
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Particle swarm optimization hyperparameters tuning for physical-model fitting of VCSEL measurements / Marchisio,
Andrea; Ghillino, Enrico; Curri, Vittorio; Carena, Andrea; Bardella, Paolo. - ELETTRONICO. - (2024). (Intervento
presentato al  convegno SPIE Photonic West tenutosi a San Francisco, California, United States nel 27 January - 1
February 2024) [10.1117/12.3002576].

Original

Particle swarm optimization hyperparameters tuning for physical-model fitting of VCSEL measurements

SPIE  postprint/Author's Accepted Manuscript e/o postprint versione editoriale/Version of Record con

Publisher:

Published
DOI:10.1117/12.3002576

Terms of use:

Publisher copyright

Copyright 2024 Society of PhotoOptical Instrumentation Engineers (SPIE). One print or electronic copy may be made for
personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for
commercial purposes, and modification of the contents of the publication are prohibited.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2986950 since: 2024-03-13T14:48:47Z

SPIE



Particle Swarm Optimization Hyperparameters Tuning for
Physical-Model Fitting of VCSEL Measurements
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aDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italia

bSynopsys Photonic Solutions, 400 Executive Blvd, Ossining, NY 10562, United States

ABSTRACT

We propose the use of the Particle Swarm Optimization (PSO) algorithm for the direct extraction of Vertical-
Cavity Surface-Emitting Laser (VCSEL) parameters compatible with a rate equation-based model that takes
into account the thermal effects. PSO is an evolutionary algorithm that drastically reduces the computational
cost and time with respect to traditional brute-force approaches, thanks to the “swarm intelligence” of the
optimization agents (called “particles”). With an optimal choice of the initial hyperparameters of the algorithm,
the method is shown to predict parameters that accurately reproduce the nonlinear behavior of the device, as
well as its complicated thermal effects.

Keywords: Vertical-cavity surface-emitting lasers, parameter extraction, evolutionary algorithms, particle
swarm optimization

1. INTRODUCTION

Vertical-cavity surface-emitting lasers (VCSELs) offer multiple advantages such as a small footprint, high effi-
ciency, and simple manufacturing, which make them a prime choice as coherent sources in a number of different
applications, including data communications, sensing, and photonic integrated circuits.1

Among these beneficial practical aspects, extremely complex quantum and thermal effects regulate the phys-
ical behavior of such devices. Due to the presence of inherent nonlinearities of various nature, in order to predict
the behavior of VCSELs, it is possible to use very accurate multiphysics models2 or simple rate-equation-based
models devised for circuit-level simulations;3 in both cases, a large number of unknown parameters have to be
considered to reproduce the experimental findings. That is why it is important to possess a reliable method for
extracting such parameters from readily-available data, such as power and frequency response measurements.
This task could be solved by employing brute-force techniques, where the entire solution space is scanned to find
a suitable match. Clearly, this approach is extremely time-consuming and computationally expensive, especially
in the context of VCSEL parameter extraction, since the number of involved parameters (and thus the solution
space itself) is large. For this reason, it is possible to employ two different approaches that enable a more efficient
search of the solution space: Machine Learning (ML) or optimization techniques (e.g., evolutionary algorithms).

Since the effectiveness of training an artificial neural network (ANN) for ML is linked to the ability to generate
large data sets, requiring either a large amount of measurements and devices or substantial computational power
to follow a simulation approach, in this work, we will further expand the idea of directly extracting the parameters
of the VCSEL model from curves using an evolutionary algorithm called Particle Swarm Optimization (PSO).4

In particular, employing a more advanced implementation of PSO, called Adaptive PSO (APSO),5 we want to
extract a set of parameters compatible with the rate equation-based model implemented in Synopsys OptSim™,6
thus creating a workflow that could enable simpler system-level simulations after the characterization of the
unknown laser source.

After the analysis of the impact of the initial values of the APSO hyperparameters on its performance, we
apply the proposed method to predict a set of physical parameters able to accurately reproduce the device
behaviour. The performance of the APSO is also compared to that of the traditional PSO,7 to underline its
benefits, despite the more complex implementation and rules.
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2. THE VCSEL MODEL

In this work, a well-established rate equation-based model3 is employed to describe the physics of VCSELs. It
contains rate equations for the evolution of carriers and photons over time, as well as empirical equations to
capture the thermal effects.

In this model, the distribution of carriers in the radial direction r is expressed through its expansion in a
two-term Bessel series, which allows us to neglect the spatial dependency of carrier and photon numbers:3

N(r, t) = N0(t)−N1(t)J0(σ1r/R) (1)

with σ1 first nonzero root of J1, J0 and J1 Bessel functions of the first kind, and R effective radius of the
active layer. The temporal evolution of N0(t), N1(t), and the photon number is given by the following spatially
independent rate equations:
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with ηi injection efficiency, I injected current, q electron charge, τn carrier lifetime, T temperature, G(T ) gain
coefficient, Ntr(T ) transparency carrier number, Il(N0, T ) leakage current, ϵ gain compression factor, hdiff diffu-
sion coefficient, τp photon lifetime and βsp spontaneous emission coefficient. The coefficients γ00, γ01, ϕ100, ϕ101

quantify the overlap between the fundamental transverse mode and the active region. The output power Pout is
proportional to S through a suitable coupling coefficient kf .

Concerning the temperature dependency, we exploited the modified empirical equations for gain, transparency
number, and leakage current of 4:

G(T ) = G′
0

1 + a′g1T + a′g2T
2

1 + b′g1T + b′g2T
2

(5)

Ntr(T ) = N ′
tr0

(
1 + C ′

n1
T + C ′

n2
T 2

)
(6)

Il(N0, T ) = Il0exp

(
−a0 + a1N0 + a2N0T − a3/N0

T

)
(7)

3. THE PSO ALGORITHM

PSO is an evolutionary algorithm where the optimization is performed by a swarm of Np agents called “particles”
that move in a N -dimensional solution space. For the current problem, each dimension of the solution space
represents one of the unknown parameters to extract, and it is bounded in the ranges reported in Tab. 1.
Convergence to the target is made possible according to motion rules depending on the best position found by
each particle and on the global best position found by the swarm. For each j-th particle, at the k-th iteration,
the velocity and the positions are computed as follows:7

vk+1
j = civ

k
j + ccr1(p

k
j − xk

j ) + csr2(p
k
gl − xk

j ) (8)

xk+1
j = xk

j + vk+1
j (9)

with ci inertia coefficient, cc cognitive acceleration coefficient, cs social acceleration coefficient, r1 and r2 random
scaling factors, pk

j personal best position for the j-th particle, and pk
gl global best position.

One of the most problematic aspects of PSO is related to the choice of the hyperparameters. Indeed, there
are not fixed values for the velocity coefficients that ensure convergence and the optimum can change depending
on the problem. Moreover, a higher number of particles and iterations could lead to better results, but, of course,
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Table 1: Investigated VCSEL parameters, with variation ranges and values of the target device.

Parameters Range Parameters Range

Injection efficiency ηi 0.70 to 1.00 Transp. num. N ′
tr0 2.00× 106 to 1.00× 108

Power coeff. kf (nW) 10.00 to 60.00 Transp. num. coeff. C′
n1

(kK−1) −100.00 to −1.00

Carrier lifetime τn (ns) 0.50 to 5.00 Transp. num. coeff. C′
n2

(kK−2) 0.00 to 100.00

Photon lifetime τp (ps) 1.50 to 3.50 Leakage current factor Il0 (A) 1.00 to 2.00

Gain coeff. G′
0 (ms−1) −360.0 to −11.1 Leakage current coeff. a0 (K) 2.00× 103 to 1.00× 104

Gain coeff. a′
g1 (kK−1) −5.00 to −0.50 Leakage current coeff. a1 (K) 0.00 to 3.00× 10−4

Gain coeff. a′
g2 (kK−2) −50.00 to −2.00 Leakage current coeff. a2 1.00× 10−9 to 4.00× 10−8

Gain coeff. b′g1 (kK−1) −100 to 0 Diffusion parameter hdiff 1.00 to 20.00

Gain coeff. b′g2 (kK−2) 5.56 to 900.0 Thermal impedance Rth (K/W) 5.00× 102 to 8.00× 103

Gain saturation factor ϵ 1× 10−6 to 3× 10−6 Spont. emission coeff. βsp 1× 10−5 to 9× 10−6

(a) (b)

Figure 1: Flowcharts for the adaptation of the velocity coefficients (a) and for the ELS (b) as prescribed by 5.

the optimization will require more time and computational power to complete. Therefore, alternative techniques
such as APSO can be exploited for more consistent performances, in order to avoid suboptimal choices that could
easily result in an optimizer that converges prematurely in local minima or one that does not converge at all.

The idea is, given a number of particles and of iterations, not to choose fixed values for the velocity coefficients
but to adapt them during the optimization, depending on the behavior of the swarm at the current iteration
(“evolutionary state”). According to 5, at each iteration, the evolutionary state must be estimated. In order to
do so, for each j-th particle, we compute the average distance dj with respect to all others and with them we
define an “evolutionary factor” f :

f =
dgl − dmin

dmax − dmin
(10)

with dgl average distance from the global best particle, dmin and dmax minimum and maximum dj ’s. With this f
parameter we are able to evaluate the evolutionary state by means of a fuzzy assignment to four possible swarm
conditions:

1. Exploration: the swarm is exploring the solution space and the particles are not concentrated in one single
region (medium to large f);

2. Exploitation: a global best was found and it is attracting the rest of the swarm (smaller f);

3. Convergence: the swarm converged to the current global best and it is exploring its near vicinity (minimal
f);
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Figure 2: (a) Effect of the initial inertia value on the final fitness. (b) Effect of the initial social and cognitive
acceleration values on the final fitness.

4. Jumping out : the new global best is far away from the rest because the swarm is exiting the current
minimum (large f).

A detailed explanation of the workings of the APSO will be omitted here, but it is available in 5. For
completeness, Fig. 1 contains the flowcharts for the main additional operations of the algorithm.

4. RESULTS

According to 5, a set of APSO hyperparameters that works empirically well is ci = 0.9 and cs = cc = 2.0. These
are just their initial values, since they are subsequently modified according to the rules mentioned in the previous
section. In order to test whether this “rule of thumb” applies to the problem we are tackling and to evaluate if
there are better choices, we decided to start by analyzing the effect of the initial hyperparameters values on the
final convergence of the algorithm. The optimization target is a set of three experimental L-I curves at three
different temperatures (25 ◦C, 40 ◦C, 60 ◦C), reported in 3. The error (fitness, in PSO jargon) is evaluated as:

∆ =
||prediction− target||

||target||
(11)

The results of this analysis are reported in Fig. 2(a) and Fig. 2(b). All three curves represent the average
error at the corresponding initial value of the parameter. The error bars represent the standard deviation from
these average values for the multiple runs at different random seeds: since the result of the optimization depends
on the random initialization and the random parameters in the velocity rules, it is important to take into account
this effect by repeating the optimization multiple times with different random seeds (in this case 50). In order
to generate these graphs, we modified one parameter at the time while keeping the others fixed at the values
suggested by 5. The APSO is executed with Np = 200 particles and Ns = 200 steps. In general, the average
value is almost constant, but if we consider the standard deviation from the average, it is possible to observe
that ci = 0.9, cs = 2.0, and cc = 2.0 provide small average values with small standard deviations. Despite not
being the absolute best, it is for sure a safe choice without a prior analysis of the effect of the hyperparameters
on the optimization.

At this point, using ci = 0.9 and cs = cc = 2.0, we applied the method directly to the three experimental
L-I curves from 3 without a fixed random seed. The APSO method predicts the parameters of Tab. 1, which
are then used in the model to obtain the curves of Fig. 3. As it is possible to appreciate from Fig. 3, the
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Figure 3: Comparison between the target measurements (circles) and the predicted curves (solid lines).

parameters obtained from the APSO algorithm closely reproduce the experimental ones, capturing the various
effects such as the thermal roll-over, the thermal-dependent slope change, the modified threshold current, etc.
The results obtained with APSO even surpass the set of parameters reported in 3, obtained by means of a
numerical optimization.

5. CONCLUSIONS

In this work, we presented a method based on the Adaptive Particle Swarm Optimization algorithm to extract
physical-model parameters directly from the L-I curves of a VCSEL to be characterized. After the analysis of the
effect of the initial choice of hyperparameters on convergence, we showed how the method is able to extract a set
of parameters that accurately reproduce the behavior of a real device. As we suggested in our previous work,4

this proves that the method is reliable not only if applied to ideal simulated curves, but also if the target is a set
of non-ideal measurements. With the improvements to the code, we also managed to reduce the optimization
time from 16min to 20 s, thus making the algorithm even more powerful.
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