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Abstract We optimize nonlinear Digital Pre-Distorters for VCSEL-MMF links using an End-to-end
(E2E) learning architecture focused on TDECQ IEEE specifications for 100 Gbps/λ[1]. We experimentally
demonstrate that our E2E training improves the TDECQ performance by more than 0.8 dB compared to
Direct Learning. ©2023 The Author(s)
Introduction
Today’s most widely adopted low-cost solu-
tions for Data Center Intra-connects (DCI) up
to few hundred meters are based on Inten-
sity Modulation-Direct Detection (IM-DD) opti-
cal links, leveraging directly-modulated Vertical
Cavity-Surface Emitting Lasers (VCSEL) and
Multi-Mode Fibers (MMF)[2]. Next generation DCI,
targeting 100 Gbps net per wavelength (λ) us-
ing PAM4 over these links, have made it neces-
sary to establish requirements on quality mea-
sures for the transmitters, such as the Transmit-
ter Dispersion Eye Closure Quaternary (TDECQ),
to ensure vendor interoperability[1]. However, de-
ploy VCSEL-MMF links at such high data-rate
becomes challenging: in fact, TX signals are
strongly impaired by the limited bandwidth of
electro-optical components (see eyediagram in
Fig.1.a) which bring to noise enhancement when
compensated at RX[3]. Moreover, when linear
Digital Pre-Distorsion (DPD) is applied at TX, non-
linear eye-skews caused by VCSELs (see red
dashed line in Fig.1.b) still distort the signal[4].

Fig. 1: Experimental 53.6 GBaud PAM4 signal at the VCSEL
output (a) without DPD applied; (b) with linear DPD applied

As these effects strongly penalize the TDECQ
performance[3], solutions such as nonlinear DPD
have been investigated in order to improve the
TX quality by using DSP[4]–[6]. In particular, there
is strong interest in nonlinear DPDs working at 1
sample-per-symbol (sps) ratio: pre-distorted TX
symbols, once calibrated at factory level, can be
pre-stored inside Look-up Tables, thereby elimi-
nating the need for complex nonlinear compen-
sation at the RX side[4]. Still, the optimization of
nonlinear DPDs remains an open research topic.
In this paper, we propose a novel algorithm which
explicitely focuses the optimization of the nonlin-
ear DPDs to improve the TDECQ measure. We
upgrade the Direct Learning Architecture (DLA)

used in[4] into an End-to-end (E2E) learning[7] ar-
chitecture, which explicitely models the DSP sys-
tem specified for TDECQ standard measure[1].
Using an 850 nm VCSEL driven at 107.2 Gbps
(for a net 100G net data rate), under different
nonlinear conditions, we experimentally demon-
strate that our TDECQ-based E2E optimization
architecture significantly outperforms the DLA. By
training nonlinear DPDs with both algorithms, we
show a TDECQ improvement of more than 0.8 dB
when comparing VCSEL output signals with the
same TX average power and Optical Modulation
Amplitude (OMA).
Experimental Methodology
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Fig. 2: Schematics of the experimental setup (left), modeled
by a CNN Digital Twin for nonlinear DPD optimization (right).

PD: PhotoDiode, EA: Electrical Amplifier.
We describe in this section the nonlinear DPD
optimization using DLA and TDECQ-based E2E
learning approaches. We test the two algorithms
for PAM4 transmission at 107.2 Gbps, a conser-
vatively higher rate than the 106.25 Gbps required
by the standard[1]. We perform the experiments
on the experimental setup illustrated in Fig.2:
this consists of a 107.2 GSa/s Arbitrary Wave-
form Generator (AWG), a probed 850 nm VSCEL
(Bandwidth: 22 GHz) with temperature fixed at 25
◦C from a Peltier cell, a Variable Optical Attenua-
tor (VOA) and a Keysight DCA-M N1092A Digital
Communication Analyzer (DCA), able to acquire
the RX signal through a Digital Sampling Oscillo-
scope and evaluate TDECQ and TECQ TX signal
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quality metrics with an official software compliant
to the standards[1]. A back-to-back configuration
was adopted, as MMF impairments are digitally
emulated by the DCA’s TDECQ test software[1].
Both DLA and E2E approaches require two main
optimization steps.

In the first one, a Convolutional Neural Net-
work (CNN) models the input-output response of
the experimental setup (see Fig.2), in order to
get a digital twin of the transmitter: it is trained
by minimizing the Mean Square Error between
the predicted output x̂out and the actual output
signal of the real system xout, given the same
input signal vector xin transmitted through the
setup (a PAM4 linearly pre-distorted PRBS pat-
tern)[4]. The CNN is built using, in PyTorch nota-
tion, Conv1d(chin, chout, k, s, p) and ConvTrans-
pose1d(chin, chout, k, s, p) layers (chin/out= in-
put/output channels, k= kernel size, s= stride
and p= padding), alternated by ReLU() activation
functions (see Fig.2 for layers specs). This new
digital twin was able to emulate the experimen-
tal setup with an improved[4] accuracy of -24 dB
of MSE (normalized w.r.t. signal power[6]) on the
SSPRQ pattern[1].

In the second step, the digital twin and the non-
linear DPD to optimize are combined together to
form a unique neural network, which serves as
learning architecture, as illustrated in Fig3. The
DLA (Fig3.b) consists of cascading the DPD to
the digital twin, inserting a peak-to-peak (P2P)
normalization layer at the DPD output to fulfill
the VCSEL-AWG input dynamics constraints[4][8].
The TDECQ-based E2E architecture (Fig3.b) up-
grades the DLA by introducing the DSP blocks re-
quired for the TDECQ measure test[1]:

1. A 18 GHz bandwidth low-pass filter emulat-
ing a worst-case MMF optical channel[1]

2. A low-pass filter with bandwidth equal to 0.5
of the Baud Rate, emulating the response of
a reference RX[1], implemented as FIR filter
with impulse response hrx

3. A Reference Equalizer, implemented as
Feed-Forward Equalizer (FFE) with 9 taps re-

sponse hFFE
[1],

The DPD optimization consists of propagating
(for 2000 iterations) a random PAM4 sequence a
(3000 symbols) through the learning architecture,
to then back-propagate the gradients with respect
to a loss function throught the system. While in
the DLA the gradients solely update the DPD co-
efficients, the End-to-End (E2E) system also op-
timizes the FFE, jointly training the TX and the
RX[6]. The loss function (see Fig.3.c) main com-
ponent is the MSE between the normalized sys-
tem input a and the signal â: the latter is obtained
by decimating the system output y to 1 sps at the
optimum giving the lowest MSE[4]. Regularization
terms are added to the DLA and E2E losses as
follows:

LDLA = E
[
|a− â|2

]
+

σ2
noise

σ̂2
â

(1)

LE2E = E
[
|a− â|2

]
+

σ2
noise · ||h(rx∗FFE)||2

σ̂2
â

(2)

where LDLA and LE2E are the two output losses
for the DLA and E2E approaches, and the vector
h⊤
(rx∗FFE) is the impulse response of the discrete

linear convolution between hrx and hFFE
[6]. In

Equation 1, the regularization term is introduced
to the Mean Square Error (MSE) to analytically
account for the effects of Gaussian noise with
power σ2

noise at the output of the Digital Twin[4].
The E2E loss (Equation 2) also exploits a regu-
larization term accounting for the RX noise injec-
tion (here assumed to be inserted after the fiber
emulation filter[1]), but it also models the noise
enhancement induced by the FFE[6] cascaded to
the RX filter. Unlike the DLA, which only tar-
gets the compensation of the TX distortions, the
TDECQ-based E2E approach focuses the nonlin-
ear DPD on improving the signal at the output of
the worst-case communication system designed
for the TDECQ measure.
Experimental results
In this section we report the experimental results
obtained by training using both E2E and DLA
optimizations two different nonlinear DPDs (the
same adopted in [4]): a Volterra Nonlinear Equal-
izer (VNLE) and a Convolutional Neural Network



Fig. 4: Experimental performance results: (a) TDECQ vs VCSEL bias current (b) TECQ vs VCSEL bias current(e) TDECQ vs
VCSEL OMA (f) TECQ vs OMA. Eyediagrams at DCA output for low bias currents showed in (a, inset),(b,inset),(c) and (d)

(CNN). We compare the performance also with
respect to a linear DPD. All the DPDs had a to-
tal memory of 7 symbols. We tested the DPDs
by evaluating TDECQ and TECQ through the
DCA on the experimental setup (see Fig.2), using
SSPRQ PAM4 pattern at 107.2 Gbps[1]. In Fig.4.a
and 4.b we show the TDECQ and TECQ per-
formance when driving the VCSEL with a AWG
P2P modulation voltage set to 500 mV, varying
the bias current along the typical power-efficient
range expected for these lasers (6-8 mA[9]). The
RX average power at the DCA input is set to 2
dBm. In all considered cases, without DPD it was
not possible to achieve the target BER=2.4e-4[1],
making the TDECQ measure unfeasible. More-
over, for VCSEL bias current lower than 7.5
mA, TDECQ was unmeasurable even using lin-
ear DPD, due to the severe nonlinear distortions
(see inset images of Fig. 4.a and Fig. 4.b).
Nonlinear DPDs instead are able to fully com-
pensate for the nonlinear eye-skew even at the
lowest bias current considered, as shown in Fig.
4.c and Fig. 4.d. The TDECQ performance us-
ing TDECQ-based E2E learning significantly im-
proves compared to using the DLA, with a con-
sistent gain of approximately 0.8 dB as shown
in Fig. 4.a. However, E2E learning does not
improve the TECQ performance of DLA-trained
nonlinear DPDs, as shown in Fig. 4.b. Both
DLA and E2E achieve indeed equivalent TECQ
results, underscoring the specificity of the pro-
posed E2E approach in focusing the DPD on the
TDECQ optimization. Moreover, VNLE and CNN
nonlinear DPDs exhibit equivalent performances
either in TDECQ and TECQ, indicating that using

even more sophisticated structures may not yield
significant improvements. Finally, in Fig.4.e and
Fig.4.f we show the TDECQ vs OMA and TECQ
vs OMA results when driving the VCSEL with bias
current set to 8 mA (average RX power set to 2
dBm). We vary the AWG P2P modulation volt-
age from 400 mV to 800 mV, to then measure the
OMA together with the TDECQ and the TECQ
through the DCA software. As it can be seen,
using both nonlinear DPDs, the E2E outperforms
the DLA TDECQ performance even when com-
paring signals with same OMA and RX power,
with a gain of more than 0.8 dB with OMA=0.5
dBm (see Fig.4.e). Also in this case, E2E learn-
ing does not provide improvements in terms of
TECQ for different OMA (Fig.4.f). However, the
important achievement demonstrated by experi-
mental results is that with the proposed E2E ap-
proach nonlinear DPD allows to meet with margin
the IEEE requirements (TDECQ and TECQ less
than 4.4 dB[1]) even with strong VCSEL nonlin-
earities caused by low input bias currents or high
input modulation swings.
Conclusion
In this paper, we propose a TDECQ-based
E2E learning approach for optimizing nonlinear
DPDs on VCSEL+MMF links. The new ap-
proach experimentally shows to significantly im-
prove the TDECQ performance with respect to
DLA, demonstrating that nonlinear DPD optimiza-
tion focused on TDECQ can improve this metric.
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