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S U M M A R Y 

A robust, in situ estimate of shear-wave velocity V S and the small-strain damping ratio D S 

(or equi v alentl y, the quality factor Q S ) is crucial for the design of buildings and geotechnical 
systems subjected to vibrations or earthquake ground shaking. A promising technique for 
simultaneously obtaining both V S and D S relies on the Multichannel Analysis of Surface 
Waves (MASW) method. MASW can be used to extract the Ra yleigh wa v e phase v elocity 

and phase attenuation data from active-source seismic traces recorded along linear arrays. 
Then, these data can be inverted to obtain V S and D S profiles. This paper introduces two novel 
methodologies for extracting the phase velocity and attenuation data. These new approaches 
are based on an extension of the beamforming technique which can be combined with a modal 
filter to isolate different Rayleigh propagation modes. Thus, the techniques return reliable 
phase velocity and attenuation estimates even in the presence of a multimode wavefield, which 

is typical of complex stratigraphic conditions. The reliability and ef fecti veness of the proposed 

approaches are assessed on a suite of synthetic wavefields and on experimental data collected 

at the Garner Valley Downhole Array and Mirandola sites. The results reveal that, under proper 
modelling of wavefield conditions, accurate estimates of Rayleigh wave phase velocity and 

attenuation can be extracted from active-source MASW wavefields over a broad frequency 

range. Eventually, the estimation of soil mechanical parameters also requires a robust inversion 

procedure to map the experimental Rayleigh wave parameters into soil models describing V S 

and D S with depth. The simultaneous inversion of phase velocity and attenuation data is 
discussed in detail in the companion paper. 

Key words: Elasticity and anelasticity; Fourier analysis; Seismic attenuation; Wave propa- 
gation. 
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1  I N T RO D U C T I O N  

The characterization of soil response to dynamic loading has great 
rele v ance in geotechnical earthquake engineering. Key parameters 
to describe the stress-strain response of soils are the small-strain 
shear-wav e v elocity V S and damping ratio D S , which quantify re- 
specti vel y the stiffness and the internal energy dissipation by the 
soil at low strains (e.g. Foti et al. 2021 ). In geophysics and seismol- 
o gy, D S is commonl y replaced b y the quality factor Q S , defined as 
Q S = 1/(2 D S ). Ho wever , for the sake of simplicity, the remainder 
of this paper will refer only to D S . A promising approach to de- 
rive in situ estimates of these quantities relies on the Multichannel 
Analysis of Surface Waves (MASW; Foti 2000 ). Indeed, MASW 

can provide a reliable estimate of mechanical parameters for design 
506 
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article distributed under the terms of the Creative Common
permits unrestricted reuse, distribution, and reproduction in
purposes, as it investigates the soil behaviour in undisturbed condi- 
tions at a spatial scale compatible with the geotechnical application 
of interest (e.g. Comina et al. 2011 ; Passeri 2019 ). 

MASW relies on the dispersive behaviour of Rayleigh waves 
(or R -waves) in layered media, for which the corresponding phase 
velocity V R (i.e. the propagation speed) and the phase attenuation 
αR (i.e. the spatial amplitude decay) exhibit a frequency depen- 
dence. The frequency-dependence of propagation parameters is a 
combined effect of geometric dispersion, which results from the 
variation of soil mechanical properties with depth, and intrinsic 
dispersion, due to the constitutive behaviour of linear viscoelastic 
media. The frequency-dependence is described by means of disper- 
sion and attenuation data, hereafter labelled as V R ( ω) and αR ( ω). 
Therefore, the MASW-based estimate of V S and D S usually refers to 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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he measurement of the spatial phase lag and attenuation of Rayleigh
aves along linear arrays with active sources, from which V R ( ω)

nd αR ( ω) are retrieved (Foti et al. 2014 ). Then, the V S and the
 S profiles with depth are jointly estimated through an inversion

cheme, where a theoretical soil model is calibrated to match the
xperimental V R ( ω) and αR ( ω). 

This paper deals with the estimation of Ra yleigh-wa ve propaga-
ion parameters from the recorded waveform, whereas the derivation
f ground models from experimental data is discussed in the com-
anion paper. Manyfold procedures are available for the multimode
stimation of V R ( ω) (e.g. McMechan & Yedlin 1981 ; Park et al.
998 ; Forbriger 2003 ; Zywicki & Rix 2005 ; Luo et al. 2008 ; Askari
 Ferguson 2012 ). Instead, the combined estimation of V R ( ω) and

R ( ω) is a non-trivial task, especially in the presence of complex
tratigraphy, and large uncertainties affect the estimated values. In-
eed, only a few methods for jointly deriving V R ( ω) and αR ( ω) are
vailable. A common procedure infers R -wave propagation param-
ters through a regression of recorded traces (e.g. Rix et al. 2000 ,
001 ; Lai et al. 2002 ; Foti 2003 ). Ho wever , these techniques assume
hat the wavefield is dominated by a single Rayleigh mode of prop-
gation. Therefore, the result is an estimate of apparent Rayleigh
hase dispersion and attenuation curves rather than modal values,
hat can be affected by modal superposition when multiple prop-
gation modes are rele v ant (Foti et al. 2014 ). Fur ther more, some
rocedures simplify the R -wave as planar, based on the far-field
pproximation of the displacement field induced by Rayleigh waves
e.g. Rix et al. 2001 ; Lai et al. 2002 ; F oti 2004 ; Askari & F erguson
012 ; Gao et al. 2018 ). Ho wever , this ne glects the actual c ylindri-
al shape of the wave front. This hypothesis negati vel y af fects the
uality of the estimated wave parameters at low frequencies, that is,
t large wavelengths. 

Alternati vel y, some recent approaches generalize modal identifi-
ation techniques used in structural engineering to the characteriza-
ion of R -waves (e.g. Badsar et al. 2010 and Verachtert et al. 2017 ).
or instance, the Circle Fit Method (CFM; Verachtert et al. 2017 )
nterprets the Nyquist plot of the f –k spectrum of measured displace-
ent data to estimate modal R -wave dispersion and attenuation data.
he transform is calculated through a Hankel transformation, to ac-
ount for the cylindrical shape of the wavefront (Forbriger 2003 ).
o wever , the estimated V R ( ω) and αR ( ω) depend on two control
arameters, which are to be calibrated based on in situ conditions.
ur ther more, both methods by Badsar et al. ( 2010 ) and Verachtert
t al. ( 2017 ) tend to overestimate αR ( ω) at low frequencies (less
han about 15 Hz), due to leakage. 

Finally, the Wavefield Decomposition (WaveDec, hereafter la-
elled as ‘WD’) technique interprets measured displacement data
o provide a joint maximum likelihood estimation of the Rayleigh
ave propagation parameters (Maran ò et al. 2017 ; Bergamo et al.
018 , 2019 , 2023 ). This approach accommodates for the pres-
nce of multiple modes of propagation in the recorded wavefield
y performing multiple fittings of the experimental wavefield, as-
uming different number of modes in the predicted displacement
nd selecting the most suitable one based on the Bayesian In-
ormation Criterion (BIC; Schwartz 1978 ). The method models
he cylindrical shape of the Ra yleigh wa ve front, thus mitigat-
ng near-field effects and ensuring good fitting quality also at low
requencies. 

In summary, the available techniques rely on limiting assumptions
bout the composition and the shape of the recorded waveform, or
hey depend on processing parameters that might require a site-
pecific calibration for a proper application. These hypotheses may
e gativ ely affect the quality of the estimated wave parameters at
ow frequencies (that is, at long wavelengths) and in the presence
f multiple propagation modes. 

This paper introduces two novel methodolo gies, namel y the Fre-
uency Domain BeamForming Attenuation (FDBFa) and the Cylin-
rical Frequency Domain BeamForming Attenuation (CFDBFa),
hat aim at extending the framework of dispersion estimation tech-
iques to obtain the R -wave phase attenuation. The principle of these
pproaches consists in applying a transformation to the wavefield,
hose resulting function may be interpreted as a pseudo-wave. It is
emonstrated that the phase attenuation can be derived through the
ispersion analysis of the obtained pseudo-wavefield. In addition, a
ew modal filtering scheme is proposed, to isolate the contribution
f each Rayleigh propagation mode and achieve reliable estimates
f modal wave parameters. In this way, the quality and robustness
f the modal dispersion and attenuation estimates can be improved.

The paper starts by providing a detailed description of the pro-
osed methods. Then, the inclusion of the modal filtering technique
s reported. The second part of the work tests the reliability and
f fecti veness of the proposed techniques to retrieve modal wave
arameters, with reference to both synthetic waveforms and real
urface wave data sets. Part of real data refer to the Garner Val-
ey Downhole Array (GVDA) site, as the presence of information
n both the velocity and damping structure provides an excellent
enchmark on the validity of the inverted models. This study also
ncludes experimental data measured at the Mirandola (MIR) site,
ince the complexity of the recorded data allows to assess the per-
ormance of the proposed algorithm in the presence of multimode
 avefields. Specificall y, this paper addresses the estimation of the
hase velocity and attenuation data and the validity of the proposed
echnique is demonstrated by comparing the propagation estimates
ith v alues deri ved through alternati v e methods. The inv ersion and

he comparison with alternative estimates are fully investigated in
he companion paper (Aimar et al . 2024 ). 

 P RO P O S E D  A L G O R I T H M  

he Frequency-Domain BeamForming—Attenuation (FDBFa) is a
ransform-based approach that estimates αR under the assumption
hat the recorded wavefield is composed by a single planar wave
e.g. a Ra yleigh wa ve with a dominant propagation mode, recorded
n the far field). The principle of this approach consists in applying
 transformation to the recorded wavefield, such that the resulting
unction may be interpreted as a pseudo-wavefield, with dispersion
haracteristics corresponding to the phase attenuation of the orig-
nal one. Thus, αR can be derived by estimating the wavenumber
f the pseudo-wavefield, for which a broad variety of tools is cur-
entl y av ailable. In this study, the wavenumber estimate is carried
ut through the Frequency-Domain BeamForming (FDBF; Lacoss
t al. 1969 ) technique, hence the FDBFa may be interpreted as a
eneralization of the FDBF for the attenuation estimate. Indeed, the
DBF scheme is computationally fast and robust. Fur ther more, the
DBF allows an immediate generalization to non-planar waves, as

he inclusion of geometric effects due to the cylindric shape of the
a yleigh wa ve front is straightforward. 

.1 Fr equenc y-domain beamf orming—atten uation 

FDBFa) 

he FDBFa method is based on the following wavefield transfor-
ation: 

 = [ •] i , (1) 
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where i = 

√ −1 is the imaginary unit. If the recorded wavefield is a 
plane wave inducing the displacement field u p ( r ) = e −αr e − i kr (where 
k is the wavenumber, α is the phase attenuation, and r is the spa- 
tial coordinate), it can be demonstrated that the resulting function 
v ( r ) can be interpreted as a planar pseudo-wave, the wavenumber 
of which corresponds to the attenuation of u p ( r ). Indeed, the appli- 
cation of the transformation (eq. 1 ) to u p ( r ) returns the following 
function: 

v ( r ) = 

[
u p ( r ) 

]i = e kr e −i αr . (2) 

Comparing eq. ( 2 ) with the expression of u p ( r ), v ( r ) can be inter-
preted as a plane wave, whose displacement amplitude varies across 
space as e kr , with harmonic oscillations according to e − i αr . There- 
fore, α is the wavenumber of the ‘pseudo’-wavefield v ( r ), whereas k 
controls the spatial variation of the particle displacement amplitude 
(Figs 1 a–d). Thus, α of the original planar wave u p ( r ) can be re- 
trie ved b y searching for the wavenumber of v ( r ). In this scheme, the 
FDBF technique is adopted to carry out the w avenumber anal ysis 
of v ( r ). Therefore, v ( r ) data across all the receivers are first com- 
bined into the spatio-spectral correlation matrix R (Zywicki 1999 ), 
which is a Hermitian-symmetric matrix where each element R j , k is 
the cross-power spectrum between the j th and the k th sensors for j , 
k = 1 to S (with S = number of measurement points), defined as 
follows: 

R j,k = v 
(
r j 

)
v ∗ ( r k ) . (3) 

Then, the procedure computes the pseudo-power P BFa ( αt ): 

P B Fa ( αt ) = e H ( αt ) Re ( αt ) , (4) 

where H denotes the Hermitian transpose, and e ( αt ) is the planar 
steering vector, that is the mathematical representation of the linear 
phase shift, as a function of the trial attenuation value αt : 

e ( αt ) = [ exp ( −i αt r 1 ) , . . . , exp ( −i αt r S ) ] 
T . (5) 

Ideally, P BFa ( αt ) exhibits a single peak, with location αe (i.e. the 
estimated attenuation) corresponding to the actual attenuation α of 
the recorded wave (Fig. 1 e). 

Ho wever , the resulting pseudospectrum often exhibits side lobes 
together with the main peak. Differently from FDBF, the presence of 
multiple waves in the recorded wavefield does not result in multiple 
local maxima in P BFa ( αt ) corresponding to modal attenuation val- 
ues, as it will be addressed in the following sections. Instead, side 
lobes may partially be the effect of spectral leakage, induced by 
windowing of the pseudo-wave. This perturbation can be mitigated 
b y appl ying an appropriate tapering to v ( r ) prior to the computation 
of P BFa ( αt ), for example by means of a Hanning window. Further- 
more, side peaks are artefacts induced by the spatial variation of 
the amplitude of v ( r ). Indeed, such amplitude usually assumes a 
sawtooth-like shape, where each segment increases according to an 
exponential function, that derives from the transformed wrapped 
phase of u p ( r ). It can be demonstrated that the presence of these dis- 
continuities in the amplitude of v ( r ) maps into a set of equally spaced 
side lobes inside P BFa ( αt ), with spacing equal to the wavenumber 
k (Aimar 2022 ). To avoid ambiguities in the identification of the 
peak of P BFa ( αt ), a possible strategy consists in normalizing v ( r ) 
by its amplitude, so that the discontinuities cancel out, prior to the 
tapering. Alternati vel y, the transformation (eq. 1 ) may be applied 
only to | u ( r ) | , discarding the phase contribution. In both cases, the 
discontinuities in v ( r ) cancel out, and P BFa ( αt ) exhibits a single 
peak. 
The above formulation refers to active data recorded on 1-D 

arra ys; how ever, it can be straightforw ardl y modified for passive 
data measured on 2-D setups (i.e. ambient vibration analysis). 

2.2 Cylindrical fr equenc y-domain 

beamf orming—atten uation (CFDBFa) 

Ra yleigh wa ves generated by a point source propagate according to 
a c ylindrical wav e front. Therefore, the application of the FDBFa 
method to retrieve the phase attenuation might lead to biased esti- 
mates. For this reason, the FDBFa method can be modified to intro- 
duce explicit modelling of the cylindrical shape of the wave front. 
The proposed scheme is hereafter termed as cylindrical FDBFa 
(CFDBFa), which can be seen as a generalization of the cylindrical 
FDBF technique (Zywicki & Rix 2005 ). 

Giv en a c ylindrical wav e inducing the displacement field u c ( r ) 
= H 

(2) 
0 [ ( k − i α) r ] (with H 

(2) 
0 being the Hankel function of second 

kind and zeroth order), the application of the transformation (eq. 1 ) 
returns a function v ( r ) representing a pseudo-wavefield, whose phase 
variations reflect spatial changes of the amplitude of the Hankel 
function. Indeed, this situation is analogous to the application of 
eq. ( 1 ) to the plane wave u p ( r ). Therefore, the attenuation α can 
be retrieved by exploiting the phase information carried in v ( r ). For 
this purpose, the CFDBFa scheme follows a procedure similar to the 
cylindrical FDBF (Zywicki & Rix 2005 ). Specifically, it computes 
the pseudospectrum P CBFa (K t ) from the spatio-spectral correlation 
matrix R of v ( r ) as: 

P CBFa ( K t ) = a H ( K t ) Ra ( K t ) . (6) 

The steering vector a (K t ) is defined as follows: 

a ( K t ) = [ exp { −i arg [ h 0 ( K t r 1 ) ] } , . . . , exp { −i arg [ h 0 ( K t r S ) ] } ] T , (7) 

where the function h 0 is the power of the Hankel function to the 
imaginary unit: 

h 0 ( •) = 

[ 
H 

( 2 ) 
0 ( •) 

] i 
. (8) 

The steering vector a (K t ) stretches the pseudo-wavefield accord- 
ing to phase variations of the power of a Hankel function to the 
imaginary unit, thus accounting for spatial changes in the phase of 
v ( r ) in a proper way. In this way, the pseudo-cylindrical wavefield 
is converted into an equi v alent plane wavefield, and the attenua- 
tion of the cylindrical wave is properly estimated. Differently from 

FDBFa, the argument of a (K t ) is a trial complex wavenumber K t 

which, by definition, includes both the real wavenumber and the 
phase attenuation term. Indeed, the estimate of the attenuation for 
a cylindrical wave should also account for the real wavenumber, 
as it affects spatial variations of the wave amplitude. As CFDBFa 
searches for α, the real wavenumber has to be fixed to a value k ref , 
whereas trial values αt for the attenuation are adopted. Ho wever , be- 
ing the estimated attenuation αe quite sensitive to k ref (Aimar 2022 ), 
the choice of k ref is not arbitrary, as it should be as close as possible 
to the actual wavenumber k characterizing the measured wavefield. 
In plane waves, instead, there is no influence of the wavenumber 
characteristics on the attenuation estimate, as the amplitude vari- 
ations only depend on the attenuation itself. Therefore, CFDBFa 
should be combined with a robust method for estimating k prior to 
the deri v ation of α. For this purpose, CFDBF represents an effec- 
tiv e strate gy because of its accurac y and robustness. Fur ther more, 
combining CFDBF and CFDBFa provides a physically consistent 
approach for estimating wave parameters, as both of them model 
the propagation of the wavefield according to a cylindrical scheme. 
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(a)

(c) (d)

(e)(b)

Figure 1. (a–b) Spatial variation of the displacement field u p ( r ) induced by the original planar wave, in terms of (a) log-amplitude and (b) phase; (c–d) spatial 
variation of the transformed wave v ( r ), in terms of (c) log-amplitude and (d) phase; (e) pseudospectrum P BFa ( αt ) of the transformed wave, where the location 
of the spectral maximum αe is compared with α. 
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Under these conditions, P CBFa (K t ) ideally exhibits a single peak
ith location αe coincident with α. Ho wever , actual data may pro-
ide side lobes in the pseudospectrum, which may corrupt the cor-
ect identification of the peak. Their presence can be mitigated by
ormalizing the pseudo-wavefield by its amplitude and applying
roper tapering, as in FDBFa. 

To demonstrate the validity of CFDBFa in modelling the propa-
ation of c ylindrical wav es, Table 1 compares the estimated wave
arameters for a specific wavefield, according to FDBFa (and FDBF
or the wavenumber) and CFDBFa. The displacement field u c ( r ) is
omputed at 100 equally spaced locations, with spacing equal to 1 m,
y setting k equal to 0.1 rad m 

−1 and α equal to 0.0015 rad m 

−1 .
he simulated wa vefield ma y be representative of the vertical dis-
lacement field induced by Ra yleigh wa ves due to a monochromatic
ertical point force, according to the far-field solution of the Lamb
roblem for a homogeneous half-space (e.g. Lai & Rix 1998 ). For
nstance, this may correspond to a R -wave with V R approximately
qual to 315 m s −1 and phase damping ratio D R [defined as D R 

αR × V R /(2 π f )–Misbah & Strobbia 2014 ] equal to 0.015, at a
requency of 5 Hz—this R -wave may be propagating in a homoge-
eous medium with V S ≈ 335 m s −1 and D S ≈ 0.015. As the FDBFa
ethod does not rigorously model the spatial variation of a cylin-

rical wave, a potential solution to mitigate this problem consists
n processing recorded traces after having scaled them according to
 

½. Indeed, c ylindrical wav es asymptotically tend to be described as
 spatially harmonic function (i.e. plane waves), but with amplitude
caled down by r ½ (e.g. Foti et al. 2014 ). 

Explicit modelling of the c ylindrical wav efield leads to an almost
xact estimate of the wave parameters, whereas the use of a planar
cheme results in some discrepancies between theoretical and esti-
ated values. On the one side, FDBFa tends to slightly overestimate
 —although the error is less than 1 per cent. This bias is consistent
ith various studies on surface wave testing, which claimed that a
lanar propagation model often underestimates dispersion data (i.e.
he resulting wavenumber is e xcessiv ely large), especially at low
requencies (e.g. Zywicki & Rix 2005 ). Instead, α is significantly
nderestimated when using FDBFa, with a relative difference of
round 15 per cent. The error in both k and α estimates rises from
he simplifying assumptions introduced by the planar model, which
 e  
gnores the actual shape of the wave front, which is characterized by
 non-linear change in both the displacement amplitude and phase
ith the distance, and this effect is more relevant at low k (e.g.

ow-frequenc y R -wav es). 
Thus, modelling the propagation of R -waves as plane waves

ould introduce a bias in the estimated phase wavenumber and
he attenuation, especially for the usual source offsets adopted in
ctive-source surface wave testing. This may dramatically alter the
esulting V S and D S profiles, particularly at greater depths. There-
ore, accurate modelling of the geometric spreading is crucial to
chieving robust and reliable estimates of dispersion and attenua-
ion data, as recommended by several Authors (e.g. Rahimi et al.
021 ). For this reason, CFDBFa is a superior technique with respect
o the use of a planar model in estimating Ra yleigh wa ve parameters,
nd the remaining part of this paper will focus on it. 

.3 Application of CFDBFa for surface w av e analysis 

he application of CFDBFa for retrieving Rayleigh wave phase ve-
ocity and attenuation parameters from the interpretation of MASW
ata is quite straightforward. Indeed, although this method has been
ntroduced with reference to monochromatic planar or cylindrical
aves, the generalization to non-harmonic signals can be easily

chieved through the Fourier decomposition of the wavefield. In
his way, each frequency component of the recorded waveform is
eparated and it may be processed according to this technique.
he resulting wave parameters are then combined frequency by

requency to obtain the experimental dispersion and attenuation
urves. 

As CFDBFa relies on explicit modelling of the cylindrical wave-
eld, the coupling between dispersion and attenuation estimates
ecomes rele v ant. For this reason, the adopted algorithm first esti-
ates dispersion curves through the CFDBF approach. Then, the

ttenuation analysis is carried out using the CFDBFa method. In
his step, wavenumber data returned by CFDBF are plugged into
he steering vectors used in CFDBFa, frequency by frequency. The

ain steps of this algorithm are listed in Algorithm 1 (the nota-
ion follows the conventions used in computer science; e.g. Cormen
t al. 2001 ). The algorithm assumes that the recorded motion is
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Table 1 Estimated wavenumber and phase attenuation from u c (r), according to FDBFa and 
CFDBFa, compared with the corresponding true value. 

FDBFa CFDBFa True value 

Estimated wavenumber k e (rad m 

−1 ) 0.1009 0.1000 k R = 0.1 rad m 

−1 

Estimated attenuation αe (rad m 

−1 ) 0.0013 0.0015 αR = 0.0015 rad m 

−1 

Algorithm 1 Cylindrical Frequency-Domain BeamForming—Attenuation (CFDBFa algorithm) for MASW processing 

Input: 
{
u z ( r s, t m 

) 
}S, M 

s= 1 ,m = 1 : particle displacement recorded at S sensors with offsets r s , at M time samples t m 

1: Compute frequency spectra 
{
u z ( r s, ω w ) 

}S, W 

s= 1 ,w= 1 , for W frequencies ω w , through Fourier transform 

2: for w = 1 to W do 
3: Compute pseudo-power spectrum P CBF ( k t , ω w ) through CFDBF (Zywicki & Rix 2005 ) 
4: Identify wavenumber k Re ( ω w ) of the dominant peak of P CBF ( k t , ω w ): 

k Re ( ω w ) ← argmax P CBF ( k t , ω w ) 
5: Calculate v ( r s , ω w ) from eq. 1 
6: Remove the amplitude term: v ( r s , ω w ) ← v ( r s , ω w ) / | v ( r s , ω w ) | 
7: Apply the tapering window w ( r s , ω w ): v ( r s , ω w ) ← w ( r s , ω w ) v ( r s , ω w ) 
8: Compute spatiospectral correlation matrix R j,k ( ω w ): R j,k ( ω w ) ← v z ( r j , ω w ) [ v z ( r k , ω w )] ∗
9: Construct steering vector a (K t ) with trial complex wavenumber K t : 

a ( K t ) ← [ exp { −i arg [ h 0 ( K t r 1 ) ] } , . . . , exp { −i arg [ h 0 ( K t r S ) ] } ] T , with K t = k Re ( ω w ) − i αt 

10: Calculate pseudospectrum P CBFa (K t , ω w ) for varying αt : P CBFa (K t , ω w ) ← a H (K t ) R ( ω w ) a (K t ) 
11: Peak picking of P CBFa (K t , ω w ): αRe ( ω w ) ← argmax P CBFa (K t , ω w ) 
12: end for 
Output: Estimate of Rayleigh wave dispersion curve V Re ( ω w ) = ω w / k Re ( ω w ) and attenuation curve αRe ( ω w ) 
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the particle displacement in the vertical direction. Note that usual 
acquisition schemes rely on geophones, which return time histories 
particle v elocities, and the y should be conv erted into displacement 
data through integration in the time domain or multiplication in the 
frequency domain. Besides, H 

(2) 
0 ( �) should be replaced by H 

(2) 
1 ( �) 

when processing radial motion. 

2.4 Dealing with multiple modes: modal filtering 

A fundamental assumption of CFDBFa is that the recorded wave- 
field should consist of a single wave or, in surface wave analysis, 
that a single Rayleigh mode is dominant (generally, the fundamental 
mode). When this hypothesis is violated, it tends to return dominant 
wave components, that are representative of the ef fecti ve dispersion 
and attenuation curve and may not coincide with any modal curve. 
This aspect is crucial in site characterization studies as the Rayleigh 
wavefield in layered media is the composition of several Rayleigh 
modes. Therefore, ignoring the influence of this mutual interaction 
may lead to phase velocity and attenuation estimates that, when mis- 
interpreted as modal values, might return biased estimates of the V S 

and D S profile in the inversion stage. For this reason, CFDBFa is 
modified to account for the presence of multiple propagation modes, 
by including an additional step. This further step aims at isolating 
each R -wave propagation mode by means of a novel filtering tech- 
nique, that exploits basic principles of digital signal processing. In 
this way, the main hypothesis of CFDBFa is satisfied, and this tech- 
nique can be ef fecti vel y applied to obtain reliable estimates of the 
Ra yleigh wa v e phase v elocity and attenuation parameters. 

2.4.1 Proposed filtering technique 

The proposed filtering technique is synthetically described in the 
scheme provided in Fig. 2 . The method first identifies the Rayleigh 
mode under investigation (that is, the corresponding wavenumber, 
labelled as k tg ), for instance through the spectral analysis of the 
recorded displacement field u ( r , ω). Then, the procedure constructs 
a sequence h [ n ] = [ h 1 , h 2 , . . . , h N −1 ] (where n denotes the discrete
sample index), composed by N − 1 complex-valued coefficients 
h n . This represents the filter, which is defined as a function of the 
wavenumber k tg of the target mode. Then, the algorithm isolates the 
contribution of the desired Rayleigh mode by means of a spatial 
convolution between the vector of the frequency traces u ( r , ω) and 
h [ n ]. The result is a new displacement field containing only the 
contribution of the reference mode, for which modal parameters 
can be extracted through the CFDBFa method. 

This section describes the main features of h [ n ] and how it 
is constructed, although a more detailed discussion on this and 
the involved terminology is provided in the online Supporting 
Information . 

The adopted filter is a complex, bandpass and linear-phase finite- 
impulse-response (FIR) filter. Being a bandpass filter, h [ n ] isolates 
the wavenumber component corresponding to the target Rayleigh 
mode, thus limiting the contribution of additional components to 
the wavefield. The chosen filter is a FIR-type system, because they 
are stable and they represent the optimal choice when the linearity 
in the phase response is crucial (Mitra 2006 ; Bruekers 2009 ). In 
this case, the phase-linearity is strongly desired as any distortion 
in the target wave component may affect the estimated attenuation. 
Finall y, h [ n ] has complex-v alued coef ficients because it operates 
with complex-valued wavefield traces, for which the wavenumber 
spectrum is not an even function. In these conditions, a complex FIR 

filter with passband centred at the target wavenumber is guaranteed 
to select and favour only the investigated wave component. 

The design of h [ n ] (hence, the estimation of filter coefficients h n ) 
relies on the assignment of two quantities: 

(i) Magnitude k -response specifications: the k -response H is the 
spatial Fourier transform of h [ n ], and it represents the filter re- 
sponse in the wavenumber domain. Being h [ n ] a bandpass filter, H 

has to be symmetric around the target wavenumber k tg . Its definition 
should involve the specification of an adequate passband together 
with an adequate transition band to control the decay in the response 
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Figure 2. Scheme of the modal filtering procedure. 
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agnitude at k �= k tg . The boundaries of the transition band are la-
elled as k p (i.e. the passband wavenumber) and k s (i.e. the stopband
 avenumber), respecti vel y (Fig. 3 a). 
(ii) Filter order N : it is an integer corresponding to the number of

oefficients involved in h [ n ] and it controls the matching between the
f fecti ve k -response H and the magnitude k -response specifications.

The definition of k -response specifications and N are not two
ndependent steps. Indeed, narrow bandpass filters are ef fecti ve in
solating the desired component of the wavefield, although such be-
aviour can be achieved only with high-order filters as low- N filters
ntroduce broader transition bands, entailing a partial loss in the
ltering capability (Fig. 3 a). On the other hand, low-order filters are
referred when dealing with spatially sampled data. Indeed, only a
ortion of the output signal corresponds to the desired wave compo-
ent and it includes only S − N samples (with S = number of spatial
amples of the input), and N should be adequately less than S to allow
rocessing of filtered values (see the online Supporting Information
or further details). This issue may be critical in geophysical ap-
lications. Indeed, each spatial sample corresponds to a physical
ensor and usual acquisition setups employ a limited number of
ensors because of logistical issues, hence recorded signals only in-
lude a few tens of samples. Therefore, N has to be bounded within
 proper maximum value, so that the number of samples in the de-
ired output signal is large enough to allow a robust estimate of the
ave parameters. 
A calibration study on synthetic wavefields identified the fol-

owing recommended values of the filter design parameters (i.e. k p ,
 s and N ) to provide the best-quality estimates of modal R -wave
arameters (Aimar 2022 ): 

(i) P assband wav enumber: k p = k res ; 
(ii) Stopband wavenumber: k s = 2 k res ; 
(iii) Filter order: N = (1/2–2/3) S (rounded to the nearest integer),

here S is the number of receivers. 

The term k res = 2 π / D is the wavenumber resolution of the sensor
rray (where D is the array length), which describes the width of the
pectral mainlobe of a waveform composed by a single propagating
ave (Zywicki 1999 ). Thus, by setting the passband equal to k res ,

he filter tends not to alter spectral information related to the target
ave. Besides, filters with order N = 1/2–2/3 times the number of

eceivers may be considered as a valid reference for applying the
odal filter in various site conditions. Ho wever , using rather lo w N

eturns an inef fecti ve filter, which is not capable of well isolating
he propagation features of each Rayleigh mode. Therefore, the
odal filter ef fecti vel y extracts information on the target mode
hen the number of sensors is greater than 20–24, as it guarantees

n adequately large usable filter order. 
From the computational viewpoint, filter coefficients h n are ob-

ained through the modulation method, starting from a real filter
 [ n ] = [ g 1 , g 2 , . . . , g N −1 ] as follows: 

h n = g n exp 
(
i ϑ tg n 

)
, ϑ tg = 

2 π
2 k N y q 

(
2 k N yq − k tg 

)
. (9) 

The system g [ n ] is a lowpass real filter whose k -response is
n even function, and it exhibits a passband centred at the zero
av enumber. The factor e xp(i ϑtg n ) is a modulation term, that shifts

he passband of the filter in correspondence of k tg and it depends
n the Nyquist wavenumber k Nyq . In this way, the lowpass real filter
 [ n ] is converted into the bandpass complex filter h [ n ] (Fig. 3 b). The
odulation method allows to shift the design problem of a complex
lter into the design of a real filter g [ n ]. Indeed, the estimation of

he filter coefficients g n can rely on computationally fast and stable
lgorithms. This task is carried out with the frequency sampling
pproach (Gold & Jordan 1969 ), which derives g [ n ] as a function
f the design parameters (i.e. k p , k s and N ) for h [ n ]. For instance,
his approach is implemented in the MATLAB function fir2 and
n the Python function firwin2 (available in the open-source Scipy
ibrary). 

.4.2 Implementation of modal filtering into the CFDBFa 

he inclusion of the modal filtering step inside the CFDBFa algo-
ithm is quite straightforward. The principle of the updated w orkflo w
onsists in performing a preliminary dispersion analysis. This stage
dentifies different Rayleigh modes contributing into the recorded
avefield from the peaks of the f –k spectrum, computed through
FDBF. Then, frequency by frequency, each mode is isolated and
xtracted from the w aveform, b y appl ying the modal filter to the
ecorded displacement. The filter is defined by eq. ( 9 ), by setting k tg 
qual to the wavenumber of the investigated mode. The application
f the filter is followed by the removal of the first N samples of the
utput and a correction of the offsets, that are shifted by N /2. These
perations compensate for the transient effects and the delay intro-
uced by the filter itself and obtain the desired wave component
see the online Supporting Information for further details). In this
 ay, the recorded w avefield is transformed into a set of displace-
ent data, each representative of a single Rayleigh mode. Thus,

he application of CFDBFa to filtered data will return the modal
hase velocity and the modal phase attenuation, for each consid-
red propagation mode. Note that a preliminary estimate of the
hase velocity is available from the initial stage of identification of
a yleigh modes, how ever this quantity is updated posterior to the
ltering, also to assess the ef fecti veness of the modal extraction. 
The CFDBFa algorithm with Modal Filtering will be hereafter

abelled as CFDBFaMF, and a complete description is provided in
lgorithm 2 (the notation follows the conventions used in computer

cience; e.g. Cormen et al. 2001 ). The algorithm assumes that the
ecorded motion is the particle displacement in the vertical direc-
ion. Note that H 

(2) 
0 ( �) should be replaced by H 

(2) 
1 ( �) when processing

adial motion. Ho wever , it should be remarked that this technique
s not compatible with waveforms measured in spatially irregular
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(a) (b)

Figure 3. (a) Magnitude k-response specifications, with an explanation of parameters k p and k s and a visualization of the influence of the filter N on the fitting 
of the desired response and (b) scheme of the modulation algorithm for constructing a bandpass complex FIR filter, with the transformation of the real lowpass 
FIR filter g [ n ] into the bandpass complex filter h [ n ], represented in terms of k -response. 

Algorithm 2 Cylindrical Frequency-Domain BeamForming—Attenuation with Modal Filtering (CFDBFaMF). 

Input: 
{
u z ( r s, t m 

) 
}S, M 

s= 1 ,m = 1 : particle displacement recorded at S sensors with offset r s , at M time samples t m 

1: Compute frequency spectra 
{
u z ( r s, ω w ) 

}S, W 

s= 1 ,w= 1 , for W frequencies ω w , through Fourier transform 

3: for w = 1 to W do 
4: Compute pseudopower spectrum P CBF ( k t , ω w ) through CFDBF (Zywicki & Rix 2005 ) 

5: Identify peaks { k Re,r ( ω w ) } R( ω w ) 
r= 1 of P CBF ( k t , ω w ), for R ( ω w ) modes 

6: for r = 1 to R ( ω w ) do 
7: Define filter g [ n ] with MATLAB function fir2 or Python function firwin2 , based on the desired passband, 

transition band and N 

8: Define filter h [ n ] through eq. 9 , with k tg = k Re, r ( ω w ) 
9: Mode extraction: { u z,r ( r s , ω w ) } S s= 1 ← { u z ( r s , ω w ) } S s= 1 ⊗ h [ n ] 
10: Removal of filter transient effects: { u z,r ( r s , ω w ) } S−N 

s= 1 ← { u z,r ( r s , ω w ) } S s= N+ 1 
11: Update of sensor offsets to compensate filter delay: { r s,r } S−N 

s= 1 ← { r s } S−N/ 2 
s= N/ 2 + 1 

12: Compute pseudopower spectrum P CBF ( k t , ω w ) through CFDBF from { u z,m 

( r s,r , ω w ) } S−N 
s= 1 

13: Peak picking of P CBF ( k t , ω w ): k Re, r ( ω w ) ← argmax P CBF ( k t , ω w ) 
14: Calculate v r ( r s, r , ω w ) from { u z,m 

( r s,r , ω w ) } S−N 
s= 1 through eq. 1 

15: Remove the amplitude term: v r ( r s, r , ω w ) ← v r ( r s, r , ω w ) / | v r ( r s, r , ω w ) | 
16: Apply the tapering window w ( r s, r , ω w ): v r ( r s, r , ω w ) ← w ( r s, r , ω w ) v r ( r s, r , ω w ) 
17: Compute spatiospectral correlation matrix R j,k ( ω w ): R j,k ( ω w ) ← v r ( r j,r , ω w ) [ v r ( r k,r , ω w )] ∗
18: Construct steering vector a (K t ) with trial complex wavenumber K t : 

a ( K t ) ← [ exp { −i arg [ h 0 ( K t r 1 ) ] } , . . . , exp { −i arg [ h 0 ( K t r S ) ] } ] T , with K t = k Re ( ω i ) − i αt 

19: Calculate pseudospectrum P CBFa (K t , ω w ) for varying αt : P CBFa (K t , ω w ) ← a H (K t ) R ( ω w ) a (K t ) 
20: Peak picking of P CBFa (K t , ω w ): αRe,r ( ω w ) ← argmax P CBFa (K t , ω w ) 
21: end for 
22: end for 
Output: Estimates of Rayleigh wave modal dispersion curves V Re, r ( ω w ) = ω w / k Re, r ( ω w ) and modal attenuation curves αRe, r ( ω w ) for r = 1 to R ( ω w ) 

modes 

Table 2 Ground model parameters adopted to generate the synthetic wavefield SW1. 

Thickness (m) S -wav e v elocity, V S (m s −1 ) S -wave damping ratio, D S (per cent) 

5 200 3.5 
10 300 3 
10 400 2.5 
– 500 2 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/1/506/7603994 by Politecnico di Torino user on 19 M

arch 2024
arrays, as the method used in the deri v ation of filter coefficients (i.e. 
the frequency sampling approach) can only be applied to uniformly 
sampled data. 

3  T E S T S  O N  S Y N T H E T I C  WAV E F O R M S  

The reliability of the proposed approaches is tested with reference to 
a set of synthetic surface waveforms, that simulate results of MASW 

surv e ys carried out on idealized soil models. Selected soil models 
are compatible with the stratigraphy of typical soil deposits in engi- 
neering practice and the generated wavefields are characterized by 
a different degree of complexity. 

3.1 Description of w av eforms 

The synthetic wavefield SW1 simulates results of a MASW surv e y 
carried out on a normally dispersive soil deposit, wherein V S grad- 
ually increases with depth (Table 2 ; Figs 4 a and b). In this case, the 
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Figure 4. Main characteristics of the synthetic wavefield SW1: reference ground model, described in terms of the S -wave velocity (a) and damping ratio (b); 
R -wav e phase v elocity curv es (c) and phase attenuation curves (d); time-domain traces (e) and pseudo-power spectrum in the frequenc y-v elocity domain, where 
each mode is identified by the white patterns (f). 

R  

o  

t  

p  

a  

o  

d  

F  

t  

a  

d  

a  

w
 

m  

2  

R  

c  

w  

b  

s  

s  

i
 

o  

s  

F  

o  

S  

t  

F  

c  

t

3

F  

t  

p  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/1/506/7603994 by Politecnico di Torino user on 19 M

arch 2024
a yleigh wa vefield is multimodal, although the fundamental mode
f propagation is dominant for a broad range of frequencies. For
his reason, SW1 allows to investigate the performance of the pro-
osed methods in the presence of a w avefield mostl y composed b y
 single mode. The other synthetic example (labelled as SW2) is
btained from the simulation of a MASW surv e y for an inversely
ispersive profile, characterized by a low-velocity zone (Table 3 ;
igs 5 a and b). In this case, higher modes significantly contribute

o the simulated wavefield. Therefore, the performance of the novel
pproaches in the presence of a multimodal waveform can be ad-
ressed. In both models, constant values of Poisson’s ratio ν = 0.33
nd mass density ρ = 1800 kg m 

−3 are kept throughout the layers,
hereas the P -wave damping ratio D P is assumed as equal to D S . 
SW1 and SW2 are computed assuming an impulsive source by

eans of the ElastoDynamics Toolbo x (EDT ; Schevenels et al.
009 ), which implements the stiffness matrix method (Kausel &
o ësset 1981 ). SW1 and SW2 include vertical displacement data
omputed at 48 e venl y spaced locations on the surface of the model,
ith spacing equal to 2 m. Thus, the offset from the source ranges
etween 2 and 94 m. Both the number of receivers and the receiver
pacing are consistent with the usual acquisition layout of MASW
urv e ys for near-surface site characterization (Foti et al. 2018 ). The
nv estigated frequenc y range spans between 1 and 100 Hz. 

The resulting waveforms are plotted in Figs 4 and 5 , both in terms
f seismic traces defined in the time domain and of the pseudo-power
pectrum in the frequenc y–v elocity domain, computed through the
DBF approach (Lacoss et al. 1969 ). As expected, the wave energy
f SW1 is mostly carried out by a single mode (Fig. 4 f), whereas
W2 exhibits a remarkably strong multimodal propagation, with

he dominant mode shifting with increasing frequency (Fig. 5 f).
igs 4 (c), (d) and 5 (c), (d) also report the theoretical phase velocity
ur ves V R ( ω ) and phase attenuation cur ves αR ( ω ) corresponding to
he models, as computed through EDT. 

.2 Synthetic w av efield SW1 

ig. 6 compares resulting dispersion and attenuation estimates ob-
ained through the CFDBFaMF algorithm for the first three Rayleigh
ropagation modes for SW1, labelled as R0, R1 and R2, respec-
i vel y. In addition, results from the CFDBFa scheme are included.
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Table 3 Ground model parameters adopted to generate the synthetic wavefield SW2. 

Thickness (m) S -wav e v elocity, V S (m s −1 ) S -wave damping ratio, D S (per cent) 

5 250 2.5 
3 150 4 
– 350 1 

Figure 5. Main characteristics of the synthetic wavefield SW2: reference ground model, described in terms of the S -wave velocity (a) and damping ratio (b); 
R -wav e phase v elocity curv es (c) and phase attenuation curves (d); time-domain traces (e) and pseudo-power spectrum in the frequenc y–v elocity domain, 
where each mode is identified by the white patterns (f). 
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Note that the CFDBFa-based estimates are only reported in the R0 
panel (i.e. Figs 6 a and b), as they are expected to be representative 
of the fundamental mode, since SW1 is dominated by this propaga- 
tion mode (see Fig. 4 f). Reported data are sampled with a sampling 
frequency of 1 Hz, across the frequency band ranging between 5 
and 100 Hz, covering a wavelength range compatible with the reso- 
lution limits of the ideal array used for generating SW1 (Foti et al. 
2014 ). For comparison purposes, the theoretical modal curves are 
included. 

As for CFDBFa, the estimated dispersion curve matches the fun- 
damental mode, with some discrepancy at low frequencies (Fig. 6 a). 
Indeed, the Rayleigh wavefield in normally dispersive media is typi- 
call y governed b y the fundamental mode, as highlighted in Fig. 4 (f). 
Ho wever , the resulting attenuation curve equals the fundamental 
mode only at intermediate frequencies, whereas it tends to underes- 
timate it at frequencies larger than 50 Hz (Fig. 6 b). At this frequency, 
higher modes start to contribute to the wavefield, thus the estimated 
αR is partially affected by them. 

Instead , the CFDBF aMF algorithm returns reliable estimates of 
αR ( ω) for R0 especially at high frequencies, where the CFDBFa- 
based attenuation estimate diverges from modal values. In addition, 
the estimated V R ( ω) well matches the R0 dispersion curve. This 
result is not surprising, as the fundamental mode is the dominant 
component of SW1, whereas higher modes provide a small contribu- 
tion. Therefore, isolating the fundamental mode by removing other 
components is an easy task. The converse occurs when dealing with 
higher modes, because of the higher difficulties in extracting the 
desired mode. For instance, the retrie v al of R1 wave parameters is 
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(a)

(c) (d)

(b)

(f)(e)

Figure 6. Application of the CFDBFaMF algorithm on SW1, with a focus on the first three modes: (a–b) estimated dispersion curves (a) and attenuation curves 
(b) for the fundamental mode, labelled as R0; (c–d) estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, labelled as R1; (e–f) 
estimated dispersion curves (e) and attenuation curves (f) for the second higher mode, labelled as R2. Results of CFDBFa are also reported, in superimposition 
with R0 data, in subplots (a–b), for comparison purposes. 
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ather challenging at frequencies less than 20 Hz because the modal
ltering returns a waveform where the fundamental mode is still
ominant, as its contribution cannot be easily removed. Therefore,
he estimated V R ( ω) and αR ( ω) do not tend to match the correspond-
ng modal values, except at higher frequencies. A similar result is
bserved for R2, where the degree of fit is improved at high frequen-
ies (Figs 6 e and f). Besides, due to the high difficulties in extracting
hese wave components, the sensitivity to filter parameters is more
ele v ant than for R0 (Aimar 2022 ). 

.3 Synthetic w av efield SW2 

ig. 7 compares resulting dispersion and attenuation estimates ob-
ained through the CFDBFaMF algorithm for the first three Rayleigh
ropagation modes for SW2, labelled as R0, R1 and R2, respec-
i vel y. In addition, results from the CFDBFa scheme are included.
if ferentl y from SW1, CFDBFa-based estimates are reported in

ll the panels. Indeed, SW2 is a combination of several Rayleigh
odes, each one providing a different degree of contribution as a

unction of the frequency (see Fig. 5 f). Therefore, such estimates
re expected to drift between different modal values, as a function
f the frequency. 

As expected , CFDBF a retur ns an estimated dispersion cur ve g rad-
ally shifting from the fundamental mode up to the second higher
ode (Fig. 7 a). Consistently, the estimated attenuation curve tends

o follow the corresponding modal ones, and each transition occurs
t the same frequency of the passages in the dispersion data (Fig. 7 b,
ig. 7 d, and Fig. 7 f). 
When applying CFDBFaMF, the estimated V R ( ω) and αR ( ω) con-

istently match the corresponding modal v alues, especiall y for R0
nd R2. Ho wever , this result is v alid mainl y in the frequency ranges
here each mode dominates the wavefield. Instead, at other fre-
uencies, the filter has to isolate a wave component which is not
ominant and quite close to other modes, as the relative distance
n the wavenumber domain is quite small. Therefore, the estimated
 R ( ω) and αR ( ω) do not tend to match the corresponding modal
urves, entailing that the filter does not completely remove unde-
ired wave components. This problem is evident for R1, where the
trong interference due to R0 and R2 prevents an effective estima-
ion of the wave parameter at many frequencies. 

Finally, estimated V R ( ω) and αR ( ω) for SW1 and SW2 systemati-
all y dif fer from the corresponding modal v alues at low frequencies,
or both CFDBFa and CFDBFaMF. On the one hand , CFDBF aMF
nderestimates αR ( ω) close to 10 Hz for SW1. This may be partly
ue to some influence of the first higher mode, which starts to con-
ribute to the wavefield at 6 Hz, and whose effect on the displace-
ent field may not have been completely removed by the modal
lter. At lower frequencies, both CFDBFa and CFDBFaMF tend to
nderestimate V R ( ω) (especially for SW2) and overpredict αR ( ω),
ith a relative error which is on average much greater than the

or responding er ror in the dispersion data. Such drift might be an
rtefact introduced by other wave components (e.g. body waves),
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(a)

(c)

(e) (f)

(d)

(b)

Figure 7. Application of the CFDBFaMF algorithm on SW2, with a focus on the first three modes: (a–b) estimated dispersion curves (a) and attenuation curves 
(b) for the fundamental mode, labelled as R0; (c–d) estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, labelled as R1; (e–f) 
estimated dispersion curves (e) and attenuation curves (f) for the second higher mode, labelled as R2. Results of CFDBFa are also reported, for comparison 
purposes. 
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whose contribution is usually significant in this range (Rahimi et al. 
2021 ). 

3.4 Discussion 

The comparisons reported in Figs 6 and 7 highlight a moderate 
discrepancy between the estimated modal R -wave parameters and 
the corresponding theoretical values for both SW1 and SW2, es- 
pecially when dealing with high-order modes. Ho wever , a rigorous 
statement on the ef fecti veness of the proposed technique needs a 
comparative study with the performance of alternative estimation 
methods, in terms of both the retriev ed frequenc y range and the 
estimation error. 

To this aim, the considered processing techniques are herein the 
Circle Fit Method (CFM; Verachtert et al. 2017 ) and the Wavefield 
Decomposition (WD) technique (Maran ò et al. 2017 ; Bergamo et al. 
2018 , 2019 , 2023 ), as they include an explicit modelling of multiple 
propagation modes, hence they ideally provide estimates of the 
modal dispersion and attenuation curves. The default processing 
parameters are used for the CFM (Verachtert et al. 2017 ), whereas 
the WD is set to return a maximum likelihood estimate. 

For each approach, the reliability is quantified by measuring 
the relative error between the estimated dispersion and attenua- 
tion data—V R,e ( ω) and αR,e ( ω), respecti vel y—and the theoretical 
V R ( ω) and αR ( ω) curves, for each synthetic soil profile. A quanti- 
tative, global measure of such error is provided in terms of average 
relative error ε̄ V α: 

ε̄ V α = 

1 

W 

W ∑ 

w= 1 

( ∣∣V R,e − V R 

∣∣
V R 

+ 

∣∣αR,e − αR 

∣∣
αR 

) 

, (10) 

where W is the number of samples. This quantity is computed over 
the frequency range wherein all the considered techniques return 
wave parameters. 

Fig. 8 summarizes the estimation error ε̄ V α for each investigated 
mode of the considered synthetic wavefields. The last column of the 
figure also contains the global error for all the modes, given as the 
mean of ε̄ V α for R0, R1 and R2, to provide insight on the overall 
performance of the processing techniques under examination. The 
aim of the figure is to provide an insight on the capability of the 
CFDBFaMF in retrieving both V R ( ω) and αR ( ω) focusing on single 
modes and multiple modes, compared with state-of-the-art methods. 

As for SW1, the estimation error for the CFDBFaMF tends to 
increase while moving from R0 to higher-order modes, as the weaker 
contribution of R1 and R2 in SW1 (see Fig. 4 f) results in a drop in the 
quality of the corresponding estimated data. The proposed approach 
is slightly outperformed by the WD and the CFM in the estimation of 
the R0 and R1 parameters, respecti vel y. Howe ver, it should be noted 
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Figure 8. Average error ε̄ V α for the combined estimated phase velocity and phase attenuation for the circle fit method (CFM), the wavefield decomposition 
approach (WD), and the cylindrical frequency-domain beamforming-attenuation with modal filtering (CFDBFaMF). Errors are computed with reference to the 
lowest-order three propagation modes (labelled as R0, R1 and R2, respecti vel y) of the synthetic wavefields SW1 and SW2. For each panel, the frequency band 
and the number of samples involved in the error computation are reported. 

t  

o  

a  

w  

R
t  

r  

c  

t  

 

a  

f  

t  

a  

i  

i  

c  

a  

c  

f  

m  

R  

C  

a  

s  

s  

c  

b  

i
 

o  

w  

a  

t  

b  

e  

p

 

a  

t  

a
 

o  

d  

r  

h  

α  

o  

l  

w  

h  

s  

a  

t  

t  

m  

t  

n  

t  

α  

r  

5  

o  

t  

r  

t  

c  

s  

f  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/1/506/7603994 by Politecnico di Torino user on 19 M

arch 2024
hat the corresponding ε̄ V α for the CFDBFaMF shares the same
rder of magnitude of the other techniques. Fur ther more, the WD
pproach does not ef fecti vel y retrie ve R1 and R2 wave parameters,
hereas the estimation quality for the CFM drops when focusing on
0. Instead, ε̄ V α for the CFDBFaMF is al wa ys smaller than 0.20—

hat is, the estimation error is on average less than 20 per cent. As a
esult, the corresponding average ε̄ V α is smaller compared with the
onsidered methods (see the last column of Fig. 8 ), entailing that
he performance of the CFDBFaMF is comparable or even superior.

As for SW2, the performance of the CFDBFaMF is intermedi-
te compared with alternative techniques. The proposed approach
aces the most rele v ant issues in the identification of R1 parame-
ers, as highlighted by the larger ̄ε V α . Indeed, R1 is dominant across
 narrow frequency range, where the contribution of R0 and R2
s also significant (see Fig. 5 f). Therefore, the filtering procedure
mplemented in the CFDBFaMF does not ef fecti vel y remove the
ontribution by R0 and R2, thus returning a corrected wave with
mplitude variations not reflecting those linked with R1. Similar
onsiderations are valid for R2 at low frequencies, due to the inter-
erence by R1, although the better performance at high frequencies
itigates this issue. On the other hand, the estimation error for
0 is compatible with the one of other methods, also because the
FM-based estimate is affected by quite large ̄ε V α . Instead, the WD
pproach tends to globally outperform the other methods for this
ynthetic data set. Ho wever , albeit larger compared with the WD, it
hould be remarked that the average ̄ε V α for the CFDBFaMF is still
ompatible with it and less than 0.2, entailing that the discrepancy
etween theoretical and estimated attenuation and dispersion data
s smaller than 20 per cent, on average. 

Fur ther more, a better understanding on the relative performance
f each processing technique is provided in Fig. 9 , for R0, R1 and R2,
ith reference to SW1. This figure represents the frequency range

t which each method returned dispersion and attenuation data, at
he boundaries of which are included the wavelength limits. Each
ar includes a pseudo-colour scheme according to the estimation
rror in terms of relative er ror ε V and ε α , for the phase velocity and
 l  
hase attenuation, respecti vel y: 

ε V = 

V R,e −V R 
V R 

, ε α = 

αR,e −αR 
αR 

. (11) 

This error metric is consistent with the one described in eq. ( 10 )
nd, according to this, a positive value denotes an overestimation of
he modal value. For simplicity, only results for SW1 are reported,
s similar considerations apply for SW2. 

As for R0, the resulting dispersion data match the theoretical
ne, for almost each approach. Ho wever , the CFDBFaMF returns
ispersion data even at lower f values, down to 4 Hz, with the er-
or magnitude bounded between 5 and 10 per cent. On the other
and, all the methods tend to overestimate the fundamental-mode

R ( ω) at low frequencies, with a much larger drift than what is
bserved for dispersion data. This drift in attenuation data may be
inked with near-field effects, that are not modelled in an explicit
 ay, especiall y in terms of the body-wave contribution. Focusing on
igher modes, all the methods successfully identify the R1 disper-
ion curve, at moderately high frequencies. Ho wever , both the CFM
nd the CFDBFaMF are affected by bias at low frequencies, and only
he WD provides almost correct estimates in this range. Specifically,
he CFDBFaMF underestimates V R ( ω), due to the inability of the
odal filter in ef fecti vel y separating the weak target mode from

he dominant one (i.e. R0; see Fig. 6 c). Ho wever , the error mag-
itude significantly reduces at around 20 Hz. As a consequence of
he bias in the estimated velocity, the CFDBFaMF underestimates

R ( ω) in the same frequency range. On the other hand, it achieves a
ather good level of compatibility with the theoretical αR ( ω) at f >
0 Hz, whereas the estimated value is far from the true one for the
ther methods. For instance, although the WD perfectly matches
he theoretical dispersion curve for R1, it fails in extracting the cor-
esponding attenuation over a broad frequency range. This justifies
he large ̄ε V α reported in Fig. 8 . Similar results apply for R2. In this
ase, the CFDBFaMF is quite ef fecti ve in characterizing the corre-
ponding modal parameters, returning estimates for a quite broad
requency range, in which WD faces some issues, perhaps due to the
ow energy associated with this mode. Specifically, the CFDBFaMF
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Figure 9. Assessment of the relative performance of the CFM, WD and CFDBFaMF methods for the R -wave dispersion and attenuation curves, with reference 
to SW1. Each plot contains bars spanning along the frequency range at which each method returned estimates of R -wave dispersion data (top row) and 
attenuation data (bottom row). The colour scale is a function of the magnitude of the relative error for the phase velocity ε V or for the phase attenuation ε α , for 
the fundamental mode R0 (left-hand column), first higher mode R1 (central column), and second higher mode R2 (right-hand column). The numeric values in 
brackets denote the maximum and the minimum detected wavelength. 
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well captures V R ( ω) above 50 Hz, whereas a good level of fitting 
with αR ( ω) is achieved above 70 Hz, which is the frequency range 
where V R ( ω) is exactly matched. 

In summary, the considered attenuation processing techniques 
are af fected b y an average estimation error ranging between 12 and 
25 per cent, depending on the soil deposit characteristics. These 
moderately high error values can be partly attributed to problems in 
e xtracting wav e parameters in multimode wavefields. This is due to 
difficulties in effectively separating the contribution of each propa- 
gation mode, especially when the target mode is not dominant. An 
additional source of error is due to near-field effects, which typically 
affect the estimated fundamental mode parameters at low frequen- 
cies, with slight underestimation of the phase velocity (Rahimi et al. 
2021 ) and an overestimation of the phase attenuation (Yoon 2005 ; 
Aimar 2022 ). If not accounted for, the bias in the experimental data 
may affect the inversion process, resulting in erroneous estimates 
of velocity and damping ratio profiles, especially at large depths. 
Thus, reducing errors in attenuation estimates is important and de- 
ser ves fur ther research. A strate gy to improv e the quality of the 
estimates could be a processing scheme based on the interpretation 
of frequency-dependent, moving windows of the array. This could 
allow for mitigating the influence of near-field ef fects, b y selecti vel y 
removing the waveforms close to the source. 

While the attenuation estimation error for the CFDBFaMF is gen- 
erally compatible with those of other techniques (i.e. CFM and WD), 
the proposed technique can provide estimates of the R -wave param- 
eters on a generally broader frequency range, with even smaller 
errors in some scenarios (e.g. normally dispersive medium), as 
demonstrated in Fig. 8 . Overall, the CFDBFaMF is the only method 
to return robust estimates of the phase attenuation, especially at 
high frequencies, for all the propagation modes. Ho wever , it should 
be remarked that this study is only deemed to present the novel 
approach, showing its reliability with a simple, yet not complete, 
comparison with some state-of-the-art approaches. Indeed, both the 
limited number of synthetic data and the simplified error metrics 
do not allow for a rigorous statement on the relative performance 
of one method with respect to another. A thorough assessment re- 
quires additional analyses, which are beyond the aim of the present 
contribution. 

4  T E S T S  O N  R E A L  S U R FA C E  WAV E  

DATA  

The assessment of the performance of the proposed methods is also 
based on two surface wave data sets collected at different sites. 
The available data allow for a comprehensive investigation of the 
capability of the CFDBFa and CFDBFaMF methods in the presence 
of wavefields with different degrees of complexity. 

4.1 Description of the surface w av e data sets 

The first data set was collected at the Garner Valley Down-Hole Ar- 
ray (GVDA, 33 ◦40.127 ′ N, 116 ◦40.427 ′ W—in the WGS84 Datum), 
located in a narrow valley in Southern California, USA. The near- 
surface site stratigraphy is characterized by two main geological 
units. The top unit is composed of soft silty and sandy alluvial soil, 
interbedded with some clay layers and lenses (Hill 1981 ). The water 
table oscillates between the ground surface down to 1–3 m depth. 
The alluvium transitions into a layer of gravelly sand resulting from 
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ecomposed granite at about 20 m depth, although the depth of this
nterface is variable in space. 

The GVDA site has been characterized b y se veral geotechnical
nd geophysical tests. Fur ther more, this site is instr umented with
 seismic monitoring system, including surface and borehole ac-
elerometers. For this reason, GVDA is an excellent candidate for
he joint characterization of the velocity and damping ratio profiles
hrough surface wave testing. Specifically, this section addresses the
stimation of the phase velocity and attenuation data, whereas the
nversion and the comparison with alternative estimates is addressed
n the companion paper. 

A MASW surv e y was carried out at the GVD A site, in volving a 2-
 array initially aimed at developing a 3-D model of the soil deposit

Aimar 2022 ; Vantassel et al. 2023 ). Herein, we only process one of
he linear arrays that comprise the larger 2-D array . Specifically , we
rocess the NS13 array located along the southeast edge, as shown
n Fig. 10 , which also shows that the investigated area is close to
he instrumented boreholes. 

The acquisition setup includes 14 geophones, with an inter-
eceiver distance equal to 5 m. The receivers were Magseis Fairfield
odal ZLand 3C nodes, which contain a three-component geo-
hone, with passband corner frequency equal to 5 Hz. Waveforms
ere generated at two shot points off each end of the array using a
ibrating source, namely the NHERI@UTexas Thumper vibroseis
ruck (Stokoe II et al. 2020 ). The vibrating source generated a 12-s
ong sweep signal, from 5 to 30 Hz. The source-offsets of road-side
hot points are 4.5 and 35.5 m respecti vel y, whereas the ones on the
arking side are 2.5 and 33.5 m from the closest sensor (Fig. 10 ).
t each shot point, three repetitions were performed, whereas the
umber was increased to ten at the farthest source-offsets. 

The second data set was collected at Mirandola (MIR,
4 ◦52.621 ′ N, 11 ◦03.668 ′ E—in the WGS84 Datum), located in the
o Plain in Italy. The stratigraphy of the site is an alluvial deposit,
haracterized by alternating sandy and silty-clayey lay ers, w hich
ransition to rock-like formations at depths between 50 and 150 m. 

The MIR site was investigated in an e xtensiv e characterization
ampaign in the framework of the InterPACIFIC (‘Inter-comparison
f methods for site PArameter and veloCIty proFIle Characteriza-
ion’) project (Garofalo et al. 2016a ; b ), which compared the perfor-
ance of different geophysical techniques (i.e. surface waves and

nv asi ve methods) in estimating the stiffness profiles. In this study,
e process data from a linear array of 48 vertical 4.5-Hz geophones,
ith an inter-receiver spacing of 1 m. Wa veforms w ere generated

t six shot points from each end of the array using a sledgehammer.
he source-offsets of the shot points are 2.5, 3 and 15 m. The data
et also includes recordings from sources located within the array,
ut these data are not processed in this study for simplicity. At each
hot point, ten repetitions were perfor med. Fur ther details on the
ite description and the acquisition setup can be found in Garofalo
t al. ( 2016b ). 

Fig. 11 (a) reports the f –k representation of the recorded wavefield
t the GVDA, obtained by applying the spatial Fourier transform to
ecorded data. Notably, the recorded wavefield is dominated by a
ingle propagation mode in the whole investigated frequency range,
hich is expected to be the R -wave fundamental mode, labelled as
0. Instead, the MIR data set is characterized by a remarkably mul-

imode wavefield, as highlighted by the multiple, distinct spectral
eaks in Fig. 11 (b). In this case, three dominant modes can be iden-
ified in the considered frequency range. The highest wavenumber

ode (which may correspond to the R -wave fundamental mode,
abelled as R0) tends to disappear at f > 30 Hz. At higher frequen-
ies, two additional components of the wavefield become relevant,
nd they both contribute to the wavefield with similar amplitudes.
hese may be representative of the first two higher modes, labelled
s R1 and R2, respecti vel y. In this sense, in the MIR data set, the
ontribution of higher propagation modes and the modal superpo-
ition are significant over a wide range of frequencies. Thanks to
he multimodal nature of the wavefield, the MIR site is an appealing
ase study to apply the CFDBFaMF technique and to assess the
f fecti veness of the modal filtering under real site conditions. 

Thus, the GVDA and the MIR data sets provide a real benchmark
o e v aluate the performance of the proposed processing algorithms,
n comparison with state-of-the-art methods, for both a single mode
nd a multimode scenario. 

.2 Results from GVDA 

he CFDBFa algorithm is adopted to extract V R ( ω) and αR ( ω) from
he recorded seismic traces at GVDA, for two reasons. On the one
and, the array includes a moderately small number of sensors,
hich precludes a successful application of modal filtering tech-
iques to well isolate the propagation features of each Rayleigh
ode. Indeed, the modal filter ef fecti vel y extracts information on

he target mode when the number of sensors is greater than 20–24.
herefore, results from the CFDBFaMF are not included, as they
ould be identical to CFDBFa. Fur ther more, the recorded wave-
eld is dominated by a single propagation mode, as stated above
Fig. 11 a). Therefore, it is expected the CFDBFa to return ef fecti ve
ave parameters compatible with the modal ones, in this case. 
Fig. 12 represents the estimated V R ( ω) and αR ( ω) obtained

hrough CFDBFa. As processing includes data from multiple shots,
tatistics are computed by combining results from different source
ffsets, in consistency with the multi-offset approach (Wood & Cox
012 ; Vantassel & Cox 2022 ). Results are represented in terms of
ognormal statistics (i.e. median and logarithmic standard deviation)
f V R ( ω) and αR ( ω) (Aimar 2022 ), computed from the elementary
 -wave parameters corresponding to the 4 shot locations. Further-
ore, CFDBFa results are superimposed with the estimated R -wave

arameters according to the CFM and the WD. 
The CFDBFa identifies R -wave parameters in the frequency range

etween 5 and 35 Hz. Specifically, the resulting V R ( ω) matches well
ith those provided by other techniques. Ho wever , it is affected by

ower variability on average (across the full frequency bandwidth),
s σ ln V varies from 0.02 at high frequencies, up to 0.03–0.05 at
onger wavelengths. As for the estimated αR ( ω), the median trend
s compatible with the one returned by alternative processing tech-
iques. Notably, σ ln α is an order of magnitude greater than σ ln V ,
nd the variability is larger at lower frequencies, with a variation
rom 0.3 and 0.5. Interestingly, CFDBFa manages to well constrain

R ( ω) at low frequencies, at a range where the CFM is affected
 y larger v ariability both on V R ( ω ) and αR ( ω ), and where the WD
ethod does not provide any estimates of attenuation. 
This result demonstrates the potential of the new CFDBFa method

n retrieving dispersion and attenuation parameters, when the wave-
eld is mostly controlled by a single propagation mode. Indeed,
iven the strong agreement between the CFDBFa-based estimated
 R ( ω ) and αR ( ω ) with results from the WD and CFM, that return
odal R -wave parameters, it can be stated that such estimates are

epresentative of the R -wave fundamental mode. In other words,
oth modal techniques and those returning ef fecti ve w ave param-
ters provide comparable results, in this case. Fur ther more, the
roposed CFDBFa method is superior in terms of the ef fecti veness,
s it can provide attenuation estimates over a broad frequency range,
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Figure 10. MASW array setup, with the NS13 array. The blue area identifies the location of the instrumented boreholes. Source: Google Earth Map data: C ©
2019 Google. 

Figure 11. (a) Frequenc y–wav enumber representation of the wavefield recorded at GVDA. Data refer to the source-to-receiver distance equal to 5 m; (b) 
frequenc y–wav enumber representation of the wavefield recorded at MIR. Data refer to the source-to-receiver distance equal to 15 m. The brightest areas denote 
peaks of the frequenc y–wav enumber representation, each one corresponding to a R -wave propagation mode, labelled with R0, R1 and R2. 
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with lower variability compared to other techniques. The presence 
of well-constrained attenuation data at low frequencies is crucial 
for a reliable estimate of the damping ratio at greater depths. 

4.3 Results from MIR 

In this case, the estimation of V R ( ω) and αR ( ω) is carried out through 
the CFDBF aMF algorithm. Indeed , due to the multimodal nature of 
the wavefield and the large number of receivers in the array, the 
MIR site is suitable for the application of this technique. Instead, 
the CFDBFa is expected to provide ef fecti ve w ave parameters that 
are different from the modal ones, hence it is not considered. The 
performance of the CFDBFaMF is compared to the CFM and the 
WD approaches. Specifically, Fig. 13 compares the median of the 
estimated V R ( ω) and αR ( ω), computed from the elementary R -wave 
parameters corresponding to the 6 shot locations, for the three con- 
sidered modes (i.e. R0, R1 and R2). Instead, Fig. 14 shows the 
corresponding logarithmic standard deviation. 

For all the considered modes, the CFDBFaMF provides V R ( ω) 
and αR ( ω) estimates generally compatible with the other processing 
techniques, over the same frequency ranges. Specifically, the result- 
ing V R ( ω) agrees well with results provided by other techniques, 
although the CFM tends to return larger velocity values than the 
WD and the CFDBF aMF for R2. Instead , slightly larger differences 
characterize the estimated attenuation data. For instance, some dis- 
crepancies among the considered methods are observed for R0 at 
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(d)

(b)(a)

(c)

Figure 12. Estimated fundamental mode R -wave dispersion and attenuation curve according to the CFDBFa, WD and CFM methods, with reference to GVDA: 
(a) median estimated dispersion curves; (b) median estimated attenuation curves; (c) logarithmic standard deviation of the estimated dispersion curves; (d) 
lo garithmic standard de viation of the estimated attenuation curves. Gi ven the erratic trend of the standard deviation with the frequency, scatter plots in (c) 
and (d) are integrated with a continuous curve showing the trend for each approach, computed according to a moving average procedure, to facilitate data 
interpretation. 

Figure 13. Median trends of the estimated modal R -wave dispersion curve (left-hand column) and attenuation curve (right-hand column) according to the 
CFDBFaMF, WD and CFM methods, with reference to MIR. Data refer to the first three R -wave modes, labelled as R0 (top ro w), R1 (middle ro w) and R2 
(bottom row), respecti vel y. 
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Figure 14. Trends of the logarithmic standard deviation of the estimated modal R -wave dispersion curve (left-hand column) and attenuation curve (right-hand 
column) according to the CFDBFaMF, WD and CFM methods, with reference to MIR. Data refer to the first three R -wave modes, labelled as R0 (top row), 
R1 (middle row) and R2 (bottom row), respecti vel y. Gi ven the erratic trend of the standard deviation with the frequency, scatter plots are integrated with a 
continuous curve showing the trend for each approach, computed according to a moving average procedure, to facilitate data interpretation. 
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low frequencies. In this range, αR ( ω) tends to increase slightly, per- 
haps due to the influence of body waves. Fur ther more, for R2, the 
CFM and the WD seem to give a more erratic trend with frequency, 
compared to the CFDBFaMF. 

In terms of variability, the estimated phase attenuation is gener- 
ally 5–10 times more variable than the corresponding phase veloc- 
ity, for all the investigated modes and considered methods, similar 
to what was observed for GVDA. Specifically, for R0, the V R ( ω) 
variability is comparable for all the methods in the intermediate-to- 
high frequency band, with σ ln V close to 0.02 at frequencies between 
15 Hz and 25 Hz and slightly increasing to 0.05 at 30 Hz. At 
lo wer frequencies, ho wever , σ ln V tends to increase up to 0.07 for 
the CFDBFaMF. In this range, the σ ln V is even larger for the WD 

( σ ln V = 0.12), whereas the CFM seems to better constrain the phase 
velocity estimates ( σ ln V = 0.04). The variability of the estimated 
αR ( ω) exhibits a similar trend, as σ ln α oscillates around 0.3 at high 
frequencies, whereas it increases up to 0.5 at low frequencies for the 
CFDBFaMF, which is an intermediate value between the CFM ( σ ln α

= 0.3) and the WD ( σ ln α = 0.6). When focusing on higher modes, 
the av erage de g ree of uncer tainty tends to increase for both V R ( ω) 
and αR ( ω), especially for R2. The significantly larger variability 
for R2 may be a consequence of the strong influence of R1 on the 
frequency band in which R2 contributes to the recorded wavefield, 
which affects the quality of the estimated wave parameters for all 
the methods. Interestingly, although the CFM tends to better con- 
strain R0 wave parameters compared to the other techniques, the 
estimation quality drops when focusing on higher modes for this 
site, especially in terms of variability (partially for R1 and more sig- 
nificantly for R2). Instead, the CFDBFaMF-based estimates have a 
larger variability than the CFM for R0, although it should be noted 
that the order of magnitude of σ ln V and σ ln α is similar. Fur ther more, 
when focusing on higher modes, the CFDBFaMF tends to outper- 
form the other methods in terms of the variability of the V R ( ω) and 
αR ( ω) estimates, especially for R2. 

This result positi vel y contributes to demonstrate the potential 
of the new CFDBFaMF method in retrieving dispersion and at- 
tenuation parameters, also when the wavefield is a combination of 
multiple propagating modes with comparable energy levels. 

5  C O N C LU S I O N S  

This paper presented a novel family of techniques, namely the 
FDBFa and the CFDBFa, for the estimation of the Rayleigh wave 
dispersion and attenuation data from seismic traces recorded in 
MASW surv e ys. Both techniques rely on a transformation of the 
wavefield, that allows to obtain the phase attenuation by carrying out 
a dispersion analysis on the transformed data. When the recorded 
wavefield consists of a pure, c ylindrical R -wav e, the c ylindrical 
beamformer (hence the CFDBFa algorithm) perfectly matches the 
desired wave parameters. For this reason, the CFDBFa algorithm is 
the preferred choice to extract R -wave propagation parameters from 

active tests. 
Fur ther more, the proposed algorithm includes an additional step 

to extract modal wave parameters from multimode wavefields. The 
modified algorithm is named CFDBFaMF and it extracts each prop- 
agation mode from the recorded seismic traces by applying a band- 
pass filter, that preserves the mode of interest and removes additional 
components. 

In general, the proposed algorithm is reliable and accurate on 
both synthetic waveforms and measured data from in situ surv e ys. 
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ndeed, a good level of compatibility of the results with alterna-
ive processing techniques is also demonstrated. Fur ther more, the
roposed procedure returns low-variability estimates over a broad
requenc y range, cov ering lower frequencies than those retrie ved b y
ther techniques. This advantage can be crucial when the purpose
f the characterization is the definition of the damping structure at
arge depths. 

A significant advantage of the proposed wavefield transformation
s gi ven b y the possible extension to other processing techniques. For
nstance, the proposed technique can be straightforw ardl y applied to
mbient vibration analysis on 2-D passive arrays. This would allow
or impro ved co verage of experimental data in the low-frequency
ange, thus constraining estimated damping ratios at greater depths.
esides, the proposed filtering scheme can be generally applied for
ispersion analysis, to improve the quality of the phase velocity
stimates from multimode wavefields. 

The companion paper deals with the solution of the Rayleigh
nverse problem to estimate the shear-wave velocity and small-strain
amping ratio from the experimental dispersion and attenuation
ata. 
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