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Abstract
Starting from the problem of d-tensor isomorphism (d-TI), we study the relation between
various code equivalence problems in different metrics. In particular, we show a reduction
from the sum-rank metric (CEsr) to the rank metric (CErk). To obtain this result, we investigate
reductions between tensor problems. We define the monomial isomorphism problem for d-
tensors (d-TI∗), where, given two d-tensors, we ask if there are d−1 invertible matrices and a
monomial matrix sending one tensor into the other. We link this problem to the well-studied
d-TI and the TI-completeness of d-TI∗ is shown. Due to this result, we obtain a reduction
from CEsr to CErk. In the literature, a similar result was known, but it needs an additional
assumption on the automorphisms of matrix codes. Since many constructions based on the
hardness of Code Equivalence problems are emerging in cryptography, we analyze how such
reductions can be taken into account in the design of cryptosystems based on CEsr.

Keywords Code equivalence · Sum-rank metric · Rank metric · Matrix code equivalence ·
Tensor isomorphism

Mathematics Subject Classification 68Q15 · 15A69 · 94B05

1 Introduction

1.1 Equivalence problems

An equivalence problem is a computational problem where, given two objects A and B of
the same nature, it asks whether there exists a map with some properties (an equivalence)
sending A to B. Different problems can be stated, depending on the nature of the considered
objects or the properties of the map. One of the most well-known equivalence problems is
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G. D’Alconzo

graph isomorphism, but in the literature one can find problems concerning groups, quadratic
forms, algebras, linear codes, tensors, and many other objects. We will focus on the latter,
with the code equivalence and the tensor isomorphism problems. An interesting fact is that
the isomorphism problem for tensors seems “central” among others. In particular, a large
class of equivalence problems can be polynomially reduced to it. In other words, given a
pair of objects (groups, algebras, graphs, etc.), a pair of tensors can be built such that they
are isomorphic if and only if the starting objects are equivalent. This led to the definition of
the complexity class TI in [13]. Different reductions among these problems can be found in
[7, 12, 14, 23, 24]. In general, there are no known polynomial algorithms for most of the
above problems. Because of this, many public key cryptosystems base their security on the
hardness of solving these kinds of problems, for example, Isomorphism of Polynomials [22],
code equivalence [1, 6], tensor isomorphism [16], lattice isomorphism [9], trilinear forms
equivalence [29], and problems from isogenies of elliptic curves [3, 8, 10].

1.2 Code equivalence

One of the most studied equivalence problems concerns linear codes. In the Hamming met-
ric, the maps that generate an equivalence were classified in [18], leading to the monomial
equivalence problem, which was studied in [23, 27]. Worth mentioning is the support split-
ting algorithm [26], which solves the above problem in average polynomial time for a large
class of codes over Fq for q < 5. For a detailed analysis, the interested reader can refer
to [2]. Recently, the problem of equivalence in different metrics has been studied, and we
will focus on the rank metric and the sum-rank one. Concerning the rank metric, the clas-
sification of equivalence maps is given in [20], while in [7], the authors analyze the matrix
code equivalence, and they reduce the Hamming case to it. The same result is given in an
independent work [14], where the former problem is called matrix space equivalence. In
[24], it is shown that matrix code equivalence is polynomially equivalent to problems on
bilinear and quadratic maps. Moreover, the link between the rank and the sum-rank metric is
studied, leading to a reduction from the latter to the former in a special case. Here we extend
this analysis, finding an unconditional reduction from the code equivalence in the sum-rank
metric to the rank one.

1.3 Our contribution and techniques

In this work, we give two results of different nature. The first one concerns some relations
between tensors problems. The d-tensor isomorphism problem (d-TI) asks, given two d-
tensors T1 and T2, if there are d invertiblematrices A1, . . . , Ad sending T1 to T2.We introduce
another problem called d-tensor monomial isomorphism problem (d-TI∗), where instead of
having d invertible matrices, we require that one of them must be monomial. We show that
d-TI∗ reduces to 3-TI for every d ≥ 4. To show this, we use techniques from [7] where the
authors exhibit a reduction frommonomial code equivalence to matrix code equivalence. We
reformulate this reduction in terms of tensors, and we generalize it in higher dimensions.
In particular, we show that d-TI∗ is reducible to (2d − 1)-TI, and then, using a result from
[14], we get as corollary that d-TI∗ reduces to 3-TI. Our techniques are the following: given
the reduction � and the (2d − 1)-tensors �(T1) and �(T2), we project to the vector space
W where we expect the action of the monomial matrix. Then, we consider the projected
tensor as a 2-tensor in order to compute its rank. We show that some constrains on the rank
imply that the matrix acting on W is monomial. Observe that the techniques from [14] can

123



Monomial isomorphism for tensors and applications

Fig. 1 Reduction between
problems and TI-completeness.
“A → B” indicates that A reduces
to B. Dashed arrows denote trivial
reductions

be adapted and used as well, but they are less efficient in terms of output dimension, since
the reduction is looser with respect to the one given in [7]. Another contribution is about the
sum-rank code equivalence. Using the result from above, we reduce the problem of deciding
whether two sum-rank codes are equivalent to the problem of deciding if two matrix codes
are equivalent. Note that a similar result is given in [24] with the assumption that some
automorphisms group are of a given form. While such hypothesis is mostly satisfied for
randomly generated matrix codes (for example the ones used in cryptography [6]), here we
give an unconditional reduction. Unfortunately, our reduction produces matrix codes with
dimension and sizes that are polynomially bigger than the starting parameters of the sum-rank
codes. In particular, we get a O(x6) overhead. Due to this result, we can conclude that for
the three considered metrics (Hamming, rank, sum-rank), Code Equivalence problems are
in the class TI. Figure1 summarizes new and known reductions between code equivalence
and other problems, showing the route we used. This work is organized as follows. In Sect. 2
we give some preliminaries on tensors, linear codes and equivalence problems in different
metrics. Section3 introduces the monomial isomorphism problem for tensors and a proof of
its TI-hardness is given. Section4 concerns the proof that the code equivalence problem in
the sum-rank metric can be reduced to the same problem in the rank metric.

2 Preliminaries

For a prime power q , Fq is the finite field with q elements, and Fn
q is the n-dimensional vector

space over Fq . The span of vectors v1, . . . , vk is denoted with 〈v1, . . . , vk〉. With F
n×m
q we

denote the linear space of n × m matrices with coefficients in Fq . Let GL(n,Fq) be the
group of invertible n × n matrices with coefficients in Fq . When the field is implicit, we
use GL(n) instead. A monomial n × n matrix is given by the product of an n × n diagonal
matrix with non-zero entries on the diagonal, with an n × n permutation matrix. The group
of n × n monomial matrices over the field Fq is denoted with Mon(n,Fq) or Mon(n), and is
a subgroup of GL(n). We denote withW1 ⊕W2 the direct sum of vector spacesW1 andW2

and its elements are written as (w1, w2), wherewi is inWi . With St we denote the symmetric
group over a set of t elements. The transpose of a matrix A is denoted with At and I� denotes
the � × � identity matrix.

2.1 Tensors

Given a positive integer d , a d-tensor over Fq is an element of the tensor space
⊗d

i=1 F
ni
q .

If we fix the bases {e(i)
1 , . . . , e(i)

ni } for every linear space Fni
q , we can represent a d-tensor T

with respect to its coefficients T (i1, . . . , id) in Fq
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T =
∑

i1,...,id

T (i1, . . . , id)e
(1)
i1

⊗ · · · ⊗ e(d)
id

.

We say that T has size n1 × · · · × nd . For example, observe that 1-tensors and 2-tensors can
be represented as vectors and matrices, respectively.

A rank one (or decomposable) tensor is an element of the form a1 ⊗ · · · ⊗ ad , where ai
is in F

ni
q . Given a d-tensor T , its rank is the minimal non-negative integer r such that there

exist t1, . . . , tr rank one tensors for which T =∑r
i=1 ti . In general, computing the rank of a

d-tensor is a hard task for d ≥ 3 [15, 25, 28].
The projection to a can be defined for any a in F

n j
q . Since we are interested mainly in

projections to an element of the basis e( j)
k of F

n j
q , we define

proj
e( j)
k

: F
n1
q ⊗ · · · ⊗ F

n j
q ⊗ · · · ⊗ F

nd
q → F

n1
q ⊗ · · · ⊗ F

n j−1
q ⊗ F

n j+1
q ⊗ · · · ⊗ F

nd
q ,

∑

i1,...,id

T (i1, . . . , id)e
(1)
i1

⊗ · · · ⊗ e(d)
id

	→
∑

i1,...,i j−1,

i j+1,...,id

T (i1, . . . , i j−1, k, i j+1, . . . , id)e
(1)
i1

⊗ · · · ⊗ e( j−1)
i j−1

⊗ e( j+1)
i j+1

⊗ · · · ⊗ e(d)
id

.

(1)

In other words, we send to zero every component of
∑

i1,...,id T (i1, . . . , id)e
(1)
i1

⊗ · · · ⊗ e(d)
id

which does not contain e( j)
k , obtaining a (d − 1)-tensor.

A group action can be defined on the vector space T = ⊗d
i=1 F

ni
q of d-tensors of size

from the Cartesian product of invertible matrices G = GL(n1) × · · · × GL(nd) as follows

� : G × T → T ,
⎛

⎝(A1, . . . , Ad) ,
∑

i1,...,id

T (i1, . . . , id)e
(1)
i1

⊗ · · · ⊗ e(d)
id

⎞

⎠

	→
∑

i1,...,id

T (i1, . . . , id)A1e
(1)
i1

⊗ · · · ⊗ Ade
(d)
id

.

It can be shown that the action defined above does not change the rank of a tensor.1 In
particular, this implies that the action of an element inGL(n1)×· · ·×GL(ni−1)×GL(ni+1)×
· · ·×GL(nd) on the projection proje(i)

k
(T ) of a tensor T has the same rank as proj

e(i)
k

(T ). We

summarize these properties in formulas

1. rk ((A1, . . . , Ad)�T ) = rk (T ),

2. rk
(
(A1, . . . , Ai−1, Ai+1, . . . , Ad)� proje(i)

k
(T )
)

= rk
(
proj

e(i)
k

(T )
)
.

The isomorphism problem between tensors has some interesting links and properties in
computational complexity theory. Here we recall the formal definition of the problem.

Definition 1 The d-tensor isomorphism (d-TI) problem is given by

• input: two d-tensors T1 and T2 in
⊗d

i=1 F
ni
q ;

1 However, if we extend the action to non-invertible matrices, this property does not hold: the zero matrix
sends every tensor into the zero tensor (which has rank zero by definition).
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• output: YES if there exists an element g of GL(n1)×· · ·×GL(nd) such that T2 = g�T1
and NO otherwise.

The search version is the problem of finding such matrices, given two isomorphic d-tensors.

If we recall the decision problems d-Colourability (d-COL) and d-SAT, it is known that
the first integer for which these problems are NP-complete is d = 3. In particular, there are
polynomial reductions from d-COL to 3-COL and from d-SAT to 3-SAT. The same happens
for d-TI and 3-TI, as shown in the following astonishing result from [14].

Theorem 1 d-TI and 3-TI are polynomially equivalent.

Since a lot of different problems can be reduced to d-TI, in the sameflavor of the complexity
class GI (the set of problems reducible in polynomial time to graph isomorphism [17]), the
authors of [13] define the TI class.

Definition 2 The tensor isomorphism class (TI) contains decision problems that can be poly-
nomially reduced to d-TI for a certain d . A problem D is said TI-hard if d-TI can be reduced
to D, for any d . A problem is said TI-complete if it is in TI and is TI-hard.

It is easy to see that TI is a subset of NP, and we can adapt the AM protocol for graph
non-isomorphism [11] and code non-equivalence [23] to show that TI is in coAM. This means
that no problem in TI cannot be NP-complete unless the polynomial hierarchy collapses at
the second level [4].

2.2 Linear codes in different metrics

A linear code C of dimension k is a linear space of dimension k. A linear code can be
embedded in different linear spaces V over Fq , depending on the form of the code. A code
is endowed with a map weight w defined on V

w : V → N

such that w(x) = 0 if and only if x = 0. We can define a metric d from a weight w

d : V × V → N, (x, y) 	→ w(y − x).

Throughout this paper, we will consider three weights with their metrics. We highlight that,
even if we can endow the same code with two or more different metrics, we consider a code
with just a metric.

The first one is the Hamming weight. Here we consider linear codes embedded in F
n
q ,

and we say that the code C has length n. This weight is defined as the number of non-zero
entries of a vector: We refer to the distance induced by wH as dH. A useful representation of
a k-dimensional code C of length n in the Hamming metric is given by its generator matrix,
a k × n matrix having a basis {v1, . . . , vk} of C as rows. Notice that the generator matrix is
not unique since there are many bases for the same linear code.

The second weight we consider is defined on matrices. This means that our code C is a
space of matrices and usually we refer to it as a matrix code. If we consider n ×m matrices,
the code has length n × m. The map

wR : Fn×m
q → N, M 	→ rk(M)

is defined as the rank of the matrix M . Hence, the distance dR between M1 and M2 is given
by the rank of M2 − M1.
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The last class of codes we consider is embedded into the direct sum (or Cartesian product)
of spaces of matrices. Given natural numbers d, n1, . . . , nd ,m1, . . . ,md , we have that the
linear space V defined above is Fn1×m1

q ⊕ · · ·⊕F
nd×md
q . We can define the Sum-rank weight

as the sum of the ranks

wSR : Fn1×m1
q ⊕ · · · ⊕ F

nd×md
q → N,

(M1, . . . , Md) 	→ ∑d
i=1 rk (Mi ) .

The distance dSR induced by wSR is called sum-rank metric and we call a code endowed with
this distance a sum-rank code of parameters d, n1, . . . , nd ,m1, . . . ,md .

Observe that the sum-rank metric is both a generalization of the Hamming and the rank
distance. For n1 = · · · = nd = m1 = · · · = md = 1, the sum-rank metric coincides with
the Hamming metric, and sum-rank codes can be seen as linear codes of length d in F

d
q . If

we have d = 1, then dSR is the rank metric, and sum-rank codes are matrix codes of size
n1 × m1.

2.3 Code equivalence

We recall the general problem of deciding whether two linear codes are equivalent. Given a
weight w and a metric d, we say that an invertible linear map f from the vector space V to
itself preserves the metric (or, equivalentely, the weight) if f (w(x)) = w(x) for every x in
V. We call such maps linear isometries, and they form a group with the composition. Two
linear codes are linearly equivalent if there exists a linear isometry between them. The task
of checking if two codes are equivalent is called Linear code equivalence problem. Since in
the rest of the paper we will consider only linear isometries, sometimes we drop the word
“linear” when we talk about isometries or equivalences, in particular we refer to the problem
above as code equivalence (CE). Its hardness depends onwhich codes andmetric we consider.
In the following, we define CE with respect to the three different metrics we saw in Sect. 2.2.

We can characterize linear isometries in the Hamming metric, reporting a well-known
result from [18].

Proposition 2 If f : Fn
q → F

n
q is a linear isometry in the Hamming metric, then there exists

an n × n monomial matrix Q such that f (x) = xQ for all x in F
n
q .

Then two codes C and D are linearly equivalent if there exists a monomial matrix Q such
that

C =
{
yQ ∈ F

n
q : y ∈ D

}
.

The generator matrix G of a code C is not unique, hence, for every invertible matrix S, the
matrix SG generates the same code C. This must be considered since we state the equivalence
problem in terms of generator matrices.

Definition 3 The Hamming linear code equivalence (CEH) problem is given by

• input: two codes C and D represented by their k × n generator matrices G and G ′,
respectively;

• output: YES if there exist a k × k invertible matrix S and an n × n monomial matrix Q
such that G = SG ′Q, and NO otherwise.

The search version is the problem of finding such matrices given two linearly equivalent
codes.
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Observe that the matrix S in the above definition models a possible change of basis, while
the monomial matrix Q is a permutation and a scaling of the coordinates of the code.

Now we consider the rank metric. From [20], linear isometries for the rank metric can be
characterized as follows.

Proposition 3 If f : Fn×m
q → F

n×m
q is a linear isometry in the rank metric, then there exist

an n × n invertible matrix A and an m × m invertible matrix B such that

1. f (M) = AMB for all M in F
n×m
q , or

2. f (M) = AMt B for all M in F
n×m
q ,

where the latter case can occur only if n = m.

Usually, an isometry can be denoted with a pair of matrices (A, B).
In the literature, for example [7, 24], the linear equivalence problem for matrix codes is

defined taking into account only the first case given in Proposition 3, even when we have
n = m. In terms of the computational effort to solve the problem, this is not an issue, since
considering both cases requires at most twice the time of considering only the first one,
and hence, just a polynomial overhead that we can ignore. For simplicity, we continue the
approach from [7, 24] in the following definition.

Definition 4 The rank linear code equivalence (CErk) problem is given by

• input: two n × m matrix codes C and D of dimension s represented by their bases;
• output: YES if there exist matrices A in GL(n) and B in GL(m) such that, for every M

in D, we have that AMB is in C, and NO otherwise.

The search version is the problem of finding such matrices given two linearly equivalent
codes.

In the literature, this problem is also called matrix code equivalence (MCE).
Given a matrix code C, an automorphism of C is a linear isometry f such that f (C) = C.

We say that C has trivial automorphisms if the only automorphisms of C are of the form
M 	→ (λIn) M (μIm) for some non-zero λ,μ in Fq .

The equivalence problem between sum-rank codes was introduced in 2020 by Martínez-
Peñas [19]. Before stating the problem, we characterize linear sum-rank isometries. This
result is given in [5] and a slightly less general statement can be found in [21, Proposition
4.26].

Proposition 4 Let f : Fn1×m1
q ⊕· · ·⊕F

nd×md
q → F

n1×m1
q ⊕· · ·⊕F

nd×md
q be a linear isometry

in the sum-rank metric. Then there exists a permutation σ in Sd such that ni = nσ(i) and
mi = mσ(i) for every i , and there exist ψi : Fni×mi

q → F
ni×mi
q isometries in the rank metric

such that

f (M1, . . . , Md) = (ψ1(Mσ(1)), . . . , ψd(Mσ(d))
)

for each Mi ∈ F
ni×mi
q .

We are ready to state the linear equivalence problem for sum-rank codes. As in the case
of CErk, we choose to not include the case of transposition of matrices.

Remark 1 Observe that, even if for CErk the inclusion of the transposition of matrices has
only a polynomial blow-up, this is not the case for CEsr. In fact, from [21] we can see that the
transposition can be seen as the action of Fd

2 . This implies that there is an overhead ofO(2d)
between considering or not the transposition of matrices, for example, see [7, Remark 2] for
the rank case.
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Recall that, as linear space, a sum-rank code C of parameters d, n1, . . . , nd ,m1, . . . ,md

and dimension k admits a basis of the form {C1, . . . ,Ck} where Ci =
(
C (1)
i , . . . ,C (d)

i

)
is a

tuple of matrices. In particular, C ( j)
i is in F

n j×m j
q for each i and j .

Definition 5 The sum-rank linear code equivalence (CEsr) problem is given by

• input: two sum-rank codes C andD, of parameters d, n1, . . . , nd ,m1, . . . ,md and dimen-
sion k represented by their bases {Ci } and {Di }, respectively;

• output: YES if there exist matrices A1, . . . , Ad , B1, . . . , Bd , where Ai is in GL(ni ) and
Bi is in GL(mi ), and a permutation σ in Sd such that

C = Span
{(

A1D
(σ (1))
1 B1, . . . , Ad D

(σ (d))
1 Bd

)
, . . . ,

(
A1D

(σ (1))
k B1, . . . , Ad D

(σ (d))
k Bd

)}
,

and NO otherwise.

The search version is the problem of finding such matrices given two linearly equivalent
codes.

This formulation embraces both the previous linear equivalence problems for Hamming
and rank metric as special cases. Due to this, we can formulate the next result.

Proposition 5 Both CEH and CErk polynomially reduce to CEsr.

A natural question is about the converse, whether problems in the Hamming or the sum-
rank metric reduce to CErk. It has been show independently in [7, 14] that CEH can be reduced
to CErk, using two different approaches. In [14, Sect. 5], the reduction uses 3-tensors via an
“individualization” argument to force a matrix to be monomial. In [7], given a linear code
of dimension k in F

n
q , the reduction defines a matrix code in F

k×(k+n)
q . This approach will

be generalized in the setting of d-tensors in the following section, and it will give us some
reductions between tensors problem in dimensions higher than 3.

3 Monomial isomorphism problems

In this section, we will examine the relationship between tensor isomorphism problems when
amatrix acting on a specific space is required to bemonomial instead of using the action from
the entire group GL(n1)×· · ·×GL(nd). Specifically, there exists a j such that the action on
the j-th space is given byMon(n j ). For simplicity, wewill refer to this special space as the last
one throughout the remainder of the article and in the problems statements. Since Mon(nd)
is a subgroup of GL(nd), the action of the group GL(n1) × · · · × GL(nd−1) × Mon(nd) on
d-tensors is well-defined. When there exists an element g sending the d-tensor T1 into T2,
we say that they are monomially isomorphic.

Definition 6 The monomial d-tensor isomorphism (d-TI∗) problem is given by

• input: two d-tensors T1 and T2 in
⊗d

i=1 F
ni
q ;

• output: YES if there exists an element g of GL(n1) × · · · ×GL(nd−1) ×Mon(nd) such
that T2 = g�T1 and NO otherwise.

The search version is the problemof finding suchmatrices, given twomonomially isomorphic
d-tensors.
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We recall that, if the action of the monomial matrix is not on the last vector space, we can
permute the spaces to obtain the problem above. Observe that the problem 2-TI∗ is exactly
CEH and the proof that CEH reduces to CErk from [7] can be viewed as a reduction from 2-TI∗
to 3-TI. In the following, we generalize this approach to reduce d-TI∗ to (2d − 1)-TI.

Let V1, . . . ,Vd be vector spaces over Fq of dimension n1, . . . , nd , respectively. Now let

{v( j)
1 , . . . , v

( j)
n j } be a basis for the space V j . We recall that W1 ⊕ W2 is the direct sum of

vector spacesW1 andW2 and its elements are of the form (w1, w2). The action of an element
of GL(dim(W1) + dim(W2)) is block-by-block:

(
A11 A12

A21 A22

)

·
(

w1

w2

)

=
(
A11w1 + A12w2

A21w1 + A22w2

)

.

The reduction we use is the following map, going from a space of d-tensors to a space of
(2d − 1)-tensors,

� :
d⊗

i=1

Vi →
(
d−1⊗

i=1

Vi

)

⊗
(
d−1⊗

i=1

(Vi ⊕ Vd)

)

⊗ Vd ,

∑

i1,...,id

T (i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d)
id

	→
∑

i1,...,id ,
j1,..., jd−1

T (i1, . . . , id)T ( j1, . . . , jd−1, id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (v
(1)
j1

, 0) ⊗ · · · ⊗ (v
(d−1)
jd−1

, 0) ⊗ v
(d)
id

+
∑

i1,...,id

T (i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

) ⊗ v
(d)
id

.

(2)

Example 1 (Running example) As an exmaple, consider d = 3 and a tensors in F2
2⊗F

2
2⊗F

3
2.

The map � became

� : F2
2 ⊗ F

2
2 ⊗ F

3
2 → F

2
2 ⊗ F

2
2 ⊗ (F2

2 ⊕ F
3
2

)⊗ (F2
2 ⊕ F

3
2

)⊗ F
3
2,

∑

i, j,k

T (i, j, k)ei ⊗ e j ⊗ ek 	→
∑

i, j,k,
i ′, j ′

T (i, j, k)T (i ′, j ′, k)ei ⊗ e j ⊗ (ei ′ , 0) ⊗ (e j ′ , 0) ⊗ ek

+
∑

i, j,k

T (i, j, k)ei ⊗ e j ⊗ (0, ek) ⊗ (0, ek) ⊗ ek .

Given the tensor

T1 = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 + e1 ⊗ e2 ⊗ e3,

its image under � is given by

�(T1) = e1 ⊗ e1 ⊗ (e1, 0) ⊗ (e1, 0) ⊗ e1 + e2 ⊗ e2 ⊗ (e2, 0) ⊗ (e2, 0) ⊗ e2

+ e1 ⊗ e2 ⊗ (e1, 0) ⊗ (e2, 0) ⊗ e3 + e1 ⊗ e1 ⊗ (0, e1) ⊗ (0, e1) ⊗ e1

+ e2 ⊗ e2 ⊗ (0, e2) ⊗ (0, e2) ⊗ e2 + e1 ⊗ e2 ⊗ (0, e3) ⊗ (0, e3) ⊗ e3

In the following, we show that two tensors T1 and T2 are monomially isomorphic if and
only if �(T1) and �(T2) are isomorphic.
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Proposition 6 If T1 and T2 are two monomially isomorphic d-tensors, then�(T1) and�(T2)
are isomorphic as (2d − 1)-tensors.

Proof Suppose that T1 and T2 are in
⊗d

i=1 Vi as defined above. Now, since T1 and T2 are
monomially isomorphic, there exist d −1 invertible matrices A1, . . . , Ad−1 and a monomial
matrix Q such that

(A1, . . . , Ad−1, Q)�T1 = T2.

Let Q be the product of a permutation matrix P corresponding to the permutation σ in Snd
and a diagonal matrix D = diag(α1, . . . , αnd ). More explicitly

∑

i1,...,id

T1(i1, . . . , id)A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

⊗ αid v
(d)
σ (id )

=
∑

i1,...,id

T2(i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d)
id

.
(3)

Our claim to obtain the thesis is that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)��(T1) = �(T2),

where for every i = 1, . . . , d − 2

Ãi =
(
Ai 0
0 P

)

,

while

Ãd−1 =
(
Ad−1 0
0 PD−1

)

, and Q̃ = PD2

Consider T2, and, for a k in {1, . . . , nd}, we write its projection to v
(d)
k

proj
v

(d)
k

(T2) =
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

. (4)

Combining Eq. (3) and Eq. (4), we have
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

=
∑

i1,...,id−1

ασ−1(k)T1(i1, . . . , id−1, σ
−1(k))A1v

(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

(5)

We define ι to be the canonic injection of
⊗d−1

i=1 Vi into
⊗d−1

i=1 (Vi ⊕ Vd), and we consider

proj
v

(d)
k

(T2) ⊗ ι
(
proj

v
(d)
k

(T2)
)
, that is

∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗
∑

j1,..., jd−1

T2( j1, . . . , jd−1, k)(v
(1)
j1

, 0) ⊗ · · · ⊗ (v
(d−1)
id−1

, 0)
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and, applying Eq. (5) two times, it is equal to
∑

i1,...,id−1,
j1,..., jd−1

α2
σ−1(k)T1(i1, . . . , id−1, σ

−1(k))T1( j1, . . . , jd−1, σ
−1(k))

A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

⊗ (A1v
(1)
i1

, 0) ⊗ · · · ⊗ (Ad−1v
(d−1)
id−1

, 0).

(6)

Observe that, if we tensorize this element with v
(d)
k and we take the sum over k = 1, . . . , nd ,

we have the first term of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)��(T1), that is equal to the first
term of �(T2).
To complete the proof we compute the second term of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)�

�(T1), and we show that it is equal to the second one of �(T2). In fact, using Eq. (5), we
have

∑

id

∑

i1,...,id−1

T1(i1, . . . , id)A1v
(1)
i1

⊗ · · · ⊗ A1v
(d−1)
id−1

⊗ (0, v(d)
σ (id )) ⊗ (0, v(d)

σ (id )) ⊗ (0, α−1
id

v
(d)
σ (id )) ⊗ α2

id v
(d)
σ (id )

=
∑

id

∑

i1,...,id−1

T2(i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

) ⊗ v
(d)
id

.

(7)

The first and the second terms of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)��(T1) are equal to
the ones of �(T2), and we can conclude that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)��(T1) = �(T2).

To complete the proof we observe that matrices A1, . . . , Ad−1, Ã1, . . . , Ãd−1 and Q̃ are
invertible by construction, hence �(T1) and �(T2) are isomorphic as (2d − 1)-tensors. �
Example 2 (Running example) Consider the tensor T1 from Example 1 under the action of
matrices

A =
(
1 0
0 1

)

, B =
(
0 1
1 0

)

, C =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ .

We obtain the monomially isomorphic tensor

T2 = (A, B,C)�T1 = e1 ⊗ e2 ⊗ e3 + e2 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e1

and it can be seen that�(T1) is isomorphic to�(T2) via thematrices (A, B, Ã, B̃, C̃), where

Ã =
(
A 0
0 C

)

, B̃ =
(
A 0
0 C

)

, C̃ = C

as in the proof of Proposition 6.

Now we show the converse.

Proposition 7 If �(T1) and �(T2) are isomorphic, then T1 and T2 are monomially isomor-
phic.
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Proof Since �(T1) and �(T2) are isomorphic, there exist invertible matrices A1, . . . , Ad−1,

Ã1, . . . , Ãd−1, Q̃ such that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)��(T1) = �(T2).

We want to exhibit d − 1 invertible matrices A′
1, . . . , A

′
d−1 and a monomial matrix

Q′ such that (A′
1, . . . , A

′
d−1, Q

′)�T1 = T2. In particular, we will show that A′
i = A

for every i = 1, . . . , d − 1. First, we claim that Q̃ is a monomial matrix. Consider
(In1 , . . . , Ind−1 , In1+nd , . . . , Ind−1+nd , Q̃)��(T1) and use Q̃v

(d)
id

=∑nd
j=1 Q̃ j,id v

(d)
j

∑

i1,...,id ,
j1,..., jd−1

T1(i1, . . . , id)T1( j1, . . . , jd−1, id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (v
(1)
j1

, 0) ⊗ · · · ⊗ (v
(d−1)
jd−1

, 0) ⊗
nd∑

k=1

Q̃k,id v
(d)
k

+
∑

i1,...,id

T1(i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

) ⊗
nd∑

k=1

Q̃k,id v
(d)
k .

(8)

If we project it to v
(d)
k along the last space Vd we obtain

∑

i1,...,id ,
j1,..., jd−1

Q̃k,id T1(i1, . . . , id)T1( j1, . . . , jd−1, id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (v
(1)
i1

, 0) ⊗ · · · ⊗ (v
(d−1)
id−1

, 0)

+
∑

i1,...,id

Q̃k,id T1(i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⊗ (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

).

(9)

Now consider Eq. (9) as a 2-tensor in
(⊗d−1

i=1 Vi

)
⊗
(⊕d−1

i=1 (Vi ⊕ Vd)
)
. With this new

view, we obtain

∑

id

Q̃k,id

[
⎛

⎝
∑

i1,...,id−1

T1(i1, . . . , id )v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⎞

⎠

⊗
⎛

⎝
∑

j1,..., jd−1

T1( j1, . . . , jd−1, id )(v
(1)
j1

, 0) ⊗ · · · ⊗ (v
(d−1)
jd−1

, 0)

⎞

⎠
]

+
∑

id

Q̃k,id

⎛

⎝
∑

i1,...,id−1

T1(i1, . . . , id )v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

⎞

⎠⊗ (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

) =

∑

id

Q̃k,id

[( ∑

i1,...,id−1

T1(i1, . . . , id)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

)

⊗
( ∑

j1,..., jd−1

T1( j1, . . . , jd−1, id )(v
(1)
j1

, 0) ⊗ · · · ⊗ (v
(d−1)
jd−1

, 0) + (0, v(d)
id

) ⊗ · · · ⊗ (0, v(d)
id

)

)]

,

(10)
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having rank at most the number of non-zero elements of Q̃k,·, the k-th row of the matrix Q̃,
but at least 1 since Q̃ is invertible. Now consider the action of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1)

on this tensor: the rank remains the same. If we repeat this process for �(T2), we obtain the

following rank-1 tensor in
(⊗d−1

i=1 Vi

)
⊗
(⊕d−1

i=1 (Vi ⊕ Vd)
)

( ∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

)

⊗
⎛

⎝
∑

j1,..., jd−1

T2( j1, . . . , jd , k)(v
(1)
i1

, 0) ⊗ · · · ⊗ (v
(d−1)
id−1

, 0) + (0, v(d)
k ) ⊗ · · · ⊗ (0, v(d)

k )

⎞

⎠ .

(11)

From the equality of the ranks, Q̃k,· must have exactly a non-zero element for each k, and
hence, Q̃ is a monomial matrix of the form PD, where D = diag(α1, . . . , αnd ) is a diagonal
matrix and P is a permutation matrix corresponding to the permutation σ in Snd .

Without loss of generality, suppose that the permutation σ of themonomial matrix Q̃ is the
identity. This avoids the use of σ on the index of v(d)

id
. Consider again�(T2) and its projection

to v
(d)
k along Vd as in Eq. (11). We project on elements of the basis of

⊕d−1
i=1 (Vi ⊕ Vd). For

elements of the form (v
(1)
�1

, 0) ⊗ · · · ⊗ (v
(d−1)
�d−1

, 0) we get

proj
(v

(1)
�1

,0)⊗···⊗(v
(d−1)
�d−1

,0)

(
proj

v
(d)
k

(�(T2))
)

=

T2(�1, . . . , �d−1, k)
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

.
(12)

In particular, it is a multiple of
∑

i1,...,id−1
T2(i1, . . . , id−1, k)v

(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

for every

choice of �1, . . . , �d−1. When we consider elements different from (v
(1)
�1

, 0) ⊗ · · · ⊗
(v

(d−1)
�d−1

, 0), the projection is always zero, except for the case (0, v(d)
k ) ⊗ · · · ⊗ (0, v(d)

k )

proj
(0,v(d)

ik
)⊗···⊗(0,v(d)

ik
)

(
proj

v
(d)
k

(�(T2))
)

=
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

.
(13)

Hence, every projection of proj
v

(d)
k

(�(T2)) is a multiple of
∑

i1,...,id−1
T2(i1, . . . , id−1, k)v

(1)
i1

⊗· · ·⊗v
(d−1)
id−1

and the linear spaceVk generated by all the projections is generated by the (d−
1)-tensor in Eq. (13). Consider now the projection to v

(d)
k of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1,

Q̃)��(T1), that is the (2d)-tensor

αk

( ∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

)

⊗
( ∑

j1,..., jd−1

T1( j1, . . . , jd−1, k) Ã1(v
(1)
j1

, 0) ⊗ · · · ⊗ Ãd−1(v
(d−1)
jd−1

, 0)

+
(
Ã1(0, v

(d)
k ) ⊗ · · · ⊗ Ãd−1(0, v

(d)
k )
))

.

(14)
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Again, if we project to any element of the basis of
⊗d−1

i=1 (Vi ⊕ Vd), we obtain a multiple
of the (d − 1)-tensor

αk

∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
d−1
id−1

. (15)

By hypothesis, the space generated by these projections is equal to Vk , the space generated
by the same projections of �(T2), that can be written as

Vk =
〈
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

〉

=
〈

αk

∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

〉

.

Hence there exists a non-zero λk in Fq such that
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1

⊗ · · · ⊗ v
(d−1)
id−1

= λkαk

∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1

⊗ · · · ⊗ Ad−1v
(d−1)
id−1

.
(16)

Tensorizing Eq. (16)with v
(d)
k and taking the sumon k, we have that T1 and T2 aremonomially

isomorphic via (A1, . . . , Ad−1, Q′), where Q′ = D′P with D′ = diag(λ1α1, . . . , λndαnd ),
and hence we have the thesis. �
Example 3 (Running example) Recall the tensors T1, T2, �(T1) from examples 1 and 2. The
tensor

�(T2) = e1 ⊗ e2 ⊗ (e1, 0) ⊗ (e2, 0) ⊗ e3 + e2 ⊗ e1 ⊗ (e2, 0) ⊗ (e1, 0) ⊗ e2

+ e1 ⊗ e1 ⊗ (e1, 0) ⊗ (e1, 0) ⊗ e1 + e1 ⊗ e2 ⊗ (0, e3) ⊗ (0, e3) ⊗ e3

+ e2 ⊗ e1 ⊗ (0, e2) ⊗ (0, e2) ⊗ e2 + e1 ⊗ e1 ⊗ (0, e1) ⊗ (0, e1) ⊗ e1

is isomoprhic to �(T1) via the invertible matrices (A, B, Ã, B̃,C). We want to prove that T1
is monomially isomorphic to T2 via matrices (A, B,C). In particular, we first show that C is
monomial.
Let C = (ci j ) and consider (I2, I2, I5, I5,C)��(T1)

e1 ⊗ e1 ⊗ (e1, 0) ⊗ (e1, 0) ⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2 ⊗ e2 ⊗ (e2, 0) ⊗ (e2, 0) ⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1 ⊗ e2 ⊗ (e1, 0) ⊗ (e2, 0) ⊗ (c1,3e1 + c2,3e2 + c3,3e3)

+ e1 ⊗ e1 ⊗ (0, e1) ⊗ (0, e1) ⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2 ⊗ e2 ⊗ (0, e2) ⊗ (0, e2) ⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1 ⊗ e2 ⊗ (0, e3) ⊗ (0, e3) ⊗ (c1,3e1 + c2,3e2 + c3,3e3).

Projecting this tensor to e2 from the basis of the last space F3
2 gives

c2,1e1 ⊗ e1 ⊗ (e1, 0) ⊗ (e1, 0) + c2,2e2 ⊗ e2 ⊗ (e2, 0) ⊗ (e2, 0)

+ c2,3e1 ⊗ e2 ⊗ (e1, 0) ⊗ (e2, 0) + c2,1e1 ⊗ e1 ⊗ (0, e1) ⊗ (0, e1)

+ c2,2e2 ⊗ e2 ⊗ (0, e2) ⊗ (0, e2) + c2,3e1 ⊗ e2 ⊗ (0, e3) ⊗ (0, e3).
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Nowconsider the above tensor as a 2-tensor in the space
(
F
2
2 ⊗ F

2
2

)⊗((F2
2 ⊕ F

3
2

)⊗(F2
2 ⊕ F

3
2

))
.

We have

c2,1 (e1 ⊗ e1) ⊗ ((e1, 0) ⊗ (e1, 0) + (0, e1) ⊗ (0, e1)
)

+ c2,2 (e2 ⊗ e2) ⊗ ((e2, 0) ⊗ (e2, 0) + (0, e2) ⊗ (0, e2)
)

+ c2,3 (e1 ⊗ e2) ⊗ ((e1, 0) ⊗ (e2, 0) + (0, e3) ⊗ (0, e3)
)
.

(17)

This 2-tensor has rank at most the number of non-zero elements in the row (c2,1, c2,2, c2,3).
This rank does not change when we apply the remaining part of the action, that is the element
(A, B, Ã, B̃, I3). If we take the same projection to e2 of F3

2 and the same view as 2-tensor of
�(T2), we obtain the following rank-1 tensor

e2 ⊗ e1 ⊗ (e2, 0) ⊗ (e1, 0) + e2 ⊗ e1 ⊗ (0, e2) ⊗ (0, e2)

=
(
e2 ⊗ e1

)
⊗
(
(e2, 0) ⊗ (e1, 0) + (0, e2) ⊗ (0, e2)

)
.

(18)

Since (A, B, Ã, B̃,C)��(T1) = �(T2), we have that the rank of Eq. (17) is equal to the
rank of Eq. (18), hence the row (c2,1, c2,2, c2,3) has exactly one non-zero element Using the
same argument, projecting on different elements of the basis of F3

2, we show that every row
of C has one non-zero entry. This shows that C is monomial and we denote with σ be the
permutation associated to C . Now we deal with the last part of the proof, showing that T1
and T2 are monomial isomorphic. Consider again Eq. (18). We can project to elements of the
basis of (F2

2 ⊗ F
3
2) ⊗ (F2

2 ⊗ F
3
2). For example, when we project to (e2, 0) ⊗ (e1, 0), we have

e2 ⊗ e1. Similarly, projecting to (0, e2) ⊗ (0, e2) produces again e2 ⊗ e1. Other projections
to (0, ei ) ⊗ (0, e j ) with i �= j , or to mixed elements like (ei , 0) ⊗ (0, e j ) give us the zero
tensor. In particular, the non-zero projections are multiples of e2 ⊗ e1. We denote the vector
space generated by all these projections with V2. This space must be equal to the span of all
the same projections (up to σ ) of (A, B, Ã, B̃,C)��(T1). As an example, we first project to
eσ−1(2) of F

3
2, and then to (e1, 0) ⊗ (e2, 0). We obtain a multiple of the 2-tensor

∑

i, j

T1(i, j, 2)Aei ⊗ Be j .

The vector space generated by these projections is exactly V2 since (A, B, Ã, B̃,C)��(T1)
is equal �(T2). In other words,

V2 = 〈e2 ⊗ e1〉 =
〈
∑

i, j

T1(i, j, 2)Aei ⊗ Be j

〉

.

Hence, there exists a non-zero scalar λ2 (in this case equal to 1) such that

e2 ⊗ e1 =
∑

i, j

T1(i, j, 2)Aei ⊗ Be j .

We repeat the process with other elements of the basis of F
3
2, both for �(T2) and for

(A, B, Ã, B̃,C)��(T1). Then, we tensorise the projections of �(T2) with ek and the ones
of (A, B, Ã, B̃,C)��(T1) with eσ−1(k). Taking the sum on k gives us

T2 =
3∑

k=1

∑

i, j

T1(i, j, 2)Aei ⊗ Be j ⊗ eσ−1(k) = (A, B,C)�T1.

Therefore, T1 and T2 are monomially equivalent.
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The combination of the two results above gives us the main result of this section.

Theorem 8 The problem d-TI∗ polynomially reduces to (2d − 1)-TI. Moreover, d-TI∗ is TI-
complete.

Proof Given an instance (T1, T2) of d-TI∗, we can build an instance (�(T1),�(T2)) of
(2d − 1)-TI. If we call an oracle for (2d − 1)-TI on the latter pair of tensors, then we can
decide the original monomial isomorphism: Proposition 6 shows that �(T1) and �(T2) are
isomorphic if T1 and T2 are monomially isomorphic. On the other hand, Proposition 7 shows
that if �(T1) and �(T2) are isomorphic, then T1 and T2 are monomially isomorphic. Since
the map � is polynomially computable, this is a correct and polynomial-time reduction. �

Let us analyze the sizes of the reduction �. It takes a d tensor of size n1 × · · · × nd and
returns a (2d − 1)-tensor of size n1 × · · · × nd−1 × (n1 + nd) × · · · × (nd−1 + nd) × nd .
We will use this reduction to link Code Equivalence problems in the following section, but
this result could be of independent interest and shows how powerful is the TI class [13]. In
particular, Theorem 8 proves that for every d , d-TI∗ is in the class TI. Moreover, a trivial
reduction can be found from d-TI to (d + 1)-TI∗ (send T to T ⊗ 1), hence for d ≥ 4 we have
that d-TI∗ is TI-complete.

4 Relations between code equivalence problems

In this section, we show how to reduce the code equivalence problem for sum-rank codes to
the one in the rank metric. A reduction is given in [24], but it assumes that the automorphism
group of the obtained rank code is trivial in the sense of Sect. 2.3. We recall the technique
from [24], and we observe how this kind of reduction (sending a tuple of elements of Fm

q to
a block-diagonal matrix) does not work without the trivial automorphisms assumptions.

Let C be a sum-rank code with basis {C1, . . . ,Ck}, where Ci =
(
C (1)
i , . . . ,C (d)

i

)
is a

tuple of matrices. We denote with 
 the map from the set of sum-rank codes to the set of
matrix codes used in [24]


(〈C1, . . . ,Ck〉) = 〈W1, . . . ,Wk〉,
where Wi is the

(∑
i ni
) × (∑i ni

)
block diagonal matrix with the elements of Ci on the

diagonal. We recall that if the automorphisms group of the image of 
 is not trivial, then,
given an isometry in the rank metric, we cannot retrieve an isometry in the sum-rank setting
since the two codes are not equivalent.

Example 4 Consider the field F2 and the one-dimensional sum-rank codes C and D with
parameters d = 2, n1 = 3, n2 = 2,m1 = m2 = 2 generated by

C1 =
⎛

⎝
1 0
0 0
0 0

⎞

⎠ , C2 =
(
1 0
0 1

)

and D1 =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ , D2 =
(
0 0
0 1

)

,

respectively. It can be seen that C and D are not equivalent since there is not any sum-rank
isometry between them: the permutation must be the identity since n1 �= n2 and do not exist
invertible matrices (A, B) in GL(3) × GL(2) such that AC1B is in the space generated by
D1 (just look at their ranks). However, if we consider 
(C) and 
(D), we obtain the two
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one-dimensional matrix codes generated by

C ′ =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

and D′ =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

respectively. We can see that 
(C) and 
(D) are equivalent via the isometry given by
permutation matrices Pσ and Pτ , where σ = (2 4) is in S5 and τ = (2 3) is in S4. In fact,
PσC ′Pτ = D′. This happens since the automorphisms groups of 
(C) and 
(D) are not
trivial. For example, for 
(C) it contains the isometry (P(4 5), P(3 4)), where (4 5) and (3 4)
are permutations in S5 and S4, respectively.

The 3-TI problem is equivalent to the Code Equivalence in the rank metric CErk since the
former can be stated in terms of matrix spaces, and the admissible maps between these spaces
are exactly the isometries used for CErk (see [14]). A sketch of the reduction is the following.
To amatrix code C generated byC1, . . . ,Ck we associate the 3-tensor in the spaceA⊗B⊗C

TC =
∑

i1,i2,i3

(
Ci3

)
i1,i2

ai1 ⊗ bi2 ⊗ ci3 .

In particular, A and B represent the spaces of rows and columns, respectively, while C is
the space representing the dimension of the code (or the elements in the basis). Hence, a
matrix can be represented as a 2-tensor in A ⊗ B, and the action (A, B)�M is the matrix
multiplication AMBt . The action regarding C is the map sending a k-uple of matrices into
another k-uple. Therefore, given two matrix codes C and D, with bases C1, . . . ,Ck and
D1, . . . , Dk , equivalent via (A, B) and such that the invertible matrix M sends the basis
AC1B, . . . , ACk B to D1, . . . , Dk , the tensors TC and TD are isomorphic via (A, Bt , M).
The vice versa is obtained similarly and we highlight that there is no overhead in the sizes
of tensors and matrix spaces obtained in both directions.

Hence, we can resume the above observation in the following result.

Theorem 9 The problem CErk is TI-complete.

By the TI-hardness of CErk and since it can be reduced to CEsr, we get that CEsr is TI-hard. If
we want to show its TI-completeness, we need to prove that it is in TI, presenting a reduction
from a TI-complete problem, for instance 4-TI∗.

Lemma 10 The problem CEsr is polynomially reducible to 4-TI∗.

Proof We model a sum-rank code as a 4-tensor. Given a sum-rank code C with parameters
d, n1, . . . , nd ,m1, . . . ,md and basis {C1, . . . ,Ck}, let N be themaximumamong n1, . . . , nd
and M be the maximum amongm1, . . . ,md . For each i from 1 to d , we can embed an ni ×mi

matrix into an N × M one, filling it with zeros. Hence, there are d embeddings gi such that

gi : Fni×mi
q → F

N×M
q .

In the rest of the proof, we consider sum-rank codes embedded via the functions gi , thismeans
that we work with codes having parameters d, ni = N ,mi = M for every i = 1, . . . , d .
Let SR(d, N , M) be the set of sum-rank codes of parameters d, ni = N ,mi = M and let
A,B,C,D be vector spaces of dimension N , M, k, d with bases {ai }i , {bi }i , {ci }i and {di }i ,
respectively. Here, A and B denotes the row and column spaces of the matrices, C denotes
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the dimension of the code, whileDmodels the factors of the sum-rank code. Hence, the code
generated by {C1, . . . ,Ck} can be seen as the 4-tensor

∑

i1,...,i4

(
C (i4)
i3

)

i1,i2
ai1 ⊗ bi2 ⊗ ci3 ⊗ di4 .

The projection to a factor F
n j×m j
q is a matrix code, which can be seen as the 3-tensor

∑

i1,i2,i3

(
C ( j)
i3

)

i1,i2
ai1 ⊗ bi2 ⊗ ci3 ,

where the action of (A, B, M) is intended as the left-right multiplication for A and Bt , while
M is a change of basis.

Let δi, j be the Kronecker’s delta and define the map


 :SR(d, N , M) →
(

d⊕

i=1

A

)

⊗
(

d⊕

i=1

B

)

⊗
(

d⊕

i=1

C

)

⊗ D,

〈C1, . . . ,Ck〉
	→

∑

i1,...,i4

(
C (i4)
i3

)

i1,i2
(δi4,1ai1 , . . . , δi4,dai1)

⊗ (δi4,1bi2 , . . . , δi4,dbi2) ⊗ (δi4,1ci3 , . . . , δi4,dci3) ⊗ di4 .

(19)

Now we show that sum-rank codes C and D, with bases {C1, . . . ,Ck} and {D1, . . . ,Dk},
are equivalent if and only if 
(C) and 
(D) are monomially isomorphic.

“ �⇒ ”. Suppose that C and D are linear equivalent via the matrices A1, . . . , Ad ,
B1, . . . , Bd and the permutation σ in Sd . Suppose that, for every i , Mi is the k × k invertible
matrix sending the basis {AiC

(σ (i))
j Bi } j to the basis {D(i)

j } j . Then we define the matrices

L̃ =

⎛

⎜
⎜
⎜
⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ad

⎞

⎟
⎟
⎟
⎠

, R̃ =

⎛

⎜
⎜
⎜
⎝

Bt
1 0 . . . 0
0 Bt

2 . . . 0
...

...
. . .

...

0 0 . . . Bt
d

⎞

⎟
⎟
⎟
⎠

,

S̃ =

⎛

⎜
⎜
⎜
⎝

M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...

0 0 . . . Md

⎞

⎟
⎟
⎟
⎠

, and Q̃ = Pσ .

We can see that (L̃, R̃, S̃, Q̃)�
(C) = 
(D), in fact

∑

i1,...,i4

(
C (i4)
i3

)

i1,i2
(0, . . . , Ai1ai1 , . . . , 0)

⊗ (0, . . . , Bi2bi2 , . . . , 0) ⊗ (0, . . . , Mi3ci3 , . . . , 0) ⊗ dσ(i4),

(20)

and this, by construction, is exactly 
(D).
“ ⇐� ”. Suppose that
(C) and
(D) are monomially isomorphic via invertible matrices

L , R, S and the monomial matrix Q = DP . We can see matrices L , R and S as block
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matrices, for example, we have

L =

⎛

⎜
⎜
⎜
⎝

L11 . . . L1d

L21 . . . L2d
...

. . .
...

Ld1 . . . Ldd

⎞

⎟
⎟
⎟
⎠

,

where Li j is an N × N matrix for every i and j . Analogously, R and S have the same
structure, with blocks of dimension M × M and k × k, respectively. Now, for simplicity,
we will focus on the action of L on 
(C), but the same argument can be used for R and
S. As in the proof of Proposition 7, we assume that the matrix Q is the identity matrix,
otherwise we need take care of the permutation σ in the indexes and the scalars of D. We
write projdk ((L, R, S, Q)�
(C))

∑

i1,i2,i3

(
C (k)
i3

)

i1,i2
(L1kai1 , . . . , Ldkai1)

⊗ (R1kbi2 , . . . , Rdkbi2) ⊗ (S1kci3 , . . . , Sdkci3).

(21)

Consider the same projection of 
(D)

∑

i1,i2,i3

(
D(k)
i3

)

i1,i2
(0, . . . , ai1 , . . . , 0) ⊗ (0, . . . , bi2 , . . . , 0) ⊗ (0, . . . , ci3 , . . . , 0), (22)

this tensor is equal to the one of Eq. (21), and this holds for every k. Now consider the tensor

v
(k)
�2,�3

= (0, . . . , b�2︸︷︷︸
k-th

, . . . , 0) ⊗ (0, . . . , c�3︸︷︷︸
k-th

, . . . , 0).

The projection to v
(k)
�2,�3

of projdk (
(D)) is given by

∑

i1

(
D(k)

�3

)

i1,�2
(0, . . . , ai1 , . . . , 0), (23)

while, for (L, R, S, Q)�
(C), we have

∑

i1,i2,i3

(Rkk)�2,i2 (Skk)�3,i3

(
C (k)
i3

)

i1,i2
(L1kai1 , . . . , Ldkai1). (24)

By hypothesis, Eqs. (23) and (24) are equal. Then, for k̄ �= k, we have that Lk̄k = 0. We can
use the same argument for R and S, using the following tensors and the projections to them

(0, . . . , a�1︸︷︷︸
k-th

, . . . , 0) ⊗ (0, . . . , c�3︸︷︷︸
k-th

, . . . , 0);

(0, . . . , a�1︸︷︷︸
k-th

, . . . , 0) ⊗ (0, . . . , b�2︸︷︷︸
k-th

, . . . , 0).
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Finally, we obtain that L , R and S are block diagonal of the form

L =

⎛

⎜
⎜
⎜
⎝

L11 0 . . . 0
0 L22 . . . 0
...

. . .
...

0 . . . 0 Ldd

⎞

⎟
⎟
⎟
⎠

, R =

⎛

⎜
⎜
⎜
⎝

R11 0 . . . 0
0 R22 . . . 0
...

. . .
...

0 . . . 0 Rdd

⎞

⎟
⎟
⎟
⎠

,

and S =

⎛

⎜
⎜
⎜
⎝

S11 0 . . . 0
0 S22 . . . 0
...

. . .
...

0 . . . 0 Sdd

⎞

⎟
⎟
⎟
⎠

.

Since the matrices L , R and S are invertible, so are the matrices on their diagonal. We can
conclude that codes C and D are equivalent via matrices L11, . . . , Ldd , Rt

11, . . . , R
t
dd and

the permutation σ . �

Example 5 Let C be the sum-rank code with parameters d = 2, n1 = 3, n2 = m1 = m2 = 2
generated by {C1,C2}, where

C (1)
1 =

⎛

⎝
1 1
0 0
1 0

⎞

⎠ , C (2)
1 =

(
0 0
0 1

)

, and C (1)
2 =

⎛

⎝
1 0
0 0
0 0

⎞

⎠ , C (2)
2 =

(
0 0
1 0

)

.

After applying the embeddings gi from above, we can see C as a sum-rank code with param-
eters d = 2, n1 = n2 = 3,m1 = m2 = 2 and we have

C (1)
1 =

⎛

⎝
1 1
0 0
1 0

⎞

⎠ , C (2)
1 =

⎛

⎝
0 0
0 1
0 0

⎞

⎠ , and C (1)
2 =

⎛

⎝
1 0
0 0
0 0

⎞

⎠ , C (2)
2 =

⎛

⎝
0 0
1 0
0 0

⎞

⎠ .

Using the notation from the previous proof, define A = F
3
2, B = F

2
2, C = F

2
2 and D = F

2
2.

The image of C under 
 is the following 4-tensor in (A ⊕ A) ⊗ (B ⊕ B) ⊗ (C ⊕ C) ⊗ D


(C) = (e1, 0) ⊗ (e1, 0) ⊗ (e1, 0) ⊗ e1
+(e1, 0) ⊗ (e2, 0) ⊗ (e1, 0) ⊗ e1

⎫
⎬

⎭
C (1)
1+(e3, 0) ⊗ (e1, 0) ⊗ (e1, 0) ⊗ e1

+(e1, 0) ⊗ (e1, 0) ⊗ (e2, 0) ⊗ e1
}
C (1)
2

+(0, e2) ⊗ (0, e2) ⊗ (0, e1) ⊗ e2
}
C (2)
1

+(0, e2) ⊗ (0, e1) ⊗ (0, e2) ⊗ e2.
}
C (2)
2

Using the same strategy adopted in the proof of Theorem 8, and since the map 
 is
polynomial-time computable, the above result implies that CErk reduces to 4-TI∗. This fact,
combined with Theorems 1 and 9 leads to the following corollary.

Corollary 11 The problem CEsr is TI-complete. In particular, it is polynomially reducible to
CErk.

A “proof” of the above result can be seen in Fig. 1, showing the path of the reduction from
CEsr to CErk.
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