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Abstract—This paper focuses on the generation of a compact
and accurate model of the eye aperture for a differential textile
interconnect. The considered eye metric is computed through a
simple and effective procedure based on a polygonal approxima-
tion of the clean inner eye area. Least squares support vector
machine regression is used, yielding a fast and accurate surrogate
model of the link, providing a quantitative information of the
data communication quality. The generated model turns out to
be a parametric description which is used in the framework
of stochastic analysis and uncertainty quantification, allowing to
take into account the effects of the variation of the electrical
and geometrical parameters of the link. The accuracy and
convergence of the proposed machine learning solution are
thoroughly discussed.

Index Terms—signal integrity, high-speed interconnects, smart
textiles, wearable electronics, eye diagram, uncertainty quantifi-
cation (UQ), least-squares support vector machine (LS-SVM).

I. INTRODUCTION

In the past decades, a large number of techniques have
been developed to provide designers with a set of robust
and effective tools for the statistical or parametric analyses
of circuits and systems, including high-speed interconnects.
Among them, Monte Carlo and its enhancements offer the
more classical and simplest approach, allowing to easily
collect easily quantitative information of the possible spread
of a given system response due to the variation of electrical
and geometrical parameters [1], [2]. Monte Carlo is, however,
computationally costly and, in recent years, more efficient
techniques, either based on polynomial chaos expansions or
machine learning, have been developed (e.g., see [3]–[5] and
the references therein).

This paper focuses on the latter class and on the least
squares support vector machine (LS-SVM) regression which
has been demonstrated to be extremely effective for a number
of problems in the area of high-speed electronic design [4],
[5]. Specifically, the LS-SVM regression is here used to
build a compact surrogate model of the eye aperture of a
realistic textile interconnect structure inspired by [6]. The
contribution of this paper is twofold: on one hand, it explicitly
details the algorithmic steps for the efficient computation
of the eye aperture; on the other hand, it proves that the
considered machine learning solution enables the generation of
an accurate parametric model, obtained form a limited number

of samples, in a particularly challenging context: numerous
sources of uncertainty and intrinsically high tolerances.

II. TEST CASE

The results obtained in this paper are based on the serial link
shown in Fig. 1, which has been implemented and simulated in
LTSPICE [7]. It consists of a differential data communication
channel implemented by conductive copper wires weaved in
a textile structure [8]. The link features a differential driver at
the near end and its paired receiver at the far end. A passive
equalizer is inserted between the driver and the line. It is
assumed that the equalizer and drivers are implemented either
using conventional electronics or semi-flexible substrates and
are also affected by uncertainties. The center section of the
interconnect (identified by a transmission line segment with
length L2 in the scheme) accounts for a potentially altered
geometry. This can either take the form of compression
due to external mechanical action or to the very nature of
the application (e.g. bending at knees or elbows) or on the
contrary stretching of the material. Either situation introduces
a discontinuity in the distance between the conductors.

Fig. 1. System under test: digital link for wearable applications. The nominal
values of the equalizer and of the line lengths are: Re = 70Ω, Ce = 3.2 pF
L1 + L2 + L3 = 33 cm,

An NRZ encoding is assumed at a data rate of 2 Gbps. For
the sake of simplicity linear models (similar to the ones im-
plemented in IBIS-AMI simulations) were used to model both
the driver and the receiver. If needed, enhanced models of such



devices can be adopted [9]–[11]. The geometrical parameters
of the interconnect, including the fabrication tolerances, are
those of [6]. The selected structure is labelled as GSSG-1 (see
Fig. 3 of the above mentioned reference paper) and consists
in a differential pair between two ground conductors.

Note that wearable electronics are generally affected by
larger tolerances than standard PCB applications. The distance
between the signal lines is 411µm ± 7.3%. The distance
between each signal line and the adjacent ground line is
481µm ± 6.7%. Conductor diameter is 228µm ± 11.1%.
The total length of the link is 33cm ± 1cm (mainly due to
sizing). The section suffering deformation varies in length
from 2 to 5 cm and the compression [stretching] factor is 25%
[10%]. Tolerances of 1% were assumed for the elements of
the equalizer. Overall, 11 stochastic parameters are considered.
Each eye diagram is computed for 4000 bits.

III. EYE APERTURE

In this paper, the quality and performance of the data
link communication is quantitatively assessed by computing
the eye aperture on the receiver side, generated from the
differential voltage response vd(t).

The eye aperture is defined by the area of a polygonal
representation of the eye inner clean zone, which is efficiently
computed from the recorded sequence of the sampled voltage
waveform vd(t). The proposed algorithm is described below,
through a procedure with the essential steps outlined using
a metalanguage description and a MATLAB-like code. It is
assumed that the sampled response of vd(t) is stored in the
vector vd. It collects the values of the received differential
voltage at the time samples stored in vector t. Also, due
to the differential communication scheme, a zero-threshold
(threshold=0 in the code) is assumed for computing the
state (i.e., bit) transitions.

The main steps af the algorithm are:
1) the estimated crossing times are store in vector tz and

are determined via linear interpolation:
>> vd = vd-threshold;
>> iz = find(diff(sign(vd)));
>> a = (vd(iz)-vd(iz-1))./(t(iz)-t(iz-1));
>> tz = (-vd(iz)+a.*t(iz))./a;

2) the time axis and the crossing times are wrapped into
the unit interval defined by the bit time (TBIT); also,
the jitter width (JITW) is computed by considering
the largest and the smallest wrapped (i.e., normalized)
transition times:
>> tzoffset = mod(tz(1),TBIT);
>> tzw = mod(tz-tzoffset,TBIT);
>> JLEFT = TBIT-min(tzw(tzw>TBIT/2));
>> JRIGHT = max(tzw(tzw<TBIT/2));
>> JITW = JLEFT+JRIGHT;

3) within the unit interval, a number of sampling points
is set (e.g., POINTS=[0.1,0.2,......,0.9]) and
the minimum and the maximum values of the received
signal observed at these sampling points are computed,
vd(t = (POINTS(kk)+(n-1))*TBIT). In the above
notation, the index kk varies from one to the max

number of items in vector POINTS, and n ranges
from one to the maximum number of bits composing
the bitstream. The procedure in this step is suitably
modified to avoid probing the differential signal in the
jitter region. It is important to point out that the above
mentioned max and min values define, for a given point
in the unit interval, the vertical eye height;

4) the eye aperture is hence estimated by computing the
area defined by an inner polygonal shape built based
on the above points. Figure 2 shows two example eye
diagrams which can be obtained for the example test
case, together with its inscribed inner polygons (see the
blue thick lines).

Fig. 2. Eye diagram obtained for the example data link of Fig. 1. Top panel:
best case, bottom panel: worst case.

IV. SURROGATE MODELING VIA LS-SVM REGRESSION

Let us consider the problem of approximating the eye
area starting from the information available in the training
set D = {(xl, yl)}Ll=1, where the vector xl ∈ X with
X ⊂ Rp is a vector collecting the l-th configuration of the
input parameters (i.e., in the considered application p = 11)



and yl is the corresponding output (i.e., the eye area). The
LS-SVM regression allows building a surrogate model based
on the following kernel formulation [12]:

MLS-SVM (x) =

L∑
i=1

βik(xi,x) + b (1)

where βi ∈ R are scalar coefficients, k(·, ·) : Rp×p → R is the
kernel function and b ∈ R is the regression bias term. Several
kernel functions k(·, ·) have been proposed in the literature.
Hereafter in this work we will adopt the radial basis function
(RBF) kernel, which writes [13]:

k(xi,x) = exp

(
−∥xi − x∥2

2σ2

)
(2)

where σ2 is the kernel hyper-parameter tuned via leave-one-
out cross validation.

The LS-SVM regression estimates the optimal set of regres-
sion coefficients βi and bias b in (1) minimizing the squared
loss computed between the model predictions and training
outputs together with a Tichonov regularized. It provides an
alternative interpretation of the standard SVM regression [13]
without losing its the advantages [12]. Indeed, for the LS-
SVM regression, the model coefficients can be computed in
a closed-form as the solution of a linear system of equations.
The LS-SVM regression is already implemented within LS-
SVMLab Toolbox version 1.8 [14], which is fully compatible
with the MATLAB environment.

V. NUMERICAL RESULTS

The above simulation framework has been used to generate
the training and test sets used to construct and assess the
accuracy of a surrogate model built via the LS-SVM regression
presented in Sec. IV. These training and test sets are generated
by randomly varying the parameters defining link, according
to the range of variations discussed in Sec. II. For each set of
parameters, the received differential voltage vd(t) is recorded
and the eye aperture is computed according to the procedure
of Sec. III.

Figure 3 shows the accuracy of the surrogate expressed in
terms of relative root mean square error (RMSE) computed
on 1000 test samples for an increasing number of training
samples (i.e., L = 50, 100, 200, 300 and 1000). The plot shows
a constant reduction of the model error with respect to the
number of training samples (i.e., L), thus highlighting the
capability of the proposed surrogate model of learning the
actual information provided by the training set.

Moreover, Fig. 4 compares the PDFs computed from the
considered 1000-sample test set, used as reference, with the
corresponding one obtained from a surrogate model trained
with L = 300 samples. The above comparison highlights
the excellent accuracy of the proposed model, being the two
histograms almost perfectly overlapped.

Concerning the computational cost, the training time re-
quired to train a surrogate model via the LS-SVM regression
goes from less than 1 s for L = 50 training samples to 42 s for
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Fig. 3. Relative RMSE computed from the predictions of the surrogate models
trained with an increasing number of training samples by considering 1000
test samples.

Fig. 4. Comparison between the PDFs of the eye area computed from the
predictions of the surrogate models built with L = 300 training samples and
the corresponding one calculated on 1000 test samples

L = 1000 training samples. After the training, the evaluation
of the obtained model on the 1000 test samples required
few millisecond, while the corresponding SPICE simulations
required several hours (around 36 in this case).

VI. CONCLUSIONS

This paper discussed the application of LS-SVM regression
for the surrogate modeling of the eye aperture of a textile
link with uncertain electrical and geometrical parameters. The
proposed approach led to an accurate and compact parametric
model allowing to quantitatively assess the data communica-
tion performance. The eye aperture was computed by means
of a suitable polygonal approximation of the inner clean area
of the eye pattern. The procedure was presented in detail, the
authors providing the outlines of a compact, custom implemen-
tation of the algorithm. Each step leading to the computation of
the eye metric was explained. A deliberately challenging test-
case was selected, a flexible differential interconnect operating
at 2 Gbps in a smart textile application. The results proved
the feasibility and strength of the proposed machine learning
solution.



REFERENCES

[1] R. Spence and R. S. Soin, Tolerance Design of Electronic Circuits.
London, U.K.: Imperial College Press, 1997.

[2] Q. Zhang, J. J. Liou, J. McMacken, J. Thomson, and P. Layman, “De-
velopment of robust interconnect model based on design of experiments
and multiobjective optimization,” IEEE Trans. Electron Dev., vol. 48,
no. 9, pp. 1885-–1891, Sep. 2001.

[3] P. Manfredi, D.V. Ginste, I.S. Stievano, D. De Zutter and F.G. Canavero,
“Stochastic transmission line analysis via polynomial chaos methods: an
overview,” in IEEE Electromagnetic Compatibility Magazine, vol. 6, no.
3, pp. 77-84, Third Quarter 2017.

[4] R. Trinchero, M.Larbi, H. Torun, F.G. Canavero, and M. Swaminathan,
“Machine Learning and Uncertainty Quantification for Surrogate Models
of Integrated Devices with a Large Number of Parameters”, IEEE
Access, vol. 7, pp. 4056 –4066, 2019.

[5] R. Trinchero and F. G. Canavero, “Modeling of eye diagram height
in high-speed links via support vector machine,” in Proc. IEEE 22nd
Workshop on Signal and Power Integrity (SPI), Brest, 2018.

[6] D. Cottet, J. Grzyb, T. Kirstein and G. Troster, “Electrical characteriza-
tion of textile transmission lines,” in IEEE Transactions on Advanced
Packaging, vol. 26, no. 2, pp. 182–190, May 2003.

[7] LTspice IV. (2011). [Online]. Available: http://www.linear.com/ design-
tools/software/ltspice.jsp: Linear Technology.

[8] M. Telescu, R. Trinchero, I.S. Stievano and N. Tanguy, “Worst-Case
Optimization of a Digital Link for Wearable Electronics in a Stochastic
Framework,” 2022 IEEE 26th Workshop on Signal and Power Integrity
(SPI), Siegen, Germany, pp. 1-4, May 2022.

[9] G. Signorini, C. Siviero, M. Telescu, I.S. Stievano“Present and future
of I/O-buffer behavioral macromodels,” IEEE Electromagnetic Compat-
ibility Magazine, Vol. 5, No. 3, pp. 79-85, 2016.

[10] C. Siviero, R. Trinchero, S. Grivet-Talocia, G. Signorini, M. Telescu,
“Constructive Signal Approximations for Fast Transient Simulation of
Coupled Channels,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, Vol. 9, No. 10, pp. 2087–2096, 2019.

[11] I.S. Stievano, I.A. Maio, F.G. Canavero, C. Siviero, “Reliable eye-
diagram analysis of data links via device macromodels,” IEEE Transac-
tions on Advanced Packaging, Vol. 29, No. 1, pp. 31-38, 2006.

[12] J.A.K. Suykens, et al., Least Squares Support Vector Machines, World
Scientific Pub Co Inc, 2002.

[13] V. Vapnik, The Nature of Statistical Learning Theory, 2nd edition,
Springer, 1999.

[14] LS-SVMlab, version 1.8; Department of Electrical Engineering (ESAT),
Katholieke Universiteit Leuven: Leuven, Belgium, 2011. Available on-
line: http://www.esat.kuleuven.be/sista/lssvmlab/.


