QoL class, which are reported in Table 2. 311

Table 2. Criteria for impaired QoL prediction through symptoms questionnaire, as emerged from LLM rules validated through
the χ2 independence test, for each considered patient group. Pink-colored cells highlight the rules that were proved the most
performing even on previously unseen patients.

Case Significant Rules Covering (%) Error (%)

All

1. if AsthmaRelated > 8 and PharynxLarynx > 15
and RhinoSinusitis ≤ 70 and GastroEsoReflux > 8 then impaired QoL

57.7 5.6

2. if AsthmaRelated > 28 and 8 < RhinoSinusitis ≤ 70
and GastroEsoReflux > 4 then impaired QoL

56.7 5.6

Controlled Asthma

1. if AsthmaRelated > 11 and PharynxLarynx > 23 and
RhinoSinusitis ≤ 70 then impaired QoL

44 5.7

2. if PharynxLarynx ≤ 13 and 11 < RhinoSinusitis ≤ 27
and GastroEsoReflux > 1 then impaired QoL

20 5.7

Not controlled Asthma
1. if AsthmaRelated > 51 and RhinoSinusitis ≤ 70 then impaired QoL 46 0

2. if GastroEsoReflux > 28 then impaired QoL 41 13

Their aim is to define useful criteria to support clinicians in the diagnostic process, by 312

individuating, in the three cases, which values assumed by the symptoms questionnaire 313

scores are more probably associated to an impaired QoL status. In this regard, we note 314

that for a more practical use of these criteria, rules shown in Table 2 have been 315

truncated to express integer thresholds (with no decimals); in the largest part of the 316

cases, this approximation did not heavily impact performance. The only exception 317

concerns the second rule of the non controlled asthma group, whose original threshold of 318

28.375 achieved the 0% error, while cutting it to 28 raises the error to 13%. This is 319

probably due to the presence of near normal QoL points (i.e., of the opposite class) 320

around these values, and the slight variation introduced by truncation also causes these 321

points to satisfy the rule, thus increasing the error value (that expresses how many 322

points satisfy the rule, but do not belong to the output predicted by the rule). By 323
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looking at the threshold values of a same indicator in the two rules for a given group, it 324

can be noticed that they can be pretty different or even conflicting. For example, the 8 325

and the 28 in the AsthmaRelated score for the all group have a difference of 20 326

percentage points, which cannot be disregarded; also, the condition on PharynxLarynx 327

in the controlled asthma group is discordant in the two related rules, the first stating 328

that values larger than 23 lead to QoL deterioration, while the second states the same 329

for values lower than 13. Regarding the not controlled asthma case, the two rules seem 330

to individuate two clusters of patients, one depending on increasing (> 51) 331

AsthmaRelated score and decreasing (≤ 70) RhinoSinusitis score, and the other 332

depending on GastroEsoReflux score only. Therefore, rule generation alone is able to 333

individuate several clusters of patients, each described by a pretty different set of 334

conditions on the questionnaire scores. Nevertheless, our final goal is to provide, 335

through the ML system, more general information to be used in clinical practice, 336

especially valid in the case of new, never seen before, patients. 337

Further evaluations of the models are then carried out for a better knowledge 338

extraction suitable to our objective. Covering and error percentages reported in the 339

Table have been derived during model training on the training data portion. Hence, 340

their values, even when considerably high (as in the cases of > 50% covering), do not 341

guarantee the same performance on test (previously unseen) data. Thus, percentages of 342

impaired QoL test points satisfying either one, both or even none of the two rules were 343

computed to understand how the original covering changes on new data; the obtained 344

values are outlined in Table 3. When points satisfy both rules, the most important one

Table 3. Satisfaction percentages of validated rules for the impaired QoL class on
unseen data. For each group, Rule 1 refers to rule number 1 of Table 2, and, similarly,
Rule 2 here refers to rule number 2.

Rule 1 Rule 2 Both rules No rules
All 20.41 % 14.28% 44.90% 20.41%
Controlled asthma 41.67% 8.33% 0% 50%
Not controlled asthma 37.04% 37.04% 14.81% 11.11%

345

can still be individuated as the highest-covering one (from Tab. 2). Thus, the 44.90% 346

rate of satisfaction of both rules in the all group contributes to the rate of rule 1 (of the 347

same group), which then reaches a total value of 65.31% of satisfaction. Thus, this rule 348

should be taken as a reference for individuating the factors with higher impact on the 349

impaired QoL. The same reasoning holds for the not controlled asthma group, where 350

rule 1 reaches the about the 52%. Regarding the controlled asthma case, rule 1 proves 351

as the most frequently validated by the unseen patients. Moreover, it is worth noting 352

that the sum of the percentages shown in Table for Rule 1, Rule 2 and Both rules 353

columns corresponds to the TPR computed in Fig. 4. Hence, in this analysis we can see 354

the specific contribution of the two rules in determining its value. 355

In summary, for each of the three groups, a rule has emerged as the one with the 356

best predictive ability for an impaired QoL status and it can be considered as a helpful 357

decision-making support for clinicians, especially at the beginning of the clinical 358

evaluation process. Indeed, by using the information from the feature ranking (Fig. 5), 359

we discovered the main blocks of symptoms associated to an impaired QoL status due 360

to chronic cough and the individuated decision rules define which ranges of values 361

should be considered alarming on those variables. 362
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Conclusion 363

In this work, we proposed the evaluation of the quality of life of asthmatic patients, 364

with lower or higher degree of asthma control, experiencing chronic cough. To this end, 365

we first developed a questionnaire to collect patients’ symptoms in relation to the most 366

frequent causes of chronic cough (i.e., upper airways, pharynx/larynx, digestive tract, 367

lower airways). The LLM-based analysis of patients’ responses to the questionnaire 368

items, through feature ranking, helped in automatically identifying priorities among 369

these causes: pharynx/larynx and upper airways when asthma is sufficiently controlled, 370

and asthma itself and digestive trait when asthma is not controlled. Moreover, the 371

adopted rule-based model, with proper statistical validation, identified which specific 372

values of the symptoms are associated to an impairment of cough-related quality of life. 373

The obtained results could support the physician in choosing the right 374

diagnostic/therapeutic plan. However, sensitivity and specificity of the developed model 375

need to be verified in further prospective studies. Furthermore, future research in this 376

direction may investigate the adoption of other rule-based models than the LLM, as well 377

as the usage of black-box algorithms with subsequent rule extraction. 378
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S1 Table. Respiratory Symptoms Questionnaire. Structure of the questionnaire
used to collect patients’ respiratory symptoms. The groups of items forming the
features used in our analysis are defined as follows: items 1-3 (AsthmaRelated); 4-7
(PharynxLarynx ); 8-14 (RhinoSinusitis); 15-18 (GastroEsoReflux ).
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