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Abstract

The continuous and ubiquitous collection and exchange of data is at the foundation
of the current Web ecosystem. Many of these data may be of sensible kind, being
extracted by various means from users’ online activity — often with limited aware-
ness of the process by the users themselves. Users’ data are useful for a variety of
online and offline entities: advertisers can exploit knowledge on users’ preferences
to show them advertisements tailored on their needs on the webpages they visit,
marketers collect users’ data to find valuable information for their business activities.
One of the most prominent ways to collect users’ data are third-parties cookies.
They are small text files installed on users’ browsers by entities contacted on the
Web, containing identifiers that allow third-parties to follow the users along their
navigation of the Web.

The push of the industry towards an ever-increasing amount of collected data
collides with the right to privacy that should be guaranteed to Web users: collected
data can be used to infer private information about the users, by cross-checking
obtained data with other, public sources. In the past years, legislators have tried
to give users a larger control over the data that are extracted from their use of the
Web. This has led to the proliferation of Privacy Banners, that inform the users of
the agents and the purposes of the collection.

In this dissertation, we will discuss various aspects on implementing and mea-
suring privacy on the Web: we will start from the role of Privacy Banners in the
current Web ecosystem. We will study how users interact with the Banners, and
how crawling techniques that aim at taking measures of key metrics in the Web
must take into consideration Privacy Banners in order for their empirical estimates
to be accurate and close to real-world experience. Moreover, we will discuss the
Topics API, a possible solution that goes beyond third-party cookies, in an effort to
re-balance the trade-off between data utility and data privacy.



v

Finally, we will also introduce a study on the privacy properties of z-anonymity, a
data anonymization property and algorithm suited for streaming data anonymization.
We compare it with the well-known k-anonymity property, and evaluate the utility
loss needed to obtain desired levels of privacy.
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Chapter 1

Introduction

1.1 Online tracking on the Web

In the current Web ecosystem, most services monetize the content they offer via
online advertising. This has led to a massive, unprecedented collection of personal
data, which is essential for Interest-Based Advertising (IBA) and for marketing and
business analytics. This scenario created tension between the online industry and
users around their privacy.

The collection of personal information often relies on the use of cookies. Cookies
are pieces of text stored in a client’s browser. Two types of cookies exist: first-party
cookies (which are installed by the website that the user is actually visiting) and
third-party cookies (which are installed by separate entities that are hosted in the
visited website).

By retrieving previously set first-party cookies, a website can recognize the user
and improve one’s experience, e.g., by remembering the user’s language or the
preferred theme. However, third-party cookies (and more advanced mechanisms [1,
2]) are used to collect information about users, track them across different websites,
and leverage the information for not only personalized ads [3–7].

In the most common scenario, third-party cookies are set by trackers and adver-
tisers present on a great amount of websites. When a user visits the first website of
the like, trackers and advertisers install in the client a cookie containing a unique
identifier, together with the information that the user has visited such website. When



2 Introduction

the user visits a second website, trackers and advertisers can thus retrieve the cookie,
and update it with the new visited website. In this way, after few visits, trackers
and advertisers are able to reconstruct a profile of the user by observing the visited
websites and their topics. The obtained information can be used, for instance, to
show tailored advertisements to each user. However, this framework threatens users’
privacy [8].

On their hand, public bodies and regulators have started proposing and enforcing
regulations to govern the phenomenon. The European Union (EU) was the first to
enact a privacy law that applies to a large geographic region. With the 2009 “Cookie
Law” directive [9] all websites that use first-party or third-party cookies to track
users’ behaviour must obtain user consent via a Privacy Banner — and must not use
cookies the user has refused. In 2018, the introduction of the GDPR [10] brought to
more severe penalties against non-compliant websites.

The Privacy Banners represent a de facto barrier to experience the Web, both from
a human and an automated perspective. Either way, to explore the functionalities
offered by the Web it is not possible to ignore the Privacy Banners, as we will
extensively discuss in Chapter 3: on one side, users continuously face Privacy
Banners, and often accept all the conditions posed by websites (although easier
refusal options result in a larger share of rejections, as we discuss in Chapter 3.2). On
the other hand, assuming that users tend to accept cookies, we show that is imperative
for Web crawlers to take into consideration the Web scenario upon accepting the use
of cookies, because the retrieved metrics may change significantly (as we detail in
Chapter 3.4).

In this scenario, new IBA techniques are gaining momentum. In particular,
Google recently proposed the Topics API to replace third-party cookies as an arguably
more private way to provide advertisers valuable information. At the moment of
writing Google is planning to deploy the Topics API framework at large on Chrome
instances1: a thorough, independent analysis of the Topics API privacy guarantees is
thus urgent. We provide a first analysis in Chapter 4, describing the behaviour of
Topics API and showing that users in the framework suffer risk of re-identification
under a threat model that include two or more colluding websites.

1https://developer.chrome.com/blog/cookie-countdown-2023oct/, accessed on Monday 22nd Jan-
uary, 2024.

https://developer.chrome.com/blog/cookie-countdown-2023oct/


1.2 Privacy-Preserving Data Publishing 3

1.2 Privacy-Preserving Data Publishing

Online advertising is not the only purpose for which data can be collected on and
beyond the Web. Big data have opened new opportunities to collect, store, process
and, most of all, monetize data. This has created tension with privacy, especially
regarding information about individuals.

Anonymization, i.e., generalizing or removing identifying data of individuals,
is the classical approach to publish personal information. Thanks to this, Privacy-
Preserving Data Publishing (PPDP) has gained attention in the last decade [11].

In Chapter 5 of this thesis, we study the novel anonymization property called z-
anonymity, or z-anon for short, previously introduced in the context of Internet traffic
analysis. z-anon specifically targets the data stream scenario, aiming to guarantee
zero-delay release of data (hence the z). We suppose to receive a raw stream of data
in which users’ attributes (e.g., visited websites) arrive as they are generated. These
attributes are QIs, and may allow users’ re-identification. To prevent this, a new
attribute is released only if it was exposed by at least z−1 other individuals in the
past window ∆t.

Given the z-anon algorithm, we aim at understanding the privacy guarantees that
it offers. To do so, we compare its properties against those of k-anonymity, a well-
known static data anonymity property [12]. We use k-anonymity as a benchmark
because it is the privacy paradigm on which z-anon itself is based. We test how
the values of z relate to the probability of a user being being k-anonymized, under
different parameter settings.

1.3 Thesis outline

To sum up, the rest of the present thesis is organized as follows: in Chapter 2, we
present all the background work and knowledge concerning the topics of the thesis.
In Chapter 3, we will discuss the role that Privacy Banners have both in human
and crawling interaction with websites This chapter is mostly based on two works:
the first was presented at the 2023 TMA Conference [13], and the second published
on ACM Transactions on the Web [14]. In Chapter 4, we will discuss Google’s
Topics API privacy guarantees (extending the work presented at the 2023 Privacy
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Enhancing Symposium [15]), while in Chapter 5 we will study the privacy properties
of the z-anonymity streaming anonymization algorithm, and how it relates to the
well-established k-anonymity property. We drew the chapter mostly from two works
on the topics, the first presented at the 2020 IEEE International Conference on Big
Data (BigData) [16] and the second published on Performance Evaluation [17].
Finally, in Chapter 6 we will draw the final conclusions.

1.4 List of publications

The following list encompasses all the publications published as a Ph.D. candidate:

• z-anonymity: Zero-Delay Anonymization for Data Streams. Jha, Nikhil;
Favale, Thomas; Vassio, Luca; Trevisan, Martino; Mellia, Marco (2021). In:
2020 IEEE International Conference on Big Data (Big Data) [16].

• A PIMS Development Kit for New Personal Data Platforms. Jha, Nikhil;
Trevisan, Martino; Vassio, Luca; Mellia, Marco; Traverso, Stefano; Garcia-
Recuero, Alvaro; Laoutaris, Nikolaos; Mehrjoo, Amir; Azcoitia, Santiago
Andres; Rumin, Ruben Cuevas; Katevas, Kleomenis; Papadopoulos, Panagio-
tis; Kourtellis, Nicolas; Gonzalez, Roberto; Olivares, Xavi; Kalatzantonakis-
Jullien, George-Marios (2022). In: IEEE Internet Computing [18].

• The Internet with Privacy Policies: Measuring The Web Upon Consent.
Jha, Nikhil; Trevisan, Martino; Vassio, Luca; Mellia, Marco (2022). In: ACM
Transactions on the Web [14].

• Practical anonymization for data streams: z-anonymity and relation with
k-anonymity. Jha, Nikhil; Vassio, Luca; Trevisan, Martino; Leonardi, Emilio;
Mellia, Marco (2023). In: Performance Evaluation [17].

• I Refuse if You Let Me: Studying User Behavior with Privacy Banners
at Scale. ha, Nikhil; Trevisan, Martino; Mellia, Marco; Irarrazaval, Rodrigo;
Fernandez, Daniel (2023). In: 7th Network Traffic Measurement and Analysis
Conference (TMA). [13]
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• On the Robustness of Topics API to a Re-Identification Attack. Jha, Nikhil;
Trevisan, Martino; Leonardi, Emilio;Mellia, Marco (2023). In: 23rd Privacy
Enhancing Technologies Symposium (PETS2023) [15].



Chapter 2

Background

In this chapter, we will discuss the relevant related work for the thesis. The chapter is
organized as follows: in Chapter 2.1, we will present the past work in the field of the
use of tracking techniques on the Web, the role of the legislators and existing tools
that face the pervasiveness of Consent Banners on the Web. In Chapter 2.2, we will
introduce the interest-based advertising techniques that preceded the development of
Topics API. Finally, in Chapter 2.3, we will discuss related work in the context of
privacy-preserving stream data publishing.

2.1 Online tracking

Content providers on the Web often monetize the content they offer by using adver-
tisements. To increase their effectiveness, the so-called interest-based advertisement
(IBA) leverages users’ interests to provide targeted ads. This is possible thanks to
Web trackers, i.e., third-party services embedded in the webpages that gather users’
browsing history. Trackers are nowadays largely present on websites and reach the
majority of Web users [19, 20]. Trackers exploit cookies and advanced techniques to
enable the collection of personal information [21–23].

When a user visits a website for the first time, they have to interact with the
Privacy Banner, and, only after getting the explicit user’s consent, the website (and
any third party embedded in the website) could install cookies and start the data
collection. Privacy Banners, however, do not fully protect users in many cases [24].
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...
<button> Got it </button>

...

Before-Visit After-Visit

Fig. 2.1 Example of Privacy Banner on dailymail.co.uk. Only upon consent, trackers are
contacted and ads displayed.

2.1.1 The role of legislators

In this tangled picture, legislators started to regulate the ecosystem to avoid massive
indiscriminate tracking that may threaten users’ privacy. In 2013, the introduction of
the European Cookie Law [9] mandated websites to ask for informed consent before
using any profiling technology. This led to the proliferation of Privacy Banners [25].

Later, in May 2018, the General Data Protection Regulation (GDPR) [10] entered
into force in all European member states. GDPR is an extensive regulation on privacy,
aiming at protecting users’ privacy by imposing strict rules when handling personal
information. Unlike previous regulations, it sets severe fines and infringements that
could result in a fine of up to C10 million, or 2% of the firm’s worldwide annual
revenue, whichever amount is higher. Some websites have already been caught to
present legal violations in their Privacy Banner implementation [26] and a large
fraction have been shown to use tracking technologies before user consent [24, 27].
In the US, the California Consumer Privacy Act (CCPA) [28] enhances privacy rights
and consumer protection for California residents by requiring businesses to give
consumers notices about their privacy practices.

2.1.2 The human interaction with Privacy Banners

The GDPR has profoundly influenced the Internet user experience [27, 29–32], at
least for EU-based users, also defining severe sanctions for violators. Most websites
base their business model on advertising, which, in turn, requires that users accept the
use of cookies and the collection of personal data. Thus, some websites and CMPs
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Fig. 2.2 Percentage of websites containing at least one tracker for five European Top-Level
domains (from HTTPArchive). The black vertical line indicates the entry into force of the
GDPR.

make efforts to increase the cookie acceptance rate. As a result, most of the websites
now provide explicit Privacy Banners [33] and many adopt Consent Management
toolsets [34], making the website content difficult to access until visitors accept the
privacy policy. For example, Figure 2.1 shows the same news website homepage
before and after accepting the privacy policy. Only upon pressing the “Got it” button,
the website content is fully loaded and visible.

Recent research has shown that banners often nudge users to acceptance by
exploiting dark patterns in the user interface, if not openly disregarding GDPR’s
requirements [26], or making it difficult for users to exercise their rights [35]. They
also hinder automated web measurement, hiding the true content of a website, which
is visible only upon cookie acceptance [14].

Nudging includes offering the user a Accept All default button via intrusive
banners [36, 37], which is often the case [38] with websites presenting large pop-ups
or wall-style banners that cover most of the webpage content. Researches have
shown that apparently minor design choices have a significant effect on inducing the
user to accept the cookies [39–44].

In general, it has been shown that most users tend to ignore privacy-related
notices [45–47], up to getting annoyed by these. This behaviour has gone under the
name of “privacy paradox”: users claim to be concerned about their privacy, while at
the same time taking little actions to protect their data [48].
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2.1.3 The effect of Privacy Banners on Web measurements

Despite cases of misuse, the new regulations had a large impact on the web users
and complicate the measurement of the tracking ecosystem. A simple Web crawler
visiting the websites without accepting the privacy policies would offer a biased
picture, with no tracker and no ad being loaded. Hu et al. [49] already found
that the number of third-parties dropped by more than 10% after GDPR when
visiting websites automatically. Conversely, when using a dataset from 15 real users,
they measure no significant reduction in long-term numbers of third-party cookies.
Dabrowski et al. [29] draw similar conclusions, finding an apparent decrease in the
use of persistent cookies from 2016 to 2018. Sorensen et al. [50] testify a decreasing
trend in the number of third parties during 2018. I quantify this phenomenon in
Figure 2.2, using the HTTPArchive open dataset [51]. The curators of this dataset
maintain a list of top websites worldwide that they automatically visit using the
Google Chrome browser from a US-based server to store a copy of each visited
webpage. Using the tracker list detailed in Chapter 3.3, we report the percentage of
websites embedding one or more trackers for 5 European countries (simply using
the Top-Level Domain to identify the country).1 We restrict the analysis on those
websites that exist for the whole six years-long periods (9196 website in total).

Figure 2.2 could suggest that the introduction of the GDPR (the black vertical
line in May 2018) results in an abrupt decrease in the number of tracker-embedding
websites, a trend that continues up to the moment we write. However, as we will
show, these measurements are an artifact due to the GDPR itself. Indeed, the Web
crawler used by HTTPArchive can only capture the behavior of the websites as a
“first-time visitor”, before the user accepts any privacy policy. The crawler thus
misses third-party trackers and ads.

Research papers that rely on crawling large portions of the Web for different
reasons could be affected by the same bias in their measurements. For instance, this
would challenge the automatic measurement of the Web ecosystem on privacy [21, 52,
19, 20, 53, 54, 49, 22, 55, 23, 56] and counter-measurements [20, 57, 58]. Moreover,
this will also impact those works that rely on crawlers and headless browsers [59]
to quantify the impact in the wild of new technologies like SPDY, HTTP/2 [60–63],
4G/5G [64, 65], accelerating proxies [66–68], or generic benchmark solutions [69].

1The Top-Level Domain can sometimes be an inaccurate proxy for a website’s country. Here, our
goal is only to provide a qualitative picture.
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At last, even spiders and mirroring tools like Wayback Machine and HTTPArchive
may be affected if the website allows the visitor to access its content only after
accepting the privacy policy.

2.1.4 Tools managing Privacy Banners

Vallina et al. [70] are the first to consider the impact of the Privacy Banner presence.
First, they instruct a custom OpenWPM crawler to identify specific Privacy Banners,
and then they manually verify the results. Unfortunately, they solely focus on the
pornographic ecosystem, which they acknowledge to be rather different from the
Web at large, and thus their work can hardly generalize.

Recently, authors of [56] demonstrated that it is fundamental to consider the
complexity of the Web ecosystem and include internal pages in every measurement
study. They find a number of recent works that neglect internal pages and, as such,
might provide biased results. Yet, they ignore the complications due to Privacy
Banners. In Chapter 3, we aim at providing an extensive and thorough study of
their impact on the Web. Our goal is to enable the automatic study of webpage
characteristics as visitors would experience, assuming that most of them accept
the default privacy setting as offered by the Privacy Banner. Indeed, it has been
shown that most users tend to ignore privacy-related notices [45–47]. Considering
GDPR Privacy Banners, users tend to accept privacy policies when offered a default
button via intrusive banners that nudge users [36, 37], which is often the case [38]
with websites presenting large pop-ups or wall-style banners that cover most of the
webpage as seen in Figure 2.1.

For completeness, notice that cookies are among the simplest tracking mech-
anisms. Authors of [23] show how practices like cookie synchronization, cookie
leaking, and other profiling techniques like canvas fingerprinting are common in
today’s Web. Similarly, authors of [71] show how the crawling context, in terms of
vantage point and browser configuration, has a significant impact on the results. Our
work is orthogonal to these to obtain automatic, realistic, reliable and user-centric
measurements of the Web.

Focusing on automatic management of Privacy Banners, some browser add-
ons try to hide them by using a list of CSS selectors of known Privacy Banners.
The most popular add-ons of this kind are “I don’t care about cookies” [72] and
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“Remove Cookie Banners” [73]. Unfortunately, hiding the Privacy Banners has an
unpredictable behavior, in some cases falling back to privacy policies acceptance,
while, in other cases, triggering an opt-out choice. Other proposals, again in the
form of browser add-ons, try to explicitly opt-in or opt-out to cookies. For example,
“Ninja Cookie” [74] approves only cookies strictly needed to proceed on the website.
Conversely, Autoconsent [75] and Consent-O-Matic [76] use a set of predefined
rules to either opt-in or opt-out to cookies, according to the user configuration.

2.2 The Topics API

The implications of web tracking on users’ privacy have become more and more
debated by the industry [77] and by the research community [78, 4, 79].

Federated Learning of Cohorts (FLoC) has been the first public effort by Google
to go beyond the classical web tracking based on third-party cookies [80]. In FLoC,
users were grouped in cohorts according to the interests inferred by each one’s
browser. When asking for information about a user visiting a website, third parties
were offered the user’s cohort, from which they could have information about the
user’s interests. In the intention of the proposal, FLoC provided an acceptable utility
for the advertisers, while hiding the users (and thus, their identity) behind a group
of peers [81]. However, criticism arose around the easiness for first- and third-party
cookies to follow the user over time exploiting the sequence of cohorts to which
she belongs to isolate and thus identify her [82]. The attack can exploit browser
fingerprint to further improve its effectiveness [83]. FLoC’s privacy anonymity
properties can be broken in several ways [84]. As a response to the critics towards
FLoC, Google retired the proposal and conceived the Topics API, whose functioning
we describe in Chapter 4.

The Topics API exposes users’ profiles in terms of topics of interest to the
websites and advertising platforms.Past works already demonstrated that profiling
users based on their browsing activity can present severe risks to the privacy of the
users [79]. They can be identified with high probability based on the sequence of
visited websites [85–87]. Mitigation such as partitioned storage has been put in place
to limit the risk, but ways to bypass them exist [88].
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Specifically to the Topics API, the same threat we analyze has been already
identified by Epasto et al. [89] from Google. The authors carry out an information
theory analysis and conclude that the attack is hardly feasible.Thomson [90] from
Mozilla issued the first independent study on the privacy guarantees of Topics API,
elaborating on the conclusions by Epasto et al. [89]. He, again, used analytical
models and raised severe concerns about the offered privacy guarantees. Recently,
Carey et al. [91] from Google discuss the privacy implications of the Topics API.
They define a theoretical framework to determine re-identification risk and propose
the Asymmetric Weighted Hamming Attack (AWHA) for re-identification.

2.3 Data anonymization

On the Web and beyond, the increasing attention to Privacy-Preserving Data Pub-
lishing (PPDP) has led to the problem of providing anonymization guarantees to
streaming datasets. Most current solutions work with the concept of data batches,
i.e., the incoming data are first accumulated, then processed, and finally released
with a sizeable delay. Researchers have proposed several approaches during the
years that we summarize in the following.

2.3.1 Anonymizing static data

Anonymization, i.e., generalizing or removing identifying data of individuals, is
the classical approach to publish personal information. Thanks to this, Privacy-
Preserving Data Publishing (PPDP) has gained attention in the last decade [11].

Removing the users’ identifiers (name, social security number, phone number,
etc.) is insufficient to make a dataset anonymous. Indeed, an attacker can link
users’ apparently harmless attributes (such as gender, zip code, date of birth, etc.)
called quasi-identifiers (QIs) to some external knowledge. With that, the attacker can
re-identify the person and thus gain access to other sensible information available in
the dataset (disease, income, etc.) – called sensitive attributes (SAs) [92]. Famous is
the de-anonymization of the Netflix public dataset [93] based on the exploitation of
QIs.
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Researchers have defined several properties that data should satisfy to avoid re-
identification, among which the k-anonymity [12], or k-anon for short, has become
popular. It imposes that every user’s released piece of information (a record) should
correspond to at least k−1 other users, i.e., there are at least k−1 other users with
the same record. k-anon is conceived for tabular and static data; in other words, the
dataset must be completely available at anonymization time.

2.3.2 Anonymizing streaming data

Researchers have proposed extensions of k-anonymity to a streaming scenario, where
continuously incoming records are accumulated, processed in batches, and released
after an unavoidable delay [94]. When working with batches or microbatches,
popular approaches aim at guaranteeing k-anonymity independently in each batch.
Here, popular solutions are based on trees [95–97] or clustering [98, 99, 94, 100, 101].
The rationale behind them is roughly the same: firstly load the incoming records into
a structure and secondly release tuples for which k-anon is achieved. For instance,
authors of [102] design a solution in four steps: cluster arriving tuples, evaluate a
noisy centroid for each cluster, control the cluster size to manage concept drifts,
and finally release the tuples for those clusters where k-anon is verified. Delay is
inevitable with clusters needing to accumulate more data before the release. Authors
of [103] modify the attributes to steer a microaggregation process. Tuples are not
published as is, but they are first aggregated into clusters, whose only centroid is
published. The proposal in [104] uses instead a sliding window approach, where
tuples are processed to achieve anonymization using a noisy function. Again, data is
released only after a window of time.

Other works design approaches based on perturbation. Authors of [105] propose
to perturb the output stream as follows. When a user exposes a sensitive attribute,
the system publishes l−1 different sensitive attributes so that the attacker can find
the actual one with a probability 1/l. Authors of [106] also propose to replace
incoming tuples with sensitive-value sets. To build appropriate sets, they introduce
the concepts of semantic and sensitivity diversity. These two techniques allow zero-
delay anonymization, but the output streams are largely modified by the perturbation,
creating scalability issues too. Furthermore, no guarantees are provided that the
resulting release is k-anonymized.
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Considering suppression and generalization, authors of [107] propose two al-
gorithms to avoid a correlation analysis from transaction items. They use a sliding
window approach and aim to provide the data in the current window as output, after
guaranteeing it meets privacy constraints. Again, data is published as a continuous
stream, but only after one delay window. At last, researchers have spent some efforts
to reduce and factor the cost of the delay: Authors of [96] include the delay in the
concept of output quality, with a trade-off between data quality and batch size.

To the best of our knowledge, however, only [105] and [106] target the zero-delay
goal. In [105], input streams are anonymized immediately with counterfeit values.
In [106], m−1 random sensitive attributes are published with the original one.



Chapter 3

The impact of Privacy Banners on the
Web

Privacy banners are are an ever-present feature of one’s experience of the Web. Due
to the introduction of several regulations [9, 10, 28], websites have been forced to
show the users that visit them a Privacy Banner: by interacting with it, users can
detail their preferences regarding the use of cookies during their visit on the website.

The current chapter is divided in two part: in the first one (Chapter 3.1 and
Chapter 3.2), we present how users interact with Privacy Banners and how the design
choices of the banners influence users’ behaviours. In the second part (Chapter 3.3,
Chapter 3.4, and Chapter 3.5), we observe how ignoring the Privacy Banners may
cause a distorted understanding of the Web features.

The current chapter is mostly taken from two published articles: the first one
presented at the 2023 TMA Conference [13], the second one published on ACM
Transactions on the Web [14].

3.1 A Consent Management Platform’s data

3.1.1 The Privacy Banner

For what concerns users’ interaction with Privacy Banners, we rely on data collected
within a medium-sized Consent Management Platform (CMP). A CMP provides
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(a) Default banner without
the Reject All button.

(b) Banner with the
Reject All button.

Fig. 3.1 Privacy Banners presented to users.

Web developers with the ability to install a simple Privacy Banner to enable/disable
data collection via cookies or other advanced means. In our case, the banner takes
the form of a small overlay window that can be placed in different parts of the screen.
We show it in Figure 3.1. The shape is the same on both desktop and mobile devices.
The user is offered an Accept All button to accept all cookies at once and a Custom
Permissions button (Figure 3.1a). The latter brings the user to a second window
where they can select which cookies to accept from a short list of categories. These
include (i) necessary , (ii) statistical, (iii) preferential, and (iv) marketing cookies.
Necessary cookies cannot be deactivated as they are vital for the website operation.
Depending on the website, the Privacy Banner is shown on the top or on the bottom
of the webpage. In the latter case, the website administrator can choose to show it as
a rectangle (default behavior, as in Figure 3.1a) or in a square shape in the bottom-left
corner of the screen. At last, the banner offers direct links to the website cookie and
privacy policy. Both policies contain details about which data the site collects and
for what purposes, and which cookies the system uses, including third-party ones.

The Reject All button

The latest practices regarding cookie management in GDPR countries recommend
the Privacy Banners to offer a Reject All button. This is a consequence of the fine
imposed by CNIL (the French data protection authority) on Google and Facebook
in January 2022. 1 The two companies were fined for using confusing language in
their Privacy Banners, and for making it difficult to opt out of cookie usage. In fact,
it was not as easy to reject cookies as it was to accept them, and this was considered
a form of dark pattern that nudges users to provide their consent. Since the last week

1https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-
million-euros-non-compliance – accessed on Monday 22nd January, 2024

https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-million-euros-non-compliance
https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-million-euros-non-compliance
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of August 2022, the CMP analyzed in this study has updated its solution to offer a
Reject All button (Figure 3.1b). If selected, the system will disable all cookies
except the necessary ones. The button bears the text Reject All and has a similar
shape and style as the Custom Permissions button. This button is only shown to
visitors of GDPR countries after August 25, 2022.2

3.1.2 Data Collection

The CMP collects data when users interact with the Privacy Banner shown on a
website. The collection happens when the user submits their preference. No data
is collected if users do not perform any action on the banner. In details, after the
user’s selection, the CMP sets a necessary cookie on user’s browser to store their
preference, and logs data about the time of the visit, the website showing the banner,
which cookies the user accepted, the user agent offered by the browser, and the
user country of origin, obtained through the client IP /24 subnet geolocation via
the MaxMind GeoIP3 database.4 This information is necessary to implement the
functionalities of the platform (i.e., record user’s preferences for the next visits to
the website), and it is useful to customize the information provided to users (e.g.,
show the banner in different languages, show the Reject All button if needed), to
collect statistics about the usage of the platform, and to bill the website deploying
the CMP. All these pieces of information are documented in the privacy policy the
CMP offers to users.

Each user who submits (or changes) their preferences generates an entry in the
log, which we call interaction. Each entry is associated with a random user-id.
This makes it impossible to re-identify or track a user across different websites,
guaranteeing user’s privacy. To further protect the customers of the CMP, the website
name is also anonymized by replacing the domain name with a random identifier.

Ethical Aspects In this study, we adopted a lawful and ethical methodology for
data collection and processing. First of all, users who interact with the Privacy Banner
must accept technical cookies and thus the privacy policy. Indeed, technical cookies

2“GDPR countries” refers to any European country where the GDPR is in place. This includes
U.K. which adopted GDPR in the “Data Protection Act” in 2018.

3https://www.maxmind.com/
4We do not consider IPv6, as it generates negligible traffic.

https://www.maxmind.com/
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Table 3.1 Summary of the two periods we use to compare user behavior on Privacy Banners
with or without the Reject All button.

Period Start End Reject All button

Period A Jul 1, 2022 Aug 24, 2022 Not present

Period B Aug 25, 2022 Oct 4, 2022
Only for users
from GDPR countries

Table 3.2 Number of interactions per geographical region.

Region # of interactions % of interactions

Latin America 3 750 135 93.28%
North America 153 365 3.81%
GDPR-regulated 71 640 1.78%
Africa 31 917 0.79%
Asia 7 722 0.19%
Oceania 2 782 0.07%
Rest of Europe 2 691 0.07%

are mandatory to store the user’s choice. As said, the Privacy Banners explicitly list
“carrying out statistics, managing incidents or conducting market studies” as one
of the data collection purposes. Our work fits this purpose. Conversely, we do not
collect any data for those users who did not accept technical cookies and thus the
privacy policy. Second, we argue that the data we collect can hardly be considered
“personal data”. we only collect the /24 subnet and the user agent to extract user’s
country and device. Neither the /24 subnet nor the user agent are personal data and
do not carry information relating to an identified or identifiable natural person.

3.1.3 Data Pre-Processing

We conduct our analysis from the 1st of July 2022 to the beginning of October 2022.
In total, we observe 4 million interactions generated by users that interacted with
the CMP banner at least once on the 434 websites recorded during the three-month
measurement period. Most visitors (93%) are located in South America (where the
main business of the CMP is). The remaining ones come from other continents, and
we breakdown the audience provenience in Table 3.2. We consider and properly
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address this unbalance in the data for our upcoming analysis to provide results which
are not biased by the unequal distribution of countries.

Websites belong to different categories, including e-commerce portals and educa-
tional institutions. Globally, the CMP manages between 20 k to 30 k new interactions
on a daily basis – i.e., new users that come across the CMP Privacy Banner and
interact with it.

For each interaction, we compute the choice the user performed according to the
combination of accepted cookie categories. In details, we classify interactions as:

• Accepted-All: if all cookie categories were accepted, either with a single click
on the Accept All button, or by individually accepting all the cookies after
clicking on Custom Permissions button;

• Mandatory-Only: if only the necessary cookies were accepted, either by click-
ing Reject All button if present, or by manually deactivating all the cookies
after clicking on Custom Permissions (with the exception of necessary
cookies);

• Custom: if at least one among the optional statistical, preferential and market-
ing cookies was accepted through the Custom Permissions screen.

For simplicity, we introduce the class Reject-Some to indicate the union of
Mandatory-Only and Custom. These include all interactions but Accepted-All –
i.e., those in which the user did not accepted all cookies.

To analyze the impact of the presence of the Reject All button, we define
two measurement periods as detailed in Table 3.1. The first period extends from
the beginning of July to August 24, 2022. During this period, the Privacy Banner
only included the Accept All and Custom Permissions buttons as shown in
Figure 3.1a. We call it Period A. The second period starts on August 25, 2022 and
ends on October 4, 2022. Here, visitors from any GDPR-regulated countries face the
new version of the Privacy Banner with the additional Reject All button, sketched
in Figure 3.1b. We refer to this period as Period B. We use these two periods to
contrast user’s behavior with different options in the Privacy Banner. In particular,
our dataset allows us to measure the extent to which users reject cookies when the
banner provides an immediate opportunity to do so (or not).
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Fig. 3.2 The number of interactions for each website. The markers indicate the values for the
top-10 websites.

3.1.4 Dataset Analysis

We now briefly describe the dataset and detail the analysis methodology we design
to avoid possible bias in the study. The CMP is present on 434 websites that have a
very different audience. Some of them are very popular and generate more than 1 M
interactions in total. To characterize the website popularity, we show the volumes
of interactions per website in Figure 3.2. Sites are sorted in decreasing number of
interactions (notice the log scale on the y-axis). We observe that top websites receive
most of the interactions. We record 222 websites collecting less than 50 interactions.

Given the large imbalance in the website audience, we want to prevent large
websites from biasing the results. For this, we opt to show results using a website-
wise macro-average of the metrics under study. In other words, we compute the
desired metric separately for each website. Then we compute the average over
the websites. In such way, each website has the same weight in the final metric,
regardless of the number of interactions it received.

Formally, given a target metric M, a set of websites W , a population of interac-
tions on a website Iw, a function M (M, i) which return 1 if i refers to M, 0 otherwise
(e.g., whether interaction i records a Reject-Some choice or not), we define as M(I )

the website-wise macro-average of M computed over the samples belonging to the
subset I =

⋃
w∈W Iw:

M(I ) =
1
|W | ∑

w∈W

[
1
|Iw| ∑

i∈Iw

(M (M, i))

]
. (3.1)
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Fig. 3.3 Temporal evolution of the per-region Reject-Some rate.

Together with the macro-average, we also evaluate a confidence interval of such
average. Hence, each estimate is presented as:

M(I )± c · S (I )

|W | ,

where c corresponds to the quantile of a Student’s t-distribution with |W |− 1
degrees of freedom, and S (I ) is the sample standard deviation of each website-
wise average. In this work, we consider a confidence interval of 90% and report
the confidence interval as an error bar. As our main target metric we consider the
Reject-Some rate.

3.2 Users and Privacy Banners

We now first dissect user behaviour by geographic region and show the impact of
adding the Reject All button in GDPR countries. Next, we investigate the role of
other factors, such as user device and privacy banner position. Finally, we examine
the behaviour of users who have particular interactions with the Privacy Banners,
i.e., custom choices (Custom interactions) or access to the website privacy policy.
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3.2.1 Region-wise temporal analysis

We first show the evolution of the Reject-Some rate over time in Figure 3.3, separately
for the three most represented geographic regions in the dataset. Here, for each day,
we compute the Reject-Some rate for each website (and region) and then average the
values to obtain the macro average. Notice that it sums both the Mandatory-Only and
Custom rates. To avoid websites with very few interactions affecting the results, we
evaluated the per-day average only on the websites recording at least 10 interactions
on that day. We first observe that the rate exhibits a flat trend for North and Latin
America and settles to values in the order of 2%. In European countries where
GDPR is in force (solid red line), the Reject-Some rate is in the order of 3.5% until
August 24 and then jumps over 20%. This increase corresponds to the transition
between Period A and Period B and provides a first quantification of the impact of
the Reject All button. In the following, we will analyze this in depth.

Notice that new websites have become CMP customers during the observation
period (while few have left the CMP). The trend has been increasing over the months
as many new websites have been more numerous than desertions. While on the first
weeks of July 2022, we find approximately 50 websites every day with more than
50 interactions, on the first week of October 2022, this number increases to ≈ 120.
Finally, we observe that the Accepted-All, Custom and Mandatory-Only rates do not
depend on the website popularity. If we compute a linear regression using rank as
the independent variable and the rates as dependent variables, we obtain a first-order
regression coefficient very close to 0. Thus, we can exclude that website popularity
plays a role in how users interact with the Privacy Banner.

3.2.2 Geographic Region and Reject All

We compare the behaviour of users in different regions of the world. As described
in Chapter 3.1.3, the CMP implements a Privacy Banner that can take two forms,
during Period A and Period B.

In Figure 3.4 we provide a breakdown by different geographic regions of the
world for the two periods. We group countries by continent but partition Europe in
two subsets, considering i) the countries that are part of the European Union (EU)
where the General Data Protection Regulation (GDPR) is in force, and ii) all the
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Fig. 3.4 Users’ Reject-Some rate in different continents, before and after the introduction of
Reject All button in GDPR countries.

others. We consider the United Kingdom a GDPR-compliant country because it
has a nearly identical regulation. To ensure a fair comparison, we show only the
regions for which at least 10 websites had 10 interactions or more in both Period A
and Period B. The red bars show the Reject-Some rate during Period A; and the blue
bars during Period B. As described in Chapter 3.1.4, the values of the bars represent
the website-wise macro-average of the rate. Thus, each website has the same weight.
The vertical black lines indicate the 90% confidence interval for such average.

Starting from Period A (red bars), we do not observe significant differences
between regions when all users are shown the Privacy Banner as in Figure 3.1a, as
confidence interval bars overlap, with the exception of GDPR-regulated countries
and African countries. In all cases, the rate is primarily due to Mandatory-Only
interactions, while the percentage of Custom interactions is negligible (on the order
of 0.1-0.2%).

The blue bars in Figure 3.4 report the Reject-Some rate during Period B when
users from GDPR countries see the Privacy Banner with the additional Reject All
button as in Figure 3.1b. In these countries, grouped on the left of the figure, we
observe a sharp increase by a factor of four. The Reject-Some rate grows from 3.49%
to 20.56%. Non-overlapping error bars show this increase is statistically significant.
As expected, we do not observe any significant changes for the other geographic
regions as users still interact with the first version of the banner. Overall, this figure
shows how the design of the Privacy Banner influences users’ decisions. When it is
as easy to reject cookies as it is to accept them, more than one in five users chooses
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Fig. 3.5 Reject-Some rates according to user’s country, sorted in descending order by the rate
in Period B.

to reject them. As a consequence of CNIL fines on Google and Facebook, many
European websites and CMPs are implementing similar Reject All buttons. In
general, we can relate these results to the debate about dark patterns [26, 39]. Our
measurements confirm how the options present in the Privacy Banner can influence
users’ choices on cookies and reveal a nearly 5× increase in users rejecting cookies
when only a single click is required. We stress the importance of being able to
quantitatively evaluate said figures. It is interesting to observe that the large fraction
of users who opt out of cookies with such a Privacy Banner can somehow impact the
business of those portals that rely heavily on tracking and behavioural advertising.

Figure 3.5 further breaks down the above results by showing the Reject-Some
rate for different countries. To provide a solid picture, we again limit the analysis to
the countries for which we record at least 10 websites with at least 10 interactions
in both periods – showing the first 15 countries by descending Reject-Some rate in
Period B. The figure confirms the previous results. In Period A, we do not observe
significant differences in the Reject-Some rate between GDPR (France, Romania,
Germany, Spain and the UK) and non-GDPR countries. Indeed, confidence intervals
overlap. In Period B, conversely, with the insertion of the additional Reject All
button, we observe a significant increase in all GDPR-regulated countries, from a
∼ 3.5× in the UK and Germany (∼ 6% to ∼ 23%) to more than 7× in Portugal
(2.14% to 15.34%). As expected, there are no significant variations in other, non
GDPR-regulated countries.
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Fig. 3.6 Reject-Some rates according to users’ device.

Table 3.3 Relative distribution of used devices per region of connection.

Region Android iOS Desktop

GDPR-regulated 41.6% 40.5% 17.9%
Latin America 40.6% 38.9% 20.5%
North America 30.0% 44.8% 25.2%

3.2.3 User device type

We now move on to analyze the differences between users browsing the Web with
different types of devices. To this end, we categorize each interaction based on
the client-side User-Agent HTTP header, to obtain the operating system (OS) of
the user’s device. Considering that the experience of navigating websites is not
greatly affected by OS when using a PC, we group Windows, Mac OS, Linux and
other operating systems under the same Desktop category. Conversely, we divide
the mobile landscape into two main major categories: Android and iOS. Overall,
Desktop, iOS, Android represent the 21%, 39% and 40% of the entries, respectively.
Other mobile OSes are present in the dataset, but their volume is so low that we
neglect them. The region-wise device shares are overall homogeneous across the
regions and are reported in Table 3.3.

In Figure 3.6 we show the Reject-Some rate separately by OS. We target Period B
because our dataset contains the User-Agent field only after August 25, 2022.
For the non-GDPR regions, we choose North and Latin America as they are the
origin of the largest amount of interactions (see Table 3.2). We include a website in
the macro-average only if it collected at least 10 interaction in the target (website,
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Fig. 3.7 Reject-Some rates according to the position of the screen where the banner appears.

region) couple. Overall, the figure confirms the large difference between regions that
we discussed in Chapter 3.2.2. Moreover, it surprisingly shows that, in countries
subject to the GDPR, Android users are more likely to reject some cookies than
iOS users – see the first box group in Figure 3.6. One could argue that iOS users
feel safer than Android users due to Apple’s efforts to enforce and communicate
privacy-preserving technologies on its devices, but the data at our disposal do not
allow us to prove any hypothesis about it. This is nonetheless an interesting finding,
which offers a stimulating question for future work. The same consideration holds
for Latin America, while in North America, the averages have reversed roles. We
limit ourselves to observing these figures, while the search for the causes of this
behavior requires other data and possibly controlled experiments.

3.2.4 Banner size and position

We then investigate whether the shape and dimension of the banner presented to the
users impacts their behavior. Figure 3.7 shows the Reject-Some rate according to
the type of banner presented to the user. Let us recall that three types of banners
are offered by the CMP: a top-screen long and narrow banner (identified as Top), a
bottom-screen long and narrow banner (Bottom), and a bottom-left square banner
(Squared). Here we limit the analysis to Period B and areas that are not regulated
by the GDPR and for which we have a larger number of interactions. In fact, the
websites that use the Squared banner account for about 5%. Thus, they received
a number of interactions by GDPR countries that does not allow to draw solid
conclusions.
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Table 3.4 Breakdown of partial accept among categories of cookies.

Category of Cookies Acceptance Rate

Necessary 100.00 ± 0.00%
Statistics 58.42 ± 3.19%

Preferences 47.14 ± 3.23%
Marketing 22.10 ± 2.68%

Overall, Figure 3.7 seems to suggest there are not significant differences in
the way users interact with the banner with respect to its shape and position. Few
websites implement the Top banner, resulting in a large confidence interval.

Unfortunately, our data do not allow to track the behaviour and the volume of
users that neglect the Privacy Banner – i.e., do not interact at all with it. Thus, we
cannot measure whether the fraction of users interacting over the total visitors differs
according to the different position or shape of the banner.

3.2.5 Other behaviours

As observed in Chapter 3.2.2, users accessing the Custom Permissions screen are
in the order of a few percentage points. This confirms that the majority of users do
not bother taking precautions for their privacy if this requires more than one click.
In this section, we characterize the behavior of users dealing with advanced options.

Cherry-picking cookies

By clicking on the Custom Permissions button, users are offered the possibility to
give separate consent for different types of cookies. Out of 4 M user interactions of
our dataset, only 647 times users customized consent for different cookie categories
– i.e., provided a Custom consent. For completeness, in Table 3.4, we show the
acceptance rate for each category, uniquely for the 647 entries that correspond to
Custom consent. To evaluate confidence interval, we consider that the proportion of
users that accept a category of Cookies (e.g., Statistics) is an unbiased estimator of the
probability p of a Bernoulli random variable. Assuming that all the interactions are
independent repetitions of such random variable, we obtain the number of successes
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of a binomial random variable. We thus use binomial proportion confidence intervals,
with a confidence level of 90%.

Necessary cookies, represented in the first row of the table, are mandatory and,
therefore, cannot be disabled by the user as they are required for website operation.
Statistics cookies are the most accepted (58% of cases). These cookies are related
to analytics services that account for the number of accesses to the website and
monitor performance. Preference cookies, used to recognize users when they return
to the website, are accepted to a similar extent (47%). Finally, Marketing cookies
are most often rejected. Only 22% of users accepted them. These cookies include
web trackers and advertising platforms. Users tend to avoid them, and we can guess
that they are perceived as the most privacy intrusive.

Visualizing policies

We finally quantify the number of users who access the text of the policies regulating
the use of personal data in a website. Indeed, websites must offer the possibility
to access this information, and the CMP includes links to Cookie and Privacy
Policies. Unless the website implements some customization, the Cookie Policy
includes a brief explanation on the concept of cookie, information on the categories
of cookies collected by the CMP (Necessary, Statistics, Preferences, Marketing)
and their purpose. The Cookie Policy is presented as a small pop up (305 word
in its default formulation, in English) and the users do not leave the page they are
visiting. Conversely, clicking on the Privacy Policy opens a new webpage which can
be either hosted on the website or served by the CMP. The Privacy Policy contains
information about the use of personal data at large, of which the cookies represent
only a subsection. The policy includes, among the rest, information about the purpose
of data collection, the parties with which said data might be shared, the retention
policy of the data, etc.

Our dataset records all clicks on the Cookie Policy. Those on the Privacy Policy
are tracked only if the policy is hosted by the CMP, so we restrict our analysis to
approximately one-fourth of the total interactions. Again, due to the low number of
interactions of this type, we do not show the website-wise macro-average but provide
the overall numbers directly in Table 3.5, while the confidence interval are again
calculated using binomial proportion. The number of interactions in which a user
either clicks on at least one of the links is very low: 2,469, 0.24% of the total. Users
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Table 3.5 Number interactions related to users clicking or not on the Cookie Policy (CP) and
the Privacy Policy (PP). The last column indicates, the Reject-Some rate for the given set of
interactions.

PP clicks CP clicks Interactions Reject-Some rate
Yes Yes 349 7.45±2.75%
Yes No 944 6.04±1.52%
No Yes 1176 3.57±1.06%
No No 1011737 1.01±0.02%

who decide to read (or at least visualize) the policies appear more careful about their
privacy: those who click on both policies record a 7.45% Reject-Some rate, while
users who do not visualize any account for a value of only 1.01%. Although we
cannot prove that the Reject-Some rate increases because users read the policies,
there is at least a sizeable correlation between users’ interest in the policies and their
unconditional Accepted-All rate.

3.3 Priv-Accept design and testing

As we have extensively shown in Chapter 3.2, the percentage of users accepting
the privacy policies offered by the websites is a large fraction of the total. This
fact challenges the commonly accepted approach to automatically crawl websites to
measure the Web ecosystem on privacy [21, 52, 19, 53, 20, 54, 49, 22, 23, 55, 20, 57,
58] and performance [60, 61, 63, 62, 64, 65, 68, 66, 69]. These measurements are
typically carried out with headless browsers that access webpages and automatize
the collection of metadata and statistics. However, today, these measurements could
be biased and unrealistic, with the crawler observing possibly very different content
than what a user would get after accepting the privacy policies. In fact, the Privacy
Banners may hide the actual page content, and the browser may load additional
content only after the privacy policy acceptance.

We explicitly engineer Priv-Accept to fully automate the visit to websites and
collect statistics. The key element of Priv-Accept is its ability to identify the presence
of a Privacy Banner and automatically accept privacy policies. We aim at a practical
and effective approach to accept privacy policies through the offered button.
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To illustrate Priv-Accept operation, consider again Figure 2.1. A large Privacy
Banner appears on the first visit, and the user shall click on the “Got it” button to
access the webpage content. Priv-Accept has to locate this button and click on it
automatically. As a result, the website starts loading advertisements and contacting
trackers in the background. We refer to these two types of visits as Before-Accept
and After-Accept in the remainder of the chapter.

We implement Priv-Accept using the Selenium browser automation tool [59], the
de-facto standard for browser automation, using Google Chrome as browser. Given
a target URL, Priv-Accept carries out the following tasks:

1. It navigates to the URL with a fresh browser profile, i.e., with an empty cache
and cookie storage. This makes the visit the equivalent of a Before-Accept to
the website.

2. It inspects the Document Object Model (DOM) of the rendered webpage to
find a possible Accept-button in a Privacy Banner. For this, it matches a list
of keywords on the text of each node of the DOM. We identify an Accept-
button if we exactly match any of these keywords. For robustness, we remove
leading/trailing/repeated blank characters and the match is performed ignoring
the case. We do not use stemming, lemmatization or other techniques for text
processing given the specificity of the words to match and the need to support
multiple languages.

3. If Priv-Accept finds the Accept-button, it clicks on the corresponding DOM
element (typically a <button>, <href> or <span> element) to accept the
privacy policy and logs the success acceptance.

In the beginning, we built Priv-Accept to look for accept buttons through CSS
selectors combined with keywords as done in [70] and popular add-ons. However,
we soon observed that this methodology was too fragile as the use of selectors is
strongly CMP-specific and highly customizable by webmasters. The keyword-based
approach eases the generalization of the solution. Considering complexity, Priv-
Accept adds marginal overhead to the time required to visit a webpage. Only for very
complex webpages, iterating through all DOM elements may require some time, but
this is still less than the time needed to load and render the webpage by the browser.

During each visit, Priv-Accept stores metadata regarding the whole process in
a JSON log file. It includes details on all HTTP transactions and installed cookies.
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Moreover, it optionally takes screenshots of the webpage during the various phases
to allow manual verification.

Priv-Accept is highly customizable and offers the user various features. It
lets the user customize the declared User-Agent and browser language (in the
Accept-Language headers). Important to our analysis, it can be configured to run
a:

• Warm-up visit: to populate the browser cache.

• Before-Accept: to collect statistics on the webpage before accepting the privacy
policy, as a Naive Crawler would do.

• After-Accept: to collect statistics on the webpage as it appears after accepting
the privacy policy (if an Accept-button is found).

• Additional-Visits: to a number of webpages of the same website, randomly
choosing among the internal links.5 We visit internal pages both if Priv-Accept
finds the Accept-button and if it does not.

For each page visit, Priv-Accept collect several metadata. Considering QoE
metrics, here we focus on the Page Load Time, or OnLoad time [108]. It allows
us to compare the webpage rendering performance with and without privacy policy
acceptance. It is simpler and faster to compute than the SpeedIndex [109], allowing
large scale measurements. Notice that we neglect metrics that are not affected by the
presence of a Privacy Banner, such as the Time-to-first-byte (TTFB).

Notice that the After-Accept visit can only occur with a warm browser cache in
real cases since the browser would have first to complete the Before-Accept visit.
To fairly compare a Before-Accept and After-Accept, in our experiments we run a
preliminary Warm-up visit before the Before-Accept to fill the browser cache. This
lets us appreciate the eventual extra time to load additional components and fairly
compare the OnLoad on the two visits with the hot cache. Alternatively, Priv-Accept
can erase the HTTP cache and clean the socket pool upon each visit to compare
webpage performance with a cold cache.

Priv-Accept follows possible redirects during the visits and cases when a script
triggers a reload of the webpage. This allows us to manage cases in which the Privacy

5We define internal links as those having the same Fully Qualified Domain Name as the visited
website.
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Banner is hosted on a separate specific landing page than the actual website home
page. At last, to limit the impact of random delay due to webpage download and
rendering, Priv-Accept uses quite conservative timeouts before eventually abort the
visit. In detail, the DOM inspection starts 5 seconds after the OnLoad event. While
this clearly slows down the visit of multiple webpages, it maximizes the success rate.

To allow large-scale measurement campaigns, we containerize Priv-Accept using
the Docker container engine [110]. In the containerized version, we use Google
Chrome version 89 in headless mode and force it to use a standard User-Agent
instead of the pre-defined ChromeHeadless.6

3.3.1 Keyword Selection and Validation

At the core of Priv-Accept there is the list of keywords to be matched against the
webpage content to localize the clickable DOM element for accepting the privacy
policy. We thoroughly build this list manually in an iterative way. To handle different
languages, we build a list that includes keywords for each country we are interested
in. For this work, we focus on 5 European countries, namely France, Germany, Italy,
Spain, UK7, plus the US – which we use as an example of a large, extra-EU country
were privacy laws are in force. For each country, we pick the most popular websites
according to the Similarweb lists [111], a website-ranking service analogous to
Alexa.

First Round - keyword extraction from top websites

In the first round, for each of the 5 countries, we consider the top-200 websites that
have a Privacy Banner. We randomly choose half of these websites and manually visit
them (from Europe) to extract the accept keyword. In total, we visit 500 websites
and identify 186 unique keywords. We next instruct Priv-Accept to visit the other
half of websites and let it accept the privacy policy, if found. For those where it fails
(233 cases), we manually visit them to check i) if they have a Privacy Banner, and ii)
eventually to extract new keywords. With this, we identify 36 new keywords, 222 in
total. During these steps, we also check that the tool correctly accepts the policy.

6The containerized version is available on Docker Hub as martino90/priv-accept.
7In January 2021 UK has enforced the UK GDPR, with practically identical requirements.
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Second Round - testing and keyword increase

To evaluate the accuracy of Priv-Accept in the wild, we next consider 200 new
random websites for each country from the Similarweb lists, 1,000 websites in total.
We let Priv-Accept visit them and manually check the subset of 448 websites for
which Priv-Accept did not find (and accepted) a privacy policy. We depict the results
in Figure 3.8. Priv-Accept can accept the privacy policy in more than half of websites,
independently from the language. In 6−14% of cases, we find 36 new keywords –
that we promptly add to our list. Interestingly, we find a non-negligible portion of
websites (26−30%) that do not present any Privacy Banner. At last, Priv-Accept
fails to accept privacy in only 5− 8% of cases. Investigating further, this is due
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to some non-standard behavior of the webpage when accessed in headless mode.
For instance, some websites present a CAPTCHA when they detect an automated
visit; other websites return a blank webpage. This is a common problem for any
crawler-based measurement study [112]. For completeness, cases of False Positives
– i.e., Priv-Accept clicking on a wrong DOM element – are possible, although we
have not observed any in our manual validation tests.

At the end of the keyword list building phases, we collect a total of 258(186+
36+36) keywords obtained by manually visiting 1181(500+233+448) websites,
covering 6 languages.8 In Figure 3.9, we show the distribution of keyword appear-
ance frequency across the entire set of 12,277 Similarweb websites (see Chapter 3.3.3
for details on this list). The most common keyword is the string “Ok”. Red dots
indicate the portion of websites covered by the top-N keywords – i.e., the coverage
of the top-N words. The top keywords are very common (note the logarithmic scale
on the y-axis), with the top-10 that cover half of the websites. The top-98 keywords
cover 95% of the websites, while the remaining appear less than 10 times each in
the whole website set. Clearly, we expect the list of keywords to naturally grow as
the tail of the Figure 3.9 suggests. Notice indeed that more than 80 keywords have
been found on a single website. Curiously, we find complex strings like “I’m fine
with this” or “Alle auswählen, weiterlesen und unsere arbeit unterstützen”9.

3.3.2 Priv-Accept vs. Consent-O-Matic

We compare the effectiveness of Priv-Accept with Consent-O-Matic [76], the most
mature browser plugin designed to offer/deny consent to privacy policies automati-
cally. Unlike our tool, Consent-O-Matic exploits the presence of popular Consent
Management Platforms (CMP), services that take care of the management of users’
choices on behalf of the website. At the time of writing, Consent-O-Matic allows
managing Privacy Banners for 35 CMPs. To gauge its performance, we visit the
top-100 most popular websites with a Privacy Banner for the 5 countries using
a Chrome browser with the Consent-O-Matic plugin enabled. Consent-O-Matic
accepts the privacy policies in less than 35% of websites with Privacy Banner, and as
little as 17% and 20% for websites in Italy and UK, respectively. Here Priv-Accept
accepts the privacy policies on all websites by construction.

8In Spain, some websites are in Catalan, rather than in Spanish.
9Which translates to “Select all, keep reading and support our work”.
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Fig. 3.10 Privacy policy acceptance rate of Priv-Accept and Consent-O-Matic on 100 websites
per country.

We then run a second experiment considering another set of 100 websites ran-
domly picked from the Similarweb per country lists. We visit each website with
Priv-Accept and a Consent-O-Matic-enabled browser. Figure 3.10 summarizes the
comparison. Priv-Accept accepts the privacy policies in more than 50% of websites,
more than twice the success rate of Consent-O-Matic. These results are in line
with those of Figure 3.8. The remaining websites may not have a Privacy Banner,
fail to load, or use an unknown keyword. This testifies that the customization of
Privacy Banners makes it difficult to engineer a generic and simple solution. The
keyword-based strategy results more robust than the CMP-based approach (with
similar complexity in curating the lists).

3.3.3 Dataset and Tracker list

In the following, we use Priv-Accept to check the impact of using Priv-Accept when
doing large web measurement experiments. We targets a large set of websites popular
in France, Germany, Italy, Spain and US, using a test server located in our university
campus. For each of the 6 countries, we use the Similarweb lists to select the top-100
websites from 24 different categories – see Figure 3.16. These are the top-level
unique categories listed in the Similarweb page [113]. In total, we include 12,277
unique websites to visit (as the lists in different countries partially overlap). When
visiting websites of a given country, we set the Accept-Language header to indicate
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the appropriate locale and country language. This behavior can be configured in the
Priv-Accept configuration to allow further experimentation.

We run Priv-Accept on a single high-end server running 16 parallel instances
to speed up the crawl. We instrument it to run a test sequence, which consists in
a Warm-up visit, Before-Accept and After-Accept to the landing page, followed by
Additional-Visits to 5 randomly chosen internal pages – previous studies indeed show
that internal and landing pages have different properties [56]. For each website, we
repeat the test sequence 5 times, randomizing the order of websites to visit in each
repetition. Our main experimental campaign took place for two weeks on April
2021.

We run additional measurement campaigns to investigate specific aspects. To
understand whether Privacy Banners appear or have a different impact depending on
the visitor location, we repeat the above experiments using servers located in the US,
Brazil and Japan. We use Amazon Web Services to deploy on-demand servers on the
desired availability zone. Here, we aim to check if websites behave differently based
on the location of the visitors. Since we are using cloud servers, targeted websites
may wrongly recognise the test machines as not regular users and located them in a
generic or wrong country. While we cannot check this, we verified that the two most
popular commercial IP location databases (IP2Location10 and MaxMind11) map the
IP addresses of our crawlers to the correct country.

To offer a view on a larger number of websites, we visit the top-100,000 websites
according to the Tranco list [114]. Unfortunately, the Tranco list does not offer a
per-category and per-country rank. We run two separate test sequences: with warm
caches, doing (i) Warm-up visit, (ii) Before-Accept, and (iii) After-Accept. And with
cold caches, (i) Before-Accept, (ii) erase HTTP cache and clean socket pool and
(iii) After-Accept. Following this procedure, we ensure a fair comparison between
Before-Accept and After-Accept in the two scenarios. Recall that Priv-Accept allows
one to generate any combination of test sequence with warm/cold cache.

To observe how the presence of trackers changes, we rely on publicly-available
lists provided by Whotracksme [115] (a tracking-related open-data provider),
EasyPrivacy [116] (one of the lists at the core of AdBlock tracker-blocking strategy)
and AdGuard [117] (a popular ad-blocking tool). For robustness, we merge the three

10https://www.ip2location.com/
11https://www.maxmind.com/

https://www.ip2location.com/
https://www.maxmind.com/
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lists and consider as a potential tracker any third-party domain that appear in at least
two lists. In total, we obtain 1,497 domains that we consider tracking services.12

We finally record the presence of a tracker during a visit if the webpage embeds an
object from a tracking domain, and the latter installs a cookie with a lifetime longer
than one month [24] – commonly referred to as profiling cookie. As such, we divide
the HTTP transactions carried out during a visit in:

• First-Party: objects from the same domain of the target webpage.

• Third-Party: objects from a different domain than the target webpage.

• Trackers: objects from a Third-Party that is a tracking domain and sets a
profiling cookie.

3.4 Impact on Tracking

In this section of the chapter, we characterize how the Web tracking ecosystem
changes if observed with or without accepting the privacy policies. We break down
results by Third-Party/Tracker, by country and website category.

3.4.1 Third-Party and Tracker Pervasiveness

We first study the pervasiveness of Third-Parties and Trackers and check how it
varies when we measure it in a Before-Accept or After-Accept. Priv-Accept found
and accepted a Consent Banner on 63.2% of websites. Here, we aim at quantifying
the impact of privacy policy acceptance on European websites (10,542 in total) and
we exclude those websites exclusively popular in the US.

We first detail the top-15 most pervasive Third-Parties in Figure 3.11. The GDPR
mandates to obtain informed consent before starting to collect any personal data. As
such, Third-Parties may be seen as possibly offending services if activated before
accepting the privacy policy.13 With little surprise, the most pervasive Third-Party

12In the following, we identify them with their second-level domain name – i.e., a hostname
truncated after the second label. We handle the case of two-label country code TLDs such as co.uk.

13Here, we do not enter into the debate of what can be considered a Tracker.
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Fig. 3.11 Pervasiveness of the top-15 Third-Parties (percentage of sites they are in) on 10 542
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Fig. 3.12 Pervasiveness of the 342 identified Trackers (percentage of sites they are in) in
10 542 websites popular in Europe.
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is google-analytics.com. It grows from 61% to 74% in popularity on the After-
Accept. This value is surprisingly similar to what Metwalley et al. [118] found in
2016, when they found google-analytics.com appearing in 71% of websites. The
growth is also sizeable for other Google services such as googleadservices.com
and googlesyndication.com. Conversely, domains belonging to Content Delivery
Networks, such as cloudflare.com and cloudflare.net do not increase their
pervasiveness on the After-Accept, likely being not included in the mechanisms of
Consent Banners. Interestingly, only 3 out of the top-15 Third-Parties are Trackers
– i.e., present in our tracker list and setting a persistent cookie. doubleclick.net
and facebook.com are the most popular ones, with pervasiveness growing from
41% to 58% and from 24% to 39% on the After-Accept, respectively. They are
present in more than twice the number of websites than their first competitor
(quantserve.com). In Figure 3.11, we also report 95% confidence intervals. It
results that the sample proportion (in percentage) of pervasiveness of Third-Parties is
an unbiased estimator of the probability p of a Bernoulli random variable. Therefore,
by repeating a number of occurrences of a Bernoulli random variable equal to the
number of samples, we obtain the number of successes of a binomial random vari-
able. The confidence intervals become the classical binomial proportion confidence
intervals. For the sake of completeness, we report error bars also in the following
plots. Note, that, given the large number of samples, the confidence intervals are
very narrow and not overlapping between Before-Accept and After-Accept, except
for the case of cloudflare.com.

Focusing now on Trackers only, we show their pervasiveness in Figure 3.12. We
count 342 of them. The red curve shows the pervasiveness on the Before-Accept,
which is what a naive crawler would report. The blue curve shows how the figure
changes on the After-Accept. The Trackers on the x-axis are sorted in descending
order according to their pervasiveness on the Before-Accept– hence the Before-
Accept curve is monotonically decreasing, while the After-Accept is not. Note that
the figure has log-log axes to better show the large variability of Tracker popularity.
The increase in pervasiveness is general and includes both popular and infrequent
Trackers, reaching one order of magnitude in a some cases. On the After-Accept, the
number of Trackers that are present on 1% or more of websites grows from 40 to 90.

Here, the Spearman’s rank correlation is 0.90, indicating that the Tracker popu-
larity order is approximately the same before and after the privacy policy acceptance.
The difference is that their pervasiveness increases.
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Fig. 3.13 Trackers per website seen on the landing page.

As it emerges from Figure 3.12, many Trackers are widespread even on the Before-
Accept. This hints at a possibly wrong implementation of the GPDR regulation,
which mandates acquiring the visitor’s explicit consent before activating any tracking
mechanisms. To be precise, the presence of Trackers on the Before-Accept does not
necessarily entail a violation of the law. An analysis of the most popular cookies
reveals the presence of test cookies during the Before-Accept using a form similar
to test_cookie = CheckForPermission. Google Analytics is a notable example.
These cookies are just a check for the possibility of installing profiling cookies upon
the user’s acceptance. It is thus possible that the Before-Accept pervasiveness of
some Trackers includes cases in which only test cookies are actually used (curiously
with expiration date longer than a month). Here we limit to observe that often
Trackers set some (potentially) profiling cookies even on the Before-Accept.

3.4.2 Breakdown on Websites

We now detail the impact of accepting privacy policies on the number of Trackers
found in each website, breaking down our results by country and website category.

Analysis by country

Figure 3.13 shows websites (top 2,500 per country) sorted in descending order by
the number of contacted Trackers as measured in the Before-Accept (red curve). This
number tends to grow on the After-Accept (blue points), where we observe some
websites that present 50-70 more Trackers. To increase readability, in Figure 3.13, the
blue line reports the moving average (with a 100 window) of the number of contacted
Trackers on the After-Accept. Curiously, some websites that already include Trackers
in the Before-Accept include more Trackers in the After-Accept. This again may hint
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Fig. 3.14 Tracker penetration during different phases of a browsing sessions (top 2,500
websites per country).
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at a wrong implementation of the Consent Banner, which fails to hinder the presence
of offending Trackers. The increase is less remarkable for US-popular websites –
mainly due to the less widespread presence of Consent Banners.

To better quantify Tracker presence, we show the fraction of websites containing
at least one Tracker in Figure 3.14a. As in Figure 3.11, we report 95% confidence
interval on these sample proportions. About 50% of websites popular in European
countries already include at least one Tracker on Before-Accept. This happens more
frequently in the UK (63%) and less often in Germany (44%). Again, note that a
website embedding a Tracker on the Before-Accept does not necessarily represent a
violation of the GDPR, even if this can often be the case [24]. Interestingly, in the
US this figure is higher than in European countries. Recalling that the probability of
encountering a Consent Banner in the US is lower, this hints at a positive effect of
the GDPR on popular European websites. The percentage of websites containing
Trackers in the After-Accept grows for all European countries from a +11% increase
in the UK to +20% for Germany. Confidence intervals never overlap. This increase
is moderate (+5%) in the US, given the lower fraction of those websites having a
Consent Banner. We complete this analysis by reporting how this fraction increases
when performing 5 Additional-Visits as recommended in [56]. Our results confirm
this need, with the chance to observe at least one Tracker that further grows by 5%-
10% in Additional-Visits when compared to the After-Accept. Note that, considering
each country, none of the confidence intervals overlap between Before-Accept and
After-Accept and between After-Accept and Additional-Visits.

We next investigate the quantity of Trackers contacted while visiting websites in
Figure 3.14b, which shows the average number of Trackers contacted on the websites,
separately by country. Also in this case we report 95% confidence intervals. The
sample mean is an unbiased estimator of the true mean, and we can derive confidence
intervals through central limit theorem. For all countries, the average amount of
Trackers more than doubles on the After-Accept, and performing Additional-Visits
further increases this figure (with non-overlapping confidence intervals). In Italy,
for instance, this figure grows by a factor of 4 when comparing Before-Accept and
Additional-Visits. As previously noted, the behavior of US-popular websites differs
from the European: before acceptance, the number of Trackers is already higher
than in popular European websites, while it is comparable after. This hints that
popular websites in the United States may be less receptive to GDPR indications. On
the opposite side, German-popular websites appear to be the most observant of the
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regulations, installing Trackers only upon accepting the privacy policies. Afterwards,
they reach levels comparable to the other countries. In summary, European websites
use the same quantity of Trackers as US ones, although they are often contacted only
after accepting the privacy policy.

To appreciate the variation in the number of Trackers for those websites imple-
menting a Consent Banner, we deepen the analysis by showing separately websites
for which Priv-Accept has found (or not) a Consent Banner. Our goal is to show how
Tracker number varies on the Before-Accept and After-Accept for those websites
implementing the Consent Banner. Figure 3.14c shows the percentage of websites
with at least one Tracker, and Figure 3.14d shows the number of Trackers per website.
The dark red bars and blue bars show results on the Before-Accept and After-Accept
for those websites where Priv-Accept found a Consent Banner. As before, the in-
crease of Trackers is sizeable. For completeness, the light red bars report the same
measure for those websites where Priv-Accept did not find any Consent Banner.

We finally observe that the probabilistic nature of Web tracking and bidding
mechanisms results in a different number of Trackers contacted at each visit. To
obtain the most reliable measurements, we test each website 5 times, each time
visiting 5 internal pages. We note that measuring the fraction of websites containing
at least one Tracker (as in Figure 3.14a) is moderately impacted by the number
of tests. Indeed, when considering a single After-Accept per website, overall, we
find 69.1% of them containing one (or more) Trackers. Repeating 5 times the
test and considering whether we find at least one Tracker among all visits, this
percentage increases only to 70.0%. Similarly, the average number of Trackers
(as in Figure 3.14b), increases from 6.5 to 7.8. In Figure 3.15, we show how two
macroscopic tracking measurements vary with different number of repeated visits for
each website. The blue line in the figure shows the fraction of websites that contain
at least one Tracker when measured with an increasing number of test repetitions.

Analysis by category

We now break down the picture by category, showing the results in Figure 3.16. We
explicitly target websites of 24 categories, each containing the top-100 websites
for the considered countries. We sort categories from the highest to the lowest
percentage of websites with Trackers in Before-Accept. 95% confidence intervals
are reported on each bar.
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Fig. 3.15 Variation of tracker number with different numbers of repeated visits.

Starting from Figure 3.16a, we report the percentage of websites of a given
category that contain at least one Tracker. As before, there is a large increase from
Before-Accept to After-Accept. Exceptions are the Adult, Law and Government
and Gambling categories, where the confidence intervals overlap. For Adult this is
likely due to the low number of websites with Consent Banners (20%) and confirms
the peculiarity of the tracking ecosystem on Adult websites [70]. As previously
observed in Figure 3.14a, performing Additional-Visits further increases the chance
of encountering at least one Tracker, even though in this case the increase is limited
and we observe some overlaps between After-Accept and Additional-Visits confidence
intervals.

Moving to the number of trackers per website shown in Figure 3.16b, we observe
large increase in the After-Accept case, confirming that most Trackers appear only
after the user accepts the privacy policies and when visiting internal pages. Here,
differences across categories are all pronounced, with those categories that heavily
depend on advertisements (News and Media, Sports, Games, Arts and Entertainment)
that have to rely on a large number of Trackers to support behavioral advertisements.
This is noticeable already on the Before-Accept. For example, access to a News
website leads to contact 5.7 Trackers on average in Before-Accept. Here, Priv-Accept
successfully accepts the privacy policies in 87% of cases. Indeed, being News
websites very popular, they tend to correctly implement the privacy regulations and
to show a well-configured Consent Banner. Upon acceptance, suddenly, the number
of Trackers becomes almost 6 times higher (30.9 for News) and 9 times higher
when doing Additional-Visits (47.7 trackers on average). For Sport, Food and Drink



3.4 Impact on Tracking 45

News and Media
Sports

Home and Garden

Arts and Entertainment

Food and Drink

Hobbies and Leisure
Lifestyle

Pets and Animals

Jobs and Career

Gambling

Travel and Tourism
Vehicle

s

Computers and Technology

Reference Materials
Games

Community and Society
Health

E-commerce
and Shopping

Industry
and Engineering

Business and Services
Finance

Adult

Law and Government

Science and Education
0

25

50

75

100

W
eb

sit
es

W
ith

Tr
ac

ke
rs

[%
]

87% 69% 69% 61% 72% 50% 65% 61% 67% 51% 64% 69% 64% 57% 62% 51% 71% 64% 65% 64% 69% 20% 53% 50%
Consent Banner Found and Accepted

Before-Accept A�er-Accept Additional-Visits

(a) Percentage of websites embedding Trackers. The top x-axis details the fraction of websites in such
category where Priv-Accept found and accepted privacy policies.

News and Media

Reference Materials
Sports

Gambling

Pets and Animals
Games

Arts and Entertainment

Hobbies and Leisure

Food and Drink
Lifestyle

Computers and Technology

Community and Society
Vehicle

s

Home and Garden
Health

E-commerce
and Shopping

Jobs and Career

Business and Services

Industry
and Engineering

Travel and TourismFinance

Law and Government

Science and Education
Adult

0
5

10
15
20
25
30
35
40
45
50

Av
er

ag
eT

ra
ck

er
s

Pe
rW

eb
sit

e

Before-Accept A�er-Accept Additional-Visits

(b) Average number of Trackers per website.

Fig. 3.16 Trackers penetration and number on websites (top 2,500 per country) during
different phases of a browsing session, separately by category.
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and Arts and Entertainment the average number of Trackers more than triples in
After-Accept. Only for the Adult category confidence intervals overlap.

These numbers are particularly interesting if read in the perspective of recent
works. Englehardt et al. [53], in 2016, measured an average of 35 Trackers per
website on News websites. In 2021, we find similar numbers (30.9) on the After-
Accept, while, due to the spread of Consent Banners, on the Before-Accept we would
only find 5.7, on average. On Sport category, Englehardt et al. [53] measured 27
Trackers per website. In 2021, we find 21.0 on the After-Accept, while only 4.6 on
the Before-Accept. These results well highlight the need for correctly handling the
Consent Banners to observe the extensiveness of web tracking. In a nutshell, thanks
to Priv-Accept, we obtain the fundamentally different figure in the After-Accept and
Additional-Visits.

The case of Adult websites is worth a specific comment. Priv-Accept finds the
Consent Banner on only 20% of them, and a manual check on 50 of them confirms
that the large majority of them do not offer any Consent Banner. Tracking is also
limited upon acceptance, and the confidence intervals between Before-Accept and
After-Accept even overlap. Similar results were previously found by Vallina et
al. [70], where the authors suggest that the specialized pornographic advertisement
ecosystem may cause this behavior: usually, trackers and advertisers related to
pornographic websites do not operate outside of them – often evading popular
tracker lists.

3.4.3 Visits from Outside Europe

We now consider additional measurement campaigns using crawling servers in the
Amazon AWS data centers located in the US (Ohio and California), Japan and Brazil.
Figure 3.17 summarizes our findings. First, notice how Priv-Accept accepted privacy
policies on around 10% fewer websites (about 1150−1200) when run from outside
Europe, as reported on top x-labels. Checking the screenshot taken by Priv-Accept
during the visit on a random subset of these websites, we confirm that no Consent
Banner is displayed. We can conclude that some websites customize the Consent
Banners based on visitors’ properties, such as their location. If the visit comes from
not EU country, no Consent Banner is shown.
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Fig. 3.18 Percentage of websites with a Consent Banner and average Third-Parties per
website over the top-100 k websites in Tranco list, computed every 5,000 websites in the
rank.

This different behaviour of websites affects also the statistics of the fraction of
websites that embed trackers in the Before-Accept and After-Accept visits. Visiting
from outside Europe leads to an increase of Tracking on the Before-Accept in all
cases, while, on the After-Accept, changes are limited.

3.5 Impact on Complexity and Performance on Top-
100k Websites

In this section, we measure the impact of accepting privacy policies on the webpage
characteristics and loading performance. Trackers and Third-Party objects that the
browser has to load and display upon consent may impact the amount of data to
download and the rendering performance. Here, we do not restrict on a per-country



48 The impact of Privacy Banners on the Web

or per-category analysis and use the crawl on the top-100,000 websites according to
the Tranco global list.

For each website, we visit only the landing page, doing a Warm-up visit to fill
the browser cache, followed by a Before-Accept and After-Accept. We compare
results on the latter two visits, considering only those websites for which Priv-Accept
successfully accepted the privacy policy, which happens on 23% of websites. This is
in line with the previous findings, as the Tranco list is a worldwide rank and includes
(i) European websites in a language different from those for which we built the
keyword list and (ii) websites based in non-European countries for which regulations
do not apply. To give more insights, we detail the percentage of websites with a
Consent Banner on the Tranco list in Figure 3.18a, computed every 5,000 websites
in the rank. The solid red line reports the percentage for websites popular in the 5
European countries we target. Websites belong to this set if (i) they appear in the
Similarweb ranks for the 5 countries or (ii) the Top-Level Domain belongs to the 5
countries.14 Out of these 6,917 websites, Priv-Accept accepts the privacy policy on
3,861 (55.8%), which is close to what we have obtained with the Similarweb ranks
(54.7%). This percentage does not change with website popularity. Conversely, for
the remaining websites (blue dashed line), the share of websites where Priv-Accept
found a Consent Banner is 32% for the top-ranked and then it settles around 20%,
hinting that some globally popular websites tend to implement a Consent Banner
even if they are based outside Europe, using a language supported by Priv-Accept
(likely English). In 2020, Hills et al. [34] found that popular CMPs are present on
almost 10% of websites in the top-10 k Tranco list. Here, with Priv-Accept, we can
affirm that Consent Banners (regardless the employed CMP) appear in more than
30% for the same set of websites.

The high number of Consent Banners found for the 5 European countries reflects
in a large increase of the number of Third-Parties from the Before-Accept to the After-
Accept, as shown in Figure 3.18b. The solid red line highlights that these websites
already include, on average, 11.1 Third-Parties in the Before-Accept. In the After-
Accept, the average grows to 17.3. Differently, the increase for the non-EU websites
is smaller – see the area between the blue solid and dashed lines. In the Before-
Accept, Third-Parties are larger than for the 5 European countries if we compare
the solid blue and red lines. This is due to the larger presence of non-EU websites,

14The Tranco list does not provide a per-country rank.
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Fig. 3.19 Average number of Trackers per website (Tranco list).

which do not have to implement a Consent Banner. In the After-Accept (dashed blue
line), the increase is moderate, not reaching the values of the 5 European countries
(red dashed line), potentially because Priv-Accept misses many Accept-button in
non-supported languages and of possible custom tracking domains not present in our
lists. FigureFor the sake of completeness, Figure 3.19 shows the number of Trackers
instead of Third-Parties, providing similar insights.

3.5.1 Impact on Page Objects and Size

We focus on the webpage complexity in terms of bytes and objects to download.
We compute the ratio R between the measurement on the Before-Accept and After-
Accept, i.e., R = xAfter/xBefore, where x is the metric of interest. We show the results
in Figure 3.20a, separately for total downloaded bytes and objects. As expected,
accepting the privacy policy increases the webpage size (R > 1) by a sizeable factor.
For instance, about 9% of websites download more than twice the objects, and about
5% of websites sees an increase of 3 times or more.

Interestingly, we also observe some websites that are lighter in the After-Accept
than in the Before-Accept. Investigating further, these cases are mostly due to the
lack of additional content upon acceptance coupled with the saving of not loading
the CMP objects on the After-Accept. This happens commonly on those websites
that either add a Consent Banner despite not using tracking mechanisms, or that
contact Trackers and Third-Parties even before the user has accepted the privacy
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Fig. 3.20 Webpage characteristic before and upon consent to privacy policies (Tranco list).

policies. While the former might be seen as an excess of caution, the latter cases are
likely violating the privacy regulations.

To better characterize the differences, we quantify the number of Third-Parties
seen in the Before-Accept and After-Accept. We show the Empirical Complementary
Cumulative Distribution Function (ECCDF) in Figure 3.20b. On median, websites
rely on 12 Third-Parties on the Before-Accept. This figure grows to 17 on the
After-Accept. The ECCDF highlights the tail of the distribution where we observe
those websites that rely on a very large number of Third-Parties: the percentage
of websites with more than 50 grows from 1.8% to 9.2%, with 3.0% including
more than 75 Third-Parties upon acceptance. This growth in the number of Third-
Parties is mostly due to an increase of Trackers and objects related to advertisements
that gets loaded after accepting the privacy policy. We also perform statistical
tests to compare whether the mean and median of the two sample distributions
are statistically different at level 0.05 (t-Test for the mean and Mood’s test for the
median). Both result statistically significant in After-Accept.

Plotting the number of Trackers instead of Third-Parties, leading to similar
conclusions. We show it in Figure 3.21.

3.5.2 Impact on Page Load Time

The Third-Party domains appearing after acceptance are generally devoted to ad-
vertisements, analytics and Web tracking. Contacting them has direct implications
on the page load time and, indirectly, on the users’ QoE [108]. We thus expect this
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Fig. 3.22 OnLoad time of websites versus the increase of Third-Party number upon accep-
tance (Tranco list).

to cause an increase on the page load time because the browser has to resolve the
server name via DNS and contact more servers. For instance, this ultimately limits
the advantages offered by new protocols like the stream multiplexing and the header
compression offered by HTTP/2 and HTTP/3.

To gauge this, we dissect the webpage load time in Figure 3.22, comparing sepa-
rately visits with a warm cache (Figure 3.22a) and with a cold cache (Figure 3.22b).
The cardinality of each category is reported on the top axis of the left-most figure. In
case of warm cache, we run a Warm-up visit, then the Before-Accept and After-Accept.
In case of of cold cache, we run the Before-Accept without a Warm-up visit. Then
we erase the HTTP cache and socket pool, then we run the After-Accept.

We report the distributions of the onLoad time for websites with similar number
of additional Third-Parties that are loaded in the After-Accept. We use boxplots,
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where the boxes span from the first to the third quartile and whiskers from the 10th

to 90th percentile. The central stroke represents the median. The number of websites
in each set is detailed on the top the respective boxplot. As expected, the more
Third-Parties are loaded upon acceptance, the larger the time needed to load the
webpage and the larger its variability. Especially for the websites that add more than
10 Third-Parties, the distributions are remarkably different on the Before-Accept
and After-Accept. Considering visits with cold browser cache (Figure 3.22a), those
website with 20–50 additional Third-Parties, the median onLoad time passes from
0.91 to 1.41 seconds. The difference increases for the 632 websites adding more
than 50 Third-Parties upon acceptance. Here, the median onLoad time increases
from 1.35 to 3.38 seconds, more than doubling. Notice also the tail of 25% of
websites loading in more than 4.8 seconds, which happens in less than 2% of cases
during the Before-Accept. We already observed such an increase in our previous
study [57], where we measured that median onLoad time increases by 1.3s when
cookies policies are accepted. We statistically compare all these couples of sample
distributions between Before-Accept and After-Accept, testing differences in the
median at a significance level 0.05 (Mood’s test). The test is passed in all cases,
showing statistically significant differences.

Similar considerations hold for visits with a cold browser cache (Figure 3.22b).
As expected, with the clean cache, websites load time increases – compare values in
figs 3.22a and 3.22b. Those that do not add new Third-Parties tend to load slightly
faster on the After-Accept, potentially due to the absence of the Consent Banner.
In fact, differences are statistically significant in the median of the distributions
between Before-Accept and After-Accept, except for the group 1–10 additional Third-
Parties. Again, we observe that those adding several Third-Parties after acceptance
have much higher onLoad time on the After-Accept than on the Before-Accept: The
median onLoad time increases from 1.8 to 5.2 seconds. Finally, we observe that the
onLoad time values tend to be lower than what measured in older works, potentially
because of the advances of content delivery network and increased hardware and
software performance. Bocchi et al. [62] measured a median onLoad time of 3s in
2016 on a similar albeit smaller set of websites.



Chapter 4

The Topics API

As discussed in Chapter 2.2, Google has introduced the Topics API as a new proposal
to replace the third-party cookies framework. Given the role of its proponent in the
Web ecosystem, Topics API has the potential to affect a large portion of Web users
and websites. An analysis of its privacy properties is thus needed. In the following,
we will introduce the Topics API, how they work, what risks do they carry for the
privacy of the users — which they aim at preserving.

This chapter is mostly based on a conference paper presented at the 2023 Privacy
Enhancing Technologies Symposium [15], and an extended version currently under
revision at the time of writing [119].

4.1 The Topics API

In this section, we describe how the Topics API operates for creating a profile
from the user’s browsing history. We consider a browser that a user employs to
navigate the Internet.1 We assume time is divided into epochs of duration ∆T
(one week in the current proposed Topics API operation). During each epoch e,
the browser collects and counts the number of visits to each website and forms a
bag of websites Bu,e for the user u. It keeps track only of the website hostnames
the user intentionally visited, e.g., by typing its URL, or by clicking on a link
in a web page or other applications. Formally, given a user u and the epoch e,

1We intentionally confuse the terms user and browser to identify the person and the application
they use to navigate the Internet.
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Table 4.1 Main terminology to model Topics API algorithm and threat model.

Symbol Definition

ntopic Number of topics in the taxonomy
E Number of past epochs included in the profile
p Probability a random topic to replace a real topic
N Epochs of observation by the attacker
U User population set
λu,t Rate of visit by user u to topic t
Bu,e Bag of visited websites by user u at epoch e
Tu,e Bag of visited topics by user u at epoch e
Pu,e Profile for the user u at epoch e
Pu,e,w Exposed Profile to website w for user u at epoch e
Gu,N,w Global Reconstructed Profile by w after N epochs
R f

u,N,w Denoised Reconstructed Profile by w after N epochs with threshold f

let Bu,e = {(w1, f1,u,e),(w2, f2,u,e), . . . ,(wn, fn,u,e)}, where wi represent the visited
websites and fi,u,e the number of times u visited wi during epoch e.

The Topics API algorithm operates in the browser and processes the history of
Bu,e over the past E epochs to create a corresponding Exposed Profile Pu,e,w for the
user u, epoch e and each specific website w the user visits during the current epoch.
In fact, the browser builds a separate Exposed Profile for each visited website w to
mitigate re-identification attacks. We base the following description on the public
documentation of the Topics API available online.2 The operation of the Topics API
has the following steps.

Step 1 - From websites to topics For each of the websites wi ∈Bu,e, the browser
extracts a corresponding topic ti. To this end, the browser uses a Machine Learning
(ML) classifier model that returns the topic of a website given the characters and
strings that compose the website hostname. At this step, each browsing history
Bu,e is transformed into a topic history Tu,e = {(t1, f ′1,u,e),(t2, f ′2,u,e), . . . ,(tm, f ′m,u,e)}
where ti represents the topic the model outputs, and f ′i,u,e counts its total occurrences.
Each website is mapped to a topic and the original frequencies fi,u,e are summed
by topics into f ′j,u,e. There are ntopic which form a taxonomy of possible interests

2https://developer.chrome.com/docs/privacy-sandbox/topics/, accessed on Monday 22nd January,
2024

https://developer.chrome.com/docs/privacy-sandbox/topics/
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the users have. Such taxonomy will include between a few hundred and a few
thousand topics (the IAB Audience Taxonomy contains about 1,500 topics)3. In our
experiments, we employ the Google ML model implemented in Chrome. In its first
implementation, it supports ntopic = 349 topics4 and the model is based on a Neural
Network trained by Google using a manually curated set of 10,000 domains.5 It
leverages website hostnames only and neglects any other part of a URL.6

Step 2 - From Topics to Profiles Given the topic history Tu,e for user u at epoch
e, the browser selects the z most frequently visited topics and stores them into the
profile history Pu,e, which will be referred as the user u Profile at epoch e in the
following. If the topic history Tu,e contains less than z topics for a user u in epoch e,
the Topics API adds to the Profile Pu,e padding, random topics from the taxonomy
until z topics are included. z is currently set to 5.

Step 3 - Per-website topic selection The first time the user visits the website w, the
browser generates a Exposed Profile Pu,e,w. For each past epoch i ∈ {e−1, . . . ,e−
E}, the browser selects at random one topic t∗i from the profile history Pu,i. To
increase privacy guarantees, with probability p the browser replaces the topic t∗i
with a random topic trnd uniformly selected from the global topic list. p is currently
suggested to be 0.05. Pu,e,w contains thus at most E topics (a topic picked from
Pu,e−1, a topic from Pu,e−2, etc.). Once generated, the Exposed Profile remains the
same for the whole epoch e.

Usage by websites From this point on, each time the user visits the website w
during the current epoch, the website w may request the browser to share the current
Exposed Profile Pu,e,w and use the returned topics to provide behavioural advertising.
Notice that the Exposed Profile Pu,e,w is built only for websites intentionally (first-
party) visited by the user u. Any third-party service (e.g., a component embedded on

3https://iabtechlab.com/standards/audience-taxonomy/, accessed on Monday 22nd January, 2024
4https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v1.md, accessed on Mon-

day 22nd January, 2024
5Google announced a second version of the taxonomy (https://developer.chrome.com/blog/topics-

enhancements/). However, at the moment of writing, Google still has not released the code to map
websites to this second set of topics.

6The mapping from a website to a category is prone to inaccuracies and depends on the employed
ML model. Here we do not consider the implications of such errors. See https://developer.chrome.
com/docs/privacy-sandbox/topics/#classifier-model, accessed on Monday 22nd January, 2024

https://iabtechlab.com/standards/audience-taxonomy/
https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v1.md
https://developer.chrome.com/blog/topics-enhancements/
https://developer.chrome.com/blog/topics-enhancements/
https://developer.chrome.com/docs/privacy-sandbox/topics/#classifier-model
https://developer.chrome.com/docs/privacy-sandbox/topics/#classifier-model
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Fig. 4.1 Threat model sketch: An attacker leverages the Exposed Profiles obtained from the
Topics API to re-identify the same user in the population of two websites.

the webpage of site w, but hosted on a different domain) will receive topics of the
first-party websites w it is embedded into. That is, all trackers embedded into the
website w receive always the Exposed Profiles Pu,e,w of w.

Periodic Profile update At the beginning of the epoch e+1, the browser computes
the new profile history Pu,e+1 and discards Pu,e−E . Similarly, if and when the user
visits again the website w, the browser creates Pu,e+1,w from Pu,e,w: it includes a
new topic selected from Pu,e+1 (Step 3), and removes the oldest topic, i.e., the one
originally belonging to Pu,e−E+1 (keeping the others). This means that a website
continuously visited by a user can observe up to one new topic per epoch (and such
topic may be randomly extracted).

4.2 Attacks against the Topics API

4.2.1 Threat model

In this thesis, we consider the threat model introduced by the same proponents of
Topics API [89, 91] and discussed in a technical report by Mozilla [90]. In detail, we
consider the risk of re-identification — i.e., the possibility to link a Reconstructed
User Profile from an audience to a known individual; or that two websites use the
profiles to match people within their audiences. Such possibility has already been
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evaluated in the literature on similar contexts [85–87, 15]. We sketch the threat
model in Figure 4.1.

As in [89, 91], we assume that a website w uses first-party cookies to track a
user over time so that it can reconstruct the set of topics users in its audience are
interested in. Then, it matches the reconstructed profiles with the target profile of the
victim (or with all profiles of the second website audience).

In this threat model, the attacker accumulates the Exposed Profiles Pu,e,w over
epochs, overcoming the limitation introduced by Topics API to limit the Exposed
Profiles to at most one new topic per epoch, for at most E epochs. Let us assume
w observes its users u ∈U(w) for N epochs (i.e., epochs in [1,N]). At the end of
the process, for each user u, w builds the Global Reconstructed User Profile Gu,N,w,
where Gu,N,w = ∪e∈[1,N]Pu,e,w. 7 In the long run, the set of topics could act as an
identifier string (or fingerprint) for user u, enabling the re-identification process
either with the set of topics of a known user or with users from the audience U2 of
website w2.

Notice that this attack may be carried out by a third-party service s. In this case,
we assume some websites w1 and w2 collude with s. Both w1 and w2 embed s. They
both share with s the user identifier each time a user visits them. The third party then
builds Gu,N,w1 and Gu,N,w2 autonomously so that it can match the profiles of users in
both audiences.8

4.2.2 Random and Rare Topic Denoising

The Global Reconstructed Profile Gu,N,wi is noisy and unstable, as it is built directly
on the set of exposed topics. Indeed, some topics might be observed only once
on website w1 and never on w2, or vice versa. This could happen with i) random
topics used as replacements by the API (Step 3 of Section ??), ii) rare topics that

7Please note that by observing the exposed topics for N epochs, the attacker actually accumulates
N +E−1 observations (E in the first epoch, one in the others). We opted to simplify the notation by
assuming one topic per epoch, so that N epochs correspond to N topics observed.

8Notice not every third-party s will receive a topic. Only if s observed the user visit a site w
about the topic in question within the past E weeks, then s is allowed to receive such a topic (see
https://github.com/patcg-individual-drafts/topics). We ignore such limitation, i.e., we assume that the
third party s is pervasive enough to make this condition irrelevant because the third party is present
on the most popular websites, which will enable the reception of every topic. This is the case with
popular web trackers.

https://github.com/patcg-individual-drafts/topics
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seldom appear in the profile history Pu,e and thus are not consistently exposed to
both websites, iii) padding topics that fill the profile history Pu,e in case a user has
visited less than z topics in an epoch (Step 2 of Section ??). To prevent these topics
from hindering re-identification, the attacker uses filtering mechanisms to obtain
a Denoised Reconstructed Profile R f

u,N,wi
, where f is a threshold: the set R f

u,N,wi

contains only those topics that appear in at least f different weeks.

Preliminary studies on the Topics API, such as [90], mainly considered the need
for identifying the random topics in an Exposed Profile Pu,e,w by carrying out a
simple statistical test based on the number of times a topic is exposed by a user. The
author of [90] states that observing a topic more than once is sufficient to infer its
authenticity with high confidence. We further extend our previous work [15] which
considered a moving threshold by discussing the effect of single threshold values.

In this work, we consider a filtering threshold f , with the goal of filtering not only
random topics but any rare topics that might impair re-identification. We evaluate
different values of f , including f = 1 (no threshold). Intuitively, f should increase
with larger N, as rare topics have a greater chance of appearing multiple times. The
probability a given topic is exposed as a random topic is p/T . Thus, the probability
it is included in a profile with threshold f at epoch N as:

pabove( f ,N, p,T ) = 1−
f−1

∑
k=0

(
N
k

)( p
T

)k(
1− p

T

)N−k
.

With p = 0.05, T = 349, N = 30, and f = 2, the probability of a random topic t
being included in a profile is in the order of 10−8. Here, our goal is not only to
exclude random topics but also to filter out real-but-rare topics. In Section ??, we
show that this filtering is essential to achieve attack effectiveness.

4.2.3 The attacks

In this thesis, we consider two attacks, the Strict and the Loose attacks. We consider
two websites w1 and w2 with populations U1 and U2, with |U1|= |U2|= 1,000. By
construction, we include the same persona v (the victim) to both U1 and U2. We then
evaluate the probability of re-identifying v in w1 and w2.
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Strict Attack

In the Strict Attack, v is matched to v′ iff the following two conditions occur:

• w1 and w2 reconstruct the same Denoised Reconstructed Profile i.e., R f
v,N,w1

=

R f
v′,N,w2

.

• The Denoised Reconstructed Profile R f
v,N,w1

is unique in U1, and R f
v′,N,w2

is
unique in U2.

Let
PE := Prob

(
R f

v,N,w1
= R f

v,N,w2

)
,

where PE is the probability that v exposes the same Denoised Reconstructed profile
on both sites. Let

PU := Prob
(
R f

v,N,w1
unique in both U1 and U2

)
.

Note that, by construction, denoted with:

P(2|1)
U := Prob

(
R f

v,N,w1
unique in U2 |R f

v,N,w1
unique U1

)
and

P(1)
U := Prob

(
R f

v,N,w1
unique in U1

)
,

we have P(2|1)
U ·PU = P(1)

U .

Thus, the probability of correct re-identification, i.e., a True Positive (TP), can
be computed as:

Prob(correct re-identi f ication) = PE ·PU = PE ·P(1)
U ·P(2|1)

U

Similarly, let

PE =Prob
(
∃!v′ ∈U2, with v′ ̸= v : R f

v,N,w1
= R f

v′,N,w2
,

|R f
v,N,w1

unique in U1

)
.
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PE is the conditional probability of incorrect re-identification on the event
{R f

v,N,w1
is unique in U1}.

The probability of an incorrect re-identification, i.e., a False Positive (FP), be-
comes:

Prob(incorrect re-identi f ication) = P(1)
U ·PE .

In other words, given a match between two unique profiles v ∈U1 and v′ ∈U2, the
re-identification is successful and correct, i.e., a TP, if v′ = v. If instead v′ ̸= v, the
re-identification is successful but wrong, i.e., a FP.

Loose Attack

With respect to the Strict Attack, the Loose Attack adopts a different matching rule:
the attacker matches v and v′ if:

• The Denoised Reconstructed Profile on w1 is a subset of the Global Recon-
structe Profile on w2; and viceversa, i.e., R f

v,N,w1
⊆ Gv′,N,w2 and R f

v′,N,w2
⊆

Gv,N,w1 .

• No other user v′′ exists such that R f
v,N,w1

⊆ Gv′′,N,w2 and R f
v′′,N,w2

⊆ Gv,N,w1 .

As in the Strict Attack, we can compute the probability of a user being re-
identified as follows:

Prob(correct re-identi f ication) = P̂U ·PS,

where

PS := Prob({R f
v,N,w1

⊆ Gv,N,w2}∩{R
f
v,N,w2

⊆ Gv,N,w1})

and
P̂U := Prob(∩v′ ̸=v({R f

v,N,w1
̸⊆ Gv′,N,w2}∪{R

f
v′,N,w2

̸⊆ Gv,N,w1)}) (4.1)
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while

Prob(incorrect re-identi f ication) =

Prob(∃!v′ ∈U2, with v′ ̸= v : ({R f
v,N,w1

⊆ Gv′,N,w2}∪{R
f
v′,N,w2

⊆ Gv,N,w1)}).
(4.2)

Intuitively, the Loose Attack allows more flexibility in matching the same user
on different websites. For example, a user could expose a topic a different number of
times on two different websites, causing the threshold f to filter it in one of them. In
the Strict Attack, this would cause the user not being re-identifiable, while the Loose
Attack, taking into consideration both the Denoised Reconstructed Profile R f

u,N,w

and the Global Reconstructed Profile Gu,N,w, would be able to identify the profiles as
belonging to the same user.

On the other side, this flexibility comes with an increase in the number of false
positive matches.

Asymmetric Weighted Hamming Attack

For comparison, we consdier the Asymmetric Weighted Hamming Attack (AWHA)
introduced in [91]. Authors of [91] analytically prove offers optimal accuracy. —
although only under some specific assumptions.While leaving the details to the
original work, here we just present the main feature of the AWHA:

• For every user having visited website w1, the attacker computes the sequence
of exposed topics, keeping the temporal dimension.

• Among all the users having visited w2, the attacker chooses the one that
maximizes the similarity of two profiles by minimizing the weighted Hamming
distance of the two sequences.

• When comparing two users’ sequences, a weighted element-wise distance
is evaluated considering whether the two users have exposed the same topic
in epoch e, or not. The total distance between two users is the sum of the
element-wise distances.

• The user in w2 with the smallest weighted distance from the user in w1 is
matched.
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The AWHA always chooses a user u1 ∈U1 to match user u2 ∈U2. Contrary to
the Strict Attack and the Loose Attack, the AWHA algorithm always returns a match,
largely increasing the false positives as we will discuss in Chapter 4.5.1.

4.3 Dataset

To simulate the Topic API algorithm in a realistic environment, we rely on a dataset
of real browsing histories collected from a population of users who joined a Personal
Information Management System (PIMS).

4.3.1 Data collection methodology

In the context of the PIMCity project9, we designed, implemented and deployed a
fully-fledged online PIMS called EasyPIMS and opened it for experimentation [18].
A PIMS (Private Information Management System) is a framework which offers
users the possibility to upload their data and control over the purposes and the ways
their data are used. Using EasyPIMS, a simple web interface allows the users to
provide fine-grained consent for sharing the data with data buyers and eventually
to monetise their data in a marketplace. Among various types of data, the platform
allows users to share their browsing history by installing a browser plugin for Google
Chrome or Microsoft Edge on their PCs running any operating system. Such plugin
records all intentionally visited webpages and stores them in a central repository.
During the test of our PIMS, we recruited 3,369 volunteers who had the possibility
of using the platform for four months in 2022. Out of them 928 installed the plugin.
To join the PIMS, there was no restriction on the geographic area, and users belong to
35 different countries in Europe, Asia, and America. Considering the demographic
information of the population, 478 are male, 226 are female and 224 did not declare
their gender. The age ranges from 18 to 72 years, the average being 33.

In this chapter, we leverage the actual browsing histories of EasyPIMS users who
explicitly provided their consent for research purposes to the usage of their browsing
history and any personal data we use. 613 gave such permissions. Among those, we
restrict the population to those users that actively used the platform. Since the Topics

9https://www.pimcity-h2020.eu/, accessed on Monday 22nd January, 2024

https://www.pimcity-h2020.eu/
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Fig. 4.2 Characterization of topic visits.

API operates on a weekly basis, we consider a user to be active in a given week if
they visited at least 10 webpages. In total, we obtain 267 users that were active in at
least one week. We use the sequence of websites visited by these users for our study.

Ethical Aspects Our data collection process is compliant with ethical principles
and EU privacy regulations. EasyPIMS was part of a European Project involving
12 partners and the European Commission has approved all the data collection and
processing procedures. Users voluntarily participated, were informed, explicitly
opted-in via the PIMS web interface, and were rewarded by sweepstakes. We only
use data of users who explicitly provided their consent for research, which the
user has to select explicitly. Moreover, data processing has been carried out in
an anonymous fashion using a secure computing infrastructure running up-to-date
software and with restricted physical access to authorized personnel. During data
processing, we only process data regarding browsing histories, neglecting all other
attributes, such as name, gender, or geographic location.

4.3.2 Characterization of users and topics

In total, our dataset includes 2,813,283 webpage visits to 50,976 different websites.
The number of visits per user per week varies significantly, with some users using
the platform for a few weeks and others for the whole four-month experimental
period. Some users even installed the plugin on multiple browsers and devices (e.g.,
desktop and laptop PCs), increasing the amount of data collected by their account.
In median, active users access 222 web pages each week, with 26.1% of users that
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visit less than 50 pages; conversely, 14% of the users visit more than 1,000 pages.
Considering unique websites a user visits in a week, in median, active users access
30 different websites, while the 25th and 75th percentiles of the distribution are 10
and 71 websites, respectively.

Using the current implementation of the Topic API ML model Google opened
since Chrome 101, for each of the 50,976 websites w in our dataset, we extract the
corresponding topic t the API returns. We obtain 250 topics visited at least once by
a user in our dataset. In the following, we report the characterization of the topic
visits.

Focus first on the number of unique topics each user visited at least once during
the entire experimentation. This is useful to understand how complicated (and
unique) could be a Profile Pu,e. We report the ECDF in Figure 4.2a. The distribution
is quite spread: in the median users visit 36 topics, with the most diverse users
visiting more than 150 topics. Conversely, a handful of users visit less than 5 topics.
Not reported here for the sake of brevity, the median number of topics each user
visits per week is 17, with a maximum of about 70. Only less than 10% of users visit
less than 5 topics in some weeks.

Figure 4.2b reports the ratio of users visiting a given topic. The top 5 topics are
Search Engines, News, Arts & Entertainment, Internet & Telecom, and Business
& Industrial. The most popular topic is visited by 99,3% of users, while up to 100
(200) topics are visited by at least 10% (1%) of the users.

At last, we show the average rate of visits per topic in Figure 4.2c. We compute
first the rate of visits of user u to topic t λu,t = ∑e f ′t,u,e/T , being T the total activity
time (discretized by weeks) of user u in the whole observation window. Then, we
compute the average rate of visits among the subset U|t of users that visited the topic
t as

λt = ∑
u∈U|t

λu,t

|U|t |
(4.3)

Notice a topic that is globally unpopular can still sizeably appear in the Profile of
those few users frequently visiting such topic. In fact, the construction of the topic
history Tu,e depends on the rate of visits λu,t the user u has for the topics t she/he
is interested in during the e-th epoch. Our dataset allows us to estimate λu,t for all
users.
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Overall, we believe these figures reflect the natural variability of users. Despite
being limited, our dataset includes a real population of users browsing the web,
with different interests, backgrounds, nationalities, etc. Unfortunately, we cannot
advocate our dataset is representative of general human behaviour and we do not
exclude it may be biased in some direction such as gender or education. We use it to
study the impact of the Topic API algorithm to prevent an attacker from mounting a
re-identification attack.

In the following, we present two models that allow us to generate some possible
realistic population U and to study the probability two websites can link the profile
of the same user.

4.4 Population models

We consider two models for the generation of the users U that extend and generalize
a mere trace-driven approach that replicates the browsing pattern of each user in our
dataset. The models allow us to generate an artificial population U of any desired size
|U |: the first model generates personas with the same first-order statistical properties
of the users in the trace; the second model combines the visiting rates of the users in
our dataset.

Real Users We consider each of the 268 users in the dataset. A user is characterized
by a list of visit rates λu,t for all t = 1,2, . . . ,ntopic. λu,t is calculated by averaging
the occurrences f ′t,u,e along the period in which the user u has been active in our
collection system. λu,t = 0 if the given user never visited topic t.

I.I.D. Personas We create a population of independent and identically distributed
(i.i.d.) personas obeying the same marginal statistics as the set of real users from
our dataset. To this end, we leverage (i) the marginal ECDF of the number of
topics per user (Figure 4.2a), (ii) the marginal empirical distribution of the topic
popularity (Figure 4.2b), and (iii) the average empirical rate of visits for each topic
λt (Figure 4.2c). In such a way, we can create a population of any size |U | that
shares the same first-order statistical properties as the population of our dataset. We
adopt the inverse transform sampling method [120] for the generation of the random
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variable that follows a known ECDF. In detail, we generate a persona u according to
a three-step process:

1. We extract the number of topics cu the persona is interested in from the
empirical marginal distribution of the number of topics per user (Figure 4.2a).

2. We choose the set of the topics Cu = {ti}, i = 1,2, . . . ,cu by extracting with no
repetitions cu topics from the normalized version of the empirical distribution
of the topic popularity (Figure 4.2b).

3. For each t ∈Cu, we assign an effective visit rate λt from Equation 4.3, which
equals the average empirical visiting rate (Figure 4.2c).

Notice that in step 2 we select each topic essentially independently (just disregarding
possible repetitions). This breaks existing correlations among topics and may appear
in part unrealistic. In fact, it is known that real users show highly-correlated interests
which reflects in highly-correlated topics [121]. The resulting personas in U have
instead all the same statistical properties, increasing the probability of having similar
profiles. As such this model is a rather pessimistic scenario for the attacker.

Crossover Personas We generate each persona u according to the biologically-
inspired crossover procedure during the generation of offspring. We start the process
from the population U∗ of Real Users. We then randomly select two parent indi-
viduals p0 and p1 from U∗ and generate a new persona u. It inherits part of the
genome (i.e., visit rates to topics) from p0 and part from p1. For this, we generate
a binary mask and assign the rate of p0 (p1) if the corresponding bit is true (false).
In this third model, the correlation of the appearance of topics is stronger than in
the previous case. For this, we expect this scenario to be optimistic for the attacker
since the uniqueness of personas is boosted by making them more heterogeneous
and easier to re-identify.

4.4.1 Simulation of visits and profile creation

Given the population U , we assume each persona u visits topic t according to a
homogeneous Poisson process with the assigned rate λu,t . At each epoch e, for each
topic t and persona u, we thus extract a Poisson-distributed random variable that
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represents the number of visits user u performs to t. This allows us to obtain the topic
history Tu,e, and from it the Profile history Pu,e which contains only the top-z topics
(Step 2 of Topic API algorithm). Next, we generate the Exposed Profile Pu,e,w,
possibly offering w a random topic instead of a real top topic (Step 3).

By repeating the periodic profile update procedure at the beginning of each
epoch e+ 1, we simulate the process for N epochs so that, at the end, w fills the
Denoised Reconstructed Profile Ru,N,w for each persona u ∈U after filtering the
Global Reconstructed Profile Gu,N,w.

4.5 Results

In this section, we illustrate the results of our study. We first compare the effective-
ness of the different attacks presented in Chapter 4.2. Then, we evaluate how the
probability of a user being re-identified changes according to the denoising threshold
chosen and the number of users in the system.

In the following, where not expressly otherwise stated, we set the denoising
threshold f = 2 and consider the Google suggested values for the Topic API parame-
ters (z = 5, E = 3, p = 0.05,∆T = 1 week). We repeat each experiment 10 times
and report the average performance. As introduced in Chapter 4.2.1, we consider
two websites w1 and w2 aiming at re-identifying a user based on the topics that
each website has observed. As a reference metric, we consider the ratio of users
that each attack correctly matches between two websites, and define it as Prob(re-
identification). Similarly, we define Prob(incorrect re-identification) as the ratio of
incorrect matches.

4.5.1 Comparison of attack models

We first compare the performance of the three attacks presented in Chapter 4.2,
and show the results in Figure 4.3, where the x-axis represents different epochs
and the y-axis the reidentification probability Prob(re-identification). As expected,
increasing the number of epochs, all attacks become more effective and the Prob(re-
identification) increases. Overall, the Loose Attack (blue line) shows to have up to
4× better performance with respect to the Strict Attack (red line) and the AWHA
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Fig. 4.3 Probability of a user being correctly re-identified across the epochs, by the means of
different attacks.

0 10 20 30 40

N

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

(in
co

rr
ec

tr
e-

id
en

ti�
ca

tio
n) Strict A�ack

Loose A�ack

(a) I.I.D. personas.

0 10 20 30 40

N

0.00

0.02

0.04

0.06

0.08

0.10
Pr

ob
(in

co
rr

ec
tr

e-
id

en
ti�

ca
tio

n) Strict A�ack
Loose A�ack

(b) Crossover personas.

Fig. 4.4 Probability of a user being incorrectly matched across the epochs, with the Strict
Attack and Loose Attack.

(green line), reaching around 25% in Prob(re-identification) after N = 30 epochs and
almost 28% after N = 40 epochs, for I.I.D. personas (Figure 4.3a) and almost 38% for
Crossover personas (Figure 4.3b). With Crossover personas Prob(re-identification)
moderately improves, as personas are, by construction, more heterogeneous. As men-
tioned in Chapter 4.2, the Loose Attack has a larger flexibility than the Strict Attack,
allowing the attacker to account for behaviours that can affect the performance of the
Strict Attack: e.g., a topic overcoming the denoising threshold on website w1, while
not being able to do so in w2. The other two attacks achieve worse performances,
below 10% (20% with Crossover personas). The likelihood-based AWHA proposed
by [91], although the better Prob(re-identification) in the very first epochs, grows
slower with time than the other two attacks.

While Figure 4.3 shows the probability an attacker correctly identifies the same
user on w1 and w2, an incorrect re-identification may happen. In other words, the
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attack provides a match for the target user, but with an incorrect user from the
other website. We show the probability of this event (i.e., the Prob(incorrect re-
identification)) for the Strict Attack and the Loose Attack in Figure 4.4. Since the
AWHA attack always matches a user’s profile with the most likely profile on the
other website, the rate of users incorrectly matched is complementary to the number
of users correctly matched. This does not happen in the Strict Attack and Loose
Attack, where the attack matches no profile if the conditions are not met. Thus,
the ratio of incorrectly matched users for AWHA would largely outnumber the one
of Strict Attack and Loose Attack, and therefore we choose not to display them in
Figure 4.4.

Both the Strict Attack and the Loose Attack show an increase in the
Prob(incorrect re-identification) in the first epochs, peaking between N = 5 and
N = 15. In this phase, users’ profiles are still very similar one to the other, causing
more users to be incorrectly matched. Increasing the epochs, the attacker builds a
richer (and thus more unique) profile and improves the re-identification chances:
after N = 30 epochs, with I.I.D. personas, the error rate is around 4%, while the
Prob(re-identification) increases above 20%. For the Strict Attack, the Prob(incorrect
re-identification) never exceeds 2%, converging toward 0% with Crossover personas
and 1% with I.I.D. personas. This confirms that the Strict Attack is more conservative
than Loose Attack in providing a match, but those matches are more accurate. In
summary, with enough time, the Strict Attack and especially the Loose Attack are
efficient enough to provide an interesting option for an attacker. On the other side,
recall that the AWHA outputs too many false matches for an attack to be valuable.

In the remainder of this section and in Chapter 4.6, we will only consider the
Loose Attack, as it outperforms the other two attacks. We keep comparing the results
with both I.I.D. and Crossover personas.

4.5.2 Impact of the denoising filter

In this section, we discuss the impact of the attacker choice for the denoising
threshold f . We expect that imposing no threshold (i.e., f = 1) leads to almost
null performance, and, to maximize effectiveness, the attacker should set f to 2
or 3. They could even consider combining the results obtained by using both the
thresholds. Notice that f should increase with epochs N as the attacker has a higher
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Fig. 4.5 Probability of a user being correctly re-identified across the epochs, by the means of
different threshold rules.
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Fig. 4.6 Probability of a user being incorrectly re-identified across the epochs, by the means
of different threshold rules.
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probability of observing multiple times the same random or rare topics. This was
already evident in Figure 4.3b: The Prob(re-identification) for the Loose Attack
Attack flattens when N exceeds 30. This is in great part caused by setting f = 2,
which becomes less effective the more epochs the attacker observes topics exposed
by users.

To better understand the impact of f , we show in Figure 4.5 how Prob(re-
identification) evolves with f = 2 and 3. Later, we also propose a couple of com-
pound strategies. For the sake of readability, we omit to represent the case with f = 1:
in fact, the Prob(re-identification) never exceeds 3% for both population models
demonstrating that a filtering strategy is necessary to achieve attack effectiveness.
Let us first focus on the curves representing the Prob(re-identification) with f = 2
and f = 3. Using f = 2 (red line), the attacker re-identifies users earlier, because,
in a few epochs, new topics populate R. However, when the number of epochs
increases, the attack becomes less effective, allowing a number of random and rare
topics to pollute R. Indeed, those topics make the reconstructed profile of a given
user different on the two websites, thus impeding re-identification. At that point,
the attacker shall increase the threshold to f = 3, which can better cope with the
larger magnitude of noise introduced by rare and random topics. When f = 3 (blue
curve), the attack is less effective in the first epochs — since too few topics exceed
the threshold resulting in an (almost) empty profile R. Conversely, it performs better
when the number of epochs becomes sufficiently large. Setting f = 3 outperforms
f = 2 when N > 24 and N > 36 for I.I.D. and Crossover personas, respectively.

Combining strategies

Now, we consider two additional strategies that combine the sets of the users re-
identified with threshold f = 2 and f = 3 to make a final decision. In the first
strategy, the attacker considers a user to be re-identified if the user appears in both
sets; this represents a conservative approach. In the second strategy, the attacker
considers a user re-identified if they appear in at least one of the sets; this represents
a daring approach.

It is important to clear a possible misunderstanding at once: one could consider,
for instance, that the set of users re-identified with f = 2 and f = 3 is the same as
the set of users re-identified with f = 3, thinking that if a user is re-identified with
f = 2, than they will be re-identified also with the stricter threshold f = 3. However,
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Fig. 4.7 Probability of being re-identified with different numbers of personas.

due to the filtering threshold a user’s profile can be unique 10 with f = 2 but not with
f = 3, causing the user to be re-identified in one case but not the other.

These two filtering strategies work as lower and upper bounds when tuning
the trade-off between the fraction of re-identified users and the error rate. With
the first approach (green curve, labelled as “ f = 2 AND f = 3” in Figure 4.5),
Prob(re-identification) is always below the f = 2 and f = 3 cases. Conversely,
with the second approach (purple curve, labelled as “ f = 2 OR f = 3’), Prob(re-
identification) is always higher. Different is the picture for the error rate — the
Prob(incorrect re-identification)— depicted in Figure 4.6. The cautious attacker that
uses the AND approach obtains a negligible Prob(incorrect re-identification), thus
maximizing the high correct/incorrect match ratio. An attacker willing to maximize
the Prob(re-identification) would instead opt for the OR approach, which, however,
leads to a sizeable Prob(incorrect re-identification). Also in terms of Prob(incorrect
re-identification), the two classical attacks with f = 2 and f = 3 stand in the middle
as expected.

4.5.3 Impact of the number of users

We now fix f = 2, N = 30 and vary the number of users |U |. Intuitively, the number
of users in the set of candidates has an impact on the probability of a user being

10With abuse of language, under the Loose Attack, we say that users’s profile is unique if the event
in r.h.s. of (4.1) occurs.
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re-identified. The larger the website’s audience, the harder the reidentification is. We
illustrate this effect in Figure 4.7, where we show how reidentification probability
varies when increasing the number of users in the audience of w1 and w2 — notice
the log scale on the x-axis. In a larger pool of users, there is a higher probability
of finding another user exposing a similar combination of topics. This makes the
user identical to more than one individual in the eyes of the attacker, thus preventing
re-identification. Recall that Strict Attack and Loose Attack do not make any guess
if a user does not have a unique Denoised Reconstructed Profile. Notice, however,
that the decrease of the Prob(correct re-identification) slows down with a larger
number of users |U | both with I.I.D. and Crossover personas, following a logarithmic
decrease: even with a pool of 105 users, the Prob(re-identification) is not negligible.
Moreover, also consider that other techniques (such as browser fingerprinting) could
be used by an attacker to reduce the set of possible reidentification candidates.

4.6 The role of Topics API design parameters

In this section, we study the impact of the Topics API parameters on the Prob(re-
identification). In particular, we investigate the roles of z, i.e., the number of
topics that are selected every epoch to build the profile Pu,e of a user, and p, i.e.,
the probability at which an exposed topic is replaced with a random one. In the
following experiments, we consider N = 30, |U |= 1,000, f = 2.

4.6.1 The number of topics in the profile

In Figure 4.8, we show how the choice of the parameter z impacts the probability
of a user being correctly re-identified for I.I.D. personas (red curve) and Crossover
personas (blue curve), in a scenario with 1,000 users. When exposing a limited
number of topics (in the extreme case, only the top topic from the previous week),
the Prob(re-identification) decreases because of the low informative value of the top
topic(s) (e.g., Search Engine), which are popular among most users and do not
characterize a specific individual. Interestingly, the Prob(re-identification) hits a
maximum with z = 3,4, depending on which personas model we consider. This is the
best setting for the attacker: the available combinations of exposed topics differentiate
users, meaning they are easier to be linked and thus re-identified. Further increasing
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Fig. 4.8 The probability of an attacker correctly re-identifying a user, with different values of
z. N = 30, |U |= 1,000, f = 2, p = 0.05. We highlight the Prob(re-identification) with the
default value z = 5.

z rapidly impairs the Prob(re-identification), which goes towards zero. This is caused
by the padding introduced by the Topics API when the number of exposed topics in
a week by a user is smaller than z, which happens with increasing probability with
larger z. The random topics added as padding have two consequences:

• Every week, many users’ profiles Pu,e are filled with random topics, generated
independently every week. This breaks the stationarity assumption that benefits
the Loose Attack (as well as the Strict Attack) since the users’ behaviour over
time becomes unpredictable.

• Even if all the z topics are real (i.e., really belong to the user and are not
injected randomly), a larger pool to choose from slows down the convergence
of the reconstructed profiles by both websites. A website collects, at each
epoch, one topic. Thus, the larger the z, the larger the number of epochs needed
to collect them all.

4.6.2 The role of random topics

We now set f = 2, N = 30, |U |= 1,000, p = 0.05 and we quantify the impact of the
probability of exposing a random topic p on the attack effectiveness. In Figure 4.9,
we show how Prob(re-identification) varies with different values of p. Notice that
p = 0.05 corresponds to the current default value of the Topics API. Increasing p
has a negative effect on the probability of re-identifying a user. This is no surprise,
as a larger p increases the probability of replacing a real with a random topic. Recall
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Fig. 4.9 Probability of a user being re-identified, with different values of p. N = 30, |U |=
1,000, f = 2, z = 5. We highlight the Prob(re-identification) with the default value p = 0.05.

the topic replacement takes place independently for each website, thus making the
reconstructed profiles different.

Interestingly, the introduction of the random topic does not significantly impact
the Prob(re-identification). In fact, it decreases by less than 5% between p = 0.0
and p = 0.10. This is due to the effectiveness of the filtering threshold that can
remove the random topics quite efficiently. An interesting line of future work would
be to evaluate the trade-off between the improvements in the privacy guarantees
introduced by p and the impact on the data utility (from the advertiser’s perspective)
caused by the introduction of false information.



Chapter 5

The z-anonymity

On the Web and beyond, there is the need to learn how to manage data that are
continuously generated by several different systems. Privacy-Preserving Data Pub-
lishing (PPDP) techniques are useful to manipulate such data while respecting the
privacy of the users to whom the data belong. In particular, we focus on continuous,
streaming data that should be anonymized on the fly (e.g., the websites visited by
a large amount of users). As discussed in Chapter 2.3, many algorithms focus on
the streaming data anonymization scenario, but few of them tackle the zero-delay
goal between data reception and its anonymized version publication. z-anonymity is
one of these, and in this Chapter we discuss its privacy properties. We discuss what
the z-anonymity is, and what privacy feature it supports, particularly in relation with
k-anonymity.

The content of this chapter is mainly based on an article published on Perfor-
mance Evaluation [17], which in turn is an extension of a previous conference paper
presented at 2020 IEEE Big Data [16].

5.1 z-anonymity: anonymization for data streams

5.1.1 The z-anonymity property

We suppose to operate with data streams, where we continuously receive observations
that associate users with attributes. We define an observation as a tuple (t,u,a),
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indicating that, at time t, the user u exposes the attribute a from a catalog of attributes
A . Attributes can be related to whatever field: a visit to a web page, a purchase, a
GPS location, etc.

Here, we assume every attribute a∈A is a quasi-identifier. That is, in the stream
there are no sensitive attributes – i.e., attributes that contain private information, but
cannot bring to re-identification of the user.

The users are completely described by the set of quasi identifiers A .

We want to keep private those values of attributes associated with small groups
of users, which could ease the re-identification. As presented in [122], we define the
property of z-private attribute as follows:

Definition 1. An attribute a is z-private at time t if it is exposed by less than z users
in the past ∆t time interval.

Notice that the same attribute a can be both z-private and not z-private for different t.
If the anonymized dataset hides all z-private attributes, it achieves z-anon.

Definition 2. A stream of observations is z-anonymized if it does not contain z-
private attributes at any t, given z and ∆t.

In other words, the attributes that are associated with less than z users in the past
∆t shall be removed or replaced with an empty identifier. The goal is to prevent
rare attributes from being published, thus reducing the possibility of an attacker to
re-identify a user. In the following, we show how it is possible to achieve z-anon in
real time efficiently.

5.1.2 Implementation and complexity

Our goal is to design an algorithm to achieve z-anon which satisfies the following
requirements:

• Zero delay: the anonymization property should be achieved without introduc-
ing a delay in publishing the anonymized stream. In other words, we want to
make an atomic decision. All approaches based on the processing of batches
of observations are not applicable, as they need to store and process the entire
batch before the release.
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• Efficient algorithm for high dimensional data: the anonymization property
shall be achieved with an efficient algorithm, allowing the deployment at high
speed and large volume of data with off-the-shelf computing capabilities. It is
important to carefully build an algorithm working with efficient data structures
to obtain the necessary information as quickly as possible. Moreover, users
might expose a large set of attributes, whose number is not known a priori.

The algorithm we propose generalizes the approach presented in a previous
work [122]: the attributes a are stored as a hash table H , with linked lists to manage
collisions. Each value H (a) in the hash table contains three elements:

• metadata about a;

• a Least Recently Used list LRUa of tuples (t,u);

• a hash table Va to track the users that exposed a.

The idea is to minimize the time spent searching into the data structures, therefore
reducing the memory accesses. By assuming that the number of attributes a is
one order of magnitude smaller than the hash structure dimension, collisions are
infrequent, and consequently, the total computational cost is O(1) for each incoming
observation.

The H (a)’s metadata include the counter ca and the reference for the LRUa first
and last attribute. Referring to Algorithm 1, once an observation (t,u,a) arrives,
the value a should be inserted in the hash table, if not already present (lines 2-6),
otherwise an update should be performed (lines 7-16). The hash value is calculated
and the access to the table is done in O(1).

If the user u exposes an attribute a for the first time in the previous ∆t, the user u
is inserted into Va in O(1), ca is increased by one and the tuple (t,u) is inserted on
top of the LRUa in O(1) thanks to the aforementioned references (lines 8-11). If u
was already present in Va and in LRUa with value (t ′,u), we replace t ′ with t and the
tuple (t,u) is moved on the top of the LRUa. Again all is done in O(1) (lines 12-14).

Last, to evict old entries and consequently decrease ca, we traverse the LRU in
reverse order: we remove each tuple (t ′,u′) where t ′ < t−∆t, and we decrease ca

accordingly (lines 18-22). At last, if ca ≥ z the observation (t, f (t,u),a) is released
(lines 23-24). The f (t,u) needs an explanation: every ∆t, users’ identifiers are
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Algorithm 1 Pseudo code of the algorithm to achieve z-anon.
1: Input: (t,u,a)
2: if a /∈H then
3: H ←H ∪a //new attribute: insert it for the first time
4: Va←{u} //insert new user u
5: LRUa← (t,u)
6: ca = 1
7: else
8: if u /∈ Va then
9: Va← Va∪{u} //insert new user u

10: ca← ca +1 //add new user
11: LRUa← (t,u)
12: else
13: (t ′,u)← (t,u) //update timestamp of user u
14: move (t,u) on top of LRUa

15: end if
16: end if
17: //Always evict old users
18: for ((t ′,u′) = last(LRUa); t ′ < t−∆t; (t ′,u′)=next) do
19: remove (t ′,u′) from LRUa

20: remove (u′) from Va

21: ca← ca−1
22: end for
23: if (ca ≥ z) then
24: OUTPUT (t, f (u, t),a)
25: end if

rotated, such that the ID related to a user u at a time t0 will no more be related to u at
t0 +∆t. The user identifiers thus depend on the time at which the tuple is published;
the attacker will not be able to track the behaviour of the same user after a ∆t.

Notice that k-anon has been proved [123] to be an NP-Hard problem. Differently,
z-anon property can be achieved for each observation with O(1) complexity with
properly sized hash-tables. Implementation proposed in [122] allows to manage in
real time a 40 Gbit/s stream with common hardware. As part of the PIMCity project,
we provide also a Python library to let interested users to adopt z-anon.1.

We exemplify the algorithm to enforce z-anon in Figure 5.1. Assume z = 3. At
time t0 user u0 is the first to expose the attribute a0. The attribute a0 is z-private
at time t0, hence it shall be obfuscated. Still, the information that u0 exposed the
attribute a0 shows its effects for a time equal to ∆t. At time t1, user u1 also exposes a0.

1https://pypi.org/project/zanon/ — accessed on Monday 22nd January, 2024.

https://pypi.org/project/zanon/
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Fig. 5.1 A graphical example of z-anon concept with z = 3: a tuple is released only if at least
other z−1 = 2 different users have exposed the same attribute in the previous ∆t.

Since the number of observations in ∆t is still smaller than 3, this observation is not
released. At time t2 user u0 re-exposes a0, extending the lifetime of the observation,
but not changing the number of unique users having exposed a0. At time t3, user u2

exposes a0, making the total users in the past ∆t equal to 3. Thus the attribute a0 is
not z-private at time t3 and the observation (t3,u2,a0) can be be released. At time
t1+∆t the attribute a0 related to user u1 expires, hence the total user count decreases
back to 2. The same happens when u0 observation expires (at t2 +∆t), so that when
u3 exposes a0 at t4 the observation can no more be released.

z and ∆t are parameters that can be tuned to achieve the desired trade-off between
data utility and privacy. Therefore, z-anon can be adapted to the needs of the desired
use case. A large z and a small ∆t result in the majority of attributes to be anonymized,
while a small z and a large ∆t allow rare values to be possibly released.

The ∆t parameter can be set based on how often the system administrator ran-
domizes the identifiers of users – such that a user u is no more related to the same
identifier after a time period ∆t: its choice may depend on several aspects, such as
the nature of the application, the input stream rate, the system memory (the larger ∆t,
the larger the memory requirement to store the users’ information), and so on.

Notice that z-anon considers individual attributes, not on their combinations, as
for the k-anon property. Hence, it is interesting to study which guarantees the z-anon
algorithm offers in a global perspective, i.e., which guarantees it is possible to give
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Table 5.1 Terminology used to model z-anon and k-anon.

U ,U Set and number of users
A ,A Set and number of attributes

∆t The time interval length used for evaluating z-anon
λa Exposing rate for attribute a

Ra
Random variable counting number of times a user
exposes attribute a in ∆t. Ra ∼ Poisson(λa ·∆t)

Xa
Random variable representing whether a user exposes
attribute a in ∆t. Xa ∼ Bernoulli(pX

a )

Oa
Random variable representing whether a tuple (t,u,a)
is published when exposed. Oa ∼ Bernoulli(pO

a )

Ya
Random variable representing whether a user published
at least once attribute a in ∆t. Ya ∼ Bernoulli(pY

a )
Y Set of random variables {Ya}a∈A . Y ∼ Bernoulli(py)

Qy
Random variable representing the number of users u ∈U
with the same realization y in ∆T . Qy ∼ Binomial(U−1, py)

pk−anon Probability that a realization of Y satisfies k-anon property

on the privacy properties in terms of k-anon of the output. We study this relationship
between z-anon and k-anon in Chapter 5.2.

5.1.3 Modeling z-anonymity

To fully understand the effect of applying z-anon, we model the input data stream
as a stochastic process and we show how anonymization modifies it. We release
the code implementing the model.2 Table 5.1 summarizes the terminology we use
throughout the following sections.

Modeling the data stream

We consider a system in which a set of U users can access the catalog A of attributes.
Let U = |U | and A = |A |. Users generate a stream of information, exposing in
real-time the attribute they have just accessed. The system collects tuples in the form
(t,u,a), i.e., at time t, the user u ∈U exposes the attribute a ∈A .

For now, we assume that users are homogeneous and generate independent tuples,
so that the probability of exposing a specific tuple depends only on a. We will relax
this assumption by considering classes of users in Chapter 5.4. We assume any user

2https://github.com/nikhiljha95/zanonymity — accessed on Monday 22nd January, 2024.

https://github.com/nikhiljha95/zanonymity
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Table 5.2 The default values used for the model.

Variable Default Value
U 1 000
A 20

λar 0.2 / r
z 150
k 2
∆t 12

u exposes the attribute a according to a homogeneous Poisson process with rate
λa. Hence, the number of times a user exposes the attribute a in a time period ∆t
is modeled as a Poisson distributed random variable Ra with parameter λa ·∆t, i.e.,
Ra ∼ Poisson(λa ·∆t).

In our analyses, we assume a small set of popular attributes and a large tail of
infrequent ones. This allows us to represent systems where users are more likely to
expose top-ranked attributes, but there exist a large catalog, a condition which is often
observed in real-world systems that are governed by power-law distributions [124].
The usability of the model does not depend on these assumption, which are just
considered to match several real-world scenarios. As such, we choose that the λa for
all attributes follows a power law in function of their rank. Let us suppose attributes
are sorted by rank, where the most popular attribute is a1 and the least popular aA.
In the implementations we will show, we impose λa1 = 0.2 and set the remaining λa

as the power-law function λar = 0.2/r, where r is the rank of attribute ar. The default
parameters used in this article are collected in Table 5.2.3

We denote as Xa the random variable describing whether a user exposed at least
once the attribute a in a time interval ∆t. Xa assumes value 1 if the user exposes a
in ∆t, 0 otherwise. We note that, by construction, Xa ∼ Bernoulli(pX

a ), where pX
a

denotes the probability that a user has exposed attribute a, at least once, in the past
∆t. It is straightforward to compute pX

a given λa and ∆t as:

pX
a = P[Ra ≥ 1] = 1−P[Ra = 0] = 1− exp(−λa ·∆t) (5.1)

Notice that the different attributes are independent and pX
a is not a distribution

probability mass function, hence the sum of pX
a over a ∈A can be different from 1.

3We change the default parameter values from [16] to limit the computational complexity induced
by the new model. See 5.2.2 for a discussion of model scalability.
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Applying z-anon

We show how a stream of data modeled as above appears after being z-anonymized.
Under z-anon, z-private attributes at time t are not released. Here, we define the
indicator random variable Oa associated to the event that the exposed tuple (t,u,a) is
published, whose probability of occurring is denoted with pO

a . (t,u,a) is published
if a is not z-private at time t.

pO
a = P[Oa = 1] = P

[
∑

v∈U \u
Xa ≥ z−1

]
(5.2)

Given our assumption of independence and homogeneity across the users, we are
summing up U−1 independent and identically distributed random variables, which
are distributed as Xa. Note that we exclude user u, since we are checking the z-anon
conditionally over the tuple (t,u,a). Hence the current user is already involved by
construction.

Since Xa is a Bernoulli with success probability pX
a , its sum, which is Binomially

distributed, counts the number of occurrences in a sequence of U−1 independent
experiments, ∑v∈U \u Xa ∼ Binomial(U−1, pX

a ).

Starting from Equation 5.2 and using the probability mass function of the Bino-
mial distribution we can derive pO

a as:

pO
a = 1−

z−2

∑
i=0

(
U−1

i

)(
pX

a
)i (

1− pX
a
)U−1−i (5.3)

Similarly to Equation 5.1, we denote as Ya the random variable describing
whether a user published at least once the attribute a in a time interval ∆t. Again,
Ya ∼ Bernoulli(pY

a ), where pY
a is simply:

pY
a = P[Xa = 1] ·P[Oa = 1] = pX

a · pO
a

The set of random variables describing the presence or absence for all the possible
attributes a ∈A for a user is denoted as Y = {Ya}a∈A . The attacker will not know
the random variable Y , and will observe only realizations of it. Let us denote as ya a
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Fig. 5.2 The probability pY
a for a user to publish attribute a in ∆t.

realization of the random variable Ya and as y = {ya}a∈A a realization of the random
variable Y .

Impact on released data

We now qualitatively show the effect of applying z-anon on the released data stream.
In this experiment, we set A = 1000 and U = 1000. We suppose the popularity of
attributes follows a power law, with λar = 0.2/r, where r is the attribute rank.

We study the probability of observing the attribute a in a ∆t, for a given user, in
both the original and released data. Figure 5.2 shows pY

a in function of the attribute
rank. The blue solid line represents the probability of observing an attribute in
case z = 1, i.e., no anonymization (pY

a = pX
a ). The curve appears as a straight line,

representing a power law on the log-log plot. When enabling z-anon (z > 1), we
notice that the probability of observing uncommon attributes abruptly decreases with
an evident knee. For example, if we observe the curve for z = 100 (green dashed
line in the figure), already the 13th-ranked attribute is released with a probability
below 10−6, while it appears on the original stream with probability 10−1. A higher
z moves the knee of the curve closer to the top-ranked attributes.

Conversely, increasing the number of users U increases the lowest-ranked at-
tributes probability to be published (with more users in the system, it is easier to
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satisfy the z threshold). This would move to the right the curves’ knee. We discuss
the impact of U later in Chapter 5.3.4.

In summary, the figure shows how z-anon prevents uncommon attributes from
being released. Indeed, those attributes are released only when enough users are
exposing them, hence only for popular attributes. In the following, we propose
a probabilistic model to study how a z-anonymized data stream can result in a
k-anonymized dataset with controllable probability.

5.2 Modeling k-anonymity

We now study the relationship between the z-anon and k-anon properties. Intuitively,
z-anon ensures that each published value of an attribute a has been exposed at least
by z users in the past time interval, while, with k-anon, any given record (i.e., the
combinations of all user’s attributes) must appear in the published data at least
k times. With high-dimensional data, the set of attribute combinations becomes
extremely large, thus making k-anon tricky to guarantee. Here we show that, with a
proper choice of z, it is possible to release data in which user results k-anonymized.

5.2.1 Getting to k-anon

Given a specific realization y of a user, our goal is to derive the probability to observe
at least other k− 1 users in U having the same realization y. If this happens, the
user is k-anonymized.

Recall that we assume attributes to be independent. Thus each realization y =
{ya}a∈A happens with a probability py, which results to be:

py = ∏
a∈A

[
ya · pY

a +(1− ya) · (1− pY
a )
]
. (5.4)

For any realization y, the random variable representing the number of users with
the same realization in the users’ set (which we can model as Qy) is described by a
Binomial distribution with parameters U−1 and py: Qy ∼ Binomial(U−1, py).
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From the point of view of an external observer which only accesses the privatized
stream, a user has thus a probability of being k-anonymized which can be retrieved
from the law of the total probabilities:

pk−anon = ∑
y

[
1−

k−2

∑
j=0

P [Qy = j]

]
· py. (5.5)

In Equation 5.5, the probability for a user of finding at least k−1 other users with
the same y is evaluated as the opposite of finding up to k−2 users. Then, we average
this quantity over all the possible realizations of the random variable Y , summing
over all the y and multiplying by the respective py to obtain the final pk−anon.

In summary, our model describes the probability that a data stream undergoing
z-anon results in a dataset which respects the k-anon property. Although we can only
provide probabilistic guarantees on the k-anonymization of the released data, our
model allows one to study and control this probability as a function of the parameters.

Moreover, note that, even with no z-anon in place (i.e., z = 1), the model provides
a general way to evaluate the probability of a data stream being k-anonymized in a
transaction dataset with U users and a catalog of A attributes.

An analysis on the model results as compared to simulation ones is provided in
Chapters 5.3.1 and 5.3.5.

5.2.2 Model approximation

As it emerges from Equation 5.5, the evaluation of pk−anon depends on the number
of possible realizations y of Y . In a configuration with A binary attributes, there are
2A of such possible realizations, and their enumeration represents a computational
bottleneck. In the following, we propose an approximation strategy to make the
computation of Equation 5.5 practical. We introduce two parameters, θ1 and θ2.
The first operates to limit the number of attributes to consider. The second limits
the number of realizations to evaluate. The rationale is that many realizations have
usually a negligible probability to happen, allowing us to neglect them while keeping
unchanged the model accuracy.
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Effective attributes

Focus first on θ1. Here we leverage the typically heavy-tailed nature of attribute
popularity. Intuitively, the least-popular ones will be so rare that no realization y
would contain them. z-anon will exacerbate this, since it will further decrease the
publications of such unpopular attributes.

Let the effective attributes be those we expect to be exposed at least by θ1 user
in ∆T . Let Ae f f ≤ A be their number. Considering the expected value, we have that
an attribute a is effective if E[U · pY

a ] ≥ θ1, from which pY
a ≥ θ1/U. We can filter

those attributes for which pY
a < θ1/U. In a nutshell, we discard all realizations where

non-effective attributes appear and, thus, reduce their number from 2A to 2Ae f f .

Effective realizations

Even the realizations derived from the 2Ae f f attributes may not all be worth an
evaluation in Equation 5.5. We thus design an algorithm to reduce the number of
realizations to consider, by enumerating the most likely ones and discarding the
rarest ones. To this end, we organize all the possible realizations in a tree. Let the
root realization be y0. We show a toy example in Figure 5.3, for three effective
attributes (Ae f f = 3), and use it as a running example. The root node (y0) holds the
most probable realization. Hence, y0 = {ya}a∈A , where:

ya =

1, if pY
a ≥ 0.5

0, otherwise.
(5.6)

In our example, pY
a < 0.5,∀a, and the most probable realization is [0,0,0]. y0

has three child nodes, each obtained by changing a single attribute. We arrange
the children from the most probable to the least probable. The probability of these
realizations depends on the distance of pY

a′ to the 0.5 threshold, where a′ is the
attribute to change. For instance, take attributes a1, a2 and a3. Let pY

a1
= 0.49,

pY
a2
= 0.1 and pY

a3
= 0.001. a1 will have a much larger probability of having value 1

than a2 and a3: the probability of the child node with the parent’s a1 being 1 will
be larger than the one of the child with a2 or a3 set to 1. In a nutshell, we sort
the attributes by their probability of changing from their most likely state, i.e., by
|pY

a −0.5|. Here, |pY
0 −0.5| ≤ |pY

1 −0.5| ≤ |pY
2 −0.5|.
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0 0 0

1 0 0 0 1 0 0 0 1

1 1 0 1 0 1 0 1 1

1 1 1

Available for flipping

Not available for flipping

Newly flipped

Already flipped

Fig. 5.3 An example of the realization tree. We assume that the changing probability
decreases from the leftmost attribute to the rightmost one.

We repeat the procedure recursively on all child nodes, building the three with the
depth-first search strategy. When we examine a node, we exclude those realizations
already present on parents or siblings. In the example, consider the y1 node. In this
case, the first attribute cannot be modified again, and y1 has only two children, y11

and y12. Similarly, when we land on y2, we cannot obtain a child by changing the
first attribute, as this realization will have been already covered in the sibling y1.

We formalize the properties of the realization tree as follows:

• The probability of a parent realization is always greater than the probability of
its children.

• The probabilities of siblings’ realizations decrease from the most-probable-to-
change to the least-probable-to-change.

These two properties allow us to adopt an efficient strategy to neglect unlikely
realizations: given a node, its children and siblings on the right side have a lower or
equal occurrence probability. Thus, we can efficiently prune the tree: if a node in the
tree has a probability to be observed below a threshold, we prune all its children and
rightmost siblings, returning to the parent and speeding up the computation.

To set this threshold, we start from the probability of a realization in a scenario
where all the pY

a are equally probable – hence, all the realizations appear with the
same probability: 1/2Ae f f . We thus set the threshold to θ2 ·1/2Ae f f , where θ2 allows
one to tune the trade-off between execution speed and model accuracy. Indeed, if the
threshold is too high, not enough realizations will be considered, and the model will
significantly differ from the true value. Conversely, with a low threshold, a multitude
of potentially negligible realizations must be evaluated.
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Notice that it is easy to recognize a poor choice of θ2, by summing the probability
of considered realizations (those belonging to the three after pruning), and imposing
it to be at least – for instance – 0.98. In other words, we impose that:

∑
y:py≥ θ2

2
Ae f f

py ≥ 0.98 (5.7)

In our experiments, we use a greedy algorithm to find θ2 such that Equation 5.7
holds.

5.2.3 Modeling Information loss

Applying z-anon to an input stream decreases the amount of information the output
stream carries with respect to the original non-anonymized stream. There is a trade-
off between data privacy and data usability: if no anonymization is in place, the
information provided by the final dataset will be maximum. On the other hand, if the
data are anonymized, privacy is protected but information is lost in the process.

Here we consider the entropy as a measure of the amount of information a dataset
contains. This metric derives from Information Theory [125], which defines the
information brought by the occurrence of a symbol among a set of possible symbols
by knowing the probability of such symbol to appear.

In our case, each symbol is a possible realization of Y . We can hence use
Equation 5.4 to compute the amount of information of the release, by evaluating its
entropy as:

I =−∑
y

py log(py). (5.8)

By using Equation 5.8, it is also possible to evaluate the information loss caused
by anonymizing a data stream, which can be computed as the difference between the
information of the non-anonymized stream and the information of the anonymized
one.
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Fig. 5.4 pk−anon changing z, for different k values. Exact model results and 10 iterations
simulation averages are reported.

5.3 Mapping z-anonymity to k-anonymity

In the following, we use our model to show the impact of the system parameters
on the z-anon and k-anon properties. Our model provides pk−anon as a function of
the scenario (U,A,λ ) and system parameters (z,k,∆t, which are under our control).
As such, this function provides the probability a generic user is k-anonymized in
the released data. In the following analyses, where not otherwise noted, we use the
parameters listed in Table 5.2.

5.3.1 The impact of z

We first focus on the impact of z. In Figure 5.4, we report how different values of z
result in different probabilities for a given user to be k-anonymized – and compare
the results to the simulation ones.

Different lines correspond to different values of k. The larger is z, the higher
is pk−anon. Focusing on k = 2 (blue solid line), pk−anon increases starting from
z = 100. With z = 250, the probability of finding at least a user with an identical set
of released attributes is already 0.8. When z > 350, pk−anon approaches 1, giving the
almost certainty that the whole release is k-anonymized (with k = 2). For k = 3,4
(orange and blue line, respectively), pk−anon exhibits a similar behaviour, with
pk−anon decreasing when increasing k, as it becomes harder to find k identical users
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Fig. 5.5 pk−anon changing ∆t, for different k values.

by chance. In summary, one can tune z to enforce a desired k and pk−anon on the
released data.

Figure 5.4 also shows a comparison between the model and the result of simu-
lations with the same parameters. To obtain the dashed lines (i.e., the simulation
results), ten simulation are performed, with different seeds. For each of them, we
evaluate pk−anon for k = 2,3,4 and average the outcomes over all the simulations.
The dashed lines and the corresponding solid ones follow the same trend and match
almost perfectly - the differences being caused by the small number of simulation
performed. This result also validates the essential correctness of the model: 5.3.5
provides more details on the simulation process and on its adherence to the model
results.

5.3.2 The impact of ∆t

The second design parameter one must set is ∆t, the time window on which z-anon
runs. In Figure 5.5, we show how pk−anon varies while increasing ∆t, with different
values of k. Intuitively, the larger the time period, the lower the probability of a user
being k-anonymized. A large time window allows also unpopular attributes to satisfy
the z-anon property and be published, thus decreasing the pk−anon. Conversely, with
a narrow time window, only the most popular attributes result non z-private, with a
positive effect on pk−anon. In summary, ∆t is another way for tuning the fraction of
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z-private attributes, with a direct impact on the k-anon of the released data. Since
the effects of tuning z and ∆t are interchangeable, from now on we will focus on z,
knowing that acting on ∆t would have an analogous effect. Note also that the choice
of ∆t impacts also the system memory and data structure size. As such, one would
choose ∆t on the specific use case, and regulate z for reaching the desired privacy
level.

5.3.3 The impact of A

Then, we study the impact of the size of the catalog of attributes A = |A |. In
Figure 5.6a we show how the probability pk−anon of a user being k-anonymized
varies with A through the impact of z-anon. We consider a system where only the top
A ranked attributes exist. As such, by increasing A, we add more and more infrequent
attributes. Intuitively, a large number of attributes makes it hard to find users with
the same output realization y. However, with z-anon, the catalog size results limited
and thus it plays a marginal role (see Figure 5.2), and, as such, infrequent attributes
are rarely published.

In Figure 5.6a, pk−anon starts at 1, when few attributes are present, and the number
of their possible combinations is low. When A increases, less frequent attributes start
to appear. The possible combinations of attributes explode exponentially. With z = 1,
i.e., no z-anon in place, the probability of finding identical users rapidly goes to 0.
Enabling z-anon, we prevent rare attributes from being released, thus limiting the
number of combinations – see dashed lines.

Figure 5.6b shows the effect of the number of attributes on the entropy of the
resulting dataset as defined in Equation 5.8, for different values of z. The entropy
increases with the number of attributes A. If the attributes were equally probable
(uniform distribution), the entropy will scale linearly with A. However, given the
power law of attributes, the increase is sub-linear. Applying z-anon to the input data
stream limits the growth of the entropy, preventing the appearance of infrequent
combinations. Since least-likely attributes are protected by z-anon, they will not be
published and will not add information to the final dataset. Therefore, the entropy
tends to converge with higher A. The higher z, the fewer the released information. In
other words, by tuning z (or ∆t), it is possible to regulate the amount of information
in the released data.
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(a) pk−anon changing A, considering different z values.
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(b) The entropy I of the output z-anon dataset changing A, for different z values.

Fig. 5.6 The impact of A.
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5.3.4 The impact of U

We now study how the number of users U impacts their probability to appear k-
anonymized in the released data. In Figure 5.7a, we show how pk−anon varies when
increasing U , for different values of z. We notice the concurrence of two effects:
first, with low values of U , even a small z ensures that users are k-anonymized, as
rare realization have few chances to appear. Increasing the number of users leads to
a decrease of pk−anon. This happens because the large number of users causes even
less-popular attributes to overcome the z threshold, hence increasing the number of
possible combinations and, thus, decreasing pk−anon. At a certain point (depending
on z) all the attributes are likely to be published, and a second effect steps in: adding
new users, each combination has a higher probability of appearing more than once,
thus improving pk−anon.

To prevent pk−anon from decreasing with a large U , we now suppose we set
z proportional with U . In Figure 5.7b, we show pk−anon with increasing number
of users (bottom x-axis) and, consequently, increasing z (top x-axis), as we set
z = U/25. Focusing on the solid blue line (k = 2), we notice how pk−anon grows
with U , reaching values close to 1 with very large U (notice the log x-scale). With
a higher k (dashed lines), the pk−anon is only shifted to larger values of U . The
figure shows that a large U leads to better guarantees of k-anon as far as z is set
proportionally. As such, it is fundamental to consider the number of users in the
system to properly set the z-anon parameters and, in turn, successfully achieve k-
anon. Conversely, if z does not grow with U , performance guarantees worsen (see
Figure 5.7a).

5.3.5 Model validation

To assess the validity of the model, we compare its results with those obtained
by simulating the z-anon mechanism. To perform the simulation, we randomly
generated an input trace that emulates a stream of tuples (t,u,a), with U = 1000,
A = 20, λar = 0.2/r. We then process the input trace via the z-anon mechanism, as
described in Algorithm 1. At last, we collect the published tuples and evaluate the
fraction of the 1000 users that result 2-anonymized as an estimate of pk−anon.
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Fig. 5.7 The impact of U on pk−anon.



96 The z-anonymity

0 200 400 600 800 1000
Iteration

0.6

0.7

0.8

0.9

1.0

p k
−

an
on

Simulation average
Exact model result
Approximate model result
Standard deviation

Fig. 5.8 The pk−anon as evaluated by differently-seeded simulations, compared with the
model results.

In Figure 5.8, we compare the results of the simulation with those of the model,
considering both the exact and the approximated version. The complete list of
scenario parameters is available in Table 5.2.

In Figure 5.8, each point represents the pk−anon as obtained by each simulation,
each with a different seed. The solid blue line indicates the average of the simulations
while the solid orange and green lines report the estimation obtained by the exact
and the approximated model, respectively. The last two return the same result. The
average pk−anon of the simulation results is within 0.005 from the exact model one,
with a standard deviation of 0.04, indicated in Figure 5.8 as a vertical red bar.

It is worth noting that for simulation we take care of discarding the initial transient
of duration ∆t, during which the system starts accumulating observations, with no
eviction happening.

5.4 Extension to user classes

The model we presented in Chapter 5.1.3 relies on the assumptions that the user
activity rate is constant over time (i.e., it follows a homogeneous Poisson Process),
their behaviour is independent (i.e., users’ interactions do not depend one on the
other), and homogeneous (i.e., every user acts in the same way). In this section, we
relax the last assumption, introducing the concept of classes of users. We assume that
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C classes exist and that each user belongs to one and one only class c ∈ {1, ...,C}.
Users in the same class behave homogeneously and potentially differently from those
of other classes.

We consequently extend our model to consider the dependence on the class c of
the user we are considering. In the notation, we will add the subscript of the class c
to variables and probabilities. Hence, in each class c, there are Uc users.

The attribute exposing rate now depends on the user’s class, thus λa,c. Conse-
quently, pX

a,c is the probability a user in c exposes a in ∆t. Let pO
a,c be the probability

that this attribute a satisfies the z-anon constraint. This probability requires a dif-
ferent computation since it depends on the class c of the user and on users in other
classes. The z-anon constraint is satisfied if there are at least z−1 other users, among
all classes, that have exposed a in the past ∆t. This can be written as in Equation 5.3
as the complementary event where the users exposing a do not add up to z−1.

To this end, we have to find all the possible combinations of users in the different
classes exposing a. By denoting as ni ∈ {0, . . . ,Ui} the number of users of class i
that have exposed a given attribute a in the previous ∆t, we can define the set C (z)
of C-uples, whose sum does not exceed z−2:

C (z) =

{
(n1, . . . ,nC) :

C

∑
i=1

ni ≤ z−2

}

Then:

pO
a,c = 1− ∑

(n1,...,nC)∈C (z)

(
C

∏
i=1

P [Bi,c,a = ni]

)
,

where Bi,c,a ∼ Binomial(Ui−δi,c, pX
a,c) is the random variable representing the

number of users in class i that have exposed a in the previous ∆t. We remove one user
when considering the same class c through the Kronecker delta δi,c, as we already
imposed that such user is exposing a.

Consequently, pY
a,c is the probability a user in c publishes at least once a in ∆t,

and py,c is the probability a user in c has the realization y = {ya}a∈A .

Finally, extending pk−anon to pk−anon,c requires a few steps. Similar to what
happens in pO

a,c the probability for a user of being k-anonymized depends on whether
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it is possible to find in the release at least k−1 other users with the same realization
– regardless of the class they belong to. We can reuse the definition of C , now
with parameter k, i.e., C (k). Then, the probability for a user in class c of being
k-anonymized follows:

pk−anon,c =

∑
y

{[
1− ∑

(n1,...,nC)∈C (k)

(
C

∏
i=1

P[Qi,c,y = ni]

)]
· py,c

}
,

where Qi,c,y ∼ Binomial(Ui−δi,c, py,i) is the random variable representing the
number of users in class i with the same realization of attributes y in the previous ∆t
as our target user.

In the following, we explore two use cases considering two classes:

• Classes of activity: users belonging to one class are more active than users
belonging to the other one;

• Classes of interest: users in different classes have different interests.

5.4.1 Classes of activity

In this scenario, users of the first class are more active than users of the second class.
We define as λa,2/λa,1 the level of imbalance between classes. To provide a fair
comparison, we want the overall average exposition rate λa to remain constant. This
is verified if the following condition is satisfied:

U1 ·λa,1 +U2 ·λa,2 = (U1 +U2) ·λa,

where λa is the overall exposing rate of the users in U for a. Recall that U1 and
U2 define respectively the number of users belonging to class 1 and the number of
users belonging to class 2.

From the z-anon point of view, when λa,2 << λa,1, this results in users of class
2 exposing few attributes, while the majority comes from users of class 1. Overall,
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Fig. 5.9 pk−anon with classes of activity (z = 50, U1 = 500, U2 = 500).

this implies that the “active” population is reduced, thus less tuples (t,u,a) can be
published. This in turn will increase the probability of a user being k-anonymous.
Figure 5.9 shows this effect showing pk−anon,1, pk−anon,2 and the resulting overall
pk−anon. The x-axis is log scale, and, as such, the Figure appears symmetric with
respect to λa,2/λa,1 = 1. Users are likely not to expose any attribute for the least
active class, with thus a high probability of being k-anonymized. Conversely, pk−anon

decreases for the most active class, as its users are more active to compensate for the
inactive users. Overall, the figure shows that pk−anon benefits when the classes are
strongly unbalanced (green dashed line). Conversely, the more similar the class rates
become, the more the situation gets close to the single-class scenario. Indeed, when
λa,2/λa,1 = 1, the pk−anon value reaches the same value shown in Figure 5.4.

5.4.2 Classes of interest

We consider a second use-case, where users belonging to one class are interested in
a set of attributes, while the other users are interested in another set.

One possibility is to divide the attributes into two groups, for which the two
classes of users have different interest, which we model with a different probability
of publishing such attribute. We create two groups of attributes: recalling that λar

is the exposing rate of attribute a in position r in the popularity rank, we assign
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λar ,1 λar ,2
Even attributes {ar : r = 2k,k ∈ N} η ·λar (1−η) ·λar

Odd attributes {ar : r = 2k+1,k ∈ N} (1−η) ·λar η ·λar

Table 5.3 Attributes rates for different classes of interest used in the example.
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Fig. 5.10 pk−anon with classes of interest (z = 50, U1 = 500, U2 = 500).

attributes in even positions of the rank to one group, and attributes in odd positions to
the other group. Then, we assign the first group of attributes a rate η ·λar , η ∈ [0,1]
to the first class of users; and (1−η) ·λar to the second class of users. Conversely,
we assign the second group of attributes a rate (1−η) ·λar to the first class of users,
and a rate η ·λar to the second class of users. Table 5.3 formalizes the scenario of
the example. If η = 0.5, the two classes become the same and, consequently, we
obtain the same pk−anon as for the single-class scenario. We define class separation
as the difference η− (1−η) = 2η−1.

In Figure 5.10, we show how pk−anon varies with different class separation
values. Similarly to the previous use case, splitting the users into classes increases
the k-anon probability. In this case, though, both classes benefit from class separation.
Increasing the class separation has the twofold effect of i) reducing the number of
attributes that a user is likely to expose and ii) generating two dissimilar groups of
users. As such, we conclude that a scenario where multiple groups of users that
expose different attributes eases the achievement of k-anon.
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As shown if Figure 5.6, the greater the pk−anon, the lower the entropy of the
released information. Although we do not present the figures for the sake of brevity,
the case with classes of users follow the same principle. Where the classes are
highly imbalanced in terms of either interest or activity (and the pk−anon is larger)
the quantity of information of the output decreases.



Chapter 6

Conclusion and Future Work

In this thesis, we presented several topics revolving around privacy-preserving
management of data on the Web. We presented the role that Privacy Banners have in
the current experience of the Web, and discussed the privacy guarantees of possible
future solutions of Interest-Based Advertisement such as Topics API. Moreover,
on the Privacy-Preserving Data Publishing hand, we have analyzed the privacy
properties of the z-anonymity algorithm. In this final chapter, we discuss the finding
of our work. In the following of the chapter we will draw conclusions on our work,
and outline possible research paths for future works.

6.1 On Privacy Banners and beyond

Privacy Banners are ubiquitous in the current Web ecosystem, as their use has been
forced by legislators in an effort of offering users control over the data that first and
third parties collect about them on the Web. In Chapter 3.2, we showed that users,
when facing a Privacy Banners, most users accept the use of cookies. Our results
show that, in order to accurately measure the Web via crawling, one should take into
account what happens to Web measures after accepting the Privacy Banner. However,
the percentage of users accepting the use of cookies drastically decreases when users
are offered a Reject All button. This leads to the conclusion that users which are
offered a seamless solution to better protect their privacy are more likely to take
action in that direction.
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The results of Chapter 3.4 and Chapter 3.5 show that the metric obtained by
crawling are very different whether the cookies are accepted or not. Upon accepting
cookies, the crawler we designed detected a significantly larger number of trackers
and third parties on the page, independently of the country or the category the website
refers to. Moreover, pages become heavier and take more time to load. We believe
these results highlight the need of careful crawling design in order to obtain results
that are as close as possible to the true user experience on the Web, which in many
cases includes the use of cookies.

However, it is also important to consider that cookies might be soon deprecated in
favor of new framework that look for a better balance between data utility and users’
privacy. Google’s Topics API is an example of a new framework that could become
a de facto standard for the industry, given the role of its proponent. In Chapter 4, we
analyzed whether the privacy-preserving claims from Google are realistic, testing the
Topics API against different re-identification attacks under a practical threat model.
We conclude that, even if the Topics API are an improvement against the current
third-party-cookies-based ecosystem, we still cannot rule out that attackers could
reconstruct the identity of a user across multiple, colliding websites.

The results of this study pose in our opinion interesting question for the future in
the field, such as whether the trade-off between data utility and users’ privacy intro-
duced by the Topics API can satisfy either the advertiser and the privacy advocates.
One could also wonder how the utility performances of a contextual advertising
framework — which makes no use of user data, and would resolve many of the
privacy concerns — compare to a system based on Topics API. This, we believe, in
as interesting line of research to explore.

6.2 Streaming data anonymization with z-anonymity

Finally, in Chapter 5 we discussed the privacy properties of an anonymization
property and algorithm, the z-anonymity. To exactly measure the properties of z-
anonymity, we mapped it with the k-anonymity. We tested the z-anon under many
different parameter designs, such as the z itself, the number of users, the size of the
attributes catalog, the division of the users in classes. As a side result, we introduced
in the literature a statistical framework to estimate the probability that a dataset
with binary attributes is k-anonymous, given the probabilities of the attributes being
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either zero or one. For fair comparison, one should consider that the z-anon is
a real-time, zero-delay anonymization techniques, and cannot benefit from the a
posteriori knowledge of offline techniques such as k-anon.

This being said, the z-anon requires a high z threshold to become effective, which
clearly affect the utility of the output data. Moreover, it is important to note that
k-anon standards have been proved insufficient in different cases. In conclusion, that
of an efficient, zero-delay anonymization technique for streaming data remains an
open problem.
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