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A B S T R A C T   

Lithological classification is a crucial aspect of mineral exploration, providing insights into rock and mineral 
types in a given area. Conventional methods for lithological classification can be limited in terms of coverage, 
accuracy, and efficiency, often experiencing significant time and cost. Machine learning techniques have 
demonstrated considerable potential in improving the efficiency and accuracy of this process. In this study, the 
effectiveness of ensemble learning models, including boosting, stacking, and bagging, was compared to logistic 
regression (LR) and support vector machines (SVM) as baseline models for predicting lithological classes using 
geochemical and geological data. Notably, the stackingC model, a novel stacking variant, stood out as the best- 
performing model. It achieved remarkable Cohen's Kappa and Matthews Correlation Coefficient (MCC) scores of 
97.10% and 93.70%, respectively. The Bagged Decision Trees and Adaboost models also demonstrated strong 
performance, with a kappa score of 97.10% and an MCC of 92.80%. In contrast, the LR model underperformed, 
scoring 37.70% in kappa and 43% in MCC. These results emphasize the potential of ensemble learning models for 
lithological classification, mainly when dealing with complex, nonlinear relationships between input variables 
and output labels. Such models hold promise for improving accuracy and generalization in mineral exploration.   

1. Introduction 

Lithological classification has a key role in mineral exploration, as it 
provides valuable information about the type, quality, and distribution 
of rocks and minerals in a given area. Accurate lithological classification 
can help identify potential mineral deposits and optimize exploration 
and mining activities. However, traditional methods for lithological 
classification, such as geological mapping and drilling, are often limited 
in their coverage and accuracy and can be expensive and time- 
consuming. Therefore, there is a growing need to identify new 
methods for lithological classification that can improve the accuracy and 
efficiency of mineral exploration. By forecasting rock unit lithology, it 
becomes possible to identify not only the name and distribution of rock 
units in a limited area but also examine different types of alterations and 
the association of ore minerals. This could significantly enhance our 
understanding of geological formations and provide valuable insights 
for mineral exploration and mining activities. 

In recent years, the application of machine learning (ML) techniques 

has gained attention in various fields, in particular, geoscience. Many 
researchers in this field have been implementing ML techniques to 
improve the accuracy and efficiency of lithological classification Dev 
and Eden (2019). Harris and Grunsky (2015) employed the Random 
Forest (RF) method for lithology mapping in Canada, utilizing lake 
sediment geochemical, airborne gamma-ray spectrometer, and magnetic 
data. Their study reveals that RF classification can generate reliable 
predictive lithologic maps, making it a beneficial tool for complement
ing field mapping activities in poorly mapped regions. 

Bressan et al. (2020) used four machine learning techniques 
(Multilayer Perceptron, decision tree, RF, and support vector machine 
(SVM) to analyze three standard data templates and a practical data 
template in a lithological classification problem for multivariate log 
parameter data from offshore wells from the International Ocean Dis
covery Program (IODP). The authors found that random forest charac
teristics allowed for better results in lithological classification, leading to 
accurate results with small statistical variances. Gifford and Agah (2010) 
employed multi-agent machine learning and classifier combination to 
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classify rock facies sequences using wireline well log data. The paper 
focuses on constructing successful sets of classifiers that collaborate to 
increase classification accuracy. Akkas et al. (2015) showed that deci
sion tree algorithms stand as an accurate and rapid method for mineral 
classification/identification using characteristic X-ray intensities pro
duced in a typical SEM-EDS, achieving high accuracy rates for training 
sets with 800 data, even though by using non-standard quality training 
sets. 

Lima et al. (2020) employed deep convolutional neural networks and 
pre-trained models to expedite and enhance microfacies classification in 
petrographic thin sections. The authors utilized parallel polarized 
petrographic thin-section images with 10× magnification to differen
tiate between classes based on grain size. The authors found that their 
approach achieves high accuracy for microfacies classification when 
using images from the Sycamore Formation and comparable accuracy to 
a petrographer. SVM algorithms were also used by Yu et al. (2012) to 
automate the lithological classification of an area in northwestern India, 
building a first-pass lithological map with high accuracy, and by Abedi 
et al. (2012) to select the best area for exploratory drilling, building a 
prospectivity map for the Now Chun copper deposit located in Iran, 
reducing the amount of risk for managers of exploratory projects in 
continuing their task. Choubin et al. (2023) employed the SVM model to 
predict land susceptibility to dust emission while simultaneously 
assessing the significance of critical factors driving dust emissions 
within the study area. 

In this paper, ensemble learning techniques such as boosting, 
stacking, and bagging models, along with some of their modifications, 
were utilized to classify lithological formations using geochemical and 
geospatial data. The ensemble methods were chosen for their capability 
to reduce the variance and improve the accuracy of machine learning 
techniques for classification. The performance of these models was 
compared to commonly used models, logistic regression (LR) (Felicisimo 
et al., 2013; Das et al., 2010; Harris and Pan, 1999) and SVM, and 
provide insights into the interpretability of the proposed models. This 
study contributes to the growing body of research on using machine 

learning techniques for geoscience applications and highlights the po
tential of ensemble learning methods for lithological classification. 

2. Geological setting 

The study area is located southeast of Esfahan province, between the 
Sanandaj-Sirjan and Central Iran structural zones (Fig. 1). This region is 
characterized by diverse ore deposit types, including epithermal, por
phyry, massive sulfide, manto, and others associated with the Urumieh- 
Dokhtar and Naein ophiolitic complexes. These deposits were formed 
due to the evolution of the Neotethys Ocean from opening to subduction 
and, finally, an orogenic event (Hassanzadeh and Wernicke, 2022; 
Dercourt et al., 1986). The ore deposits are hosted within Cretaceous 
volcano-sedimentary sequences that encompass several deposits such as 
the Kahang porphyry copper deposit, Qalehdar, Zafarghand, Kalchuyeh 
epithermal Cu, Feyzabad sediment-hosted Zn–Pb deposit, volcano- 
sedimentary Mn (Cu) Benvid, Kachumesghal volcanic copper and 
Meskat deposit (Heidari et al., 2023). The distribution of andesite and 
basaltic andesite in the area is notable, with copper mineralization also 
occurring in these units (Movahednia et al., 2022). 

According to the field observation and collected samples, a geolog
ical map of the study area was prepared at a 1:5000 scale. The study area 
primarily consists of rock units from the Cretaceous period, which are a 
combination of volcanic and sedimentary rocks (Fig. 2). The volcanic 
rocks primarily consist of basaltic lava, andesite, basaltic andesite, 
rhyolite, and rhyolitic tuff. The sedimentary rocks are mainly Cretaceous 
limestone and dolostone. Cenozoic units are less widespread in the re
gion. Diorite to granodiorite rocks intruded into the Cretaceous rocks. 
The subsequent section provides a concise discussion of the observed 
characteristics of the rock units within the studied area (Fig. 3). 

kbt unit: this rock unit has limited outcrops in the northwestern part 
of the area. Its primary lithology consists of olive green to dark basalts, 
and to some extent andesite to andesitic basalt. The fractures in these 
rocks are often filled with iron oxide. In some locations, small outcrops 
of green-colored pyroclastic rocks, including tuff and tuffite, can be 

Fig. 1. Left: Study area located within the structural zone of Iran. Right: Close-up view of the study area in Central Iran.  
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observed. This unit is also exposed within the kbr unit in patches. 
ktr unit: another unit in the area is the Ktr, which is attributed to the 

Cretaceous period. It has its most extensive outcrop in the northern half 
of the study area. The dominant lithology of this unit includes trachyte- 
andesite lavas, quartz trachyte-andesite, andesite, and rhyolitic lavas. 
Basaltic lavas and pyroclastic deposits are less common. The unit has a 
green outcrop due to the presence of chlorite. Its upper boundary cor
responds to Quaternary sediments and the Kl and Kat units. 

kar unit: this rock unit is exposed in the northeastern part of the area 
with an east-west trend. It is primarily composed of dark green to olive- 
colored andesite to rhyolite lavas. Intervals of tuff sediments can be 
observed among the volcanic units, which have undergone minor 
alteration. Diorite to granodiorite intrusive rocks have penetrated parts 
of this unit, resulting in traces of propylitic alteration at their contact. 
This unit has two types of siliceous veins: mineralized and non- 
mineralized. In some locations, the joints and fractures of the veins 
are filled with iron oxide and pyrite molds. These veins have a 
northwest-southeast trend and vary in length from 10 to 100 m and in 
thickness from 20 to 30 cm. 

kat unit: this rock unit has a general northeast-southwest trend and is 
most widespread in the eastern and central parts of the exploration area. 
It is composed of andesite, andesite porphyry, trachytic lavas, tuff, and 
to a lesser extent, basaltic lavas. The outcrops are mainly green to olive 
green in color. This rock unit has undergone prophylactic and argillic 
alterations. Quaternary terraces are exposed at its southern contact. 
Thinly layered gray-green tuff can be observed as interlayers within the 
andesite units. It is worth noting that copper mineralization has 
occurred in some parts of this unit in the form of malachite and chal
copyrite as open-space filling. 

kl unit: this lithology comprises biomicrite limestones, crystallized 
limestones, and chert limestones. It is most widely distributed in the 
eastern and southeastern parts of the exploration area. The outcrops are 
visible in white to light cream color. Cretaceous volcanic-pyroclastic 
units limit the northern and southern contacts of the kl unit. Based on 
field observations, limestone layers are exposed as thin, medium, and 
thick. In some locations, the limestones are dolomitic and heavily 
crushed, while in others, they are foliated and partially oriented. Scat
tered copper mineralization is present as malachite and chalcopyrite 
within and sometimes at the contact of limestone units with andesite 
rocks. Old carvings and goethite zones can also be observed in this unit. 

kv unit: this rock unit is the primary host of ore mineralization and 
has a generally northwest-southeast direction, like other volcanic units. 

The dominant lithology consists of olive green to dark rhyolitic lavas, 
which cover almost all of the range's eastern parts. Additionally, this 
unit contains a combination of andesite and basalt with interlayers of 
tuff. The basalt outcrops are darker in color and tend towards black. 
Mineralized outcrops are scattered within the Kv units, measuring about 
1 to 5 m in length and several centimeters in thickness. These patches are 
small in size but numerous. Malachite mineralization has also been 
observed in this unit. 

gd unit: the gd intrusive rocks, composed of diorite to granodiorite, 
are exposed in the northern part of the region. They have limited 
expansion and have intruded within older volcanic units, mainly of 
Cretaceous age, indicating that they are younger than these units. This 
mass has a mild morphology and is characterized by green and some
times gray hills in the area. 

qd unit: this unit is exposed northwest of the area and consists of 
quartz diorite to quartz monzonite with a gray-to-green color. It cuts 
through Lower Cretaceous volcanic rocks and has small outcrops in 
contact with volcanic and Quaternary deposits. The texture of this unit is 
granular. 

Quaternary units: based on the geological map and field operations, 
the most extensive and youngest lithological unit in the area is the 
Quaternary sediments and terraces. These are exposed in all the range 
and include Q1, consisting of alluvial alluviums and old river terraces 
exposed in the eastern parts; Q2, including alluviums and new river 
terraces; and Qal, including river sediments and recent alluviums. 

3. Material and methods 

3.1. Dataset 

To prepare the geological map at a scale of 1:5000, 280 samples were 
carefully selected to represent all rock types, alteration products, and 
ore mineralization in the study area (Section 2). Of these samples, 215 
samples were subjected to ICP-OES and fire assay analyses, providing 
required information on elemental compositions and mineral content. 
Additionally, 33 samples comprising 15 thin sections (TS) and 18 thin 
polished sections (TP) were subjected to microscopic examination. For a 
more in-depth understanding of alteration characteristics, 18 samples 
were analyzed using X-ray diffraction (XRD), while 10 samples were 
examined using X-ray fluorescence (XRF) techniques. The dataset was 
collected from various field observations and analytical results, 
combining geological knowledge with laboratory analyses to form a 

Fig. 2. Geological map of the study area at a scale of 1:5000. 
(Source: Samaneh Kansar Zamin, 2023). 
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comprehensive representation of the lithological diversity in the study 
area. 

Table 1 presents the description of typical samples used in this study. 
Moreover, the predictive features utilized in model training include 
geological and geochemical parameters, including major (e.g., copper, 
lead, and zinc) and minor (e.g., manganese and sulfur) elements 
analyzed through ICP-OES and fire assay techniques, precious elements 
such as gold content, trace elements like molybdenum and antimony, 

and XRD patterns. These features have been thoughtfully selected to 
align with the research objectives and enhance the accuracy of litho
logical classification. The comprehensive list of features used for 

Fig. 3. Outcrop and hand specimen images from rock unit lithologies distributed in the study area.  

Table 1 
Description of the lithological samples.  

Rock type Fire assay ICP-OES XRF TS TP XRD 

kar  7  6  0  1  4  0 
kat  17  19  1  4  4  2 
kv  20  33  0  5  7  0 
ktr  38  29  8  1  3  16 
kl  13  13  1  1  0  0 
kdt  3  3  0  0  0  0 
kbt  1  0  0  1  0  0 
kbr  0  0  0  1  0  0 
gd  0  0  0  1  0  0  

Table 2 
Utilized features for lithological classification.  

Features Description Relevance to lithological 
characteristics 

Major elements 
(ICP-OES) 

Cu, Pb, Zn (base metal) 
content 

Significant in ore 
mineralization 

Major elements 
(ICP-OES) 

Fe content Indicate presence of iron-rich 
minerals 

Precious elements 
(fire assay) 

Au content Significant in ore 
mineralization 

Minor elements 
(ICP-OES) 

Mn and S content Indicate the source of ore- 
bearing fluid 

Trace elements (ICP- 
OES) 

Mo and Sb content Significant in ore 
mineralization 

XRD patterns X-ray diffraction peak 
intensity 

Indicate minerals and 
alteration product minerals 

Microscopic studies Texture and rock 
lithology investigation 

Identification of rock lithology 
and ore minerals  
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prediction in this research is presented in Table 2, along with their 
relevance to lithological characteristics. Major elements obtained 
through ICP-OES, such as copper, lead, and zinc, are significant in
dicators of the base metal presence and are essential in identifying ore 
mineralization. Likewise, the iron content derived from ICP-OES anal
ysis serves as an indicator of the presence of iron-rich minerals. Gold 
content elements determined through a fire assay play a key role in 
identifying valuable ore mineralization. Furthermore, minor elements 
such as manganese and sulfur content, also obtained via ICP-OES, pro
vide insights into the source of ore-bearing fluids. Trace elements, 
including molybdenum and antimony content, are significant in ore 
mineralization. The XRD patterns, which measure X-ray diffraction peak 
intensity, are essential in identifying specific minerals and altering 
product minerals in geological formations. Additionally, microscopic 
studies containing texture and rock lithology reserve in identifying rock 
lithology and ore minerals further enrich the dataset's lithological in
sights. Fig. 4 illustrates the spatial distribution of the selected samples 
across the study area, providing a better understanding of their 
geological locations within the research area. 

3.2. Machine learning 

In 1959, Arthur Samuel coined the term machine learning and wrote 
the first known program under this category: the “Checkers Playing 
Program”. Albeit inferential statistics was already a well-established 
research field since Arthur Samuel started the machine learning era, 
this subject started to conquer almost all branches of studies, helping 
researchers to understand better and uncover problems. Machine 
learning is a collection of methodologies that use computers' power to 
analyze billions of data in a short time. Machine learning is used in a 
wide variety of areas such as image segmentation (Seo et al., 2020; Xu 
et al., 2019; Arganda-Carreras et al., 2017), natural language processing 
(Wolf et al., 2020; Otter et al., 2021), sound event detection (Mesaros 
et al., 2021; Farhadi et al., 2024), identification of diseases in healthcare 
(Ngiam and Khor, 2019; Liu et al., 2023; Wang et al., 2023), computer 
vision (Stefenon et al., 2022), environmental science (Choubin and 

Rahmati, 2021; Mosavi et al., 2020) mineral exploration and anomaly 
detection (Farhadi et al., 2022; Maitre et al., 2019; Rodriguez-Galiano 
et al., 2015), and the list could continue given its nowadays spread 
usage. 

Machine learning techniques can be divided according to the usage 
objectives; the principal reasons usually are making predictions or 
clustering the data or by the type of algorithm used; in this case, the 
classification is supervised, unsupervised, and reinforcement learning 
techniques. In a supervised algorithm, data are labeled, and the algo
rithm is capable of “seeing” these labels; this capacity helps computers 
and researchers to understand the performance of the algorithm. On the 
contrary, in an unsupervised algorithm, data do not present labels; this 
could be due to a lack of information or to a choice of the researcher; in 
this case, there have been created formulas that allow understanding the 
goodness of the algorithm. In reinforcement learning techniques, the 
computer should be considered a pure learner, meaning it learns 
through experience and failures. Examples of this algorithm are com
mon nowadays, but probably the most famous one is AlphaGo. 

In this comparative study, an extensive analysis is undertaken to 
evaluate ensemble techniques such as boosting, stacking, and bagging. 
Ensemble methods are one of the most robust techniques in the super
vised ML approach that combine many simple “building block” models 
to obtain a single and hopefully more powerful model (Dietterich, 2000; 
Sagi and Rokach, 2018). 

3.3. Boosting 

Boosting, as introduced by Schapire (1990), is a powerful ensemble 
technique that creates a robust classification model using weak classi
fiers. A weak classifier is one that performs slightly better than a random 
choice in terms of error rate. Therefore, boosting is just the application 
of a sequence of weak classification algorithms, say fm(⋅) with m = 1,…,

M, to a modified version of the data at each iteration. More precisely, if 
f(⋅) is a classifier that assigns input x to one of the classes {1,…,K}, the 
error rate of the training sample is given by: 

Fig. 4. Geographical distribution of sample locations in the study area.  
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err =
1
N

∑N

i=1
1{yi ∕= f (xi) } (1)  

where yi is the true class of the input xi. Moreover, the expected error 
rate on future predictions is given by EXY1{Y ∕= f(X) }. 

The final prediction in boosting is obtained by combining the pre
dictions of the sequence of weak classifiers through a weighted sum or 
by taking the maximum of the weighted predictions: 

f (x) = max
m

{αmfm(x) } (2)  

where: 

αm = log
(

1 − errm

errm

)

for m = 1,…,M (3) 

The effect of the α's is to give a higher influence to the more accurate 
classifier in the sequence. 

Furthermore, the training dataset 
{(

xi, yi
)

for i = 1 ,…,N
}

are 
modified at each step applying weights w1,…,wN, where 

wj
i =

⎧
⎪⎨

⎪⎩

1
N

for j = 1

wj− 1
i eαm1{yi∕=fm(xi) } for j = 2,…,M

(4)  

for each i = 1,…,N, where j indicates the iteration. At each iteration, 
these weights give more importance to misclassified observations of the 
previous classifier, whereas the importance (weight) for those classified 
correctly is decreased. Therefore, at each successive iteration, the new 
classifier is forced to pay more attention to the misclassified observa
tions obtained by the previous classifier in the sequence. A diagram 
showing the boosting procedure is presented in Fig. 5. 

In this study, the XGBoost algorithm was employed to study litho
logical classification. XGBoost is a specific variant of boosting and be
longs to the Gradient Boosting Machine (GBM) algorithms. GBM 
methods are boosting techniques where the training of each model de

pends on the previously trained models. In GBM, the ith learner learns 
from the residuals of the (i − 1)th leaner; in this way, the successive 
learners are maximally correlated with the negative gradient of the loss 
function. In particular, for XGBoost, the base learner is a tree model, and 
the objective function is given by: 

L(ϕ) =
∑

i
l(ŷi, yi)+

∑

k
Ω(fk),

where l is the loss function, ̂yi is the prediction for the ith instance, while 
yi is the actual value, and finally Ω is a penalization component for the 
complexity of the model, to avoid overfitting. In particular, Ω is called 
the regularization component and, in XGBoost, takes the form: 

Ω(f ) = γT +
1
2

λ‖w‖2
,

where T is the number of leafs and w is the leaf weights. 
Since the XGBoost model is a boosting model and hence trained in an 

additive manner, the loss function to be minimized in the tth iteration is 
defined as: 

L(t) =
∑

i
= l

(
yi, ŷ(t− 1)

i + ft(xi)
)
+Ω(ft). (5) 

Hence, as indicated by Eq. 5, in the context of the tth tree, the aim is 
to predict the residuals while simultaneously striving to maintain a level 
of simplicity in the tth model. 

3.4. Stacking 

Wolpert (1992) introduced the stacked generalization technique, a.k. 
a. stacking, an ensemble method that enables the comparison of 
different learning algorithms. Stacking represents the inception of what 
is known as a “meta learner” in the literature, offering an alternative to 
the conventional concept of voting. In boosting, like in bagging, a voting 
procedure can be imposed after all the base learners have classified an 

Fig. 5. Ensemble model: boosting.  
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instance, and the final class is determined based on their collective vote. 
Stacking, on the contrary, has two distinct learning layers. There is a 
level-0 model composed of the selected base models, which can vary, 
unlike in bagging and boosting, where base learners must be identical. 
Each base model can produce a different classification for a given 
instance. Instead of relying on a voting approach, the level-1 model 
combines these classifications (the base learners' outputs) to obtain a 
more accurate and robust classification. 

In particular, the training dataset is split into two distinct training 
sets: one for the level-0 model and the other for the level-1 model. The 
initial training set is utilized to train the base models. At the end of this 
phase, the base learners classify the data in the second training set, 
which contains new data for all the base learners. For each instance 
within the second training set, a set of possible classes equal to the 
number of base learners in the ensemble is generated. Subsequently, the 
level-1 model is trained on these new data to learn how to combine the 
information to obtain a more accurate classification. A visual repre
sentation of the stacking procedure is illustrated in Fig. 6. It is worth 
noting that better results can be obtained using simple models for the 
level-1 model. For instance, prior studies, such as those by (Ting and 
Witten, 1999; Džeroski and Ženko, 2004) demonstrated improved per
formance by utilizing linear models and model trees as level-1 models). 

StackingC represents a variant of stacking introduced by Seewald 
(2002) that aims to enhance the stacking performance in the context of 
multi-class classification problems. This modification is mainly built on 
Ting and Witten (1999), which uses a multi-response linear regression 
(MLR) model as level-1 model. In Ting and Witten (1999) the inputs of 
the MLR model were obtained by considering the class probabilities 
assigned by each base learner to the input instances. This information 
forms a table where rows represent data, and there are n sets of m col
umns, with n being the number of base learners and m representing the 
number of classes (Table 3 for a clarification). Each classifier provides 
probabilities for assigning the instance to each of the m classes. Seewald 

(2002), instead, gives as inputs to the MLR model m tables, one for each 
class, where only the class probabilities of the specified class were re
ported and the true belonging of the instance to the specified class were 
encoded as a 0–1 variable. Hence, Seewald trained the MLR model using 
m tables similar to Table 4. Obtaining better result when dealing with 
multi-class classification problems. 

3.5. Bagging 

Bagging was introduced in Breiman (1996) and it is an ensemble 
method in which the building block is a given classifier or predictor. In 
this paper the chosen classifier is the decision tree, however, due to the 
hierarchical nature of classification trees, if data are added or changed, 

Fig. 6. Ensemble model: stacking.  

Table 3 
Ting & Witten inputs for MLR.  

Classifier1 Classifier2 … Classifiern 

c1 … cm c1 … cm … c1 … cm 

P1,c11 … P2,cm1 P2,c11 … Pn,cm1 … Pn,c11 … Pn,cm1 

P1,c12 … P2,cm2 P2,c12 … Pn,cm2 … Pn,c12 … Pn,cm2 

⋮ ⋮ ⋮ ⋮       
P1,c1N … P2,cmN P2,c1N … Pn,cmN … Pn,c1N … Pn,cmN  

Table 4 
Seewald inputs for MLR.  

Classifier1 Classifier2 … Classifiern Class 

ci ci … ci = = ci? 
P1,ci1 P2,ci1 … Pn,cm1 1 
P1,ci2 P2,ci2 … Pn,cm2 0 
⋮ ⋮ ⋮ ⋮ ⋮ 
P1,ciN P2,ciN … Pn,cmN 1  
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these modifications will lead very easily to a different tree, therefore 
decision tree method suffers from high variance. Bagging is the solution 
to this problem, indeed Buhlmann and Yu (2002), Friedman and Hall 
(2007) showed that bagging presents smaller variance than simple de
cision trees. 

Bagging uses the fact that given n independent observations Z1,…,Zn, 
each with variance σ2, then the variance of the mean Z =

∑n
i=1Zi is equal 

to σ2

n . Hence, bagging reduces the variance by creating different decision 
trees, which have different classification rules, and then “averaging” the 
classification for the new data. More mathematically, in bagging a 
bootstrap is made on the training set (meaning that some groups of data 
are sampled from the dataset), in order to obtain D “new” datasets. Then, 
for each of these datasets, a decision tree is found, along with its clas
sification rule, say f̂ i(⋅) for i ∈ {1,…D}. Therefore, given a new data x, 
its predicted value is given by: 

f̂ bag(x) =
1
D

∑D

i=1
f̂ i(x) (6) 

In the case of classification trees, the above formula can be thought of 
as follows: the predicted class of x represents the most probable pre
diction among f̂ i(⋅) for i ∈ {1,…D}, therefore, is like looking at the 
histogram of the predictions and then choose the prediction with more 
votes. A picture of bagging procedure scheme is presented in Fig. 7. 

Random forest represents a variation of bagged trees. It was intro
duced independently by Ho (1995) and Amit and Geman (1994) and 
then developed by Breiman (2001). A random forest is a classifier con
sisting of a collection of tree-structured classifiers {f(x,Θk) , k = 1,…}

where the {Θk} are independent identically distributed random vectors, 
and each tree casts a unit vote for the most popular class at input x. 
Rephrasing, this definition says that a random forest is a bagging tree 
where in each split of each tree, m of the p variables are randomly 
sampled, and then the split is allowed to use only one of those m 

predictors (usually m ≈
̅̅̅p√ ). 

Supposing there exists one powerful predictor in the data set, along 
with many other moderately strong predictors, then most or all the trees 
of a bagged tree will use this strong predictor in the top split, leading to 
bagged trees that look like each other. This leads to a situation where the 
bagged trees closely resemble each other, resulting in highly correlated 
predictions. Furthermore, averaging over highly correlated quantities 
does not reduce the variance as much as considering uncorrelated 
quantities from the beginning. Consequently, random forests can be 
perceived as a refinement of the bagged tree approach. Furthermore, 
following Breiman (2001), with an increasing number of trees, the 
generalized error, denoted as PE*, converge to a certian value for nearly 
all sequences Θ1,…. 

ℙX,Y

(

ℙΘ(f (X,Θ) = Y ) − max
j∕=Y

ℙΘ(f (X,Θ) = j ) < 0
)

(7) 

Looking more carefully inside the parenthesis we can see that we 
compute the probability, given a fixed data X and a fixed class Y, with 
respect to all the Θ that the suitable class for X is different from Y, and 
then we compute this probability over all X and Y, so we are computing a 
general error over all X, Y and Θ. This result explains why random 
forests do not overfit as more trees are added but produce a limiting 
value of the generalization error. 

3.6. Evaluation metrics 

To evaluate the performance of the proposed models, several mea
surement metrics were employed, including accuracy, precision, recall, 
specificity, F1-score, Kappa statistic, and Matthews Correlation Coeffi
cient (MCC). The accuracy score measures the proportion of correct 
predictions among all predictions made by the model. Precision mea
sures the proportion of true positives among all positive predictions 
made by the model. Recall measures the proportion of corrected clas

Fig. 7. Ensemble model: bagging.  
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sified data among all the possible data belonging to the same class; 
therefore, it measures in percentage how a class of data is entirely 
correctly classified. Specificity represents the proportion of true nega
tives among all negative classified data. F1-score combines Precision 
and Recall measures through a harmonic mean. Kappa statistic measures 
how closely the instances are classified correctly, controlling for the 
accuracy of a random classifier as measured by the expected accuracy. 
MCC measures the difference between the predicted classifications and 
the true ones in case of unbalanced classes. All the measures described 
above are presented below using formulae, where TP represents the 
number of true positives, TN represents the number of true negatives, FP 
represents the number of false positives, and FN represents the number 
of false negatives. 

Accuracy =
TP + TN

TP + TN + FP + FN  

Precision =
TP

TP + FP  

Recall =
TP

TP + FN  

Specificity =
TN

TN + FP  

F1-score =
2⋅Precision⋅Recall
Precision + Recall  

Cohen′sKappa (κ) =
2(TP⋅TN − FP⋅FN)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)

MCC =
TP⋅TN − FP⋅FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

4. Results and discussion 

This section evaluates the performance of the proposed ensemble 
learning models by comparing them to two well-established benchmark 
models: LR and SVM. LR was first introduced in Cabrera (1994), while 
SVM was introduced in Vapnik and Chervonenkis (1974), and both 
models have since become foundational in the field of machine learning. 
Using these benchmark models as a reference point, the effectiveness of 
the proposed methods can be assessed. To compare the performance of 
the models, various measurement metrics are considered. Through this 
analysis, we can determine the superiority of the proposed ensemble 
models over the conventional models in predicting lithological classes. 

The initial dataset for this study consisted of 280 samples collected 
from the study area, representing eight distinct lithological classes 
described by 12 features, including coordinates and elemental compo
sitions resulting from geochemical analysis of rock samples. To ensure 
that subsequent analyses were based on a sufficiently large number of 
observations, classes with a sample size below 30 were removed. After 
applying this criterion, the final dataset contained 225 samples of four 
lithological classes. To avoid overfitting, the dataset was split into 

Fig. 8. The strategy workflow to analyze the proposed ensemble algorithms.  
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training and testing sets, accounting for 85 % and 15 % of the whole 
dataset, respectively. To further optimize model hyperparameters, a 
validation set was created, which accounted for 15 % of the training set 
(Fig. 8). These steps were taken to ensure the dataset's quality and 
consistency and improve the model's accuracy and generalization. 

The label-encoder technique was used to transform categorical var
iables into numerical values. The primary motivation for using a label 
encoder is the limitation of most machine learning algorithms in 
handling categorical variables directly. The use of the label-encoder can 
lead to improvements in model performance and accuracy, particularly 
in classification tasks. The label-encoder has advantages for multi-class 
classification because it can represent each class as a unique numerical 
value. This process can simplify the computation of defined algorithms. 

Boosting and bagging techniques employ decision tree models as 
their fundamental building blocks. This choice was made in order to 
align the base learner of these general techniques to the one used in the 
XGBoost and Random Forest algorithm. For this reason, in Table 5, 
instead of writing simply bagging, we prefer to specify that we used 
Bagged Decision Tree. Moreover, for a general boosting algorithm, the 
AdaBoost model is selected. For what concern stacking as level-0 models 
XGBoost and Random Forest were selected, which, as said before, are 
always based on decision trees, whereas an LR was applied as level-1 
model. Ultimately, in stockings, extreme tree, random forest, and deci
sion tree were implemented as level-0 models, while MLR opted for level- 
1 model. Furthermore, as explained in Section 3.4, the hole matrix of 
class probabilities was not used. Instead, submatrices were built and 
utilized to train the meta-learner to make the classification. 

RandomizedSearchCV was applied to find the optimal hyper
parameters in the proposed models. In this technique, the optimization 
of the hyperparameters is made randomly, meaning that for each 
hyperparameter, the algorithm will extract random values from a given 
probability density function. Given the non-finite nature of this algo
rithm, a maximum number of iterations should be imposed. Although 
RandomizedSearchCV usually provides more performing hyper
parameters leading to better results (Bergstra and Bengio, 2012), it is 
usually time-consuming. The selected hyperparameters for each model 
using this technique are shown in Table 5. 

Cross-validation is an important technique to optimize model per
formance and avoid overfitting in machine learning. In this study, we 
employed the repeated k-fold cross-validation method to evaluate the 
effectiveness of the proposed ensemble models in predicting lithological 
classes. As described in Ji-Hyun (2009), this method involves splitting 
the training set into k-folds, where each fold is considered a test set while 
the remaining k − 1 folds are used to train the model. This process is 
repeated multiple times, and the best-performing models are chosen. 

The repeated k-fold cross-validation method has several advantages 
over traditional methods such as leave-one-out or simple k-fold. One of 
the main advantages is its ability to provide a more accurate estimate of 
the model's performance, particularly for small datasets. This is because 
the repeated process reduces the high variability in model estimation in 
small datasets. By averaging the results obtained from multiple runs of 
the cross-validation process, the repeated k-fold cross-validation method 
allows for better model selection, which is essential for developing 
effective ensemble models. To assess the performance of each model, 
confusion matrices were generated (as shown in Fig. 10), which provide 
a summary of the classification model's effectiveness by comparing 
predicted and true labels of the test set. It is important to note that the 
confusion matrix as a visual representation of the model performance 
can provide a more detailed view of the model's performance compared 
to a single metric. The evaluation of the models was performed using 
various measurement metrics (3.6). These metrics enable a thorough 
assessment of each model's ability to predict the lithological classes, 
providing a comprehensive understanding of their performance. 

Table 6 provides a comprehensive overview of the models' perfor
mance, assessing various performance metrics. Notably, all proposed 
ensemble models demonstrate remarkable accuracy, with scores ranging 
from 96.00 % to 98.00 %. The highest accuracy score, 98.00 %, is 
achieved by the AdaBoost, Bagged Decision Trees, and StackingC 
models. These results underline the effectiveness of these models in 
correctly classifying lithological samples. In contrast, the LR model 
shows a lower accuracy score at 62.00 %, which suggests that it might 
not be the most suitable choice for this specific geological classification 
task. Examining the precision and recall scores reveals valuable insights 
into the models' performance. The stackingC model achieves the highest 
precision score, 98.35 %, closely followed by the AdaBoost and Bagged 
Decision Trees models, both with 98.15 %. This highlights the stackingC 
model's capability to minimize false positives, making it a strong 
candidate for precise lithological classification. Specificity demonstrates 
that AdaBoost and Bagged Decision Trees with scores of 99.50 % 
outperform stackingC with scores of 98.80 %. This result suggests that 
these models excel in correctly identifying non-target lithological clas
ses. The F1-score, a balance between precision and recall, is another 
critical indicator. StackingC achieves the highest F1-score of 98.10, 
which further emphasizes its balanced performance in minimizing both 
false positives and false negatives. In geological applications, this is 
particularly important as false positives can lead to significant errors in 
drilling and exploration operations. Additionally, Cohen's Kappa is an 
essential metric that measures the agreement between predicted and 
observed classifications. A higher Cohen's Kappa score indicates a 
stronger model. The stackingC, together with AdaBoost and Bagged 
Decision Trees models, with their high Cohen's Kappa score of 97.10 %, 
excels in achieving a substantial level of agreement between predictions 
and actual classifications, contributing to the reliability of the results. 
Moreover, the Matthews Correlation Coefficient (MCC) provides in
sights into the overall quality of the model's predictions. A higher MCC 
score suggests a more robust model performance. In this context, 
stackingC exhibits a significantly high MCC score of 93.70 %, empha
sizing its strong predictive capability. These results demonstrate the 
superiority of the stackingC model in lithological classification, making 
it a compelling choice for geological mapping and resource exploration 
tasks, followed closely by Bagged Decision Trees and AdaBoost. For an 
in-depth understanding of the models' performance, radar charts were 
provided, as depicted in Fig. 9. These charts provide a holistic view of 
the models' effectiveness across utilized metrics. 

Moreover, the confusion matrices were generated for each model to 
evaluate the models' performance in predicting the lithological classes 
(Fig. 10). These matrices present the predicted and actual labels of the 
test set and provide a detailed view of each model's performance. The 
Bagging and Boosting models had a high accuracy rate and correctly 
classified most samples in each class. On the other hand, the Random 
Forest model had a higher number of misclassifications for the Kar unit 

Table 5 
Hyperparameters for each model.  

Model Hyperparameter Value 

Logistic Regression C 1.0 
penalty elasticnet 
solver lbfgs 

Support Vector Machine C 1 
kernel rbf 
gamma auto 

Boosting n_estimators 800 
learning_rate 0.8 
algorithm SAMME 

XGboost n_estimators 800 
learning_rate 0.8 
max_depth 5.0 
subsample 1.0 

Bagged Decision Trees n_estimators 10 
max_samples 1.0 
max_features 0.8 

Random Forest n_estimators 200 
max_depth 10 
min_samples_split gini  
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among the ensemble models. The LR and SVM models had the lowest 
overall performance, with many misclassifications for all classes. 

The results of this study underscore the remarkable potential of 
ensemble learning techniques to significantly enhance lithological 
classification accuracy in the context of mineral exploration. Notably, 
stackingC is a top-performing model, surpassing the performances of the 
other introduced models across all evaluation metrics, positioning it as 
the most valuable model for this specific task. This is also highlighted by 
the agreement between stackingC class predictions and ground truth 
data in Fig. 11. Ensemble models are particularly effective at handling 
imbalanced datasets, such as the one used in this study, where some 
classes are much more dominant than others. Their impressive perfor
mance can be attributed to their capacity to aggregate predictions from 
multiple weak classifiers, thus reducing variance and enhancing the 
model's ability to generalize. Furthermore, these results also highlight 
the importance of choosing appropriate ML techniques for the specific 
task. Conventional methods like LR and SVM, commonly applied in 
classification tasks, exhibited poor performance in this study. This 
observation suggests that when dealing with intricate, high-dimensional 
data encountered in mineral exploration, more sophisticated models like 
ensemble learning techniques are better suited to yield accurate and 
reliable results. 

Nevertheless, it is essential to clarify that these methods have some 
limitations. Boosting techniques, such as AdaBoost and XGBoost, while 
offering improved accuracy and robustness, can be sensitive to noisy 
data and require careful hyperparameter tuning to prevent overfitting. 
Stacking, which combines the strengths of various models, can introduce 
increased computational complexity and become time-consuming due to 
the need to train, store, and combine multiple models. Likewise, 
Bagging, though beneficial for reducing variance, may also lead to 

higher computational demands. Furthermore, the interpretability of the 
ensemble models is more complicated than that of the conventional 
models with just one learner. Therefore, even if the ensemble learner 
performs better, it causes a loss of the physical interpretability of the 
classification. Despite these potential limitations, it is crucial to 
emphasize that the advantages of employing these ML techniques in 
lithological classification significantly outweigh their drawbacks. The 
key to a successful application lies in the diligent selection and fine- 
tuning of these models, taking into account the specific requirements 
and characteristics of the dataset. 

The findings presented in Fig. 11 offer a visual representation of the 
comparison between predicted and actual lithology classes utilizing 
conventional techniques, including LR, SVM, and best-performing 
model stacking techniques, emphasizing the critical role of accurate 
lithological classification in mineral exploration. The implication of 
these models extends to identifying potential mineralization in areas 
that traditional exploration methods may overlook. Nevertheless, it is 
essential to acknowledge that the performance of these models may vary 
based on each exploration site's unique geological and environmental 
conditions. Subsequent studies are imperative to comprehensively 
evaluate the effectiveness of these models in diverse contexts and 
determine their suitability for specific tasks. Beyond simply specifying 
potential mineral deposits, accurate classification enhances exploration 
efficiency, guides resource distribution, and reduces exploration costs. 
The adoption of ensemble learning techniques, such as Boosting, 
Stacking, and Bagging, significantly improves classification accuracy. 
However, a closer examination of this enhancement is revealed in the 
detailed performance metrics shown in Fig. 9. This figure visually pre
sents metrics performance for each model, highlighting their strengths 
and areas for improvement. Notably, the stackingC model outperformed 

Table 6 
Model performance comparison for predicting lithological classes– bolded values indicate top performance.  

Model Accuracy Precision Recall Specificity F1-score Cohen's Kappa MCC 

Logistic Regression  62.00  51.60  51.60  91.40  54.20  37.70  43.00 
Support Vector Machine  88.00  89.70  89.70  94.85  88.60  82.75  83.00 
AdaBoost  98.00  98.15  98.15  99.50  97.95  97.10  92.80 
Stacking  96.00  97.15  97.15  97.65  96.15  94.20  88.50 
Bagged Decision Trees  98.00  98.15  98.15  99.50  97.95  97.10  92.80 
XGBoost  96.00  97.15  97.15  97.65  96.15  94.20  88.50 
StackingC  98.00  98.35  98.35  98.80  98.10  97.10  93.70 
Random Forest  92.00  92.00  92.00  96.60  92.00  88.30  71.90  

Fig. 9. Comparative radar charts showcasing the performance of different models, highlighting strengths and weaknesses across diverse evaluation metrics.  
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all other models, showcasing a substantial improvement compared to 
conventional approaches. This comparison is important for gaining in
sights into each model's distinct contributions and refining strategies for 
future applications. 

In Fig. 11, the locations of the samples collected from the study area 
during field studies for geochemical analysis and microscopic section 
preparation is illustrated. This spatial distribution of samples, completes 
the understanding of integrating the predicted lithology onto a geolog
ical map. These additional figures examine the models' outputs aligning 
with the exploration site's unique geological features. Notably, the re
gions highlighted by misclassifications, mainly those identified by the 
LR model, offer valuable insights into areas that may benefit from 
further model optimization. This detailed analysis provides a compre
hensive perspective, enable to correlate misclassifications with specific 
geological conditions. The LR model shows room for improvement by 
misclassifying 19 units, highlighting an area for refinement. The SVM 
model outperforms with just 6 misclassified units, demonstrating 
enhanced performance. Impressively, the stackingC model aligns well 
with true lithology, except for a single exception marked on the map. 

This suggests that the stackingC model used in this study holds promise 
for enhancing geological maps. The overlap between predicted and 
actual lithology indicates its potential accuracy. The use of conventional 
approaches initially led to many misclassifications, but the subsequent 
adoption of ensemble models improved performance and results in this 
task. These findings underscore the effectiveness of ensemble learning 
techniques. Accurate geological maps, as demonstrated by these models, 
are crucial for successful geological and exploratory research. 

5. Conclusions 

In this study, the potential of ensemble learning models for litho
logical classification was extensively explored. The application of 
boosting, stacking, and bagging models demonstrated their ability to 
surpass conventional methods like LR and SVM. The findings underscore 
the valuable role of ensemble learning models in geoscience, with a 
specific emphasis on their importance in mineral exploration, where 
precise lithological classification is essential. Ensemble learning models 
exhibit a spectrum of advantages over traditional techniques, including 

Fig. 10. Confusion matrices for the proposed model (a) Logistic Regression; (b) Support Vector Machine; (c) Boosting; (d) Stacking; (e) Bagging; (f) XGBoost; (g) 
StackingC (h) Random Forest. 
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their proficiency in mitigating overfitting, enhancing generalization, 
and improving model performance. Future research could explore the 
potential of ensemble learning models such as dynamic ensemble neural 
networks for broader applications. Additionally, more research and in
vestigations can be conducted to refine these models, improve their 
generalization, and expand their scope of applications. It is important to 
emphasize that geological compositions may exhibit significant vari
ability across different locations within an area. Therefore, the model's 

predictions can be validated through field observations and ground truth 
lithology. 
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