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Developing RPC-Net: Leveraging High-Density
Electromyography and Machine Learning for

Improved Hand Position Estimation
Giovanni Rolandino, Student Member, IEEE , Marco Gagliardi, Taian Martins,

Giacinto Luigi Cerone, Member, IEEE , Brian Andrews and James J. FitzGerald, Member, IEEE

Abstract— Objective: The purpose of this study was to
develop and evaluate the performance of RPC-Net (Re-
cursive Prosthetic Control Network), a novel method us-
ing simple neural network architectures to translate elec-
tromyographic activity into hand position with high ac-
curacy and computational efficiency. Methods: RPC-Net
uses a regression-based approach to convert forearm elec-
tromyographic signals into hand kinematics. We tested the
adaptability of the algorithm to different conditions and
compared its performance with that of solutions from the
academic literature. Results: RPC-Net demonstrated a high
degree of accuracy in predicting hand position from elec-
tromyographic activity, outperforming other solutions with
the same computational cost. Including previous position
data consistently improved results across subjects and
conditions. RPC-Net showed robustness against a reduc-
tion in the number of electromyography electrodes used
and shorter input signals, indicating potential for further
reduction in computational cost. Conclusion: The results
demonstrate that RPC-Net is capable of accurately translat-
ing forearm electromyographic activity into hand position,
offering a practical and adaptable tool that may be acces-
sible in clinical settings. Significance: The development of
RPC-Net represents a significant advancement. In clinical
settings, its application could enable prosthetic devices to
be controlled in a way that feels more natural, improving the
quality of life for individuals with limb loss.

Index Terms— Artificial Neural Networks, electromyogra-
phy, Machine Learning, Prosthetic hand.

I. INTRODUCTION

IN 2019, the prevalence of upper limb amputations in the
United States, United Kingdom, and the European Union

was more than 1,000,000 (incidence 40,000), 100,000 (inci-
dence 3,200), and 800,000 (incidence 25,000), respectively [1].
Loss of upper limb functionality has a major impact on quality
of life, underscoring the pressing need for effective solutions
[2]. Great strides have been made in designing advanced
upper limb prostheses and developing control strategies for
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these devices. Specifically, efforts have been directed towards
creating prostheses that replicate the kinematic complexity of
the human hand [3] [4] [5] [6] [7] [8]. Many types of control
solutions for these devices have been explored, with a primary
focus on surface electromyography (EMG), currently the most
viable option for prosthetic control [9] [10].

Despite the considerable advancements in technology, aban-
donment rates for prosthetic devices, a good indicator of user
satisfaction, are consistently high, and are rarely below 30%
[11] [12] [13]. Factors contributing to abandonment include
comfort, function, and appearance [12], and it appears that
none of those are strongly predominant over the others [14].
In general, users feel the prosthesis does not address their
needs [15], often find them uncomfortable or painful and feel
that control is not natural enough [16] [17]. The definition
of control naturalness varies in the literature, encompassing
factors such as independent finger movement, force control
capability, ease in performing daily tasks, and the inclusion
of sensory feedback [11] [12]. Overall, the fact that technical
developments have not led to visible improvements in aban-
donment rates or consumer satisfaction suggests that current
approaches do not meet patient needs [13].

An analysis of current control solutions may provide insight
into the factors contributing to this trend. Machine Learning
(ML) and its subset Deep Learning (DL) have been exten-
sively employed in recent years to address prosthetic control.
Applications of classification-based algorithms, a subset of
ML, have been investigated [18] [19] [20] [21] [22]. This
type of algorithm predicts discrete or categorical output labels
and maps input features to one of a finite number of classes
or categories. For prosthetic control, this entails classifying
electromyographic signals as one of several predefined move-
ments, each of which is assumed to be consistent. Research
has been focused on developing more complex solutions to
improve accuracy in the classification of more and more
classes [23] [24]. Classification-based approaches, however,
deviate significantly from how humans control their hands,
and thus, may not be able to provide users with the natural-
feeling control they desire [25].

In contrast to classification approaches, regression-based
solutions offer a more natural control mechanism, taking
steps towards human-like prosthetic control [26] [27] [28]
[29] [30]. This type of solution has been, in recent years,
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Fig. 1. (a) Position of electrodes on the forearm of the subject. Ventral
(L) and dorsal (R) view (A: Medial epicondyle, B: Lateral epicondyle, C:
Pisiform bone). (b) Placement of 12 infrared markers on the body of the
subject. Plane W is highlighted in blue. (c) Placement of 21 infrared
markers on the hand (and 2 forearm markers, also depicted in (b)).
Markers are placed proximally to each joint. Planes K and T highlighted
in orange and green respectively. Q, H and G lines in black.

object of growing interest because of its potential [31] [18]
[32] [33]. Despite the clear improvement that regression-based
approaches bring, some problems persist. First, most existing
solutions do not control the complete kinematics of the hand,
instead focusing solely on either the wrist or the fingers, even
if control of many kinematic Degrees of Freedom (DoFs)
independently was identified as an important attribute [9]
[12]. Second, some of these solutions require electromyogram
signals acquired distally. However, this is incompatible with
the needs of upper limb amputees; only 5% of hand amputees
retain distal muscles in their forearms, whereas more than 30%
of the same population retain proximal forearm muscles [16].
Thirdly, most of these solutions employ computationally in-
tensive algorithms with substantial computational cost, which
may render them less suitable for embedding into devices
or application in clinical settings, ultimately hindering their
practical applicability [34] [35] [36] [37] [38].

We suggest that these limitations are contributing to the
observed low satisfaction among prosthesis users. To address
the shortcomings observed, and confident that accurate hand
position estimation is crucial for improving prosthetic device
control, we developed RPC-Net (Recursive Prosthetic Control
Network). This novel, computationally efficient, deep network
leverages regression principles to estimate hand position (as a
high-DoF kinematic model) from electromyographic activity,
and is intended to be implemented as control solution for
articulated hand prostheses. Regression-based control and a
high-DoF kinematic model address naturalness of control, a
key factor in device abandonment [26] [27] [28] [29] [30].
RPC-Net is recursive (making use of previous estimates to
refine the current one) and uses 96 high-density surface EMG
(HD-sEMG) channels from the proximal forearm as source
signal, fewer than most control approaches and in accordance
with the anatomical needs of amputees [19] [18].

We hypothesize that RPC-Net, designed to meet the needs

of prosthesis users while being computationally efficient, can
provide high-quality hand position estimates from the elec-
tromyogram and that its performance is superior to state-
of-the-art solutions. We further hypothesize that RPC-Net is
robust against changes in input signal length and the number of
electromyographic channels used, and that information about
previous position can improve its performance. In this study,
we introduce RPC-Net and validate it to demonstrate these
experimental hypotheses. RPC-Net is tested offline and on
healthy subjects, focusing on the accuracy of the estimate
of the position from the EMG signal. For this purpose,
we collected electromyographic and hand position data from
twelve healthy subjects, and used RPC-Net to translate the
electromyographic data into hand position. This first evaluation
is a stepping stone towards the development of a prosthetic
solution implementing RPC-Net that satisfies user needs, is
efficient, and conducive to a more natural control experience.

II. MATERIALS AND METHODS

A. Subjects and Experimental Protocol

1) Subjects: Our study included twelve healthy subjects,
seven males and five females (aged 20-26, weighing 55-90
kg and 165-195 cm tall). Each participant provided written,
informed consent before participation. All subjects were right-
handed, had no surgical interventions on their dominant arm,
and had a forearm circumference between 20 and 30 cm.
The experimental procedures adhered to the Declaration of
Helsinki and were approved by the local ethics committee
(CER-Polito, Prot. No. 107460/2023).

2) Experimental Protocol: The acquisition protocol con-
sisted of two phases. In Phase 1 (P1), a single participant (S0)
was involved, whereas Phase 2 (P2) incorporated the remain-
ing eleven participants (S1-S11). The acquisition procedures
for both phases were identical, with the only difference being
their duration. In P1, twelve trials were included: eleven for
training and one for testing. In P2, six trials per subject were
considered: five for training and one for testing. The trial to be
used for testing was selected randomly. During the trials, high-
density EMG and hand position data of the participants were
acquired as they transitioned between a set of 18 hand poses.
This set comprised 6 wrist poses (flexion; extension; adduc-
tion; abduction; pronation; supination), 8 finger poses (index
finger metacarpo-phalangeal flexion; index finger metacarpo-
phalangeal extension; index finger proximal interphalangeal
flexion; index finger proximal interphalangeal extension; flex-
ion of the middle, ring, and little fingers; extension of the
middle, ring, and little fingers; adduction of the index and
middle fingers; abduction of the index and middle fingers),
and 4 thumb poses (flexion; extension; adduction; abduction).
Each trial included 54 poses (18 poses repeated 3 times
each). Participants were seated with their dominant forearm
positioned on a vertical support at shoulder height. Initially,
participants were instructed to relax their hands and wrists.
Subsequently, a monitor presented one of the 18 hand poses
every 8 seconds, in random order to to prevent participants
from anticipating the sequence. Participants were given 2
seconds to recognize the pose before transitioning their hand
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Fig. 2. Kinematic model used for the Inverse Kinematic Algorithm.
Each joint of the hand has 1 to 3 kinematic DoFs. Each DoF can be
characterized as Flexion-Extension (F-E), Adduction-Abduction (A-A)
or Pronation-Supination (P-S), as shown in legend (bottom left). Each
joint is given a four letter code. The arrow represents the positioning of
the axis of rotation. The circle at the origin represents a rotation axis
orthogonal to the back of the hand (dorsal direction).

from the previous to the prompted pose and were not instructed
to transition at a specific speed. At the end of the trial, the
subject was instructed to relax their hands and wrists. Each
trial was 450 seconds long.

B. Data Acquisition

All data have been made available for online access [39].
1) High-Density surface EMG data: EMG was recorded on

the surface of the dominant forearm using the MEACS system,
the EMG amplifier developed at LISiN (Politecnico di Torino,
Turin, Italy) [40] [41]. The system is made up of multiple
Sensor Units (SU), each measuring 34 mm × 30 mm × 15
mm and sampling 32 channels at fs=2.048 kHz (192 V/V
gain, 16 bit resolution, 2.4 V dynamic range). Three SUs
were used, each connected to an anisotropic electrode array (2
rows and 16 columns, with 10 mm and 15 mm inter-electrode
distance respectively) for a total of N=96 acquired monopolar
electromyographic channels. The electrodes were arranged in 6
rows and 16 columns around the circumference of the forearm,
covering approximately a third of its length (Fig. 1). The
proximal row of electrodes (row 1) was positioned at 20 % of
the distance between the medial epicondyle and the pisiform
bone. The reference electrode was positioned on the lateral
epicondyle. The electromyographic signal was used as input
for RPC-Net during the phases of training and testing.

2) Hand position data: Hand position data were acquired us-
ing a motion capture system (VICON Motus; VICON Motion
Systems, Centennial, Oxford, UK) sampling at 100 samples/s.
The setup included 12 infrared cameras (Vero v2.2). A total of
Mh=21 infrared reflective markers (diameter of 6 mm) were
positioned on the dominant hand of the subject, embedded in a
glove. Additionally, 12 markers were placed on the upper limb
and trunk, resulting in M=33 markers in total (Fig. 1). The
hand position data, translated to joint angles using the Inverse

Kinematic Algorithm (IKA) defined below, was used both as
input and as target value for the training phase of RPC-Net.

C. Inverse Kinematic Algorithm

We developed an Inverse Kinematic Algorithm (IKA) to
translate 3D marker positions, as captured by the motion
capture system, into hand joint angles, the selection of which
is informed by a 24-DoF kinematic model (Fig. 2) proposed
by Lee et al. [42]. Although the original model defines 27
kinematic DoFs, we excluded the three associated with spatial
origin positioning, as the position of the wrist was fixed
in our protocol. The core of the IKA is the optimization
process designed to identify the 24 joint angles (one per
kinematic DoF) that best approximate the marker positions.
The process is executed for each frame captured by the
VICON system. The algorithm comprises three phases: 1)
wrist angles estimation (3 angles), 2) finger angles estimation
(4 angles per finger) and 3) thumb angles estimation (5
angles). In phase 1, the three angles represent the rotations
of the hand palm (defined by 6 markers), around the x,
y, and z axes, starting from the reference position, where
the K plane (defined in Fig. 1) is aligned parallel to the
W plane and the lines G and Q are parallel. As for phase
2, each finger in the model can perform flexion-extension
and adduction-abduction at the metacarpo-phalangeal (MP)
level, and flexion-extension at the interphalangeal (IP, ID)
level. The four angles that best represent the spatial position
of the three finger markers are derived using a sequential
quadratic programming algorithm (MATLAB implementa-
tion; Maximal Function Evaluations=500; Finite Difference
Type=”forward”; function tolerance=10−1; optimality=10−6;
step tolerances=10−6; maximum iterations=1000; constraint
tolerance=10−6) [43]. The algorithm is initialized with the
anatomical rest angles of the hand [44]. All joint angles are
equal to zero when the three finger markers lie on the K plane,
on a line perpendicular to the Q line (Fig. 1). Positive angles
indicate joint extensions and radial deviations. In phase 3, the
thumb has the flexibility for flexion-extension and adduction-
abduction at both the metacarpo-phalangeal and proximal
interphalangeal (MP, IP) levels, with only flexion-extension
at the distal interphalangeal (ID) level. The optimization
algorithm, identical to the one in phase 2, computes the angles
that best represent the position of the three thumb markers. All
angles are equal to zero when those markers lie on the T plane,
on a line perpendicular to the H line (Fig. 1). Joint extensions
and radial deviations are indicated by positive angles. The an-
gles for each finger and the thumb are calculated using separate
optimization processes for enhanced computational efficiency.
Phase 1 introduces no approximation errors, while phases 2
and 3 present a degree of discrepancy between estimated and
actual positions. An average approximation error (distance
between actual and estimated positions of the markers) of
under 3 mm across all subjects was observed (mean: 2.35
mm, std: 1.69 mm computed over 1987466 frames). The IKA
effectively performs a projection operation from a 3D space to
a J-dimensional space, where J is the number of DoFs in the
kinematic model (J=24). This model plays a crucial role as our
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neural network architecture, RPC-Net, was designed to take as
input and return as output the joint angles of the hand rather
than the 3D positions of the markers. This choice is motivated
by the fact that muscle activation is proportional to joint angles
rather than to finger endpoint position. A Forward Kinematic
Algorithm (FKA) to translate angles to marker position, based
on the same kinematic model, was developed as well.

D. Data post processing
The electromyographic and position data were post-

processed using MATLAB (Release 2022b, The MathWorks,
Inc., Natick, Massachusetts, USA) and VICON Nexus (VI-
CON Nexus v2.11, Oxford Metrics plc, Oxford, UK). Addi-
tional code was written in Python using libraries that rely on
BSD licenses. The objective of the post-processing procedure
is to transform the data acquired into suitable inputs for RPC-
Net. The post-processing procedure of the electromyographic
signal consists of: 1) conversion of acquired signal from bit
to volt, 2) removal of offset from signal, 3) rectification
(computation of absolute value), 4) normalization (division
by 5 mV) so that the signal is included between 0 and 1, 5)
computation of the RMS of each channel over wl=200 samples
(97.7 ms) with a sliding window of ws=25 samples. Given
an electromyographic signal that is L seconds long and N -
dimensional, the output of the post-processing procedure is l =
floor(L∗fs−wl

ws
) + 1 samples long and N -dimensional. This

procedure effectively sub-samples the signal from fs=2.048
kHz to fs

ws
=81.92 Hz through the computation of RMS. The

post-processing procedure for the marker position data consists
of: 1) moving average filtering (order 20), 2) projection of
the positions of markers in 3D to a 24-dimensional joint-
angle space through the IKA, 3) subtraction of rest angles, 4)
normalization (addition of 150° and division by 240°) so that
the signal is included between 0 and 1, 5) linear interpolation
to match the sampling rate of the post-processed electromyo-
graphic signal ( fs

ws
). Given a L-second long signal, the output

of the post-processing procedure is l = floor(L∗fs−wl

ws
) + 1

samples long and J-dimensional.

E. RPC-Net
We devised RPC-Net, a neural network intended to convert

multi-modal input into sample-wise predictions of the 24
hand joint angles. The architecture includes 24 individual
sub-networks, each assigned to one joint. All sub-networks
share the same input for each iteration and generate outputs
that collectively represent the complete kinematic state of the
hand. Each sub-network consists of a two-branched neural
network, where one branch processes the electromyogram
(EMG branch), and the other analyzes past joint angles (angle
branch). These two branches converge into a root that returns
an estimate for a single joint angle. The outputs from the 24
sub-networks are combined to create a full set of 24 joint
angles, which also serve as input for the subsequent estimates,
creating a recursive loop. Both input signals consist of multiple
time points. The EMG input consists of a 0.78 s segment of
the electromyographic signal preceding the instant at which
the joint angle estimate is calculated. Of the 64 samples

in this segment (given a sampling frequency of 81.92 Hz),
only every fourth sample is processed for efficiency. This
action effectively reduces the sampling frequency to 20.48 Hz.
Consequently, the EMG branch input size becomes IE=16
(samples) × 96 (channels) or 1536 inputs. The joint angle
input incorporates the kinematic state for the 0.78 s interval
leading up to the time point of the predicted position. Every
eighth sample is chosen (diminishing the sampling rate to
10.24 Hz), and the signal encompasses J=24 channels. This
results in an input size of IA=8 (samples) × 24 (joints) or
192 inputs for the angle branch input. The output of the
network is the sample-wise approximation of the 24 joint
angles of the hand, determined at a frequency of 81.92 Hz.
For myoelectrical control systems, delay is defined as the time
difference between motion intention and output. While the
input signal covers a 0.78 s window, this doesn’t introduce any
delay in the prediction process in addition to the inference time
of the network. This is because RPC-Net performs the estimate
of the sample immediately following the most recent EMG
reading, corresponding to the onset of motor intention; earlier
EMG values within the 0.78 s window improve prediction by
providing previous context. The initial 0.78 s of a session may
not be used for training or testing of the network due to the
absence of sufficient earlier data. During the testing phase,
joint angles produced by the RPC-Net undergo processing
via a fourth-order low-pass Butterworth filter (with a cutoff
frequency fc=1 Hz) to eliminate high-frequency fluctuations
and are subsequently mapped back into 3D space using the
FKA. The structure of each branch is detailed in Fig. 3. The
network was trained with the Adam optimizer (in its Py-
Torch implementation), learning rate=10−5; ε=10−3; β1=0.9;
β2=0.99; batch size=10; loss criterion=MSELoss. The model
was trained for 3 epochs. During the training of RPC-Net,
the joint angle input data were from the recording, and the
recursion loop was not used.

F. Performance Indicators

The performance of RPC-Net was assessed as its ability
to estimate the position of the hand from the electromyo-
gram. The performance was measured, independently for each
subject, with to two indicators: Mean Pearson Correlation
Coefficient (MPCC) and Mean Distance (MD), computed for
the test trial only. MPCC is the mean of the individual Pearson
Correlation Coefficients (PCC) obtained from comparing the
actual and predicted joint angle value for each of the 24 DoFs
considered, over the whole test trial. The median, first and
second tertile of the PCCs were also computed along with
the mean. MD is the mean, over the whole test trial, of
the Weighted Fingertip Distance (WFD). For each time point
estimated, WFD is defined as the average of: the distance
between the position of the tip of the index finger (as recorded
through VICON) and its estimate (computed by RPC-Net), the
distance between the position of the tip of the middle finger
and its estimate, and the distance between the position of the
tip of the thumb and its estimate. The median, first tertile and
second tertile of the WFD over time were computed. Computa-
tional efficiency was evaluated using Inference Time (IT). The
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Truth EstimateUMD WFD

Fig. 4. Estimation error. The two lines show the UMD and the WFD
for the test trial of S0. For selected time points, the estimated position
(right) and the actual one (left) are shown on the side.

operations in RPC-Net do not benefit from using a Graphics
Processing Unit (GPU) during the prediction phase (forward
passes), and the PyTorch library does not improve performance
in this context. Thus, although GPU usage can accelerate the

training phase, we found that performing matrix operations
with the numpy library, rather than PyTorch, on a CPU yielded
the best performance during testing. We calculated Inference
Time as the average time, over 105 iterations, required by the
numpy implementation of the network to perform a forward
pass. Computation was performed on an Intel(R) Xeon(R)
Platinum 8268 CPU (2.90 GHz).

G. Comparison with other solutions
We tested other state-of-the-art solutions for hand position

estimation using our data set and compared their performance
with that of RPC-Net. For each solution, we implemented a
modified version to have a similar inference time to RPC-Net
(ensuring a more fair comparison), to fit our input (96-channel
HD-sEMG, 16 samples) and to have the same output as RPC-
Net (24 joint angles). The solutions (identified with a code)
considered are: 1) the Convolutional Neural Network proposed
in [45]. The original implementation has 4 convolutional layers
with 128, 64, 64, 64 output channels and 3 fully connected
layers with 512, 512, 128 and 16 units respectively. Our
modified version (CNN-Ols) has 4 convolutional layers with
128, 192, 192, 192 output channels and 3 fully connected
layers with 1536, 1536, 384 and 24 units respectively. 2)
The recurrent neural network proposed in [46], originally with
hidden size of 50 and 10 outputs, modified to have hidden
size of 224 and 24 outputs (RNN-Qui). 3) The transformer
architecture introduced in [47]. The original implementation
has 1024 as dimension of model, 4 transformer layers and
22 outputs. Our modified implementation (TRF-Put) has 96
as dimension of model, 12 transformer layers and 24 outputs.
In our implementation, we omitted the ReLU function after
the last fully connected layer in the regression block. The
EMG input for RNN-Qui and TRF-Put was reshaped to a 16
(samples) × 96 (EMG channels) 2D array. For CNN-Ols, it
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was reshaped to a 16 (samples) × 6 (EMG electrodes rows)
× 16 (EMG electrodes columns) 3D array. To compare the
performance of RPC-Net with these alternative solutions, we
performed a one-sided paired t-test between the performance
of RPC-Net and the performance of TRF-Put, RNN-Qui, and
CNN-Ols, across all subjects, for both MD and MPCC. The
choice of the paired t-test was justified by the fact that it
exhibits higher statistical power, under the assumption of
normally distributed data, if compared to nonparametric tests.
This test is widely regarded as a robust method for assessing
differences in two paired populations [48]. We opted for the
one-sided version because we are assessing the superiority
of RPC-Net in relation to other models. The condition of
normality was verified with a Shapiro-Wilk test.

H. Variations of RPC-Net
Additional simulations were run to assess the effect of

computational-cost-related parameters on the performance of
the network by means of different statistical tools. The effect
of the inclusion of information about the previous joint state
was assessed with one-sided paired t-tests (see II-H.1), and so
was the effect of using a single or multiple network for each
joint (II-H.5). The choice of this statistical tool is justified in
II-G. The condition of normality was verified with a Shapiro-
Wilk test. For selected experimental conditions (II-H.2, II-
H.3 II-H.5), we compared the results observed with RPC-
Net and RPC-Net-B (defined in II-H.1). Since, in this case,
data distribution normality could not be guaranteed, we relied
on the one-sided Wilcoxon signed-rank test, a nonparametric
alternative to the paired t-test [48]. We opted for the one-sided
version because we are assessing the superior performance of
RPC-Net in relation to RPC-Net-B.

1) Inclusion or exclusion of previous joint state as input to
RPC-Net: To evaluate if information about previous joint state
could enhance performance, we compared the performance the
original RPC-Net architecture with that of a similar architec-
ture that does not make use of information about previous
kinematic state: RPC-Net-B (i.e., RPC-Net without the angle
branch). The comparison was performed by means of a one-
sided paired t-test between the results observed for of RPC-Net
and RPC-Net-B across all subjects, for both MD and MPCC.

2) Length of input signal: The length of the two signals
given as input to RPC-Net was varied, keeping the sampling
frequency unvaried, and thus modifying the number of samples
in input. A different number of sampling points in input
implied a change in network architecture, so that layer width
was still a function of the number of input channels IE and
IA, as shown in Fig. 3. The EMG and angle signal lengths
were (rounded to the closest tenth of second) 0.8 s (original
length), 0.7 s, 0.6 s, 0.5 s, 0.4 s, 0.3 s, 0.2 s, and 0.1 s. Linear
regression analysis, effective in quantifying the strength and
direction of a linear relationship, was used to analyze the effect
on performance of the length of input signals. We tested the
hypothesis that an increase in signal length correlates with an
improvement in performance [48]. The same assessment was
performed on RPC-Net-B and the results compared through
a Wilcoxon signed-rank test (96 coupled observations, 8 per
subject, one each for RPC-Net and RPC-Net-B).

3) Width of neural network: The width of the neural layer
of the EMG branch of RPC-Net was varied. Five widths were
considered (in addition to the original one). The widths tested
were: 512 (original width), 384 (E-1), 307 (E-2), 256 (E-3),
219 (E-4) and 192 (E-5) units, each identified by a code (E-n).
The assessment was performed both on RPC-Net and RPC-
Net-B and the results compared using a Wilcoxon signed-rank
test (72 coupled observations, 6 per subject, one each for RPC-
Net and RPC-Net-B).

4) Number of electrodes used as input: We assessed the
performance of RPC-Net using a subset of EMG channels as
input. Subsets were defined either on the proximo-distal axis or
on the circumferential axis. This implied a change in network
architecture so that the width of the layers was still a function
of the number of input channels, as shown in Fig. 3. We tested
the 12 combinations of row subsets and the 6 combinations of
column subsets reported in Table I in addition to the original
solution, which includes all rows and all columns. Column
and row numbers are illustrated in Fig. 1.

TABLE I
INPUT ELECTRODES SUBSETS

Code Rows Code Rows Code Columns
A1 1-4 C1 1 D1 Even
A2 1-2, 5-6 C2 2 D2 Odd
A3 3-6 C3 3 F1 1-5-9-13
B1 1-2 C4 4 F2 2-6-10-14
B2 3-4 C5 5 F3 3-7-11-15
B3 5-6 C6 6 F4 4-8-12-16

5) Single network for multiple joints or separate networks for
each joint: We developed two variations of RPC-Net (RPC-
Net-W and RPC-Net-I) which, instead of 24 independent sub-
networks (each corresponding to a joint angle), are made up
of a single unit that takes the same inputs and returns 24
joint angles. In RPC-Net-I, the structure of the network is
identical to that of a single branch in RPC-Net (see Fig. 3).
RPC-Net-W is similar to RPC-Net-I, but the width of the
layers was multiplied by a constant factor of 5 to match the
inference time of RPC-Net, thus ensuring a more appropriate
comparison in performance. The performance of these alter-
native architectures was assessed and compared with that of
the original RPC-Net, by means of a one-sided paired t-test
across all subjects, for both MD and MPCC. The assessment
was performed both on RPC-Net and RPC-Net-B, for which
analogous RPC-Net-I-B and RPC-Net-W-B were developed
(i.e., RPC-Net-I-B is RPC-Net-I without joint angle input and
RPC-Net-W-B is RPC-Net-W without joint angle input) and
the results compared using a Wilcoxon signed-rank test (36
coupled observations, 3 per subject) with one observation each
for RPC-Net (RPC-Net-W and RPC-Net-I) and RPC-Net-B
(RPC-Net-W-B and RPC-Net-I-B).

III. RESULTS

A. Performance of RPC-Net
Fig. 4 shows the trend of WFD values time, highlighting the

discrepancy between RPC-Net estimates and actual data. We
also show a similar measure, the Unweighted Marker Distance
(UMD), computed with all the markers on the hand rather
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Fig. 5. Comparison between estimated joint angle and actual angle. The 24 joints considered are shown. At the top of each subplot the abbreviation
of the corresponding joint and DoF, as defined in Fig. 2. Two measures of accuracy are also included: PCC between actual and estimated position
and the Mean Angular Distance (MAD), in degrees, between the values over time.

(b)

(a)

Fig. 6. (a) Comparison of the performance between RPC-Net, RPC-Net-B, TRF-Put, RNN-Qui, and CNN-Ols. The figure reflects the experimental
conditions outlined in section II-G and in section II-H.1. one-sided paired t-test results for MD (H0: RPC-Net ≥ RPC-Net-B): t(11)=-0.96 p=1.7e-01,
(H0: RPC-Net ≥ TRF-Put): t(11)=-2.78 p=8.9e-03, (H0: RPC-Net ≥ RNN-Qui): t(11)=-11.2 p=1.2e-07, (H0: RPC-Net ≥ CNN-Ols): t(11)=-3.55
p=2.3e-03. one-sided paired t-test results for MPCC (H0: RPC-Net ≤ RPC-Net-B): t(11)-6.88 p=1.3e-05, (H0: RPC-Net ≤ TRF-Put): t(11)=-8.75
p=1.4e-06, (H0: RPC-Net ≤ RNN-Qui): t(11)=-11.3 p=1.1e-07, (H0: RPC-Net ≤ CNN-Ols): t(11)=-9.19 p=8.5e-07. (b) Performance as a function
of angle branch input signal length, as described in section II-H.2. Regression analysis results for MD (H0: β1=0): β̂1=-0.057 mm/s, SE=2.0e-
01, t=-2.9e-01, p=7.8e-01, R2=1.0e-03, adjusted R2=-1.0e-02. Regression analysis results for MPCC (H0: β1=0): β̂1=0.002 1/s, SE=2.0e-03,
t=1.3e-00, p=2.0e-01, R2=1.7e-02, adjusted R2=-7.0e-03.

than with the index finger, middle finger and thumb alone.
Table II reports the MPCC and MD for all subjects. Fig. 5
shows an overlap of the angles as estimated by RPC-Net and
their actual values, with joint codes defined in Fig. 2. The
results shown correspond to a one-minute interval from the
test trial acquired for Subject S0. These results indicate that
the estimate is consistently good across all joints. The best
results in terms of PCC are observed for the flexion-extension
of the wrist joint and the metacarpal-phalangeal joint of the
four fingers. The inference time of RPC-Net is 6.20 ms, with
a standard deviation of 0.01 ms.

B. Variations of RPC-Net and comparison with other
solutions

Fig. 6 to Fig. 10 show the performance of RPC-Net if com-
pared with other DL solutions and its own variants, measured
by the previously defined indicators: MD, MPCC, and IT.

Markers indicate actual indicators (i.e., the mean), intervals
highlight the first and second tertiles, and a dot symbolizes
the median. Statistics are included. For the one-sided paired
t-test, we included the t statistic and the corresponding p-value
in the caption. For regression analyses, the caption included
β̂1, SE, t, p, R2 and adjusted R2. In Fig. 7, Fig. 8, and Fig.
10, the top and middle plot rows indicate architectures with
or without information about previous position, respectively.
The bottom row of plots compares the two conditions, using y-
values from the top and middle rows to determine the position
of a marker. Values on the y-axis in the top plot row are the
x-axis in the bottom plot row, and values on the y-axis in
the middle plot row are the y-axis in the bottom plot row.
For the Wilcoxon signed-rank test we report the statistic W
(sum of the ranks of positive differences), and the p-value in
the caption. Fig. 6 compares the performance of RPC-Net,
RPC-Net-B, TRF-Put, RNN-Qui, and CNN-Ols, referring to
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(b)

(a)

(c)

Fig. 7. Performance as a function of EMG branch input signal length for RPC-Net and RPC-Net-B, as defined in section II-H.2. (a) RPC-Net.
Regression analysis results for MD (H0: β1=0): β̂1=-17.362 mm/s, SE=2.2e-00, t=-8.0e-00, p=2.4e-12, R2=4.0e-01, adjusted R2=4.0e-01.
Regression analysis results for MPCC (H0: β1=0): β̂1=0.257 1/s, SE=2.8e-02, t=9.3e-00, p=4.6e-15, R2=4.8e-1, adjusted R2=4.8e-1. (b) RPC-
Net-B. Regression analysis results for MD (H0: β1=0): β̂1=-18.535 mm/s, SE=2.0e+00, t=9.4e-00, p=3.9e-15, R2=4.8e-1, adjusted R2=4.8e-
1. Regression analysis results for MPCC (H0: β1=0): β̂1=0.272 1/s, SE=2.6e-02, t=1.0e+01, p=2.5e-17, R2=5.4e-1, adjusted R2=5.3e-1. (c)
Comparative analysis between RPC-Net and RPC-Net-B. Wilcoxon signed-rank test results for MD (H0:median RPC-Net ≥ median RPC-Net-B):
W=786 p=8.8e-09. Wilcoxon signed-rank test results for MPCC (H0:median RPC-Net ≤ median RPC-Net-B): W=96, p=1.7e-16.

(b)

(a)

(c)

Fig. 8. Performance as a function of EMG branch layer width for RPC-Net and RPC-Net-B. The x-axis shows the code defined in II-H.3. (a)
RPC-Net. (b) RPC-Net-B. (c) Comparative analysis between RPC-Net and RPC-Net-B. Wilcoxon signed-rank test results for MD (H0:median RPC-
Net ≥ median RPC-Net-B): W=577 p=1.8e-05. Wilcoxon signed-rank test results for MPCC (H0:median RPC-Net ≤ median RPC-Net-B): W=0,
p=8.3e-14.

the experiments in sections II-G and II-H.1. Statistical tests
confirm the superior performance of RPC-Net against the other
solutions. Another analysis (second row of plots), studies the
impact of angle branch input signal length, revealing no sig-
nificant influence on performance. Fig. 7 depicts performance
trends based on EMG branch input signal length for RPC-
Net and RPC-Net-B, as detailed in section II-H.2. Longer
signals predictably enhance performance. Fig. 8 examines the

influence of the EMG branch layer width on performance
for RPC-Net and RPC-Net-B, as defined in II-H.3. Visually,
wider layers improve performance, though computational cost
escalates quicker. Fig. 9 evaluates RPC-Net variants using a
subset of electrodes, defined in section II-H.4. Fewer elec-
trodes predictably lower performance. However, computational
cost decreases significantly with fewer electrodes. Lastly, Fig.
10 contrasts the performances of RPC-Net, RPC-Net-W, RPC-
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(b)

(a)

Fig. 9. Performance as a function of the subset of electrodes used, as described in section II-H.4. (a) Rows subsets. (b) Columns subsets.

(b)

(a)

(c)

Fig. 10. Comparison between RPC-Net-W, RPC-Net-I, and RPC-Net, as described in section II-H.5. (a) RPC-Net. one-sided paired t-test results
for MD (H0: RPC-Net ≥ RPC-Net-I): t(11)=0.609 p=7.2e-01, (H0: RPC-Net ≥ RPC-Net-W): t(11)=-5.709 p=1.6e-05. one-sided paired t-test
results for MPCC (H0: RPC-Net ≤ RPC-Net-I): t(11)=0.025 p=5.1e-01, (H0: RPC-Net ≤ RPC-Net-W): t(11)=-10.412 p=2.5e-07. (b) RPC-Net-B.
one-sided paired t-test results for MD (H0: RPC-Net-B ≥ RPC-Net-I-B): t(11)=3.069 p=9.9e-01, (H0: RPC-Net-B ≥ RPC-Net-W-B): t(11)=-7.019
p=1.1e-05. one-sided paired t-test results for MPCC (H0: RPC-Net-B ≤ RPC-Net-I-B): t(11)=5.471 p=9.8e-01, (H0: RPC-Net-B ≤ RPC-Net-W-B):
t(11)=-10.682 p=1.9e-07. (c) Comparative analysis between RPC-Net and RPC-Net-B. Sign test results for MD (H0:median RPC-Net ≥ median
RPC-Net-B): W=225, p=4.5e-02. Sign test results for MPCC (H0:median RPC-Net ≤ median RPC-Net-B): W=92, p=7.6e-05.

Net-I, and their RPC-Net-B counterparts, as described in II-
H.5. RPC-Net outperforms RPC-Net-I (with a considerable
difference in computational cost), but not RPC-Net-W. The
results, as seen in the bottom plot row of Fig. 7, Fig. 8, and Fig.
10, indicates that prior kinematic state information consistently
improves performance.

IV. DISCUSSION

The most important consideration that can be inferred from
the results is that RPC-Net is capable of translating elec-
tromyographic activity to hand position with good accuracy.
This finding is of vital importance, as it demonstrates that a
solution addressing user needs and allowing for natural-feeling
control, while being computationally efficient, can achieve
satisfying levels of performance; this opens new opportunities
for the implementation of such solutions in a clinical setting.

While other ML approaches yield results comparable to ours
in EMG-based prosthetic control, these either control a limited
number of DoFs [49] [28], rely on electrodes positioned too

distally [27], or employ algorithms that demand substantial
computational resources [50] [51]. As for the second point,
the use of electrodes positioned too distally (on the wrist or
thumb) poses a challenge in applications, as many amputees
lack these parts of the limbs [16]. The results indicate that all
the necessary information to determine the current kinematic
state of the hand can be derived from the electromyographic
activity in the proximal portion of the forearm, even for
joints with distal or intrinsic actuators. Although the adequacy
of forearm electromyogram for prosthetic control has been
demonstrated [18], no study yet demonstrated the feasibility
of all-DoF control using electromyographic activity acquired
solely from the proximal forearm. On the computational
front, algorithms that demand extensive resources necessitate
advanced hardware like GPUs, which are impractical to embed
into a prosthetic device, thereby limiting their applicability
in clinical settings. In this regard, the results point towards
another novel finding: high-quality regression can be achieved
using simple fully connected neural architectures, rather than
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TABLE II
PERFORMANCE INDICATORS FOR RPC-NET ACROSS THE TWELVE

SUBJECTS

Subject MD (T1, T2, Med) in mm MPCC (T1, T2, Med) in %
S0 24.1 (18.9, 21.9, 25.3) 80.4 (77.8, 82.2, 87.0)
S1 23.0 (17.5, 21.5, 26.0) 81.8 (79.8, 86.8, 90.1)
S2 32.3 (25.2, 30.3, 35.3) 76.3 (69.0, 83.2, 87.3)
S3 33.5 (23.6, 28.6, 36.7) 77.6 (71.2, 83.3, 87.2)
S4 32.4 (22.6, 28.0, 33.6) 75.7 (73.6, 77.1, 82.0)
S5 28.5 (20.4, 25.4, 31.8) 83.0 (78.7, 85.7, 89.7)
S6 30.2 (22.2, 26.3, 32.7) 78.8 (74.6, 81.6, 85.3)
S7 26.2 (19.6, 23.6, 29.1) 79.5 (75.7, 83.0, 86.0)
S8 26.7 (19.3, 23.9, 29.4) 66.0 (66.5, 71.6, 77.8)
S9 27.3 (17.5, 21.2, 26.2) 76.9 (74.7, 79.3, 85.4)
S10 42.0 (26.1, 33.5, 43.7) 77.8 (79.6, 83.9, 86.7)
S11 29.9 (21.8, 27.5, 33.7) 79.3 (81.3, 84.5, 87.0)
Performance of RPC-Net for the twelve subjects considered in the study. The
mean, first tertile (T1), second tertile (T2) and median (Med) are shown for
each subject and for both performance indicators.

complex convolutional structures, a result demonstrated by the
performance of RPC-Net if compared to our implementation
of the solutions proposed by Quivira et al. [46], Olsson et
al. [45], and Putro et al [47]. A simple architecture implies
a reduced computational cost and makes RPC-Net potentially
embeddable in a microprocessor of a prosthetic device.

Incorporating information about the previous kinematic state
significantly contributes to the performance of our solution.
The results show that the improvement in performance given
by the inclusion of information about previous state is consis-
tent across subjects and across conditions. In real-life situa-
tions, this feature could offer a stabilizing mechanism to coun-
teract the stochastic nature of electromyographic signals. The
results illustrate the resilience of RPC-Net against reductions
in EMG electrode numbers, shorter input signals, and other
conditions that could lower computational cost. The findings
indicate that while additional input data typically enhances
estimation quality, the improvement doesn’t correspond pro-
portionally to computational cost. For instance, reducing the
number of electrodes from 96 to 32 only increased fingertip
distance by 5 mm and reduced MPCC by 10%, yet resulted in a
75% reduction in computation time. Hence, a control solution
based on RPC-Net could offer substantial flexibility and could
be implemented with fewer electrodes or a shorter input signal,
implying that the computational cost of the solution could
be further minimized with minimal performance loss, making
it highly adaptable to clinical settings. Previous studies have
explored the adequacy of fewer electrodes for control [52]
[53], but none for these many DoFs.

The experiments described in this work were conducted
entirely offline and on healthy subjects. For RPC-Net to be
properly validated for controlling upper limb prostheses, its
performance must be demonstrated in conditions more closely
resembling the actual target case. To achieve this, the next
steps in our research include implementing RPC-Net in real-
time, integrating it for the control of an existing, state-of-the-
art prosthetic device, and applying it to amputees. Finally, once
the solution is successfully applied to amputees, a subsequent
study would be necessary to assess their satisfaction and to
determine the potential positive impact of a prosthetic device
controlled by RPC-Net.

V. CONCLUSION

In this study, we introduced and extensively evaluated RPC-
Net, a method for translating electromyographic activity into
hand position using a computationally efficient neural network
architecture. The results of the study show that RPC-Net can
perform better than state-of-the-art methods with a similar
computational cost and without requiring advanced computer
resources. This signifies a crucial development, making the
system more adaptable and potentially more accessible in
clinical settings. A key feature that substantially contributes to
the performance of the system was incorporating information
about the previous kinematic state. Furthermore, our solution
demonstrated robustness against changes in input signal length
and the number of EMG channels used, reinforcing its flexi-
bility and adaptability. The development and success of RPC-
Net have significant implications for biomedical research and
practical applications. It offers a new avenue for prosthetic
control that feels more natural, is computationally efficient,
and can be flexibly adapted to different clinical settings and
patient needs. This progress has the potential to improve the
quality of life for individuals with limb loss, pushing forward
biomedical research and its applications. Our future research
will focus on taking the necessary steps to implement RPC-
Net as a control solution for prosthetic devices.
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