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Abstract: Exploiting the existing optical fiber network’s terrestrial infrastructure offers unexpected solutions
to global challenges. We aim to expand the current network by incorporating a streaming telemetry system to
integrate earthquake early detection. The purpose is to analyze and interpret alteration of light’s polarization
induced by seismic events, particularly Primary earthquake waves that precede destructive Surface waves. This
analysis facilitates the development of an early warning system and implementation of earthquakes counter-
measures to mitigate humanitarian and economic impact. Consequently, we have developed a Python-based
Waveplate Model designed to monitor light’s polarization changes within optical fibers buried underground.
The model incorporates real ground displacement data from a 4.9 magnitude earthquake that struck in Marradi
region, central Italy. We propose a novel approach of a smart sensing grid of optical network empowered by
machine learning, trained on a large number of polarization evolution extracted from two distinct sensing fibers
to identify the pattern of polarization change occurring during Marradi earthquake. Test Results demonstrate that
this method can detect Primary waves within one second time-frame, achieving an accuracy rate of 99.5%. This
system therefore affords nearby regions 52 seconds to take emergency response, and an extended margin of 62

seconds in more distant areas.

Keywords: earthquakes; polarization; machine-learning; early-warnings; optical-networks; sensing;

waveplate-model

1. Introduction

Earthquakes represent one of the greatest natural disaster risks facing humanity. According to
plate tectonics theory, the earth’s lithosphere is divided into plates by seismic zones that move relative
to each other. The majority of earthquakes occur along these plates” boundaries, with seismogenic
faults being the geological origins of destructive earthquakes [1]. However, predicting earthquakes is a
common scientific challenge for researchers globally. Much of this difficulty stems from the lack of
reliable precursory indicators that meet the sufficient and necessary conditions of their occurrence,
which is often considered the primary cause of failure in earthquake prediction efforts in earth science
research. Monitoring these seismic events is an essential part in trying to predict them, and that
employs range of different methods. For instance, absolute measurement of geostress to assess the
stress characteristics of significant faults [2], as seen in SAFOD project [3]. Li Siguang, a pioneer
of earthquake prediction in China, pointed out that an earthquake is a process of accumulation of
stress on seismogenic faults. Real time monitoring of geostress using tools like stress gauges can
be leveraged to track changes in fault lines, providing insights into the release of seismic energy [4].
Crustal strain monitoring through strain gauges and GPS technology have been developed for seismic
research and prediction as well [5,6]. Additionally, Infrared monitoring method, as the infra-sound
signal in the far field is found to be strong within two to eleven days before an earthquake with a
magnitude of M7.0 or higher struck, and its spectral characteristics are apparently different from
other natural events [7]. Unfortunately, in 1988, seismologists in United States deployed a dense
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network of monitoring stations focused mainly on "Surface Strain Monitoring", in addition to tracking
geo-magnetic, geo-electric, ground-water level, and hydro-chemistry data, to predict an M6 earthquake
occurring in the Park-field near the San Andreas fault. Yet, the anticipated earthquake didn’t occur
until 2004, 16 years later than expected, and the monitoring equipment failed to pick up any anomalies
or precursors [8]. Similarly, in 1995, an M7 earthquake struck in Hanshin, Japan, killing more than 6500
people, where the high density GPS network in place did not capture warning signals. Consequently,
the scientific community become increasingly skeptical about earthquake prediction. In March 1997,
Robert J. Geller published a paper titled, "Earthquakes cannot be predicted" in Science magazine,
which reflected the prevailing opinion on earthquake prediction in the work [9]. Therefore, it is crucial
to address this challenge differently by adopting novel methods for widely distributed early detection
systems capable of rapidly identifying the event to activate different mitigation strategies and minimize
humanitarian and economic impact. According to the International Association of Seismology and
Physics of the Earth’s Interior (IASPEI), one of the main potential earthquake precursors is changes
in strain rates which are the rates at which the Earth’s crust stretches or compresses [10]. This is
because such changes are indicative of stress accumulation in the Earth’s crust, potentially pointing
towards upcoming seismic event. Consequently, as optical fiber cables are buried underground, they
too experience stretching or compression in response to the strain rate change caused by seismic waves.
The mechanical and optical properties of an optical fiber, as well as the physical properties of the light
wave propagating inside it, change due to applied mechanical stresses and external disturbances. This
trend opens the perspective of using the optical networks as a wide distributed network of sensors
for environmental sensing, such as earthquake detection or anthropic activities monitoring [11,12].
Essentially, there are two types of seismic waves, body waves (Primary, P waves and Secondary,
S waves) that propagate through the earth’s interior, and Surface waves that propagate along the
earth’s surface. Surface waves carry the greatest amount of energy and are usually the primary cause
of destruction [13]. Detecting P waves that precede earthquake’s destructive waves allows swift
initiation of emergency plans. Therefore, we have witnessed recently the rise of distributed fiber optic
sensors that offer the possibility of measuring a slow varying environmental variable at any location
along the fiber length within a given sharp spatial resolution. This approach has been developed
in last decade to monitor dynamic strain variations induced by external perturbations using optical
fibers. Distributed optical fiber sensors utilize the natural scattering processes arising in optical fibers,
including Brillouin, Raman, and Rayleigh scattering. Rayleigh scattering combined with Optical Time-
Domain Reflectometry (OTDR) or Optical Frequency Domain Reflectometry (OFDR) has allowed the
development of Distributed Acoustic Sensing (DAS) [14,15]. DAS employs optoelectronic interrogator,
which send short light pulses into the fiber cable and then measure the optical perturbations in the
light that scatters back, thereby deriving strain-rate signals proportional to the amount of physical
stress impacting the fiber. These systems require dedicated "dark" fibers (i.e., optical fibers used solely
for sensing without any communication channels) to operate [16,17,18]. Thus, limiting the overall data
carrying capacity in the network. Moreover, these sensing techniques are incompatible with inline
optical amplifiers that are commonly found along optical fibers’ path, and this is because the optical
isolators inside the amplifiers block the backscattered DAS signals. Although these amplifications
could be removed along dark fibers, which would lead to rampant signal attenuation. It is worth
mentioning as well, that the usable range of this technology is less than 100 km and requires powerful
computational, storage, and processing capabilities that are generally only available in high-cost
systems [19,20]. Frequency metrology interferometric techniques came to overcome DAS usable
range limitations. These techniques can measure femtoseconds delay experienced by the light of an
ultrastable low phase Fabry-Pérot laser cavities traveling in the fiber at micrometer scale over several
thousands of kilometers for fiber length [21], but still interferometric techniques considered to be using
dedicated and expensive hardware. In this manuscript, we present a novel technique that employs light
polarization sensing. Unlike DAS and interferometric systems, State-of-Polarization (SOP) sensing
based on machine learning, analyze the integrated polarization alterations of the modulated light
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traveling through traffic-carrying optical fibers [22]. This approach aimed to leverage the existing
terrestrial optical network as a whole smart sensing grid to produce early anomaly warnings by
identifying the arrival of earthquake’s P waves without adding expensive equipment to the network,
ensuring long-range measurements, and without requiring dedicated dark fibers. Thanks to the
centralized design of our smart sensing grid optical network approach, which we detail in this work.
Due to applied mechanical stress, the local refractive index of the fiber core changes and give rise
to birefringence. Birefringence leads to different propagation speeds of the optical wave along the x
and y axes of the fiber core [23] that results in light polarization change. Hence, SOP variations are
dependent on disturbances applied to the fiber and can advantageously be used for sensing purposes,
particularly because optical fiber communication networks have become pervasive infrastructure and
widely deployed around the globe. In this paper, we examine the effect of a real earthquake that occur
southwest of Marradi city in central Italy to early detect the arrival of Surface waves by leveraging our
SOP sensing technique empowered by machine learning model analysis. This earthquake, striking in
September 2023, had a magnitude of 4.9 and an epicenter depth of 8.4 kilometers. In Section II, we
introduce the Waveplate model that is going to be driven by a neural network algorithm to monitor
and analyze SOP changes due to birefringence induced by the aforementioned seismic event, Section
III covers the experimental and in field point of view for the fiber optic network smart sensing grid
approach. This paper demonstrates in Section IV, the case scenario demonstrating the results and
discussion of the neural network model analysis over SOP evolution sets of data extracted from the
Waveplate Model after integrating the real Marradi earthquake ground motion data, and a conclusion
in Section V.

2. Waveplate Model

In an ideal optical fiber, which is typically circular in shape, the silica glass of which it is made
is isotropic. In the weakly guiding approximation, such an optical fiber supports the propagation of
two degenerate orthogonal polarization modes. In general, the theoretical polarization characteristic
of an optical pulse is represented by these two distinct modes. However, in reality, optical fibers are
often birefringent due to construction imperfections that disrupt the fiber’s cylindrical symmetry,
thus affecting the polarization. This means that, in a fiber section small enough, the perturbation or
the internal birefringence from construction imperfections can be assumed spatially uniform [24,25].
Seismic waves are another form of disturbances that cause external birefringence on the fiber and can
also affect the polarization. To isolate and study the external disturbances on the light’s polarization
within the fiber, it is crucial to understand the influence of internal birefringence. Here, adopting
the Waveplate Model is essential to well define the effect of internal birefringence by dividing the
fiber into numerous small segments, referred to as ‘plates’ to ensure a uniform internal perturbed
medium across each section [26]. Hence, the effect on light’s polarization is well defined and can be
quantitatively described by 27t divided by the polarization beat length Lg, which is the amount of
internal birefringence defined as the propagation length over which the optical path length of the
two polarization eigenmodes differs by exactly one wavelength [24,25]. Consequently, any deviations
from this established internal behaviour can be attributed to external perturbations, as they would
introduce unexpected changes in the state of polarization of light. Without considering any external
effect, when linearly polarized light is injected at 45-degree angle with respect to the linear polarization
eigenmodes, the light acquires after one quarter of Lp a phase shift of 7 transforming the linear input
polarization into a circular one, and after one half of Lp a phase shift of 77, as depicted in Figure 1. The
Waveplate model theory is described in Appendix A.
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Figure 1. Schematic Representation of Fiber Sections, each of Uniform Internal Birefringence.

However, by nature, these plates have random orientations, which can not be controlled, adding
complexity to the analysis of external effects. Basically, each plate is assigned with two random angles,
Ellipse of polarization or the major axis angle, and the Eccentricity of the ellipse. For simplicity
purposes, in this paper we consider only the major axis angle which we present in Appendix A. In [26],
the author presented the complete theory. Despite the random orientation of the plates causing varying
polarization evolution, the data should contain invariant information linked to a specific earthquake.
To overcome this complexity, a large amount of polarization evolution for a given seismic event is
collected, where each SOP evolution corresponds to a different set of random plates” angles as in
Figure 2, carrying out a Montecarlo simulation over these different random birefringence orientations’
realizations. The goal is to train a machine learning model that leverage this dataset to identify and
understand the patterns of polarization changes that occur with the arrival of Primary earthquake
waves in order to early detect the arrival of Surface waves.

—— Real. #2
—— Real #7
—— Real #8
—— Real. #28

o] 1 2 3 4 5 6 7
Time [s]

Figure 2. Four SOP Evolution for the same Seismic Event with different set of Plates” Angles.

This is where the neural network learning model becomes valuable, or the post processing agent
we present in the next section. Instead of analysing the changes in the three stokes presented for each
SOP evolution (S1, S2, S3) and to reduce computational time, we propose to calculate for each SOP
evolution from their stokes representations, the State of Polarization Angular Speed (SOPAS) [27],
which we detail in Appendix B. Thus, analyzing one variable instead of three. Moreover, one of the
main functions of the python based Waveplate Model we have developed, is to convert earthquake
ground displacement values into nanostrain values coupled to the fiber according to the conventional
iDAS conversion presented in [28], where each 116 nm of ground displacement corresponds to 11.6
nanostrain of fiber’s deformation.

3. Smart Sensing Grid Approach: In-Field Point-of-View

On the 18th of September 2023, an M4.9 earthquake struck in the region of Marradi in Central
Italy. The Italian National Institute of Geophysics and Volcanology (INGV) pinpointed the quake’s
location [29], noting a seismic wave velocity of 7.10 km/s. This measurement is inline with the Central
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Italian Appennines (CIA) velocity model, which calculates the speed based on the characteristics of
the Earth’s interior in the specific region [30].

To manage the challenges of swiftly evolving traffic patterns, optical networks are evolving
towards dynamically re-configurable, autonomous systems. These systems are managed by a cen-
tralized Optical Network Controller (ONC), which interacts with Network Elements (NEs) by means
of Application Programming Interfaces (API). The ONC leverages various metrics tracked by each
NE, constituting the streaming telemetry paradigm for network management purposes. This setup
facilitates the provision of varied services to the higher network layers. We propose to expand the
streaming telemetry paradigm to integrate earthquake early detection service into the existing network.
As shown in Figure 3, the streaming telemetry paradigm entails continuous data transmission from
NEs to the ONC to assist network management and control. Devices like Re-Configurable Add/Drop
Multiplexers (ROADM) and amplifiers include crucial information like power levels and variations in
temperature, whereas devices like coherent transceivers (TRX) capture alterations in phase and SOP
of optical signals. External stress affects the phase and SOP of the transmitted signal, thereby, SOP
changes carry environmental data that can be leveraged for sensing applications [31,32].

o Alarm/Notification
&) OPTICAL NETWORK CONTROLLER

NETWORK ELEMENT

Environmental Data Stream

Post-Process Agent

Filter significant data
Onboard Data-Analytics / ML

Raw Sensor Stream

Temperature, Power,
Polarization, Phase, ...

Network Device

TRX, EDFA, § OTDR, OCM,
DSP Info, ...

Figure 3. Sensing Network Architecture.

Furthermore, a post-processing agent within the NEs filters only the crucial information to the
ONC, and analyze the data by leveraging machine learning algorithms. Coherent transceivers are
inaccessible due to vendor lock, yet Intensity Modulated-Direct Detected (IM-DD) TRXs are still
popular in metro and access segments with lower data rates or functioning as slower as Optical
Supervisory Channels (OSCs) that terminate at every amplification site [33]. Thanks to the polarized
nature of OSCs, that facilitates the identification of OSC SOP alterations induced by external stress.
This could be achieved by extracting a minor portion of power to supply a polarimeter or a simple
Polarization Beam Splitter (PBS) as depicted in Figure 4. The objective here is to leverage the existing
terrestrial optical network in the Marradi region as a smart sensing grid, where we extracted the real
ground motion data induced by the earthquake with epicenter highlighted in yellow in Figure 3 from
the INGV datasets, integrate these sets in the aforementioned Waveplate Model, considering two
sensing fibers placed instead of two seismic stations ZCCA and FOSV. The main idea of choosing two
sensing points is to firstly train and test a deep learning algorithm exploiting data applied on two
distinct points, and secondly to asses the time needed for each municipality to implement earthquake
countermeasures and to take emergency response due to the fact of varying distances of the two cities
(Zocca city where ZCCA is located and Fassato di Vico city where FOSV is located) from the epicenter.
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Details are present in the next section. It is worth mentioning that in [34], we have experimentally
tested this SOP sensing approach on a deployed fiber ring in the city of Turin, Italy, using IM-DD TRXs
and polarimeters as sensing devices to detect and localize car passage by monitoring SOP alterations’
footprint. The experiment showed less than 100 meters of accuracy.

L

Ny @Dy Dy, Dy, @Dp,

-:}t..
osc // !

osc /) osc [/ osc
1—'-_

e pf e pff

Pressure wave SOP evolution on
(e.g.: earthquake) Poincare Sphere

Figure 4. In-field SOP Sensing Demonstration.

While in [35], the author showed the feasibility of implementing machine learning algorithms for
car passage count by means of fiber optics sensing.

4. Neural Network Algorithm and Related Results

4.1. Case Scenario

Zocca municipality (ZCCA) is located 58.5 km far from the epicenter and Fassato di Vico (FOSV)
is 126.9 km far. In place of the two seismic stations (ZCCA and FOSV), we utilize two sections of fiber
cable, each extending 10 kilometers, positioned precisely at the same geographical coordinates as the
stations. By exploiting the Waveplate Model and after incorporating the real ground displacement
motion, we were able to generate the average strain plots along the fiber sections substituting ZCCA
and FOSV as shown in Figure 5, demonstrating the arrival of P waves and Surface waves on both
fibers. Given the close proximity of ZCCA fiber to the epicenter, it is expected to see the arrival of P
wave prior the one of FOSV fiber, and the signal exhibits more oscillations. The data was collected
over 300 seconds sampled at 200 Hz. We recommended scaling the time axis by dividing over the
sample rate to concentrate more on the central part of the dataset.
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Figure 5. Average Strain for both Fibers Substitutes.

Each fiber was divided into 2500 waveplates with 4 meters spatial resolution. P wave reached
ZCCA fiber at 0.17 seconds and FOSV fiber at 0.28 seconds. The Surface wave was detected at
0.42 seconds on ZCCA fiber and at 0.50 seconds on FOSV fiber. When multiplied by 200, the time
difference between Surface and P waves on ZCCA fiber is 50 seconds, whereas on the FOSV fiber, the
difference is 44 seconds. However, the time difference between observations should be consistent,
given that the seismic event and velocity model are identical. Several factors can contribute to the
6 seconds discrepancy observed, including inaccuracies in peak detection between the two plots, as
the discrepancy corresponds to a 0.03 seconds difference on the plot itself. For simplicity purposes,
we have assumed a 45 seconds time difference between the arrival times of the P wave and Surface
wave. After coupling the strain into the fiber and injecting 45 degree polarized light, we demonstrate
in Figure 6, one simulation out of 100 for a SOP/SOPAS evolution observed.
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Figure 6. ZCCA - FOSV SOP and SOPAS examples.

The SOP/SOPAS showed an expected similar behaviour as the strain with almost the same time
difference between earthquake waves. Our main focus is to train the machine learning model on
SOPAS data instead of SOP data to reduce computational time.

4.2. Neural Network Model

We employ a neural network model using Long Short-Term Memory (LSTM) layers with an
attention mechanism for early detection for forthcoming earthquakes. The model is detailed in Figure 7.
We use single feature time series of SOPAS for all SOPs as input data. The first LSTM contains 64 units
that returns sequences, while the second one build another stacked LSTM with 128 units followed by
additional LSTM layers, with 64 units. The attention mechanism calculation apply time distributed
dense layer with a single neuron to each time step output of the last LSTM layer. As for the attention
mechanism integration, it performs element-wise multiplication between the attention weights and
the LSTM outputs to prioritize important features. The output layer is a full connected dense layer
with 4 units (assuming it’s a multi class classification problem, detecting No Earthquake, P Waves,
S Waves, and Surface Waves) and Softmax activation, generating class probability [36]. The output
visible on the right of Figure 7 is just a demonstration for the expected results but not the actual SOPAS
result even not the right SOPAS plot.
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Figure 7. Neural Network Architecture based LSTM layers.

4.3. Results and Discussion

The model is trained on 60% of all the previous data, 20% used for validation, and the rest 20%
for testing. In the validation process, Precision (accuracy of positive predictions), Recall (ability of the
model to identify all relevant samples), Accuracy (the overall correctness of the model) and F1 score
(the balance between precision and recall that implies better model performance for higher values)
metrics are used to evaluate the performance of the model, especially in classification tasks. These
metrics were evaluated on the validation dataset by varying the number of epochs from 1 to 100. These
metrics results are presented in the Figure 8 below.

Precision vs. Epochs Recall vs. Epochs
1.00 1.0
§ 0.95 4 =
g é 0.8
£ 0.90 o
oG
o 20 40 &0 a0 100 8] 20 40 (=18 BO 100
Epochs Epochs
F1l Score vs. Epochs Accuracy vs. Epochs
1.0 —— 1.00 —_———— .
a el
= (¥
S % 0.95
@ 0.8 - s
-
- % .90 -
o 20 a0 60 a0 100 ) 20 40 60 80 100
Epochs Epochs

Figure 8. Validation Metrics.

Our proposed model achieves these metrics reaching 1 within 100 epochs, which indicates
excellent performance across these evaluation measures. An accuracy of 1 implies the model making
no mistakes, and correctly predicting all samples. Perfect Precision and Recall (both reaching 1)
indicate that the model is making no false positive or false negative predictions, respectively. F1 score
of 1 indicates a perfect balance between Precision and Recall. Achieving such high scores within 100
epochs is impressive, suggesting that our model quickly learned and generalized well to the data.
This is a sign of strong training and validation. This model was able to predict P waves with 99.5% of
accuracy on validation dataset.

For testing purposes, we used two SOPAS to better visualize the model, showing P wave detection
in one second as depicted in the in the right of Figure 9.
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Figure 9. Neural Network Model Final Result

Consequently, with a 45 seconds interval between the P wave and the Surface waves, and
accounting to the propagation time of the seismic wave from the epicenter to both locations at 7.10
km/h speed as per the CIA model, the municipality of Zocca has almost 52 seconds (45+[8.23]-1)
to implement its emergency plan and countermeasures. In contrast, Fassato di Vico has 62 seconds
(45+[17.8]-1) to execute similar actions. [v = %]. The confusion matrix shown at the left of Figure 9,
is a table to visualize the performance of a classification model. It shows the correct and incorrect
detection made by the model for each class. For instance, for "No Earthquake" class, the model showed
5301 correct detection, 5 wrong detected as P waves and 3 as Surface waves. So on and so forth, for the
rest. Therefore, the assessment of model performance based on the confusion matrix showed 99.50%
accuracy rate. The model showcased promising performance in detecting P waves, a critical aspect in
earthquake early detection.

5. Conclusions

In conclusion, this manuscript demonstrated the innovative use of a centralized smart grid optical
network, empowered by a deep learning algorithm, for early earthquake detection. The study utilized
a Waveplate Model to analyze state of polarization (SOP) changes in optical fibers due to seismic
events. The neural network model successfully identified P-wave arrivals, enabling timely initiation of
emergency response measures. This approach offers a promising, cost-effective method for leveraging
existing optical fiber networks for environmental sensing and earthquake prediction, enhancing public
safety and preparedness.
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Abbreviations

The following abbreviations are used in this manuscript:

SAFOD  San Andreas Fault Observatory at Depth

GPS Global Positioning System

IASPEI International Association of Seismology and Physics of the Earth’s Interior
Pwaves  Primary waves

Swaves  Secondary waves

OTDR Optical Time Domain Reflectometer

OFDR Optical Frequency Domain Reflectometry

DAS Distributed Acoustic Sensing

sor State of Polarization

SOPAS State of Polarization Angular Speed

INGV National Institute of Geophysics and Volcanology

CIA Central Italian Apennines

ONC Optical Network Controller

API Application Programming Interface

NE Network Element

ROADM  Re-configurable Optical Add-Drop Multiplexer
TRX Transceiver

osC Optical Supervisory Channel

IM-DD Intensity Modulated-Direct Detected

PBS Polarization Beam Splitter

LSTM Long Short - Term Memory

Appendix A. Waveplate Model Theory

A long telecommunication fiber is to a good approximation, equivalent to a concatenation of
polarization waveplates with random orientation and random external birefringence. In a frequency
interval in which the first order approximation for the state of polarization is valid, any fiber section or
waveplate is characterized by jones matrix.

. . ul Un . -
M(w) = elPU@) — (/pw) <_u; ”T) = PRI M Ry (1)
where f is a quantity not essential for the calculation of the SOPs.

M, = DIAG (eijT/z, e—ijT/Z)

Where w represents the difference between the generic frequency of the optical signal and the central
frequency wy, and AT is the Differential Group Delay (DGD) of the fiber and could be described as:

on AL;
AT = Lb<1+dz)dz )

where ZL—Z is the internal birefringence presented earlier, and AL; is the external birefringence corre-
sponding to the nanostrain value induced by an earthquake.

M, represents a rotation around a fixed axis through an angle equal to wAT. Rj, and Royt are matrices
depending on the state of polarization and described as:

cosf —sinf
Rin = < ) (3)

sinf  cosf
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sinf  cos@

6 —sinf
Rout — <cos sin ) @

The angle 6, is the major axis angle that we consider in our model and the eccentricity of the ellipse is
neglected. In [26], the full matrices representation was mentioned.
The matrix U(w) of the cascade of two waveplates, described by U; and Uy, is

U = (Up, Uy) = (R, (M) (Rin2)) (R g (Mag1) (Rin ). 5)

As more segment the fiber into waveplates as better, to ensure small sections and consider uniform
internal birefringence at each section. Consequently, the polarization at the output of the fiber is
calculated as

Sout = U X Sin (6)

Appendix B. State of Polarization Angular Speed (SOPAS) Theorem

The state of polarization is the rise of the stokes parameters samples taken at discrete time instants,
represented by the vector k with components (S1[k], S2[k], S3[k]). The discrete State of Polarization
Angular Speed (SOPAS), denoted by w[k|, and the sampling period T are given by the following
relationship where (S, Sx_1) is the dot product between the Stokes vectors at time k and at time k — 1.
This computation is analogous to the discrete-time derivative of an angle, and the SOPAS is denoted
by wlk|, where wk] is:

_ (Sk-Sk1) y 1
“’“‘]‘a“‘""’s<||sk||||sk_1||> T, ?
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