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Resonance, a powerful and pervasive phenomenon, appears to play a major role

in human interactions. This article investigates the relationship between the physical

mechanism of resonance and the human experience of resonance, and considers

possibilities for enhancing the experience of resonance within human–robot interactions.

We first introduce resonance as a widespread cultural and scientific metaphor. Then,

we review the nature of “sympathetic resonance” as a physical mechanism. Following

this introduction, the remainder of the article is organized in two parts. In part one,

we review the role of resonance (including synchronization and rhythmic entrainment) in

human cognition and social interactions. Then, in part two, we review resonance-related

phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground

for the introduction of a design strategy and combinatorial design space for shaping

resonant interactions with robots and AI. We conclude by posing hypotheses and

research questions for future empirical studies and discuss a range of ethical and

aesthetic issues associated with resonance in human–robot interactions.

Keywords: resonance, entrainment, synchronization, metaphor, design space, social robotics, AI for wellbeing,

human-media interaction

INTRODUCTION

Resonance is a powerful physical mechanism that manifests in any physical system involving
oscillations (Buchanan, 2019). Examples include the electromagnetic resonances that enable
wireless communications, the acoustic resonances that give musical instruments their beauty, and
the orbital resonances that shaped our solar system. No matter the medium, resonance produces
amplification and synchronization effects in oscillatory systems. Details on the varying kinds of
resonance are found in Box 1.

This article reviews the role of resonance in human systems, in AI and in human–robot
interactions (HRI). Given the general appreciation of resonance in human interactions, we argue
that designers canmake use of the untapped potential of resonance to shape successful and desirable
interactions in AI and HRI.
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BOX 1 | A compilation of “resonance” terms from the scienti�c literature.

The following table outlines the breadth of the concept of resonance across

three domains in the social and physical sciences. The examples given for

each type of resonance (right column) are not meant to be an exhaustive

reference list—instead, our intention is to include a few illustrative examples

of each conception of resonance.

Psychology and neuroscience

Affective resonance Decety, 2010; Mühlhoff, 2019

Bodily resonance Bedder et al., 2019

Conceptual resonance Lee et al., 2007; Howie and Bagnall, 2020

Cognitive resonance Giorgi, 2017

Embodied resonance Kirsch et al., 2016b; Gallese and Sinigaglia,

2018

Emotional resonance Gratch et al., 2013; Schrock et al., 2004;

Decety, 2010; Giorgi, 2017

Empathic resonance Azevedo et al., 2013

Harmonic resonance Lehar, 2003

Interpersonal resonance Uithol et al., 2011; Himberg et al., 2018

Intrapersonal resonance Uithol et al., 2011

Limbic resonance Lewis et al., 2001

Motor resonance Cross et al., 2006; Aglioti et al., 2008

Neural resonance Large and Snyder, 2009; Katz, 1995

Neuroaesthetic resonance Beardow, 2021

Perceptual resonance Schütz-Bosbach and Prinz, 2007

Physiological resonance Engert et al., 2019

Social resonance Kopp, 2010; Wheatley and Sievers, 2016

Other social sciences

Advertising resonance McQuarrie and Mick, 1992

Aesthetic resonance Farber, 1994

Brand resonance Keller, 2010

Carnal resonance Paasonen, 2011

Consumer resonance Shang et al., 2017

Cultural resonance McDonnell et al., 2017

Entrepreneurial resonance Warren, 2004

Ethical resonance Prasad, 2019

Frame resonance Snow and Benford, 1988; Giorgi, 2017

Historical resonance Ferreira and Vale, 2020

Human resonance Rosa, 2018

Interaction resonance Hummels et al., 2003

Institutional resonance Strydom, 2003

Morphic resonance Sheldrake, 2011

Narrative resonance van Werven et al., 2019; Duarte, 2013

Norm resonance Gutterman, 2015

Political resonance Cunneen, 2019

Sexual resonance Baudrillard, 2005

Spiritual resonance Siegel, 2013

Value resonance Schemer et al., 2012

Physics

Types of resonance discussed in physics literature include:

Antiresonance Rajasekar and Sanjuan, 2016

Autoresonance Rajasekar and Sanjuan, 2016

Chaotic resonance Rajasekar and Sanjuan, 2016

Coherence resonance Rajasekar and Sanjuan, 2016

Ghost resonance Rajasekar and Sanjuan, 2016

Harmonic resonance Li et al., 2020

Multiple harmonic

resonance

Ludeke, 1942

Parametric resonance Rajasekar and Sanjuan, 2016

Stochastic resonance Rajasekar and Sanjuan, 2016

Subharmonic resonance Ludeke, 1942

Sympathetic resonance Zhang et al., 2013

Vibrational resonance Rajasekar and Sanjuan, 2016

Furthermore, as resonance occurs in any physical system with oscillations,

there are medium-specific resonances, including the following examples:

Acoustic resonance Ziada and Lafon, 2014

(Continued)

BOX 1 | Continued

Chemical resonance Freeman et al., 2014

Electrical resonance Blanchard, 1941

Friction resonance Duan et al., 2021

Geometrical resonance McMillan and Anderson, 1966

Gravitational resonance Baeßler et al., 2015

Magnetic resonance Slichter, 2013

Mechanical resonance Wilfinger et al., 1968

Optical resonance Oldenburg et al., 1998

Orbital resonance

(mean-motion resonance)

Sinclair, 1975; Wang et al., 2021

Plasma resonance Dahm et al., 1968

Quantum resonance Moran et al., 2017

Reaction resonance Yang et al., 2015

Tidal resonance Garrett, 1972

Additionally, resonances can emerge from the combinations of basic

physical forces, such as those illustrated by the following examples:

Electromagnetic resonance Fauché et al., 2017

Nuclear magnetic

resonance

Hore, 2015

Plasma-electron resonance Tonks, 1931

Spin-mechanical resonance Poshakinskiy and Astakhov, 2019

Magneto-mechanical

resonance

Grimes et al., 2002

Electromagnetic acoustic

resonance

Hirao and Ogi, 1997

Nuclear acoustic resonance Sundfors et al., 1983

Spin gravitational resonance Quach, 2016

Electron spin resonance Wertz, 2012

Optical spin resonance Crooker et al., 1997

Finally, there are emergent resonances that take on a researcher’s name,

including the following:

Fano resonance Lassiter et al., 2010

Feshbach resonance Tojo et al., 2010

Mie resonance Roll and Schweiger, 2000

Proudman resonance Vilibić, 2008

Schumann resonance Williams, 1992

Most of the forms of resonance listed in the PHYSICS category appear to be

based upon Helmholtz’s (2009) idea of sympathetic resonance. For instance,

in a review of magnetic resonance, “the term resonance implies that we are

in tune with a natural frequency of the magnetic system” (Slichter, 2013).

Yet a recent Royal Society review article (Vincent et al., 2021) makes the

following claim: “the definition of resonance has been generalized

[to include] all known processes leading to the enhancement,

suppression or optimization of a system’s response through the

variation/perturbation/modulation of any system property.” This

incredibly broad definition of resonance in physics suggests the challenge

and need for a coherent understanding of this important concept across

physics, neuroscience, the social sciences and design.

Resonance in Human Interactions: A
Metaphor, a Mechanism or Both?
“Resonance” is a commonly-used term that describes the human
experience of powerful, connecting and activating interactions
(Duarte, 2013). For instance, we can “resonate” with a film or with
a new friend. Metaphors related to resonance are also common,
such as in the expressions “syncing up,” “getting on the same
wavelength,” or even “feeling good vibes.”

Although the term “resonance” is often intended as a
metaphor to describe an interaction, in many cases physical
resonance may also be a mechanism underlying the interaction.
For instance, people metaphorically “resonate with music” but
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the brain also physically resonates with music: the actual
frequencies of sound and rhythm can be observed in the
frequencies of electrical activity in the brain (Coffey et al., 2019,
2021; Kaneshiro et al., 2021; Pandey et al., 2021). Or, consider
the common expression “syncing up” to describe a meeting.
Even though “syncing” (that is, synchronization) is intended
purely as a figure of speech, human communication does link to
measurable “inter-brain synchrony” (Dumas et al., 2010; Dikker
et al., 2019; Czeszumski et al., 2020; Kingsbury and Hong, 2020;
Dumas and Fairhurst, 2021; Moreau and Dumas, 2021). This
article aims to create a bridge between the human experience
of resonance and resonance as a physical mechanism. In so far
as resonance is more than a metaphor—if resonance is also a
causal mechanism in human interactions—then this will have
implications for measurement and design.

Some skepticism is justified in viewing resonance in human
interactions as “real” rather than as just a metaphor. Historically,
sympathetic resonance (sympathy: σv̌µπα̌θεια̌ or sumpátheia)
was viewed as the primary mechanism for magical phenomena.
For instance, the neoplatonic philosopher Plotinus (205–
270) wrote: “But how do magic spells work? By sympathy
[sumpatheiai] and by the fact that there is a natural concord
[sumphonian] of things that are alike [homoion] and opposition
of things that are different.” (Lobis, 2015). Even in the modern
era, there remains a widespread belief system that positive
thinking or “thought vibrations” can bring about positive real-
world occurrences through sympathetic resonance (Atkinson,
1906; Hicks and Hicks, 2006; Ehrenreich, 2009). Perhaps as a
result of this association with magic, resonance was not always
acceptable as a scientific explanation. A recent column in Nature
Physics notes:

“. . . until the very late nineteenth century, scientists were reluctant
to use the term ‘resonance’ in connection with anything except
acoustic phenomena, where it originated. Use of the word in other
fields. . . always included some disclaimer that the link was “only
by analogy”, despite the formal equivalence of the fundamental
dynamical equations.” (Buchanan, 2019)

Now, the situation has changed: the term “resonance” is
abundant in contemporary scientific literature (reviewed in
Box 1). However, the term is often used ambiguously, where it
is unclear whether “resonance” is being treated as a metaphor
or as a physical mechanism. This ambiguity is present in the
social sciences as well as in physics. Resonance in physics
is an increasingly broad concept that refers to a range of
phenomena. To bring clarity, we offer a glossary in Box 2 with
proposed definitions for resonance and related terms, such as
synchronization, entrainment, reverberation, etc.

Resonance as a Physical Mechanism
To provide grounding for resonance in human dynamics, this
section outlines physical resonance as a causal mechanism in
acoustics. Though we focus on sound, it is important to note
that resonance operates in all oscillating systems, regardless of
medium. This universality results from the fact that resonance is
a mathematical property—it is the natural result of the alignment
of phases in oscillating systems.

A wine glass offers an excellent example of the physics of
resonance. First, if a glass is gently tapped with a spoon, there
will be a reverberating sound that reflects the natural frequencies
of oscillations in the wine glass. These natural frequencies,
which are inherent to the structure of the glass, are also known
as characteristic frequencies or eigen frequencies (“eigen” is
German for “own” or “inherent”). These natural frequencies are
also the resonance frequencies of the glass: when external, forced
oscillations match these natural frequencies, resonance occurs.
But, while tapping the glass with a spoon may reveal the resonant
frequencies of the glass, the wine glass is not in resonance with
the spoon.

Sympathetic resonance occurs when external, forced
oscillations are aligned to a system’s own natural oscillations.
If a loudspeaker plays the resonant frequencies of a wine glass,
the glass will begin to oscillate at much greater amplitudes than
if the speaker played other, non-resonant frequencies. Now the
glass is in resonance with the speaker. This effect manifests in
other common acoustic systems, as well. When one tuning fork
is struck near another identical fork, they will both begin to
oscillate together, having been coupled together in synchrony via
the acoustic vibrations. Similarly, two strings tuned to the same
note will move one another in synchrony through sympathetic
resonance (Figure 1).

The relationship between resonance, synchrony and
amplification was articulated by German nineteenth century
scientist Hermann Helmholtz. His book “On the Sensations
of Tone as a Physiological Basis for the Theory of Music”
(Helmholtz, 2009; originally published 1863) offers the first
scientific exposition of sympathetic resonance in acoustics.
His primary illustration of sympathetic resonance involves
the resonance between a church bell and its bellringer. If the
bellringer provides consistent pulls at a frequency that aligns
to the bell’s natural rate of swinging, then the swinging will
be rapidly amplified. Importantly, the sympathetic resonance
occurs when phases of oscillation align: that is, when the
downward pull of the bellringer matches up with the downward
motion of the bell’s swing. The role of synchrony in sympathetic
resonance is easier to observe with a slow bell ringer than with
the rapid oscillations of a wine glass. Yet, even the sympathetic,
synchronized oscillations of a wine glass can be made visible with
high frequency camera equipment (Slow Mo Guys, 2021).

Synchrony between systems does not necessarily imply
sympathetic resonance. Two systems might be synchronized
with each other due to a third system, for instance, or for
other non-causal reasons (Hasson and Frith, 2016). Other forms
of resonance only occur with powered oscillators (like the
clocks and metronomes in Figure 1), namely entrainment and
synchronization. These terms—which explain phenomena like
the synchronization of fireflies or the entrainment of dancers to a
musical beat— are defined and discussed in Box 3. In this article,
we treat these two terms as subsets of sympathetic resonance (by
analogy, like squares are subsets of rectangles).

Resonance as a Metaphor
Having briefly considered the operation of resonance as a
physical mechanism, we now wish to bring clarity to the
metaphorical use of resonance in science and broader culture.
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BOX 2 | Glossary of terms.

Resonance, in this article, is treated as an umbrella term that involves physical resonance (either sympathetic or internal), synchronization, entrainment, memesis

and attunement—as well as metaphorical resonance.

Sympathetic Resonance occurs when external, forced oscillations are aligned to a system’s own natural oscillations and this results in amplification and

synchronization. The amplification effect occurs when the natural frequencies of a system align with the frequencies of an external oscillator. Resonance also involves

a synchronization or mirroring effect, as the phase and frequency of an external oscillator are reflected in the phase and frequency of the system’s response.

Internal Resonance involves the activation of the natural frequencies (“eigen frequencies”) of a system. For instance, tapping a wine glass results in internal

resonances.

Synchrony is a broad term that describes the temporal correlation of independent units of action. Correlations can occur in frequency independently from phase;

for instance, heart rate synchrony can occur in people who have the same heart rate, even if their hearts do not beat at exactly the same time. Although all meanings

of resonance should refer to a causal phenomena, synchrony can occur without a causal relationship (i.e., correlation does not imply causation).

Synchronization, in contrast to synchrony, should be understood as a complex dynamic and causal process—not a state. Pikovsky et al. (2001) carefully define

synchronization as “an adjustment of rhythms of oscillating objects due to their weak interaction.” Further, synchronization requires “self-sustained oscillators,” like a

powered metronome. Self-sustained oscillators are those that “oscillate with a distinctive waveform at a preferred amplitude that reflects a balance between energy

inflow and dissipation.” (Strogatz, 2003). Synchronization also requires a sort of “weakness in coupling.” Weakness is important because a very strong coupling

between systems simply results in immediate complete synchronization. The synchronization of two oscillators does not require that the two have the same phase at

the same time; for instance, two clock pendulums can be synchronized but swing in anti-phase. When an external oscillation frequency is nearly aligned to a natural

frequency of a powered oscillatory system, the systems will “phase lock” together and synchronize. Synchronization can occur at “a rational fraction of the resonance

frequency,” like 2:3 or 2:1 (Shim et al., 2007).

Entrainment occurs when a consistent rhythmic pulse of one oscillator shifts the frequency of another self-sustained oscillator. For instance, a drummer’s beat can

entrain the motion of rowers or entrain dancers to a common rhythm. Like synchronization, entrainment requires weakly-coupled and self-sustained (powered)

oscillators (Pikovsky et al., 2001). In fact, the two terms are nearly identical; at least one author (Izhikevich, 2007) claims that entrainment is limited to 1:1

synchronization. According to Helfrich et al. (2019), true entrainment requires that “an ongoing oscillator is entrained by a rhythmic input at a slightly different

frequency. The entrained oscillation becomes phase-locked and the amplitude increases. After the entraining stream stops the oscillator exhibits a reverberation at

the driving frequency for several cycles.” Some definitions of entrainment require that an external oscillator unidirectionally influences a powered oscillator (Lakatos

et al., 2019) but other definitions allow for mutual entrainment, “whereby two rhythmic processes interact with each other in such a way that they adjust toward

and eventually ‘lock in’ to a common phase and/or periodicity” (Clayton et al., 2005). In this article, entrainment is treated as the mechanism for synchronization

(synchronization through entrainment) and both terms are treated as types of resonance (see Box 3).

Reverberation can be defined by the reverberation time, which is the time required for an oscillation to “fade away” once the external input has stopped. After an

impulse, a system’s natural or resonance frequencies tend to continue to reverberate, as in a tapped wine glass or echoes in a cathedral.

Coherence refers to the statistical similarity between two or more oscillating systems (Wolf, 2010).

Mimesis, or imitation, describes the intentional or non-intentional replication of movement patterns. These replications do not need to be synchronous. For instance,

a child sticking out their tongue and another child copying them. This can be viewed as a type of resonance enabled by memory.

• Behavioral Mimicry occurs when people behave in similar or identical ways within a short period of time. (Mayo and Gordon, 2020); i.e., “the replication of automated

behaviors”

• Imitation can be described as “a short sequence of actions that I see my interaction partner performing and then consequently replicate…imitation is not mere

mirroring in the sense that one copies every little part of another’s movement. It is rather the replication of the action with regard to the outcome of the action which

leads to the acquisition of new skills” (Lorenz et al., 2016).

Behavioral synchronization describes behaviors that are synchronous in time, but potentially complementary (e.g., turn-taking) (Chartrand and Van Baaren, 2009).

Physiological Synchrony or Biobehavioral synchrony involves the rhythmic and temporal correlation of breath rate, heart rate, hormone production, or interbrain

synchrony (Feldman, 2017; Mayo and Gordon, 2020)

Psychological Attunement has been defined as “Entrained rhythms [that] constitute a form of dynamic equilibrium in which partners vary their behaviors over time

while keeping this variation within desired limits” (Sadler et al., 2009).

The Vibe (e.g., “good vibes” or “vibing with”) is a pervasive cultural construct used to describe how people perceive the shared affective experience and aesthetic

expectations of a group, a place, a product, a brand, a robot, etc. The vibe is different from a person’s individual affective reaction, as it describes the aspects of

conscious experience that are perceived to be shared between people (Witek, 2019). Hypothetically, the vibe emerges from interpersonal resonance effects.

Harmony is an ancient concept (Lomas et al., 2022) that has an intrinsic relationship with resonance: the harmonic tunings of stringed instruments maximize

acoustic resonance between the tuned strings. For example, musical notes with consonant intervals (such as the 2:3 ratio of a musical fifth) will share common

acoustic harmonics, while dissonant intervals do not. These shared harmonics produce physical resonances between tuned strings—and perhaps resonances

between neural oscillators, as well.

A recent review of the word “resonance” in the language
of scientific literature (Ruthven, 2021) reveals that resonance
typically serves as an implicit metaphor to indicate 1. agreement
(e.g., new evidence can resonate with an existing theory), 2.
arousal (e.g., a film that resonates is engaging and moving) or
3. action (e.g., the resonance of a speech can motivate people to
take action). But, despite a vast number of scientific articles that
use resonance as a term, it is only very rarely defined. The lack

of definition suggests that “resonance,” as a term, is easily and
broadly understood intuitively as a metaphor.

Metaphors are useful when they enable concrete, familiar
experiences to communicate abstract, conceptual meanings
(Lakoff and Johnson, 1980; Yang, 2014). A metaphor involves
the pairing or alignment of concepts between a concrete source
and a more abstract target; this coupling of concepts produces
mappings that allow multiple concepts to be integrated together
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FIGURE 1 | (Left) Resonance between mutually attuned tuning forks and strings involves synchronization and amplification. (Right) Sketch by Christiaan Huygens (b.

1629), who discovered “the sympathy of two clocks.” When two clocks are placed on a common beam, their two pendulums will eventually synchronize. Right

bottom: a set of weakly coupled powered metronomes (self-sustained oscillators) will eventually synchronize. Photo courtesy: Harvard Natural Sciences Lecture

Demonstrations.

into an emergent space of meaning (Holyoak and Stamenković,
2018). An example set of metaphorical mappings use the
metaphor “Love is a Journey”: for instance, in a journey (the
source) there are travelers while in love (the target) there are
lovers. In Table 1, we provide a similar set of explicit mappings
between the metaphor of acoustic resonance and resonant
human interactions.

With this introduction to resonance established, we are
now posed to explore the alignment between the metaphorical
experience of resonance (as in a film that resonates) and the
physical phenomena of resonance itself. The next section of the
article considers the research basis for understanding resonance
in human interactions.

PART 1: RESONANCE IN HUMAN
INTERACTIONS

A common example of physical resonance in human interactions
can be found on nearly any playground. When pushing someone
on a swing, the pusher needs to coordinate the timing of
their pushes to the swing’s natural back-and-forth oscillation
(determined primarily by the length of the swing). Does pushing
at a faster rate help? No: if the pusher simply pushed more times
per second, most of the pushes would do nothing because they
would not line up with the movement of the swing. When a
pusher aligns their timing to the natural frequency of the swing,
they amplify the effects of their effort: many small, well-timed
pushes are enough to get the swinger high into the air.

Beyond this simple example, where else might resonance
occur in human interactions? To scope our search, we assume
that sympathetic resonance can only occur when external
oscillations and natural oscillations align. Therefore, physical
resonances in human systems should only be present during
human activities that have a natural frequency or rhythm
of oscillation.

Consider an everyday rhythmic human activity: walking.
Researchers have used accelerometers to determine the dominant
and natural up-and-down frequency of walking. The typical
frequency of naturalistic walking is about 2Hz, or two steps
per second (MacDougall and Moore, 2005). This natural
oscillatory frequency can vary—some people walk faster or
slower than others. However, across a diverse set of participants,
the researchers found that the tempo of walking was not
dependent upon height, weight, or other physical factors. In fact,
the researchers suggest that the 2Hz natural tempo is the result
of genetically encoded “central pattern generators” in the spinal
cord, as these are the basis of the tempo of locomotion in other
animals (Guertin, 2013).

This is not just trivia: structural engineers need to take into
account this 2Hz human walking pace in every footbridge that
is built. Famously, a 2Hz resonance frequency caused the UK’s
Millenium Bridge to dramatically sway side-to-side when it was
loaded with pedestrians (Dallard et al., 2001; Strogatz et al.,
2005). On opening day, the bridge became so crowded that
most people could not easily walk forward—instead people were
so packed-in that they had to walk in a sort of side-to-side
waddle. Unfortunately, the bridge had a natural side-to-side 2Hz
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BOX 3 | Clarifying the relationship between resonance, entrainment and synchronization.

This article treats resonance as an umbrella concept that includes both metaphorical resonance and resonance as a physical mechanism. As resonance has an

expansive meaning in physics (Box 1), we first distinguish between typical resonance (which involves the natural frequencies of a system) and atypical resonance

(which does not involve natural frequencies). Then, typical resonance includes internal resonance (the activation of reverberating natural frequencies) and sympathetic

resonance (alignment between the frequencies of external oscillations and the natural frequencies of a system). Sympathetic resonance can be further divided into

passive resonance and active resonance. Passive resonance occurs with unpowered oscillators (like a wine glass) while active resonance occurs with powered

or self-sustained oscillators (like battery-powered metronomes). Active resonance includes the phenomenon of entrainment, which occurs when a self-sustained

oscillator synchronizes its phase and frequency to a weakly coupled external oscillation.

The natural or resonance frequency of an oscillator can be considered its preferred frequency. Powered oscillators, like metronomes, also have a preferred amplitude

of oscillation—this is not the case for passive oscillators, like wine glasses. When external frequencies align with the preferred frequencies of a wine glass, the most

noticeable aspect is the amplification of the amplitude of the oscillation. In contrast, when external oscillations align with the natural frequencies of a powered oscillator,

the most noticeable aspect is the synchronization. However, the synchronization of frequency and phase also occurs between a wine glass and an external speaker

while amplification also occurs with synchronized metronomes. For this reason, we describe entrainment and synchronization as types of sympathetic resonance;

namely, the type involving a self-sustained oscillator.

The scientific relationship between entrainment and resonance is often a point of confusion due to the lack of clear definitions (Helfrich et al., 2019). Our view diverges

from other descriptions of resonance that are limited to passive, unpowered systems (Pikovsky et al., 2001; Guevara Erra et al., 2017; Lakatos et al., 2019). Our view is

that the concept of resonance can easily accommodate active forms as well as passive forms, as both involve preferred frequencies of oscillation (natural frequencies),

synchronization effects and amplification effects. Given the ubiquity of resonance in oscillatory systems—and its already expansive definition in physics (Box 1)—why

should resonance only refer to unpowered systems and thus exclude dissipative systems, like the brain? Rather than treating “resonance” in interpersonal interactions

as a complete misnomer, we make the case that it is appropriate and physically accurate to say that we resonate with people, films or other media. We hope that

this view opens the door to a more comprehensible and coherent scientific study of resonances in human interactions.

Types of Resonance

• Metaphorical Resonance

• Physical Resonance

◦ Atypical Resonance: Does not involve natural frequencies (see Vincent et al., 2021)

◦ Typical Resonance: Involves natural frequencies

� Internal Resonance (involves the activation and reverberation of natural frequencies within a stimulated system, like the reverberations of a tapped wine

glass)

� Sympathetic Resonance (involves the alignment of external frequencies with the natural frequencies of a system—when the forced frequencies match the

natural frequencies)

• Passive Resonance: unpowered and externally sustained; like a wine glass vibrating in synchrony with external oscillations.

• Active Resonance: powered and self-sustained, like a metronome synchronizing with external oscillations. This encompasses different types

of synchronization:

◦ Complete Synchronization (due to strong coupling)

◦ Entrainment (Phase Synchronization)

� In-phase

� Anti-phase

� Phase shifted

◦ Frequency Synchronization

◦ Envelope Synchronization

◦ Partial and Asynchronous Synchronization (e.g., mimesis)

resonant frequency. As the bridge started to sway back and
forth, this led to the synchronization of the waddling motion of
the thousands of pedestrians. Without deliberate coordination,
people stepped left and stepped right in synchrony with each
other, entrained to the swaying motion of the bridge. As a
result, the 2Hz side-to-side oscillation of the bridge was further
amplified to dangerous levels.

Given that 2Hz is a natural frequency of human movement,
the theory of resonance predicts that 2Hz should also be a
resonance frequency. That is, external rhythmic inputs at about
2Hz should cause a synchronization and amplification of human
movement. Is 2Hz actually a resonance frequency of movement?
One way to test this prediction is to consider the popularity
of music at different beats per minute (BPM), where 120 BPM
would be equivalent to 2Hz. Figure 2 presents a histogram

showing the relative distribution of BPM in the Top 50 songs for
each year of the past decade, worldwide. This reveals a distinct
peak at 120 beats per minute.

Is this a resonance effect? The graph in Figure 2 resembles
a resonance curve: given a range of input frequencies, there is
a selective amplification at the same frequencies as the natural
frequencies of the stimulated system (i.e., the 2Hz natural pace
of movement in humans). However, the peak may arise for
a variety of reasons, from the musicians’ recognition of the
popularity of 120 BPM to the listeners’ increased familiarity
with 120 BPM songs. Most importantly, there are many more
songs released at 120 BPM. So, even though it is not entirely
appropriate to refer to the graph as a resonance curve, it may
still be a function of resonance effects (e.g., a greater likelihood
of rhythmic entrainment to walking frequencies at 120 BPM).
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In this article, we propose that physical resonance can
be distinguished from purely metaphorical resonance when
the mathematics of resonance (as used to characterize other
physical systems) can be used to model human interactions.

TABLE 1 | A hypothetical conceptual mapping of acoustic resonance and

human resonance.

Acoustic resonance (source) Human resonance (target)

A string tuned to another string can

respond sympathetically

A person attuned to another person

can respond sympathetically

A string’s sympathetic response to

another string results in synchrony

A person’s sympathetic response to

another person results in synchrony

A string mirrors the vibrations of

another string

A person mirrors “the vibe” of another

person (see Box 2)

A string vibrates to the frequency of

another string, if tuned

A person responds to the expression

of another person, if attuned

The attunement of strings is based on

a common or an aligned set of

oscillations

The attunement of people is based on

a common background or an aligned

set of experiences

Tuning strings enhances the

resonance between strings

Attuning people (e.g., with common

experiences) enhance resonance

Resonance results in greater

amplitude of sound

Resonance results in greater

excitement in people

A string will only selectively resonate

to particular frequencies, based on its

own natural oscillations

A person will only selectively resonate

to particular [people, films, books,

etc], based on their own natural

propensities

Synchronization, amplification and signal alignment are the
mathematical hallmarks of resonance—therefore, physical
resonance in human systems should occur when the oscillations
of external signals match natural human oscillations and this
results in synchronization and increased energy (amplification).
This viewpoint treats the physics of human resonance in a similar
fashion as other physical systems yet it leaves room for future
research to further clarify the relationships involved.

Rhythmic Human Interactions
The previous example shows how rhythmic human activity can
be investigated as a context for physical resonance phenomena.
Rhythmic human interactions clearly occur in artistic domains,
such as music-making (Clayton et al., 2005), dance (Larsson
et al., 2019) and various kinds of cultural rituals like chanting
(Gelfand et al., 2020). Rhythmic interactions are also common
in everyday life, as in the case of walking, conversational
turn-taking (McGarva and Warner, 2003; Wilson and Wilson,
2005; Lee et al., 2010), patterns of eye contact (Wohltjen and
Wheatley, 2021) or with interactions like handshakes (Melnyk
and Hénaff, 2019). More intimate rhythmic interactions occur
during human sexual behavior (Safron, 2016). Leading up to
the moment of birth, midwives often advise expectant mothers
to push in phase synchrony with their own rhythmic uterine
contractions (Hanson, 2009). Researchers have also observed that
the earliest interactions between parent and child are strongly
rhythmic (Stern et al., 1985). Babies cry in a rhythmic manner

FIGURE 2 | The above histogram is compiled from a Kaggle dataset containing the “Top 50” Billboard songs from 2010 to 2019. It appears to be a resonance curve

showing maximum excitement at a preferred frequency of oscillation. However, note the sharp dropoff from 120 BPM to 118 BPM—this is not expected in a

resonance curve, as the frequencies close to resonance tend to resonate strongly as well. There may simply be very few songs released with this BPM. But, while this

graph might not be a resonance curve, it may be a result of meaningful resonance effects in the brain—an increase in amplitude due to the alignment of external

frequencies with natural frequencies https://www.kaggle.com/leonardopena/top-spotify-songs-from-20102019-by-year.
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and caregivers soothe them with synchronized motions (Trehub
and Trainor, 1998). Synchrony in caregiving appears to literally
“tune” the human social brain (Yaniv et al., 2021).

“This resonance or echoing of affect, feelings, and emotions that
takes place in the reciprocal interaction between infants and their
caretakers is a necessary element for the development of empathy
and advanced social cognition.” (Decety and Meyer, 2008)

Neurobiological Rhythms and Human
Nature
What makes human behavior so rhythmic? Human rhythms are
believed to emerge from a broad range of biological oscillators
that are present across the brain and the rest of the body
(Varga and Heck, 2017). For instance, rhythmic central pattern
generators in the spinal cord not only drive locomotion (Ijspeert,
2008; Guertin, 2013), but also drive heart rhythms (Bucher et al.,
2015) and breath rhythms (Molkov et al., 2014). Furthermore,
body and brain oscillations appear to integrate together in a
hierarchical architecture (Klimesch, 2018).

Rhythmic—and resonant—phenomena are found in the
brain at multiple levels, from neurons to circuits to brain
waves (Buzsaki, 2006). Individual neurons have natural intrinsic
oscillatory periods (Lampl and Yarom, 1997); neurons can
be tuned to respond to different input frequencies through
resonance, like “strings on a violin” (Das et al., 2017). At the
level of neural circuits, the reverberation of recurrent activity
in neural ensembles plays a key role in memory (Wang, 2001;
Tegnér et al., 2002; Han et al., 2008), as originally predicted
by neuroscientist D.O. Hebb in 1949 (Hebb, 2005). Finally,
large-scale electrical oscillations in the brain, or brainwaves,
demonstrate clear resonance effects (Herrmann, 2001) that are
observable through electroencephalography (EEG). Further to
this, neurobiological processes associated with adaptive learning
(Grossberg, 2013, 2017), perceptual learning (Raja, 2020), and
ecological cognitive architecture more generally (Raja, 2018),
have all been theorized as forms of physical resonance.

Neurons are, technically speaking, non-linear oscillators
(Izhikevich, 2007; Stiefel and Ermentrout, 2016)—therefore, it is
not so surprising that large collections of neurons exhibit both
internal resonance effects (one part of the brain resonating to
another) and external resonance effects (the brain resonating to
environmental phenomena).Many scientists believe that physical
resonance in the brain plays a major role in music perception,
such as the physicist and neuroscientist Ed Large, who claims:

“The brain does not ‘solve’ problems of missing fundamentals, it
does not ‘compute’ keys of melodic sequences, and it does not
“infer” meters of rhythmic input. Rather, it resonates to music. . .
certain aspects of this process can be described with concepts
that are already well-developed in neurodynamics, including
oscillation of neural populations, rhythmic bursting, and neural
synchrony.” (Large, 2010)

Some researchers have recently proposed a unified account of
rhythmic synchronization and entrainment in the brain (Lakatos
et al., 2019); other researchers have proposed a unified account of

the biological, neurological and physical mechanisms involved in
the “rhythmic entrainment of biological systems” (Damm et al.,
2020). Rhythmic entrainment has been found to govern patterns
of interaction at a social, population, and even species level—
where, in the latter case, the entrainment of natural oscillations
can be observed at the scale of economies and ecosystems
(Greenfield et al., 2021). In short, it would appear that resonance
effects can operate all the way up and all the way down: from
neurons to economies.

Entrainment and Rhythmic
Synchronization
Human interactions can naturally synchronize through the
process of entrainment (Boxes 2, 3), which is akin to the natural
synchronization of metronomes (Figure 1). Social neuroscientist
Ruth Feldman (2012, 2017) argues that biobehavioral synchrony
(in behavior, heart rate, endocrine production and brainwaves)
serves as a key principle underlying parental love, romantic love,
friendship and human attachments. Indeed, when loving human
partners interact, their rhythmic communication produces
measurable physical synchronization in behavior (Grafsgaard
et al., 2018), in heart rate (Prochazkova et al., 2022) and in the
brain (Kinreich et al., 2017).

Some argue that the ability to synchronize to a beat is one of
the core skills associated with human social behavior. Kirschner
and Tomasello (2009) found that children 2–4 years old could
adjust their natural drumming tempo to match another beat—
but that their accuracy in synchronizing was significantly higher
when they drummed with a human partner (as opposed to
drumming along with a machine or drumming along with a
drum sound produced by a speaker). The authors argue that
“drumming together with a social partner creates a shared
representation of the joint action task and/or elicits a specific
human motivation to synchronize movements during joint
rhythmic activity.”

Humans are typically much less able to synchronize to
rhythms of visual flashes than to rhythms of auditory tones (see
review by Repp and Su, 2013). But, rhythmic entrainment and
synchronization is not specific to music or auditory experiences.
With certain forms of visual stimuli (i.e., bouncing balls),
visual synchronization becomes nearly as accurate as auditory
synchronization (Iversen et al., 2015). Researchers have also
found that deaf individuals exhibit enhanced synchronization to
visual rhythms, suggesting that the ability to attune to rhythms
is at least partially based on experience and not just a result
of biological coupling between the auditory and motor system
(Iversen et al., 2015). Researchers have found that humans
can synchronize to tactile pulses on their back with higher
accuracy when feeling the vibrations played over their entire
back rather than at just a small portion; similarly, rhythms that
engage multiple sensory modalities also produce more accurate
synchronization (Ammirante et al., 2016). This suggests that
overall sensory immersion and attentional engagement affects the
propensity to synchronize with rhythms.

Synchronization helps support coordinated actions between
individuals. Meta analyses (Morgan et al., 2017) have shown
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that behavioral synchrony in groups increases prosocial behavior,
increases perceived social bonding, and generally feels good (as
measured as increases in positive affect). Why might behavioral
synchrony feel good? Cracco et al. (2021) claim that “synchrony
is aesthetically pleasing and a signal of group cohesion, as
stimuli that are processed more fluently are known to produce
a hedonic response.”

Rhythmic synchronization is very rare in the animal kingdom,
at a social level, apart from special examples (see extended
discussion in Box 4). The human capacity for rhythmic
synchronization may have coevolved in human cultures because
it enhanced social bonding between sexual partners, between
parents and children, and within larger social groups. Savage et al.
(2021) state:

“‘Neural resonance’ (synchronous brain activity across
individuals) facilitates social bonding through shared experience,
joint intentionality, and ‘self-other merging’. Through the
production of oxytocin and endogenous opioids, neural
resonance also facilitates prosociality.”

Hyperscanning and Inter-brain Synchrony
The scientific understanding of rhythmic entrainment and neural
resonance is a fast-moving area of neuroscience that is being
propelled by new hyperscanning methods that scan the brains
ofmultiple interacting participants simultaneously. Interpersonal
neural synchrony at the group and dyadic level has been
shown to be associated with a number of predictors, including
shared stimulus features, joint actions, personality traits, social
intentionality, relationship quality, and cooperation (see, e.g.,
Czeszumski et al., 2020 for review).

For example, recent work from co-authors of this article
investigated the relationship between inter-brain synchrony and
group dynamics and found that EEG inter-brain synchrony
predicted collective performance among teams better than self-
report (Reinero et al., 2021). In another line of work, group-
based inter-brain coherence predicted class engagement and
social dynamics in groups of high school students during their
real-world lessons (Dikker et al., 2017; Bevilacqua et al., 2019).
Social closeness with the teacher also correlated with brain-to-
brain synchrony—that is, enhanced synchrony was found with
students who reported greater engagement with the teacher.
Finally, and perhaps most directly related to the concept of
resonance: Brainwaves of students who engaged in face-to-
face interactions before class were more synchronized during
class, even if students were no longer interacting. This finding
raises interesting questions about the role of resonance in the
directionality of the relationship between human face-to-face
interaction, inter-brain synchrony, and social connectedness.

The Downside of Being in Sync: Chained to
the Rhythm?
Humans may be predisposed to synchronize with each other, but
this does not always lead to positive outcomes. Synchronization
also has some important tradeoffs; Gelfand et al. (2020)
claim that synchrony can produce conformity, destructive
obedience, groupthink, antisocial aggression and also impair

group creativity. They point to findings (Wiltermuth, 2012a,b)
that people who have been randomly assigned to a synchronous
activity are more likely to comply with an anti-social order
(e.g., irritating a stranger) and to follow a morally compromised
command (in the study, participants were asked to grind up live
bugs). Synchrony also increases the likelihood that people will
engage in conformity, like copying majority opinions rather than
following their personal preferences (Dong et al., 2015). Further,
sometimes synchrony is simply “situationally inappropriate;” in
a study of a complex verbal coordination, groups that were
randomly assigned to a synchronization task performed worse,
reported higher levels of conflict and reduced group cohesion
(Wood et al., 2018).

Gelfand et al. (2020) randomly assigned participants to
march synchronously around a college campus or at their
own pace. The participants who synchronized showed reduced
creativity when writing stories. They also found that synchronous
marching discouraged the development and sharing of minority
perspectives during decision-making. They relate this finding
about synchrony to the need to balance “tightness” and
“looseness” in culture.

The ability to flexibly move in and out of synchrony appears to
be critical to adaptive flexibility. Mayo and Gordon (2020) claim
that “two tendencies exist simultaneously, one to synchronize
with others and another to move out of synchrony and act
independently. We suggest that an adaptive interpersonal system
is a flexible one, able to continuously adjust itself to the
social context.”

Savage et al. (2021) point out the key difference between
rhythmic integration and pure synchronization: rhythm is
predictable but also flexible to accommodate diverse individual
contributions. This is because rhythm involves two essential
components: 1. equally timed beats (isochronicity) and 2. a
hierarchical structure (meter). “While synchronization solely
to the beat (e.g., in marching or unison chanting) allows
large groups to integrate, it tends to submerge individual
contributions. Meter solves this problem by allowing many
individuals to contribute, out of phase, to the same integrated
rhythm.” Social rhythms (of speech, music, dance, etc.) can
thus support diversely coordinated actions within a loosely
unified structure.

Origins of Empathy: Sympathetic
Resonance
Sympathetic resonance—including synchronization and
rhythmic entrainment—appears to have been a key factor in
human evolution (Savage et al., 2021; Lin and Lomas, 2022).
Resonance relates in a fundamental way to the human capacity
to feel what another person feels, which is often called empathy.
But, before the term “empathy” was coined in the twentieth
century, the ability to feel what others feel was referred to
as “sympathy”—as in sympathetic resonance. The eighteenth
century philosopher Adam Smith wrote his first book, “The
Theory of Moral Sentiments” (Smith, 1759), with the general
thesis that “sympathy” accounts for a large portion of moral
behavior. Specifically, he explained that people like to help other
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BOX 4 | Resonance in non-human animals.

Despite the relative utility of resonant phenomena in humans (such as social synchronization and entrainment), it is rare in the animal kingdom. There are examples of

animals synchronizing with other members of their species: for instance, chirping insects, croaking frogs, claw-waving crabs, and flashing bioluminescent animals,

like fireflies (Wilson and Cook, 2016). However, these examples seem to involve somewhat involuntary neurological connections in fairly simple animals. Why is

entrainment not more common? While this is not well-understood at present, Wilson and Cook (2016) provide three criteria for rhythmic entrainment: 1. an animal

needs to have the mechanical ability to move with the beat (i.e., the tempo should be similar to an animal’s natural tempo of movement), 2. the animal must be able

to extract the beat from the sensory environment and pay attention to it, and, crucially, 3. the animal must have the motivation to voluntarily move in union.

Until very recently, it was believed that only human beings could synchronize to an external rhythm, like a musical beat. It was only with the advent of YouTube that

researchers first discovered Snowball the Dancing Cockatoo (Patel et al., 2009; Patel and Iversen, 2014) and 33 other examples of animals that appeared to show

entrainment to music (Schachner et al., 2009). These examples spanned 14 different bird species—and an Asian Elephant. This led to the belief that only species

that had previously evolved the capacity for vocal mimicy could entrain to a beat. Schachner et al. (2009) noted that, despite a large number of “dancing” dog videos,

none demonstrated the ability to synchronize with music (even though some dogs had been trained for years to compete in dance competitions).

Some animals can be reliably trained to synchronize to a rhythm. In 2011, researchers demonstrated that Budgerigars, a parrot-like bird, could learn to produce

rhythmic beak tapping patterns that synchronized to an audio-visual metronome (Hasegawa et al., 2011). Then researchers managed to train Ronan, a Sea Lion

(Cook et al., 2013), to entrain to a beat—this was surprising because Sea Lions are not vocal learners.

Over the past decade, there has been much investigation of the capacity for non-human primates to entrain to a musical beat. Sounds can induce spontaneous

rhythmic swaying in chimpanzees (Hattori and Tomonaga, 2020)—however, this swaying effect occurs in response to randomized rhythms and when sounds are

rhythmic (Bertolo et al., 2021). Monkeys have been trained to tap in response to an auditory or visual metronome, however, their movements are always reactive:

they always tap following the stimuli (although much faster than they can in a single reaction time experiment; see Wilson and Cook, 2016). In contrast, when humans

entrain to a similar metronome, they typically tap slightly before each stimulus in the beat. In just one case, researchers have trained monkeys to make predictive,

synchronized eye movements to a visual metronome—however, the monkeys had to be rewarded for each trial (Takeya et al., 2017). Based on this evidence, the

authors suggest that monkeys and other animals may have the capacity for “predictive and tempo-flexible synchronization to a beat” but might not be “intrinsically

motivated” to synchronize!

In summary, it is surprising that so few animals—neither dogs nor monkeys—are predisposed to entrain to a beat. After all, even animal neurons have the capability

to entrain to periodic rhythms. Why, then, are animals generally so unable—or unwilling— to entrain to a beat? One possibility: consider that the heart is entrained

to rhythms produced by central pattern generators in the spinal cord; clearly, animals need to protect their heartbeat from becoming entrained to external stimuli. It

may be that, even in the simplest of animals, there is a need to evolve defense mechanisms that can protect against unwanted resonance effects. Part of the human

capacity for rhythmic entrainment may result from the ability to “let one’s guard down” in order to open up to certain kinds of external rhythmic entrainment with other

people. This would suggest that humans only resonate to external stimuli when they feel safe to do so; after all, stress may make it difficult to dance or to be moved

by music. This also suggests that animals may be able to resonate, if they could be emotionally or biochemically prepared to do so. This opens up possibilities for

animal-robot and animal-AI interactions that can be explored in the future.

people because they sympathetically feel good when other people
feel good and sympathetically feel bad when other people feel
bad (Schliesser, 2015).

Later, the nineteenth century German psychologist Theodore
Lipps used the German term Einfühlung to describe how people
“feel into” the states of other people and even art pieces. By
using an inner imitation or simulation, people seem to be able to
fuse with artworks or persons through a process of “Psychische
Resonanz” (Lipps, 1891). For instance, watching a tightrope
walker produces a resonance with internal associated feelings like
vertigo. The representation of the performer in one’s own mind
allows one to feel how oneself would feel in the same situation.
The psychologist Edward Titchener reviewed Lipps’ work in 1909
(Titchener, 1909) and, rather than using the German Einfühlung,
he coined the new English word Empathy (Schliesser, 2015).

Empathy, Motor Resonance and “Mirror
Neurons”
Empathy is viewed as a critical component of human social
interactions. However, it is extremely challenging to pin down.
While there is an enormous amount of scientific work on
empathy, there is still considerable debate about its definition
(Hall and Schwartz, 2019). Is empathy a singular capability
or does it result from a “laundry list” of characteristics?
Psychologists generally accept the division between cognitive
empathy and affective empathy. Cognitive empathy refers to the

ability to recognize and understand another person’s mental state
(cognitive processes captured by what is referred to as “theory of
mind” or mentalizing), while affective empathy refers “the ability
to vicariously experience the emotional experience of others”
(Reniers et al., 2011). Furthermore, psychologists will often draw
another distinction between empathy (which involves the ability
to distinguish the experience of another person’s emotion from
one’s own emotional state) and emotional contagion. Emotional
contagion involves the direct propagation of emotional states;
unlike empathy, this effect is common in non-humans, like mice
(Hernandez-Lallement et al., 2020).

Regardless of definition, the capacity for empathy (or, at least,
affective empathy) is typically conceptualized as emerging from
motor resonance. Motor resonance describes how the spatial-
temporal activations of an observer’s brain mirrors the brain
activations of another person as they perform some set of actions.
That is, when observing the physical behavior of another person,
the brain regions related to this behavior activate in both the
observer and the person enacting the behavior, creating a sort of
spatial-temporal synchrony between observers and actors. Thus,
motor resonance is a type of physical resonance that provides a
mechanism for sharing conscious experiences between people.
For instance:

“. . . the coupling between action and perception, also named
“motor resonance” [involves] the automatic activation, during
actions perception, of the perceiver’s motor system. During action
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observation the two motor brains “resonate” because they share a
similar motor repertoire”. (Sciutti and Sandini, 2017)

Several theories of empathy describe motor resonance as the
mechanism underpinning the mirroring processes of emotions
and actions, where mirroring processes are defined as automatic
processes for internal imitation (Iacoboni, 2009) or embodied
simulation (Gallese, 2009). The simulation theory of empathy
(e.g., Preston and De Waal, 2002) suggests that people can feel
what other people are feeling because observing another person’s
behaviors will coactivate or call upon neural representations of
one’s own bodily experience (Hurley, 2008).

While stereotypical expressions may produce meaning
symbolically (e.g., a smile is symbolically associated with joy
or a frown with sadness), human emotional expression is far
more dynamic, expressive, and context dependent. The spatial-
temporal dynamics of, say, a rapidly lifted eyebrow can express
inner emotional states with great specificity. Observing the
eyebrow rapidly lifting will engage our own motor cortex
to activate in a similar time scale and specifically in the
areas expected for the muscles involved. These spatial-temporal
activations appear capable of automatically triggering associated
emotional states (Wood et al., 2016). That is, whatever feelings
might have been associated with rapid eyebrow lifting in the
past, either in the self or in others, will now be primed. In
this manner, interpersonal motor resonance appears to support
“mind reading” (Agnew et al., 2007) and the sharing of conscious
experiences (Lin and Lomas, 2022). Because our brains reflect
or mirror each other, through resonance, we can sympathetically
experience the feelings associated with other’s actions, in part by
knowing “how we would feel if we were acting that way.” And it
is not just observation: even listening to descriptions of actions
can trigger motor resonance (Zwaan and Taylor, 2006).

Researchers continue to debate the origins of mirroring
processes, but they appear to result from simple bidirectional
associations between perception and motor responses that are
learned over time (Keysers and Gazzola, 2009, 2014; Hanuschkin
et al., 2013). Simple correlations of associated actions and
observations seem to produce “action perception circuits”
that serve as the neural mechanism for mirroring processes
(Pulvermüller, 2018).

For a clear example, fMRI results show that when people
watch others perform actions with their hands, mouths or
feet, there are activations in their own premotor cortex—
activations that are also triggered when performing those
actions themselves. Furthermore, these action activations occur
“following a somatotopic pattern which resembles the classical
motor cortex homunculus.” (Buccino et al., 2004a) For
instance, if person A watches person B kick a ball, the “leg
part” of the premotor cortex will show a similar pattern
of activation in person B (the kicker) and in person A
(the observer).

The “Like Me” Hypothesis
If we consider the sympathetic resonance of two tuned
strings, the strings have in common their natural frequencies
of oscillation. A similar sympathetic resonance occurs when

we see another person smile; this can trigger similar action
representations in our brain and activate associated emotional
states. Following the metaphor of two tuned strings, the “like me”
hypothesis predicts that the degree of motor resonance between
an actor and observer will correlate with the degree of similarity
between the actor and the observer.

Buccino et al. (2004b) investigated humanmotor resonance in
response to dogs, monkeys and people. They found that “Actions
belonging to the motor repertoire of the observer (e.g., biting
and speech reading) are mapped on the observer’s motor system.
Actions that do not belong to this repertoire (e.g., barking) are
essentially recognized based on their visual properties.” In other
words, actions that are not “like me” may be recognized but they
do not resonate.

If resonance is enhanced when observing actors similar to the
observer, is it also impaired when there is a lack of similarity?
Researchers have found that when subjects observe people of
a different ethnicity, there is significantly less motor resonance
than when watching members of the same ethnicity (Gutsell and
Inzlicht, 2010; Azevedo et al., 2013). This unfortunate effect is
predicted by resonance theory: less similarity, less resonance.

The resonance between actions is dependent upon a person’s
ability to do those actions. The “like me” hypothesis predicts that
persons who are highly trained in a particular skill should be
able to resonate with another person trained in the skill, at least
to the extent that their action-observation circuits are mutually
developed. Work with expert dancers using fMRI (Calvo-Merino
et al., 2005; Cross et al., 2006), EEG (Orgs et al., 2008), and
facial EMG (Kirsch et al., 2016a) provides evidence in support
of this idea that shared learning experiences and shared skills will
increase motor resonance.

Evidence against the Like-Me hypothesis comes from the fact
that similarity does not always enhance activation intensity. A
series of fMRI experiments showed that mirroring processes (also
known as the “Action Observation Network” or AON) are more
strongly engaged during the observation of robot-like motions,
both when the motions were performed by actual robots and
when people act in a jerky, robot-like manner (Cross et al., 2012).
It appears that the relationship between familiarity and neural
resonance is not entirely linear because—in part—the perception
of novelty (Knight and Nakada, 1998) also amplifies the brain’s
response to actions (Gardner et al., 2017).

The brain’s sensitivity to novelty may help explain why motor
resonance is exceptionally amplified when expert dancers observe
other expert dancers perform (Cross and Ramsey, 2021). Experts
not only have deep familiarity with the movements but they will
also have an expert sensitivity to the many small novelties within
the expert’s individual execution. Familiarity and novelty—
though seemingly opposite—both contribute strongly to an
aesthetic experience (Hekkert et al., 2003). This may account
for why aesthetically valued actions influence motor resonance.
Researchers have found that the intensity of activations in the
AON (a brain marker of motor resonance) correlates with
aesthetic ratings of the observed dances (Cross et al., 2011).
Calvo-Merin et al. (2008) also examined the neural response to
dance movements and noted that, of five aesthetic dimensions
(like-dislike, simple-complex, dull-interesting, tense-relaxed and
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weak-powerful), only shifts in liking-disliking correlated with the
brain response in the AON.

Thus, several factors can enhance motor resonance, including
inter-subject similarity. Generally speaking, motor resonance
appears to be enhanced by the overall motivational relevance of
the subject-observer interaction; the similarity of the subject, the
novelty of the interaction, the aesthetic quality of the interaction,
and when the subject is viewed as desirable, powerful or sharing
a common goal (Greenberg, 2019). This also implies some
possibilities for breakdown and pathologies in psychological
relationships due to misattunement in interpersonal resonance
(Bolis et al., 2017).

Human Resonance, Exemplified by the
Actor Will Smith
To conclude this section on the role of resonance in human
interactions, consider this quote by the actor Will Smith
explaining his growth as an actor during his performance as
Richard Williams, the father of Venus and Serena Williams.
The quote illustrates the connection between the body, the
communication of emotional depth and how resonance is
generated during aesthetic experiences (described here as
“vibrations”). It also shows the vast distance roboticists must
travel to approach the capabilities of human actors in producing
effective sympathetic resonance (for resonance in acting, also see
Bogart, 2021).

“At the core, acting is what you can comprehend emotionally.
And when you comprehend it emotionally, do you understand
it enough to feel it and create interesting behavior around
it? So something like Richard Williams’s walk: Now, you can
mimic someone’s walk and look authentic. It’s a completely
different thing when you know why the person is hunching
over vs. the stand-up-comedian version of it just mimicking it.
Understanding that was the leap that happened: When you know
why Richard Williams’s left leg hurts, what happened with the
spike that got driven through it, that, as an actor, is the 90 percent
of the iceberg that’s below the surface. When you’ve programmed
it deeply, those things have corresponding vibrations for the
audience that they don’t even realize.” (New York Times, 2021).

PART 2: RESONANCE IN ROBOTICS

In this article, we use “robot” as a general shorthand for a
non-human artificial agent. This deliberately broad definition
includes many forms of intelligent and autonomous systems that
vary in the degree of adaptivity (from highly adaptive to non-
adaptive, e.g., a pre-programmed movement sequence), in the
degree of embodiment (from physical to virtual), in the degree of
human resemblance (humanoid to non-humanoid), in the degree
of biological resemblance (highly life-like to highly machine-
like) and in the degree of social interactivity (highly social to
non-social). A typical chatbot, for instance, is a moderately
adaptive, virtual, humanoid, machine-like and highly social
robot. In contrast, a Roomba is a highly adaptive, embodied,
non-humanoid, machine-like and non-social robot.

Social robots are robots that are specifically designed to
respond appropriately in social situations. While empathy is

typically required for human social competence, social robots do
not necessarily require empathic behaviors to participate in social
situations. A definition of empathy that can apply to both robots
and humans is “the ability to sense and appropriately respond
to the internal driving states of other entities, including feelings,
emotions, intentions, plans and perspectives.” Asada (2015)
offers a comprehensive framework for “Artificial Empathy” in
robots, which articulates a clear progression from emotional
contagion (“simple synchronization”) to emotional and cognitive
empathy (more complex synchronization) to compassion (which
involves the partial inhibition of synchronization—in order
to understand the perspective and feelings of others without
adopting those feelings oneself). So, while there are links between
artificial empathy and resonance in robotics, resonance does not
imply empathy.

Resonance, synchronization and entrainment have been
widely studied in the field of human–robot interactions (HRI).
Examples of synchronization behaviors in HRI (discussed in
detail below) include eye contact, handshakes, giving or receiving
objects, walking, massaging, coordinating or collaborative tasks
and learning by imitation. The following section considers (1)
robots that entrain to rhythms, (2) robots that resonate with
people (3) robots that can entrain human biorhythms, (4) the
synchronization of people with robots and (5) robots as a
platform for synchronizing multiple people.

Robots That Entrain to Rhythms
Dance and music have been an important driver of social
robotics. Kozima et al. (2009) used a yellow dancing robot
“KeepOn” to either dance in synchrony with background music
or dance out of synchrony. They found that, when dancing in
synchrony, children were more likely to socially interact and to
do so for longer. While there are many dancing robots (reviewed
in Bi et al., 2018), most involve pre-programmed motions that
are unable to adjust to external visual or auditory stimuli.
Responding in real-time to external motions (such as a human
dancer) is often limited by hardware and software processing
delays. Behavioral resonance is computationally challenging.

Nico, a drumming robot (Crick et al., 2006), used visual,
auditory and proprioceptive data to “attune to a tempo that is
set by a human conductor, in concert with human performers.”
To accomplish this, Nico uses multiple oscillators that model a
hierarchy of rhythmic attention. To detect the beat, Nico used
cameras to follow the ictus of the conductor’s hand (which is
when it “bounces” off an imaginary line). As hardware constraints
prevented Nico from following a faster tempo, faster beats caused
the robot to find a lower hierarchical level of the rhythm:
a tempo half that of the beat. The researchers found that
human musicians playing along learned to accommodate Nico’s
mistakes and attune to them. More recently, another successful
synchronizing drumming robot was demonstrated by Iqbal and
Riek (2021). Though these systems involved simple rhythmic
beats, “Shimon” is a robotic marimba player that plays along
with human accompaniment in a variety of ways, including call
and response (Hoffman and Weinberg, 2010). Motivated by the
notion of robotic movement as a dynamic affordance (Hoffman
and Ju, 2014), Shimon has an expressive non-humanoid head that
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synchronizes with the musical beat. Arguably, Shimon vibes with
other human players.

Beyond affective interactions, entraining to rhythms can
support basic robotic locomotion. Walking on two feet is
extremely difficult for robots unless it is on a flat predictable
ground (Endo et al., 2008). Some roboticists have found success
in using a biomimicry approach—they use “central pattern
generators,” like those in the human spinal cord, to achieve
dynamic stability through rhythmic entrainment (see reviews,
Ijspeert, 2008; Buschmann et al., 2015; Aoi et al., 2017; Xie
et al., 2021). This oscillatory approach to robotics also applies
to robotic prosthetic limbs for humans, where synchrony with
the human motion must be extremely precise (Ronsse et al.,
2010).

Synchronization and entrainment have also been useful for
the implementation of deceptively simple motor movements,
like shaking hands (Melnyk and Hénaff, 2019) or handing a
ball to another person. Using the robot iCub, Duarte et al.
(2021) used a coupled dynamical system to learn the motor
resonances between armmotions during the handover of the ball.
Ansermin et al. (2016) also used a coupled oscillator approach
to enable the robot NAO to imitate human gestures through
entrainment and synchronization. The researchers found that
mutual entrainment between the robot and human enabled
gesture mirroring and precise synchronization with far fewer
computational resources than other approaches (e.g., those
involving a high-level planning process).

Robots That Can Resonate With People or
Other Agents
Robot imitation is useful for many reasons, whether for helping
robots learn through demonstration (Argall et al., 2009) or
to make robots more persuasive (Bailenson and Yee, 2005).
Robots can imitate humans in many ways—but usually in
ways that are very different from how humans imitate each
other (Breazeal and Scassellati, 2002). Robots that use oscillators
to resonate or synchronize with people is a more limited
approach but often useful. Using a “mirror neuron framework,”
Barakova and Lourens (2009) gave simulated as well as embodied
robots the ability to synchronize with human movements; this
led to improved turn taking behaviors. Kopp (2010) used a
motor resonance approach to support intentional alignment
between robots and people. Researchers have proposed a variety
of methods for the quantitative measurement of synchrony
in human interactions (Delaherche et al., 2012) and the
measurement of motor resonance between humans and robots
(Sciutti et al., 2012). These approaches have been useful for
demonstrating the presence of motor contagion between people
and robots (Bisio et al., 2014). A motor resonance system
successfully enabled a robot to learn from a human demonstrator
to introduce itself using Taiwanese Sign Language (Lo and
Huang, 2016). Coupled oscillators, based on central pattern
generators, enabled the robot Pepper to wave back at a human
partner in an adaptive, synchronized manner; this was perceived
as more enjoyable than a non-adaptive wave (Jouaiti and Henaff,
2018).

However, not every application of movement synchrony
enhances outcomes. For instance, Henschel and Cross
(2020) conducted a controlled experiment to investigate
how synchronized task behavior affected the likeability of the
humanoid robot Pepper. They found that synchronized task
performance had no effect on the likeability of the robot. This
was surprising in light of contemporary attitudes:

“The field of HRI has largely adopted the assumption that when
robots automatically synchronize their movement to users, users
will feel that interactions with these technologies are more natural
and similar to human interactions. . . non-verbal synchronous
behaviors are used to signal interest, involvement, rapport,
similarity, or approval, resulting in highly synchronous exchanges
being mutually rewarding experiences for the interactants.”
(Kirkwood et al., 2021)

Robots That Can Entrain Human
Biorhythms
Robots can influence the biorhythms of people; for instance,
Macik et al. (2017) showed that a non-humanoid robot
can help entrain breathing patterns while Sato and Moriya
(2019) used AI-controlled music tempo to control changes
in the rate of breathing. Robots that promote sleep using
rhythmic entrainment include the Somnox Sleep Robot
(Mohammadi-Khanaman and Lundström, 2019) or the Fisher-
Price “Soothe’n’Snuggle” stuffed toy (Figure 3), which uses
rhythmically pulsing movements, sounds and lights to help
small children fall asleep. While the “Lulladoll,| which plays
breathing and heart-beat sounds, did not have a significantly
beneficial effect on infant sleep (O’Loughlin, 2018), the Philips
Smart Sleep system did produce improvements in slow wave
sleep and executive functioning in adults (Diep et al., 2020).
This headband system uses EEG and audio-pulses to create a
closed loop system that entrains slow waves associated with
deep sleep.

The Synchronization of People With Robots
In certain situations, people appear to automatically align their
speech and behavior to artificial partners. This synchronization
has been shown through alignments in speaking rate (Bell et al.,
2003), prosody (Suzuki and Katagiri, 2007), gestures (Iio et al.,
2011), gestural rhythm (Ansermin et al., 2017), formality of
speech (Kühne et al., 2013), vocabulary (Iio et al., 2015) and
facial expressions (Hofree et al., 2014). When this alignment
occurs, it tends to be associated with a positive experience
of the artificial partner. For instance, Fujiwara et al. (2021)
showed that when humans spontaneously synchronized their
motions to a non-human partner, humans were more altruistic
and reported greater affiliation for their non-human partner.
Importantly, synchronization effects are highly dependent upon
the specific social context—for instance, a competitive task can
easily produce a reversal in facial expression synchrony, like a
winner smiling at a losing frown (Hofree et al., 2018).
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FIGURE 3 | (Top) Hasbro’s “Snackin’ Sam” appears to engage children through motor resonance: articulating its neck, jaw and tongue to show interest in eating a

popsicle. The Fisher-Price “Soothe’n’Snuggle” appears to support child sleep through rhythmic entrainment to its in-and-out breathing pattern. A Pudo brand robot

delivers food in a restaurant, using periodic facial expressions to create a friendly vibe. (Bottom) The Shybo robot expresses emotions through movement; this

sequence shows the robot reacting to the loud sound of a clap by closing the hat, shaking it and lighting up in red.

Robots as a Platform for Synchronizing
Multiple People
Robots can also serve as a medium or platform to help
synchronize people together. For instance, the BAO-ME is
“a zoomorphic robot that is designed to help decrease stress
levels and enhance feelings of support and companionship
by recreating the sensation of being hugged through haptic
interaction” (Levantino, 2018). Sharing heartbeats between
people can enhance empathy (Winters et al., 2021). Outside
of the scientific literature, there now exist a variety of robotic
devices that have been designed to support synchronization
between long-distance romantic couples. From a recent review
(Lolo Nate, 2022): The Frebble gives the synchronized sensation
of holding a partner’s hand, the Bond Touch communicates
via synchronized tactile feedback, the Lovense supports
synchronized sexual stimulation and the Kissenger (kiss
messenger) uses actuated silicon lips to replicate the kiss of a
distant but synchronized partner.

Robots, Embodied Emotions and
Sensorimotor Communication
Embodied robotic movements, like human movements, can
communicate emotions. Santos and Egerstedt (2021) found
that non-humanoid robot swarms were able to trigger basic

emotion perception through simple, basic forms of movement—
just modulations of speed and smoothness were able to make
robots seem happy, surprised, angry, fearful, disgusted or sad.

Movements create emotive “vitality affects” between infants
and parents (Stern et al., 1985). These affects stem from variations
in the contours and envelopes of movement intensity and
rhythmic patterns. For instance, affective feelings result from
motions that are “surging,” “fading away,” “fleeting,” “explosive,”
“crescendo,” “decrescendo,” “bursting” “drawn out,” etc. (quoted
in Mühlhoff, 2019). Movement-based “body moves” (Gill, 2012)
are clearly manifested in robots, such as the non-humanoid toy
robots in the popular “furReal” series byHasbro. For instance, the
“Snackin’ Sam the Bronto” (Figure 3) toy dinosaur robot moves
its neck, mouth and tongue to communicate interest in eating1.
Similarly, “Shybo” (Figure 3), a humanoid machine-like social
robot, reacts to loud sounds by turning its hat down and shaking,

1It should be mentioned that a significant portion of this paper was written with
the help of this social robot. Not the writing, per se, but enabling the writing
by engaging the lead author (JDL)’s 3-year-old son during a 12 h train ride.
Why would a highly active 3-year-old spend such an inordinate amount of time
feeding his “FurReal” dinosaur a fake popsicle? The articulated neck, jaw and
tongue movements, synchronized to associated vocalizations (sniffing, slurping,
etc.), seemed to resonate with his own intentional motor repertoire (JDL’s boy loves
his popsicles). Thus, motor resonance may help explain his overall engagement
with the robot.
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giving the impression of being scared (Lupetti and VanMechelen,
2022). A periodic display of facial expressions in a food serving
robot (Jiang, 2020) helps contribute to a more friendly vibe—yet,
its lack of responsiveness inmovement (other than a sudden stop)
shows room for future improvement (Figure 3).

Movement-based design improvements have also been
applied to non-embodied virtual characters. For instance, Gratch
et al. (2021) found that when a digital listener nods and smiles
at the right time, people tend to share more information about
themselves. The addition of oscillatory motion to the postures of
virtual characters tended to increase human empathy in response
to virtual expressions of pain (Treal et al., 2021).

DESIGN STRATEGY FOR RESONANCE

We propose that resonance can serve as a design strategy for
social robots and AI. What makes for a design strategy? While
there are many perspectives (e.g., Porter, 1991; Aguiar, 2014), we
refer to Mintzberg et al. (1995) in describing strategy as a plan or
pattern that integrates goals, policies, and action sequences into a
cohesive whole. Resonance, then, may offer a cohesive conceptual
framework for integrating overarching goals (human-centered,
collaborative, empathic, etc.) and implementation approaches. In
other words, resonance as a design strategymay help identify new
human objectives for interaction and reveal ways of achieving
those objectives.

Why pursue resonance in robotics? While the application
of resonance may help support rational, instrumental outcomes
(e.g., saving time or money), it may also help satisfy affective
human needs for how we interact with the world. A “machine
world” may be rational but alienating; a world of resonance
might be pursued for its own sake—that is, resonance may be an
intrinsic value for human interaction (Rosa, 2019).

If resonant interactions are intrinsically valuable, how might
we design robots and AI to realize this value? In the following
section, we first propose a design space for resonance in
relationships. Systematically exploring this space can help reveal
how different characteristics of resonance can impact human
experience. We then examine a variety of design opportunities
and finally suggest the importance of continued work to
operationalize and measure human resonance. This step will be
essential for validating and optimizing the value of resonance in
human–robot interactions.

A Design Space for Resonance
This next section progressively builds a theoretical design space
(Shaw, 2011; Lomas et al., 2021) to describe the input and
output factors of resonance. Table 2 describes how eight different
situations emerge from the combination of two factors: the
number of participants (i.e., plurality) and their reciprocity. This
two factor design space, as an initial gesture, helps reveal different
characteristic forms of interactional resonance.

Based on our reviews of resonance in human interactions and
in robotics, we then propose additional factors or dimensions
to describe the design space of resonant relationships (Box 5).
These include the input space, or the independent variables:
frequency, amplitude, reciprocity, power balance, plurality,

TABLE 2 | An initial design space for resonance showing the combination of

plurality (number of participants) and reciprocity (mutual vs. one-way influence).

Combination Example

One-to-one mutual

resonance

A normal conversation between two people

One-to-many mutual

resonance

A CEO or leader mutually influencing a

company of people; or like a single person

dancing in the middle of a dance circle

Many-to-one mutual

resonance

This is identical to one-to-many mutual

resonance (as the influence is mutual)

Many-to-many mutual

resonance

An audience and band at an intimate concert,

or a group of friends hanging out. Global

coupling or all-to-all coupling is also

exemplified by the synchronization of fireflies or

a large audience clapping into synchrony.

One-to-one one-way

resonance

A unidirectional influence, like a tuning fork

resonating to a sound played on a speaker

without the speaker being affected by the

tuning fork. Or, like reading a private letter from

a dead author.

One-to-many one-way

resonance

A unidirectional influence from one person to

many people, like the publication of a book. Or,

for example, a group of people watching Martin

Luther King Jr’s “I have a dream” speech.

Many-to-one one-way

resonance

A unidirectional influence from many persons to

one person, like a private listening to a

recording of a band.

Many-to-many

one-way resonance

A unidirectional influence from many people to

many persons, like listening to recorded music

or a population watching a television series.

complexity, periodicity, synchrony, predictability, intentionality,
fidelity and timescale. The design space also consists of the
outcomes, including several objective outcome factors: energy
level, frequency, phase, synchronization and stability. Finally,
the outcome space also includes subjective outcome:emotional
arousal, emotional valence and attentional engagement.

Resonance as a Research Program
As a research program, we hypothesize that the input factors of
resonance can explain subjective and objective outcomes. For
instance, the tempo of a robot’s interactions (movement and
speech) could be systematically varied to determine how this
affects the human response. Effects will likely depend on the
context (Lim et al., 2021), i.e., they may not always generalize
across different robotic platforms, behaviors or cultures.

Researching human resonance may improve human–robot
interactions and also help advance human psychology (Sciutti
and Sandini, 2017). As people are naturally predisposed to
“sync” and “vibe” with each other, this can make the study
of their interactions a challenge to scientifically investigate in
a controlled manner. Social robots present the possibility of
precisely controlling the dynamics of the oscillatory inputs to
human social interactions. The paradigm of the HumanDynamic
Clamp, for instance, has been specifically proposed to probe
the oscillatory relationship between humans and virtual humans
(Dumas et al., 2020).
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BOX 5 | A Design space for resonance.

The input space of the factors or dimensions of resonant relationships

Dimensions of Resonance Scale of Dimensions Illustrative Examples

Frequency or Tempo of

interactions

Fast to slow Speaking quickly vs. speaking slowly

Amplitude of interactions Soft to intense Speaking softly vs. speaking loudly

Reciprocity of interactions One-way to fully mutual A loudspeaker vibrating a wine glass is a one-way relationship; while two

synchronizing metronomes is a fully mutual interaction.

Power balance of interactions Balanced to unbalanced Unbalanced relationships: a passive object receiving input from a powered

oscillator, like a loudspeaker to wine glass. Or, a CEO talking to an

employee.

Plurality of interactions Two oscillators to many

oscillators

Two people talking vs. an orchestra playing together.

Complexity of interactions Simple to complex A headnod is simple vs. a full body gesture

Periodicity of interactions Consistent to chaotic A sine wave vs. speech

Synchrony of interactions Synchronous to asynchronous Rowers on a galley boat move synchronously whereas turn taking in a

conversation is asynchronous

Predictability of interactions Deterministic to stochastic The resonance of a wine glass to a speaker is predictable, while the

resonance of an audience to a political message may not be.

Intentionality of interactions Spontaneous to purposeful People can unconsciously or consciously mimic one another’s postures

Fidelity of interactions Exact imitation to approximate

imitation

During imitative acts, one may copy the full sequence of behavior or merely

copy the intent

Timescale of interactions Long timescale to short

timescale

For instance, rhythmic interactions can be entrained to a seasonal holiday,

to a day-night cycle, to a meeting agenda, or to a conversational exchange

The output space of objective outcomes resulting from resonant relationships

Dimensions of outcome

effects

Scale of dimensions Illustrative examples

Energy level within the affected

system

Amplification to dampening Resonance can increase the amplitude of vibration in a wine glass; similarly,

it can increase the emotional arousal of a person watching a film. A system

might be able to entrain the breath in order to produce deeper

(higher-amplitude) breathing. A system might use anti-resonance to reduce

painful shocks while walking.

Frequency of the affected

system

Decreased frequencies to

increased frequency

Brainwave entrainment protocols have been shown to decrease theta wave

frequency to increase working memory (See review by Hanslmayer et al.,

2019)

Phase of the affected system Forward to backwards A sigh is capable of resetting respiratory phase (Vlemincx et al., 2013);

musical systems can similarly shift respiration (cite).

Synchronization within the

affected system

Synchronized to desynchronized A pacemaker can support the synchronization of internal oscillations in a

heart. A system that could desynchronize the rhythm of a social group

might enable creative conflict.

Synchronization of relationship

between systems

Synchronized to desynchronized Resonance can lead to increased synchronization between systems—for

instance, a robot that gives a good handshake may promote trust.

Stability of the affected system Decreased stability to increased

stability

Resonance can be a destructive force, as in a wine glass shattered by a

loudspeaker. Resonance can also lead to stability: in the case of music,

tonal stability is related to the degree of resonance between notes.

Stability of relationship between

systems

Decreased stability to increased

stability

When a loud speaker breaks a wine glass, the resonant frequency of the

glass changes—ending a stable pattern of sympathetic resonance.

The output space of subjective outcomes resulting from resonant relationships

Dimensions of outcome

affects

Scale of dimensions Illustrative examples

Emotional arousal of human

response

Increased arousal to decreased

arousal

A person getting more excited or calming down

Emotional valence of human

response

Positive feelings to negative

feelings

A person rating an experience with a robot as positive or negative

Attentional engagement of

human response

Increased engagement to

decreased engagement

Paying more attention to a robot or disengaging from the experience
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Resonance, as a metaphor, can also help guide scientific
research. Bartha (2013) describes how resonance was used as
a “programmatic analogy” by nineteenth century physicists
investigating spectral lines—the bright lines showing the
frequency specific emission of light from molecules. These
spectral lines were viewed as “completely analogous to the
acoustical situation, with atoms (and/or molecules) serving as
oscillators originating or absorbing the vibrations in the manner
of resonant tuning forks.” This analogy served as a guiding
research program for physicists. Metaphors of resonance might
play a similar guiding role in the design of social robots and AI.

Design Opportunities for Resonance in
Robotics
This article proposes the possibility of designing autonomous
robots that resonate with people at a social level (Henschel
et al., 2020). How might roboticists use resonant relationships to
improve human–robot interaction quality?

There are many opportunities for robots to support
human engagement and collaboration through more oscillatory
relationships. Rhythm is recognized as an important non-
linguistic cue in Human–Robot Interactions (Mutlu et al., 2016);
robotic rhythm may help improve the predictability or legibility
of robotic motion (Dragan et al., 2015; Abe et al., 2019). Robots
could use their own rhythms to entrain the rhythms of their
conversational partner, e.g., by increasing or decreasing the
tempo of their conversational interactions. Rhythmic awareness
might enable robots to predict when to initiate or cease actions
in order to maximize a human response. Social robots could
promote interactive social resonance by shaping an appropriate
“vibe;” not talking too fast or slow, not talking over other people,
not breaking into a conversation at the wrong moment, etc.
Alternatively, robots might deliberately interact with existing
human oscillations, such as brainwaves, breath, walking, head
nodding or heart rate. Robots might gain access to the state of
human oscillations through wearable biosensors or they might be
able to infer this information from visual or auditory information
streams using computer vision or natural language processing.
For instance, robots might aim to measure and entrain to the
tempo or pace of a person’s behavior.

The metaphor of resonance, even apart from physical
measurement, may aid designers of social robots and AI systems
if the metaphor helps make the complexity of social interactions
more manageable. Digital computer interactions involve a great
number of metaphors, such as buttons, pipes, folders, files,
streams, clouds etc. Metaphors are useful because they provide
a conceptual interface between people and a complex system
design (Sharp et al., 2019). Resonance may help provide an
intuitive model of social interactions that could guide design
activities. For instance: although “the vibe” within social groups is
far from being understood scientifically, designers of social robots
might find the metaphor useful for understanding the reception
of social robots.

We suggest that the design vision of “robots that can vibe
with people” will lead to distinctly different outcomes than,
say, “robots that show empathy.” While the latter might orient

toward the mimicry of human facial expressions or the modeling
of human emotional states, the former can leverage resonance
and vibes as cultural metaphors. This points to subtle visual,
auditory and tactile design elements that could be crafted to
create emotionally satisfying authentic social interactions.

Operationalizing and Measuring
Resonance
New opportunities will also arise as we move from resonance as a
metaphor to resonance as a mechanism and then to resonance
as a measurement. Measures of resonance can play a valuable
role in the AI optimization of human experiences; i.e., learning
to attune to humans through the maximization of resonance. If
resonance can be adequately measured and treated as an metric
or objective function, then it might be optimized algorithmically
(Lomas et al., 2016). For instance, if interpersonal resonance
during a videoconference session could be measured, it could be
optimized through the iterative testing of different interventions.

The ability to identify and measure interpersonal synchrony
has facilitated a great deal of social research (Condon andOgston,
1966; Kendon, 1970; Bernieri et al., 1988). Recent efforts have
compared different ways of measuring bothmovement and inter-
brain synchrony, using both offline and real-time approaches
(Ayrolles et al., 2021; Chen et al., 2021; Dikker et al., 2021;
Fujiwara and Yokomitsu, 2021). However, the measurement of
resonance presents distinct challenges. Synchrony is simply the
statistical correlation of a signal. Measures of resonance may
demand more interpretation; taking into account, for instance,
the depth of human engagement, its duration, the reverberating
echoes of a signal over time, the presence of harmonics, etc.
Therefore, it remains a research question: what quantitative
metrics might be best matched to the human perception of
interpersonal resonance?

To unpack this question, the next sections will consider several
of the key factors that are expected to correlate with resonance,
including attention, aesthetic pleasure, flow states and wellbeing.
During this discussion, hypotheses will be noted with a [H.#] so
they can be enumerated in Box 6.

Resonance and Attentional Engagement
What does it mean when a film “resonates” with a viewer?
Typically, this refers to an aesthetic experience that is powerful,
pleasurable, connecting and memorable (Adams-Price et al.,
2006; Roger, 2020). In other words, resonance refers to emotional
engagement. More moving, immersive and resonant experiences
would be expected to result in the temporal correlation of more
brain areas with the temporal characteristics of external signals
in the world. Interbrain synchrony appears to track immersion
(Dikker et al., 2021), but, when another brain is not present (as
with a robotic interaction), will the depth of oscillatory coupling
of the brain to the environment (or robot) predict the depth of
the aesthetic experience?

Human resonance (with media, other humans, or with
robots) may be correlated with attentional engagement: more
engagement, more resonance. However, evidence against this
idea comes from Kumagai et al. (2018), who had subjects listen
to music in a focused manner or while watching an unrelated
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BOX 6 | List of hypotheses.

[H.1] The resonance that we feel has a counterpart in the resonance we

can observe in the brain (e.g., in brain-stimuli correlations). In other words,

aesthetic resonance (e.g., attentionally engaging, pleasurable, immersive

experiences) will correlate with neural resonance.

[H.2] The aesthetics of a human–robot interaction will predict whether or not

people will continue to engage with a robot.

[H.2] Aesthetic preferences for social robot interactions will correlate with high

levels of synchrony as well as high levels of independence.

[H.4] Resonance will predict flow states: self-reported flow states should

result in a greater correlation between brain activity and signals in the external

world.

[H.5] A person’s wellbeing will be predicted by their neurological propensity

to resonate with other people or media.

[H.6] Robust measures of human resonance and harmonization will be

valuable for AI objective functions.

[H.7] Interpersonal resonance (Brain-Brain Correlation) will correlate with

psychological rapport.

[H.8] Animals have evolved defense mechanisms to prevent resonance,

synchronization and entrainment to external forces (see Box 4 for counter

conditions).

[H.9] Humans can selectively resonate; shutting down openness to

resonance in response to perceived deception or increasing it in response

to authenticity, for instance.

[H.10] Computing architectures based on oscillatory coupling will produce

new possibilities for artificial consciousness and conscious sympathies in

Human–Robot relationships.

silent film. They found that “the level of attention did not
affect the level of entrainment [and] the entrainment level is
stronger when listening to unfamiliar music than when listening
to familiar music.”

In contrast, several studies (e.g., Madsen et al., 2019;
Kaneshiro et al., 2020) have found that media engagement
is strongly predicted by an Inter-Subject Correlation (ISC)
measure, which measures the level of similarity between the
brain responses of different participants. In other words, when
an individual’s brain response is similar to other people engaging
with a piece of media, then they are likely to be more
engaged. This effect is comparable to the finding that, across
a group of independent people, heart rates rise and fall in
synchrony to a verbal story, but only during engaged attention
(Pérez et al., 2021). Dauer et al. (2021) found that the ISC
predicted continuously reported individual listener engagement
while listening to Steve Reich’s Piano Phase. The researchers
operationalized engagement for participants as “being compelled,
drawn in, connected to what is happening, and interested in
what will happen next” (Schubert et al., 2013). This aligned
with a previous definition of engagement as “emotionally laden
attention” (Dmochowski et al., 2012). Similar results have been
found in the inter-subject correlations while watching engaging
films (Dmochowski et al., 2014; Cohen et al., 2017). Inter-
subject correlations were also found to predict learning during
instructional videos (Cohen et al., 2018).

Part of the challenge of operationalizing human resonance
from a brain-to-stimuli correlation measure comes from the

challenge of decoding how a stimulus produces a brain response.
Dmochowski et al. (2018) developed a novel multi-dimensional
Stimulus-Response Correlation (SRC) measure that was found
to correlate with the ISC measure while watching films. The
researchers were then able to apply the SRC measure to
continuously track engagement during a video game. Does
greater neural resonance to media, operationalized as Stimulus-
Response Correlation (SRC), predict the intensity (arousal) or
pleasure (valence) of the media experience? A resonance theory
of engagement and aesthetic pleasure would predict that neural
resonance will correlate with aesthetic resonance (e.g., Trost et al.,
2017; Beardow, 2021) [H.1].

Resonance and Aesthetic Pleasure
Akeymotivation for considering the role of resonance in robotics
is that it may help support more positive and aesthetically
pleasing experiences with robots. Aesthetics play an important
role in the perception of robots (Forlizzi, 2007). The human
aesthetic sense attunes behavior by helping to evaluate and
activate different action-perception possibilities. The aesthetics
of a human–robot interaction are likely to predict whether
or not people will continue to engage with a robot, in a
short-term or long-term manner (Lee et al., 2009) [H.2]. One
hypothesis for the aesthetics of human–robot interactions might
be described as a “harmony of opposites” (Hekkert, 2014; Lomas
et al., 2022): namely, that people will prefer a robot interaction
that involves high levels of synchrony as well as high levels
of independence [H.3]. Like a musical interaction between
a drummer and guitarist, both robot and human should be
independent yet synchronized.

Resonance and Flow States
Fluency in human–robot interactions is a desirable outcome
(Hoffman, 2019). What is the relationship between fluency and
resonance? One popular theory of flow states in human-media
interactions claims that flow states are characterized by the
synchronization of different regions of the brain (Weber et al.,
2009; Weber and Fisher, 2020). Jackson and Csikszentmihalyi
(1999) explain flow states in elite athletes as moments when
they “enter an effortless rhythm that transforms the agony into
ecstasy. Often, athletes refer to such times as ‘being in the
zone.”’ Perhaps flow states could be conceived as meaningful
increases in the resonance between the brain and the external
world. A resonance theory of flow would predict a greater
correlation between brain activity and the external world during
flow states [H.4]. For instance, flow experiences with robots
might be measurable as increased resonance (stimulus-response
correlation) between the brain and the robot’s expressive
movements or sounds (although this may be confounded by
novelty effects, see section The “Like Me” Hypothesis).

Resonance and Spiritual Wellbeing
The mechanism of resonance in robots may help lead to
enhanced wellbeing, as proposed by the Lorenz et al. (2016):
“behavioral and motor synchrony and reciprocity could be
helpful to meet the aim of developing robots that increase
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human well-being on a more fundamental level beyond pure
task-support and short-term reduced feeling of loneliness.”

In the book “Resonance: A Sociology of Our Relationship to
the World,” sociologist Rosa (2019) argues that resonance is a
primary value that underpins human happiness, wellbeing and
flourishing. From this, we might hypothesize that a person’s
wellbeing will be predicted by their neurological propensity to
resonate with other people or media [H.5]. Resonance also
relates to more profound and powerful wellbeing experiences.
Synchronized human activities are known to produce mystical
experiences where the boundaries between self and other can
be blurred (Hove and Risen, 2009; Paladino et al., 2010) and
participants can experience a profound feeling of oneness (Swann
et al., 2012). How might synchronizing, resonant robots (or AI)
induce or support these kinds of human experiences? Perhaps
they might dance with us (Basso et al., 2021) or, even, show love
for us (Feldman, 2017)? What might it mean to design spiritually
fulfilling robot interactions?

From Synchrony to Resonance to Harmonization
Synchrony, taken to an extreme, can lead to inflexibility (e.g.,
the conformity example in section The Downside of Being
in Sync: Chained to the Rhythm?). Resonance, taken to the
extreme, can also lead to problems, like instability (e.g., the
Millenium Bridge example in section Part 1: Resonance in
Human Interactions). Resonant relationships may be valuable—
even intrinsically valuable—but resonance might be misleading
as a primary or ultimate value. A world filled with resonant
robots and AI may be exciting but also so powerful it could
rip apart institutions of rational discourse (see below section
6.1 on Persuasive Machines). In future work, it may be useful
to investigate the potential for robots and AI to support
harmonization as an outcome. Harmonization has served as
a core social value in diverse societies for thousands of years
(Lomas et al., 2022). However, there is not any acceptable
measure of the harmony of songs, let alone measures of harmony
in social interactions. However, the importance of objective
optimization functions for AI systems (Sarma et al., 2018;
Stray et al., 2021; Shneiderman, 2022) suggests the potential
value of developing robust measures of human resonance and
harmonization [H.6].

ETHICAL CONSIDERATIONS OF
RESONANCE

Persuasive Machines
The philosopher Hughes (2012) suggests that robots will need
resonance (in the form of a functional equivalent of mirror
neurons) in order to demonstrate compassion for people. But,
there are negative societal outcomes to consider as well. If robots
can resonate with people—that is, build psychological rapport
[H.7]—this might significantly enhance their ability to persuade
or manipulate people. However, an improved understanding of
resonancemight also reveal more effective psychological defenses
against non-consensual persuasion.

Former US president Donald Trump has been recognized
as a political figure with a special ability to resonate with

people (Giorgi, 2017). Matheny et al. (2018) provide a close
analysis of Trump’s acceptance speech at the Republican National
Convention. Through an analysis of his body language, they
provide “evidence that Trump created an empathetic resonance
with the audience that helped generate a sense of political
movement and unity.” The authors describe how Trump would
characteristically point in the air or put his thumb and finger in
a pinch—and then move this gesture in a rhythm synchronized
to his own speech rate. The audience cheered 151 times during
his speech, 63% of the time during a pinch or pointing
gesture. Only 10 of those cheers occurred when Trump was
in a bodily neutral position. This analysis shows that affective
resonance is a powerful phenomena—but not necessarily a
positive phenomena.

Media theorist Gibbs (2019) paints a similarly fraught picture
of human resonance at a societal scale:

“. . . after the feminist reclaiming of affect as a way of knowing
equal in importance to cognitive and rational modes. . . the darker
powers of affect became clear, operating. . . in concert with the
televisual medium to create (or at least attune to and amplify)
various social moods and to capitalize on them for political
purposes. In this context, the public sphere was thus exposed as
anything but a space of rational debate in the service of a contest
of ideas. Instead, it could be viewed as space in which emotion
held sway, where inchoate feeling could be captured and directed,
most obviously, but not only, by political figures who were able to
resonate with and even orchestrate public emotions, or simply, to
sing us lullabies to keep us asleep and dreaming while they went
about their business.”

The systematic application of resonance to political rhetoric
at a societal scale may present a deep threat to democracy.
How machines, algorithms, or AI might wield resonance as
a tool to manipulate humans at scale deserves further study
and consideration.

Resistance to Resonance: Emergence of
Defense Mechanisms
In Box 4, we present an extended hypothesis proposing that
animals evolved defense mechanisms to prevent resonance,
synchronization and entrainment [H.8]. Similarly, humans seem
to have the ability to selectively resonate; one example is that, if
we feel that we are being manipulated, we may shut down our
openness to resonance [H.9]. Robots that mirror a human user’s
physical or cultural attributes or express interest in similar ideas
or hobbies could potentially enhance the empathic and affiliative
response in humans. However, crude “copycat” approaches are
likely to easily backfire if people feel manipulated or if they feel
the robot interaction is inauthentic (Metzler et al., 2016).

What might happen in a future of resonant robots and virtual
agents? There is likely to be a competitive effect where, at first,
humans may be compelled but then eventually become more
discriminating. People may become used to a higher quality
of resonant engagement, which could drive further advances
in resonant robots. Eventually, people might become wary of
normal levels of interpersonal rhythmic competency making
it difficult for normal people to connect. On the other hand,
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humans may become even more attuned to authenticity in
interaction; imperfections and personal character may become
more valued.

The Extended Mind: Resonance as a
Bridge to Consciousness
A theory of resonance offers a bridge or common currency
(Northoff et al., 2020) between human conscious experience
and the mathematical nature of our physical world. Resonance
seems to govern a great deal of neural activity and is also plainly
manifest in conscious experience. But, to what extent is the
resonance that we feel also the resonance we can observe in
the brain? These two domains may only loosely overlap; and
yet, our conscious experience must relate, in some way, to the
widespread presence of neural oscillations. Hunt and Schooler
(2019) have proposed that “the binding problem” of conscious
experiences in the mind is achieved through the integration of
shared resonances in the brain—in other words, they propose
resonance as an answer to the “hard problem” of human
consciousness. Subsequent work (Safron, 2020) suggests that
Darwinistic competition for resonant amplification underpins
consciousness. Valencia and Froese (2020) argue that collective
consciousness is shared through inter-brain synchronization.

From an extended mind perspective (Clark and Chalmers,
1998), the rich hierarchy of harmonized oscillations between
the brain, the body and external rhythms show how cognitive
processing can be distributed into the world (Hutchins, 2001).
There may be little difference between an external rhythm and
an internal rhythm, other than the degree to which it couples
with other neural rhythms. From this perspective, a beating drum
is just another rhythm in the brain. Due to the resonant nature
of our being, sympathetic resonance with other people seems to
allow the direct sharing of collective consciousness across bodies
and time. Yet, if resonant coupling is the basis of consciousness,
then might we run the risk of creating resonant robots or AI
systems that could, in a meaningful sense, actually share our
conscious experience?

At present, it is computationally challenging to support real-
time resonance with human oscillations (see section Robots That
Can Resonate With People or Other Agents). However, there are
a variety of new computational architectures that use coupled
oscillators to perform information processing (see review by
Csaba and Porod, 2020). These naturally resonant computational
systems might support a new approach to representing and
responding to human activity. Perhaps oscillatory computer
systems could become capable of direct resonant coupling with
humans in a similar manner to how humans attune to one
another [H.10].

Limitations of Resonance
This article has presented resonance as a simple physical concept
that can explain complex human behavior. While resonance
may indeed serve as a powerful program for research, our
understanding of it is far from complete. Even the resonance
of a stretched string is astonishingly complex (see Bajaj and
Johnson, 1992); human resonances, which result from the
interrelation of billions of hierarchical oscillators, will no

doubt exhibit endless complexities. But, a scientific progression
can start with a simple guiding model for resonance that
can then lead to a more complex model. As an example,
researchers predicted that synchronization might help support
romantic courtship behaviors. However, their initially simple
notion of synchronization failed to predict behavior. This
led the researchers to develop a more complex model of
“hierarchically patterned synchronization” that successfully fit
the data (Grammer et al., 1998).

CONCLUSION

Resonance can refer to powerful and connecting aesthetic
experiences—as well as a broad range of other topics in
the scientific literature (Box 1). Having reviewed the role of
resonance as a metaphor and mechanism in human relations
and in robots, we propose that resonance can serve as a design
strategy to guide our relationships with artificial agents.

This article makes the case that resonance in human
interactions is more than a metaphor: it is a physical mechanism
that can be measured and harnessed. We show how the concept
of resonance provides an intuitive model that can guide empirical
research. Resonance lends itself to scientific study because it
makes clear predictions: external oscillations that align with a
system’s natural oscillations are likely to cause synchronization
and amplification effects. The ability to measure resonance in
interactions could aid AI-human interactions by enabling a
meaningful “objective function” for optimization. Promisingly,
the concept of resonance may even bridge the gap between what
we can measure and what we can feel.

Resonance, entrainment and synchronization occur in human
dynamics for the same reason it occurs in all other physical
systems: it reduces free energy (Bruineberg et al., 2018; Koban
et al., 2019). This makes human resonance a mundane,
complicated and powerful phenomena. Further research on
human resonance may open up new opportunities for the design
of positive interactions with robots and with humans alike.
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