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Francesco Buccheri ,1,2,* Reinhold Egger ,2,† and Alessandro De Martino 3,‡

1Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, I-10129 Torino, Italy
2Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany

3Department of Mathematics, City, University of London, London EC1V 0HB, United Kingdom

(Received 6 October 2023; accepted 23 January 2024; published 22 February 2024)

We consider a smooth interface between a topological nodal-line semimetal and a topologically trivial
insulator (e.g., the vacuum) or another semimetal with a nodal ring of different radius. Using a low-energy
effective Hamiltonian including only the two crossing bands, we show that these junctions accommodate a
two-dimensional zero-energy level and a set of two-dimensional dispersive bands, corresponding to states
localized at the interface. We characterize the spectrum, identifying the parameter ranges in which these states
are present, and highlight the role of the nodal radius and the smoothness of the interface. We also suggest
material-independent ways to detect and identify these states, using optical conductivity and infrared absorption
spectroscopy in magnetic field.
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I. INTRODUCTION

Nodal-line semimetals (NLS) are a class of materials char-
acterized by a gapped spectrum everywhere in the Brillouin
zone (BZ), with the exception of one or more nondegenerate
(Weyl) or doubly degenerate (Dirac) band crossings, which
occur on a one-dimensional manifold (an ellipse or a ring)
in proximity of the Fermi energy. The toroidal Fermi surface
and the high carrier mobility are associated with strong and
characteristic thermoelectric and magnetotransport responses
[1–6]. A prominent example is Ca3P2, whose synthesis was
reported in Ref. [7]. Intense experimental and theoretical ac-
tivity has allowed for the isolation of several other compounds
[8–17], such as ZrSiS [18], ZrTe5 [6,19], ZrGeSe [20], and
ZrSiTe [21,22], and for the detection of characteristic trans-
port signatures, as well as of the topological surface states via
quasiparticle interferometry or angle-resolved photoemission
spectroscopy. Synthetic materials, such as phononic [23] and
photonic crystals [24,25], have also recently provided valu-
able experimental realizations of the spectrum.

The presence of a nodal line is associated with topological
“drumhead” states (TDS) when the NLS has an ideally sharp
interface with a trivial insulator, such as the vacuum. It is
known that these states are exponentially localized on the
surface and that their support in momentum space is enclosed
by the projection of the nodal line on the surface Brillouin
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zone [26]. Real interfaces can, however, differ from the ideal
interfaces in many aspects. Apart from lattice mismatch ef-
fects between the materials, which we will not consider in this
work, electrostatic effects and nonuniformity of the surface
on the atomic scale can have remarkable consequences. In
topological insulators, the electrostatic bending of the bands
can determine the presence of additional surface states of
nontopological origin [27–29]. Moreover, it is well known that
a discrete spectrum of finite-energy dispersive surface states
appears if a band inversion occurs smoothly in space over
a length � > 2h̄v/�, with v being the Fermi velocity of the
bulk excitations and � the band gap [30–32]. Such smooth
interfaces can be realized in heterostructures as a consequence
of the interplay of an electrostatic potential and the strain
effects from a substrate [33]. Furthermore, the situation in
which the two materials are both present in an intermediate
region, as in specially synthesized samples via chemical sub-
stitution [34], provides another example of a smooth junction.
These so-called Volkov-Pankratov states have been detected
via their signatures in absorption spectroscopy and ac trans-
port measurements. These ideas can promptly be translated
to topological semimetals. The presence of relatively smooth
interfaces, in fact, may be a result of the geometry of the
heterostructure, a way of modeling a surface inhomogeneous
on the order of several unit cells, or present from the synthesis
stage (e.g., from blending with a minority component [7]),
or engineered in the sample preparation stage via chemical
substitution [35].

In technological applications, interfaces are not only un-
avoidable but even welcome, because topologically protected
surface states are at the core of mechanisms that limit phonon-
or impurity-induced dissipation in a wide spectrum of topo-
logical materials [36–40]. In NLS, the TDSs are associated
with specific transport phenomena, such as spin-flipped re-
flection of electrons within the region of the BZ enclosed by
the nodal line, and can be used to probe the topological nature
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FIG. 1. Schematic representation of the system under study. The
nodal-line semimetal on the right is separated from the insulator
(a) or from another nodal-line semimetal with smaller nodal radius
(b) on the left (represented in the plot by their respective band
structures) by an extended intermediate region, in which the nodal
line gradually shrinks and, in case (a), a band gap opens.

of the sample [41]. Moreover, interface states have recently
been proposed as a building block of highly tunable Landau-
level laser sources [42]. Understanding the precise nature of
the surface states and their interactions is therefore of great
importance for the advancement of the field.

In this work, using an effective Hamiltonian that describes
the physics of a NLS in the vicinity of the nodal line, we show
that additional states besides the TDSs can be present at the
interface with a topologically trivial insulator (including the
vacuum) in the configuration of Fig. 1. We call these addi-
tional interface states “dispersive drumhead states” (DDSs).
They are similar to the TDSs, but they instead exist at finite
energy and are not protected by a topological index. One may
consider the DDSs as analogs of the Volkov-Pankratov states,
which have been investigated in various related contexts, e.g.,
in graphene [43,44], topological insulators [32,45,46], and
Weyl semimetals [47]. Indeed, for a fixed value of the mo-
mentum in the plane of the nodal line, one can see the DDS as
originating from the gap inversion described in Refs. [30,31].
However, an important difference is that the DDSs have a
finite support in momentum space, bounded by the nodal
line. We provide bounds on the parameters describing the
sharpness of the surfaces for such states to appear and relate
the number of states in the spectrum to three dimension-
less parameters encoding the relevant characteristics of the
sample and the external field. We provide the exact energies
and eigenfunctions of the localized states and point out that
magneto-optical absorption spectroscopy in the infrared re-
gion and the related frequency-dependent optical conductivity
offer a most effective way to observe the presence of the
localized states in experiments [33,34].

This work is structured as follows: In Sec. II we intro-
duce our effective model and describe the general strategy to
solve the associated Schrödinger problem. Subsequently, in
Sec. III, we describe the spectrum in the absence of an external
magnetic field. We then study the problem in a magnetic

field in Sec. IV and describe the optical absorption lineshape
in Sec. V. We summarize the main characteristics of the
spectrum and discuss the detection possibilities in Sec. VI.
Technical details can be found in various Appendices. We
often use units with h̄ = 1.

II. MODEL

We consider the low-energy Hamiltonian describing the
electronic degrees of freedom in the vicinity of a band cross-
ing in a generic nodal-line semimetal [48],

H (k) = vzkzτy + M(kp)τz + f (kp)τ0, (1)

where the τ j ( j = x, y, z) are the Pauli matrices, k = (kp, kz ),
kp = (kx, ky) is the component of the momentum in the plane
of the nodal line and kp its modulus. The “mass” function is

M(kp) = Dp
(
k2

p − a
)
, (2)

and the particle-hole symmetry-breaking term is

f (kp) = D0
(
k2

p − a
)+ V0,

where vp = Dp/
√|a| and vz are (positive) velocities and V0

is a band offset. With the two bands having opposite eigen-
values under inversion, the latter is a symmetry of the Bloch
Hamiltonian (1), as

H (k) = τzH (−k)τz.

We will often consider, as a reference, Ca3P2 [7], which
exhibits a band crossing in a window of ±10 meV around
the Fermi energy. In this case, the Pauli matrices act on an
orbital degree of freedom, and the model possesses full SU (2)
spin rotation invariance, as it is diagonal in the spin degree
of freedom. Then the time-reversal operator T squares to the
identity and is represented as the complex conjugation T = K
[48]. It is a symmetry of (1), as

H (k) = H∗(−k).

The simplified model with f (kp) = 0 has an additional
particle-hole symmetry that exchanges valence and conduc-
tion bands, implemented by the transformation

τxH∗(−k)τx = −H (k).

Parameter estimates for the example mentioned above can be
found in Ref. [48]. Here we only quote the values h̄vz ≈ 2.5
eV Å and Dp ≈ 4.34 eV Å2 for later use.

The effective two-band model (1) is possibly the simplest
model describing a ring-shaped band crossing in a generic
NLS. Indeed, the spectrum consists of the two bands

E±(kp, kz ) = f (kp) ±
√

v2
z k2

z + M2(kp). (3)

Its defining feature is that, for a > 0, the bands touch on the
nodal line defined by kz = 0, kp = √

a, which is generically
allowed if a mirror symmetry is present [49]. Conversely,
whenever a < 0, a gap of magnitude 2Dp|a| appears. The
eigenstates of the Bloch Hamiltonian are denoted by |uj (k)〉,
with j = ± denoting the conduction or valence band, and can
be used to define Zak’s phase

P−
(
kp
) = i

∫ π

−π

dkz〈u−(k)|∂kz |u−(k)〉. (4)
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FIG. 2. Schematic plot of the position-dependent energy gap
(solid blue line) and of the nodal-line radius (solid red line), as
defined from the function (5), or mass function (2) computed at
kp = 0 (dashed line). The parameters η and εg are defined in Eq. (6).
The dotted lines depict instead the limit in which the interface is
sharp, with a sudden gap opening at z = z0.

This integral is quantized in integer multiples of π as a
consequence of inversion or mirror symmetry along the z axis
[50,51] and can therefore be seen as the topological invariant
of a one-dimensional system with two parameters, the mo-
mentum components kp. While the value of this integral is not
directly computable within the framework of the low-energy
Hamiltonian (1), one can easily compute the difference in
this value when the in-plane momentum kp lies inside and
outside the nodal line by deforming the contour to a loop
enclosing the nodal line. The Berry phase along this loop is
the topological invariant of the NLS defined in Refs. [49,52].
While the Berry curvature itself is vanishing in the BZ, the
Berry phase acquired on a loop enclosing the nodal line is
not, due to the singularity introduced by the band crossing. In
fact, the Berry phase is quantized by the presence of a discrete
symmetry, namely the mirror symmetry with respect to the
plane of the nodal line [51]. In this work, we also restrict
ourselves to the class of models which possess time-reversal
symmetry in the bulk, implemented as described above.

In order to model an insulator, we need to open a band gap,
but the symmetries prevent the insertion of terms proportional
to τx or ∼k jτx. We can, however, select a negative value
of the parameter a, thus creating a gap of size 2Dp|a|. We
can then model an interface between a trivial insulator and a
nodal-line semimetal by defining a function a = a(z), which
breaks translation invariance in the z direction. We here study
the case where the interface plane and the nodal-line plane
are parallel. We also assume that this symmetry breaking
takes place locally, in a region of size ∼�, while far from
the interface the bulk translation invariance is restored. The
shape of the function a must be selected in such a way that (1)
the sharpness of the interface can be tuned by a characteristic
length parameter �, and (2) it asymptotically reproduces an in-
sulator with a defined band gap or a semimetal with a defined
nodal line. We conveniently select a function that satisfies
these requirements and allows full analytical progress in the
form:

a(z) = a0 + a1

[
tanh

( z

�

)
− 1
]
, (5)

with positive parameters a0 and a1. The interface profile is
illustrated in Fig. 2. We see that on the far right (z � �),

we have a NLS with nodal radius k0 = √
a0. The nodal

line shrinks to a point when z → z0, with z0 = � arctanh
(1 − a0/a1), and a gap opens when z < z0, as long as 2a1 >

a0. On the far left (z 
 −�), we then have an insulator with
gap 2Eg = 2Dp(2a1 − a0), see also Fig. 1. This model allows
us to consider also the case of an interface between two NLSs
with different nodal radii, illustrated in Fig. 1 too. This is
realized when Eg < 0, such that for z 
 −� we have a NLS
with nodal radius k′

0 = √
a0 − 2a1.

Ignoring for the moment the particle-hole symmetry-
breaking term, the model contains three energy scales: the
bulk band edges at k = 0 on the right and on the left, respec-
tively E0 = Dpa0 and Eg, and the characteristic energy scale
associated with the inhomogeneity in the z direction, h̄vz

�
. The

physics of the interface problem is then fully determined by
the dimensionless ratios

η = �Dpa0

h̄vz
, εg = �Dp(2a1 − a0)

h̄vz
. (6)

It is convenient to introduce also their combination

λ = �Dpa1

h̄vz
= εg + η

2
, (7)

which we refer to as the “smoothness” parameter. We will see
below that the characteristics of the interface states depend
on λ and η. We use the energy scale h̄vz/� to define the
reduced Hamiltonian H = �H

h̄vz
and the corresponding energy

relative to the chemical potential ε = �(E−V0 )
h̄vz

, and rescale the
longitudinal coordinate z by the junction characteristic length
z/� → z. The momenta in the nodal line plane are instead
more conveniently rescaled as qp = kp/

√
a0. With these con-

ventions, the reduced Hamiltonian assumes the form

H = −iτy
∂

∂z
+ τz + γ τ0√

1 − γ 2
[d (qp) − λ tanh z], (8)

where we have defined the auxiliary function of the transverse
momentum,

d (qp) = ηq2
p − η + λ. (9)

Translation invariance in the direction perpendicular to the
interface (z direction) is broken, and the Bloch Hamiltonian
(10) is parametrized by the two surviving momenta qx and qy

in the plane defined by the interface. The parameter γ = D0
Dp

in Eq. (8) quantifies the particle-hole symmetry breaking, with
γ = 0 being the particle-hole symmetric case. For the sake of
simplicity, we consider throughout this paper the model with
γ = 0. The general case is considered in Appendix A, where
we show that the results obtained for γ = 0 can be adapted to
the case γ �= 0. Since for γ = 0 the spectrum is particle-hole
symmetric, we restrict our discussion to the non-negative part,
with the understanding that each positive energy state has a
negative energy partner.

Before closing this section, we note that, while the nodal
line in real materials does not necessarily form a circle in the
BZ, more general shapes can be accommodated in our model
by using an appropriate coordinate system in the nodal plane.
These material-specific features are not expected to produce
qualitative changes to the picture of DDSs presented here.
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III. SPECTRUM OF THE INTERFACE PROBLEM

A. The Dirac-Schrödinger equation and its general solution

Here we study the Dirac equation Hψ = εψ with the
Hamiltonian (8) and γ = 0:

H = −iτy∂z + [d (qp) − λ tanh z]τz. (10)

The asymptotic behavior of the solutions for z → ±∞ is
determined just by the bulk gaps and is independent of the
specific details of the interface profile. We can identify three
spectral regions, characterized by the parameters

κ±
(
qp
) =

√
[d (qp) ∓ λ]2 − ε2, (11)

which control the behavior of the solutions for z → ±∞. As
they play an important role in the following, it is worth writing
these two quantities explicitly as

κ+ =
√(

ηq2
p − η

)2 − ε2, (12)

in which the radius of the nodal ring appears through η, and

κ− =
√(

ηq2
p + εg

)2 − ε2, (13)

in which the gap parameter is explicit.
In the energy–transverse momentum region where κ± are

both real, the solutions describe states localized at the inter-
face, exponentially decaying on both sides of the junction with
different decay lengths, given by κ−1

+ on the right and κ−1
−

on the left. These solutions represent interface states similar
to the interface arcs of Weyl semimetals [47,53], with the
important difference that in the present situation they form
two-dimensional bands, as opposite to the one-dimensional
interface arcs. We discuss these solutions in Sec. III B. In
the region where κ+ is imaginary and κ− real, the solutions
describe propagating states in the NLS which are perfectly
reflected by the interface, with evanescent waves in the left
side of the junction. Finally, if κ± are both imaginary, then we
have propagating states in both sides, with finite transmission
across the interface. These last two types of solutions are
discussed in Sec. III C.

The choice of the interface profile (5) allows for the com-
plete analytical solution of (10) in all spectral regions, which
we present in Appendix C. We summarize here the basic steps.
First, we make the ansatz

ψ =
(

ψ1

ψ2

)
= φ+|+〉 + φ−|−〉, (14)

where |±〉 denote the normalized eigenstates of the Pauli
matrix τx. Then we introduce the variable

u = 1 − tanh z

2
, (15)

which ranges between 0 and 1. In terms of this variable, the
right asymptotic region z → +∞ is mapped into the limit
u → 0, while the limit u → 1 corresponds to the left asymp-
totic region z → −∞. Based on the asymptotic considerations
above, we factorize the wave function as(

φ+
φ−

)
= uκ+/2(1 − u)κ−/2

(
χ+
χ−

)
. (16)

In Appendix C we show that the functions χ±(u) satisfy
an hypergeometric equation, see Appendix B, and provide the
details of the solution. In the following, we discuss in turn the
spectrum of bound states and of propagating states.

B. Interface states

First, we consider the energy-momentum domain in which
κ± are both real:

ε2 < min
{(

ηq2
p − η

)2
,
(
ηq2

p + εg
)2}

. (17)

In this region, the spectrum consists of states exponentially
localized around the junction.

From general considerations based on the bulk-boundary
correspondence, we expect a topologically protected localized
state at the interface between samples with different values
of a bulk topological index [26,51,52,54]. Going back to our
Dirac equation (10), it follows indeed that a unique TDS state
solution with zero energy can be found in the form

ψ0(z) = N0
ed (qp)z

coshλ(z)
|+〉, (18)

where the normalization coefficient N0 is provided in
Eq. (C10). The state (18) exists in the range

max{0,−εg/η} < q2
p < 1, (19)

and has inverse decay lengths κ+,0 = η(1 − q2
p) for z > 0 and

κ−,0 = (ηq2
p + εg) for z < 0. If εg > 0, it has the form of a

drumhead band [48], while for εg < 0, i.e., if the interface sep-
arates two NLSs with different nodal radii, this energy level
has support in an annular region of transverse momentum.

In the spectral region (17), in addition to this zero-energy
interface band, finite-energy localized states emerge when the
junction is smooth enough (see below). As shown in Ap-
pendix C, these states are described by the wave function(

χ+
χ−

)
=
[

F (κ − λ, κ + λ + 1; κ+ + 1; u)
κ++d−λ

ε
F (κ + λ, κ − λ + 1; κ+ + 1; u)

]
(20)

with the hypergeometric function F (a, b; c; u) [55], d given
in Eq. (9), and κ = κ++κ−

2 . The condition of normalizability
requires that either of the first two arguments of the hyperge-
ometric functions equals a nonpositive integer, and we arrive
at the quantization equation

κ − λ = −m, m ∈ N0, (21)

where m = 0 corresponds to the zero-energy state (18). We
thus find a family of interface levels labeled by the integer
m = 1, 2, . . . , mmax (where the maximal value mmax is dis-
cussed below), with dispersion

εm(qp) =

√√√√√m(2λ − m)

⎡
⎣1 −

(
ηq2

p − η + λ

λ − m

)2
⎤
⎦. (22)

These states are localized at the interface, with different
inverse localization lengths on the two sides of the interface,
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FIG. 3. Dispersion relations of the interface states (22) as a func-
tion of the radial momentum qp in the plane of the nodal line for
η = 5.06 and λ = 5.5. These parameter values correspond to the
large-gap regime, see Eqs. (25)–(27). The black dashed line and the
green dotted line describe the edge of the bulk bands on the right
and on the left of the interface, respectively. The DDSs (blue lines)
always lie at finite energy below the continuum threshold. The red
line at zero energy describes the TDS, with support in the interval
0 < qp < 1. The TDS is the only interface state that survives in the
limit of a sharp junction. Inset: Dispersion relation in the qxqy plane.

given by

κ±,m =
{

λ
λ−m

[
η − ηq2

p − ε(0)
m

]
λ

λ−m

[
ηq2

p + εg − ε(0)
m

] , (23)

where

ε(0)
m = m

(
2 − m

λ

)
(24)

is the energy at which the mth interface band merges into the
bulk band of the NLS on the right.

In order to describe the characteristics of the interface
bands (22), it is convenient to distinguish three scenarios,
depending on the relative sizes of the gaps on the right and
the left of the junction.

In the large-gap regime εg > η, the interface dispersions
are decreasing functions of the transverse momentum qp and
feature a maximum at qp = 0 with energy

ε(1)
m =

√√√√m(2λ − m)

[
1 −

(
λ − η

λ − m

)2
]

. (25)

The condition of positivity of κ±,m in (23) implies that the
mth interface band has support in the range of qp given by

0 < q2
p < 1 − ε(0)

m /η, (26)

so it is always a full disk, a “drumhead.” These surface levels
are illustrated in Fig. 3. Because of their shape, we refer to
them as dispersive drumhead states. We stress that these states
are found in addition to the flat TDSs. For a sharp interface,
only the latter are present. A curvature of the TDS band can
actually be originated by an energy dispersion of the nodal
line in the bulk [26]. This is, however, not the case of our
Hamiltonian (10), and the TDS band is indeed flat, as opposed
to the DDSs. The additional interface bands can only appear

FIG. 4. Dispersion relations of the interface states (22) in a junc-
tion between two NLSs of different nodal ring radii, for η = 8.2 and
λ = 3.2, corresponding to the negative-gap regime, see Eqs. (28) and
(29). The energy of the DDSs lies below the continuum threshold of
both materials, represented as black dashed and green dotted lines.
The zero-energy TDS state (red line) has an annular support and is
present also for a sharp junction. Inset: Dispersion relation in the qxqy

plane. Only one DDS is shown.

in a junction with a wide-enough intermediate region. In fact,
Eq. (21) implies that the interface hosts the topological zero-
energy state for every value of λ, but, in addition to it, for a
smooth junction there are mmax DDSs, where

mmax =
⌊

λ

(
1 −

√
1 − η

λ

)⌋
, (27)

and �x� is the floor function. Furthermore, from Eqs. (22) and
(26) we see that higher values of the integer m correspond to
DDSs with higher energies and smaller radii of the support. In
Appendix D we give explicit results for the special case of an
infinite gap εg → +∞ (i.e., λ → +∞ at fixed η), describing
the case of an interface with the vacuum, where some simpli-
fications emerge.

In the negative-gap regime −η < εg < 0 (i.e., λ < η/2),
the interface separates two NLSs. In a practical realization,
they can be different materials, each with a nodal line deter-
mined by its chemical composition. Note that in this regime
there is no gap on either side of the junction. Equation (23)
implies that the support of all interface states is the ring[

ε(0)
m − εg

]
/η < q2

p < 1 − ε(0)
m /η. (28)

In this scenario, the maximum of the dispersion is shifted
to q2

p = 1 − λ
η

, at energy

ε(1)
m =

√
m(2λ − m), (29)

and the number of interface states which the interface can
accommodate is given by mmax = �λ�. This regime is exem-
plified in Fig. 4.

Finally, there is a third scenario, the small-gap regime
0 < εg � η, in which the material occupying the half-space
z < 0 has a band gap equal or smaller than the characteristic
bulk energy of the NLS. In practice, the numerical value of
the gap is determined by the nature of the material and its
chemical (composition, doping, ...) and physical (pressure,

013193-5
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FIG. 5. Energies of the interface states (22) in a NLS-
semiconductor junction for η = 8.2 and λ = 6.2, representing the
small-gap regime. The dispersion of the higher DDSs merges with
the states above the semiconductor gap (green dotted line) on the
left side of the junction, and with the bulk states of the NLS (black
dashed line) on the right. Inset: Dispersion relation in the qxqy plane.
The highest energy DDS is not shown.

strain, ...) properties. Typical parameters [48] yield an esti-
mate of 0.2 eV for this energy, i.e., we are considering the
interface between a NLS and a semiconductor. As illustrated
in Fig. 5, this situation is intermediate between the previous
two: On the one hand, the states with the lower values of m
have drumhead-shaped support; on the other hand, as soon
as the inequality ε(0)

m > εg is satisfied, we have states with
annular support as in Eq. (28).

We conclude this section by emphasizing the decisive role
played by the smoothness parameter λ in determining the
interface spectrum. In the sharp interface limit λ < 1, the
change of sign in the hyperbolic tangent term takes place on
a length scale � which is short compared to h̄vz

Dpa1
. In this limit,

no interface states other than the TDS at ε = 0 are allowed,
irrespective of the nodal radius in the NLS. In the opposite
smooth interface limit λ � 1, the transition between the in-
sulator and the topological semimetal is very smooth, with
a characteristic scale � � h̄vz

Dpa1
. In this case, a large number

(∼λ) of interface states exists, as long as λ < η. If, however, λ
exceeds η, then the number of states decreases with increasing
λ and it is ultimately limited by the nodal radius, see Eqs. (27)
and (D3).

As we saw that the number of DDSs is bound by the
parameter λ, it is worth considering the consequences in our
prototype Ca3P2, which has a unit cell size a = 5.31 Å [56].
Even with a relatively sharp junction, characterized by a junc-
tion length � = 3a and εg = η, one obtains λ ≈ 1.12, i.e.,
the material is in an intermediate regime with respect to its
junction length and an additional surface state should appear.

C. Scattering states

Let us now consider the ε − qp domain in which κ+ = ik+
is imaginary:

ε2 > (ηq2
p − η)2. (30)

In this region, the spectrum consists of propagating states in
the NLS side which for z → +∞ are made of a superposition
of a left-moving wave incident on the junction from the right
and a right-moving wave reflected back. The exact expression
of these states is given in Eq. (C13). Their asymptotic form is(

φ+
φ−

)
∼ ϕ+(k+)e−ik+z + Rϕ+(−k+)eik+z, (31)

with the spinors ϕ± given in Eq. (C15), in agreement with
Eq. (C2), and reflection amplitude

R = �(ik+) �(κ ′ − λ) �(κ ′ + λ + 1)

�(−ik+) �(κ − λ) �(κ + λ + 1)
, (32)

where �(x) is the gamma function [55], κ = κ−+ik+
2 , and κ ′ =

κ−−ik+
2 . If κ− is real, which occurs if ε2 < (ηq2

p + εg), the wave
function decays exponentially in the left side of the junction,
and indeed we find |R|2 = 1. If instead κ− is also imaginary,
with κ− = −ik−, the state is partially transmitted towards z →
−∞ with the transmission coefficient

|T |2 = cosh(2πk′) − cosh(2πk)

cos(2πλ) − cosh(2πk)
, (33)

where we use the notation

k = k+ + k−
2

, k′ = k− − k+
2

. (34)

D. Density of states

Within the energy window |ε| < η, where topological
states can exist, the bulk density of states (DOS) of a NLS
is a linear function of the energy:

n(b) = |ε|
4πDp�

. (35)

The interface states are instead characterized by the two-
dimensional DOS given by (for ε � 0)

n(i) = η

4πDp
δ(ε)

+ 1

4πDp

mmax∑
m=1

(λ − m)ε �
[
ε(1)

m − ε
]
�
[
ε − ε(0)

m

]
√

λε
(0)
m
[
λε

(0)
m − ε2

] ,

(36)

where �(x) is the Heaviside function. (For simplicity, we
give here only the expression valid for λ � η.) In the large-
gap case λ > η, n(i)(ε) has a singularity only at zero energy,
because ε(1)

m <
√

λε(0)
m . In the other regimes (λ � η), instead,

ε(1)
m =

√
λε(0)

m and n(i) features square-root singularities. This
is illustrated in Fig. 6, where we show the case λ = η. The
DOS exhibits steps at ε(0)

m and van Hove singularities at ε(1)
m ,

where the energy matches the lower or upper edge of one of
the localized bands (22), respectively. This behavior suggests
that the contribution from interface states to the observables
that depend on the DOS, e.g., the ac conductance, can be
comparable to the one of the bulk when interband transitions
are allowed. This is analogous to what is observed for type-I
Weyl semimetals in Ref. [47], with the interesting difference,
arising from the shape of the dispersion relation, that the
support of the drumhead states is always compact (see Fig. 3).
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FIG. 6. Interface density of states (36) in units of 1
4πDp

for λ =
η = 4.8, as a function of the energy. (The zero-energy delta peak
is not shown.) It shows finite jumps and van Hove singularities,
respectively at the thresholds ε(0)

m and ε(1)
m of the localized DDS bands

(22), identified by the dashed vertical lines in the plot.

In the presence of an interface with the vacuum, such
features of the Fermi surface could be directly detected by tun-
neling microscopy, as done in single- and multilayer graphene
[57,58]. This type of interface can be described within our
formalism by considering the infinite-gap limit in the insu-
lating side, while keeping the radius of the nodal ring finite.
Details are presented in Appendix D. When the interface is
with another material, instead, we expect that one is still able
to detect them using absorption spectroscopy. In particular,
we will identify the dependence of the energy levels on the
magnetic field in Sec. IV.

IV. SPECTRUM IN MAGNETIC FIELD

In this section, we introduce a magnetic field and identify
the characteristic signatures of the spectrum. While an exter-
nal radiation induces transitions between localized states also
in the absence of a magnetic field, we show below that the
dependence of the spectrum on the magnetic field strength
offers a precise way of identifying and classifying the local-
ized states. Apart from the orbital effects, the magnetic field
B also couples with the spin of the electrons via a Zeeman
term Hz = μB

∫
drB · S which breaks time-reversal symmetry

if present. Focusing for definiteness on the case of Ca3P2, the
SU (2) spin degeneracy is lifted and one obtains two spin-
polarized copies of a NLS, separated in energy by an amount
∼1.2 meV for a magnetic field of 1 T [48,59]. For tempera-
tures well below ∼15 K, only the lowest copy is relevant for
magnetic fields of this order. Conversely, the occupation of the
highest copy becomes non-negligible for temperatures of this
order. However, as the electron-photon matrix elements do
not couple opposite spins and the spacing between the energy
levels is the same for both copies, one does not find any new
absorption peak. For this reason, we focus in the following on
a single spin polarization, for definiteness, along the magnetic
field, and leave implicit the associated spin selection rule.

Specifically, we introduce a magnetic field B = Bêz per-
pendicular to the plane of the nodal line and the interface.
The magnetic field introduces a new length scale, the magnetic
length �B = √

h̄/eB, which we use to rescale the coordinates
in the xy plane as X = x/�B and Y = y/�B. The momentum k

is replaced by the gauge-invariant momentum � = −ih̄∇ +
eA. The dimensionless Hamiltonian (10) takes the form

H = −iτy∂z + τz[HLL − η − λ(tanh z − 1)], (37)

where

HLL = α

2

(
�2

X + �2
Y

)
(38)

is the Hamiltonian of two-dimensional nonrelativistic
fermions in a perpendicular magnetic field and α is the
rescaled cyclotron energy,

α = 2�Dp

h̄vz�
2
B

. (39)

The Hamiltonian (37) is separable in a transverse and a
longitudinal part, and its eigenstates assume the factorized
form

�n,s,m(X,Y, z) = �n,s(X,Y ) ψn,m(z), (40)

where n = 0, 1, 2, . . . labels the Landau levels and the quan-
tum number s is the degenerate index of the Landau band.
The form of the wave functions �n,s depends on the gauge but
it is not needed here. The index m labels the interface states
occurring in each Landau band n. The wave functions ψ are
the eigenstates of the Hamiltonian

H = −iτy∂z + τz[ωn − η − λ(tanh z − 1)], (41)

which has the same form as (10), except for the replacement
ηq2

p → ωn, where ωn are the nonrelativistic Landau level en-
ergies

ωn = α
(
n + 1

2

)
. (42)

Therefore, all the results concerning the spectrum of the
interface problem discussed in Sec. III can be transferred at
once to the present case by simply replacing ηq2

p with ωn. The
discrete nature of ωn has some interesting implications, which
we discuss below.

Once again, the spectrum can be divided into two sectors,
which can be interpreted as propagating waves reflected at the
interface and interface bound states. For the first category, we
observe the formation of Landau bands with one-dimensional
dispersion along the magnetic field direction, similarly to
what happens in Weyl semimetals [47]. As long as the energy
is below the gap of the insulator εg, we obtain solutions de-
caying exponentially for z < 0, but behaving asymptotically
for z � 1 as a superposition of incoming and outgoing waves
in the form (31), with the reflection amplitude R given in (32)
with the substitution ηq2

p → ωn.
In addition to these states in the continuum, each transverse

Landau level can accommodate, depending on the values of
the parameters η, λ, and α, a longitudinal zero-energy state in
the form (18) and a discrete set of longitudinal finite-energy
bound states, once again labeled by the integer m > 0. The
dispersion of the DDS is given by (22) with ηq2

p replaced by
ωn. The quantum number s does not appear in the expression
(22), and the spectrum inherits the Landau level degeneracy.
The energies are shown in Fig. 7 as a function of (the inverse
of) the rescaled cyclotron energy α ∝ B. One sees that the
number and the form of the dispersion of the DDS vary with
these parameters, as derived in Sec. III B. In the ultraquantum

013193-7



BUCCHERI, EGGER, AND DE MARTINO PHYSICAL REVIEW RESEARCH 6, 013193 (2024)

FIG. 7. Energies of the interface bound states in a magnetic field
with m = 1 and n = 0, . . . , 5 (from left to right) as a function of
α−1 for λ = η = 1.9, where α is the rescaled cyclotron energy in
Eq. (39). The horizontal dotted line denotes the energy ε

(0)
1 at which

the state merges into the bulk. The threshold values of α at which
a new Landau band accommodates the interface state can be found
from Eq. (44) with m(n)

max = 1.

limit B � h̄2vz

eDp�
, on the left of the figure, only one state is

present, while in the low-field limit B 
 h̄2vz

eDp�
, on the right

of the figure, the states group in dense bands, which are still
separated one from the other. The spectrum can accommodate
a large number of states, growing as 1/α.

Interestingly, there is a critical value of the magnetic field
above which no zero-energy normalizable solution exists,
corresponding to the magnetic breakdown of the topological
semimetal [60]. Indeed, the condition (19) translates into

max{0,−εg} < α
(
n + 1

2

)
< η. (43)

Therefore, if α > 2η, then no Landau level can support a
zero-energy interface state. If α < 2η, instead, then all Landau
bands n = 0, 1, . . . , n(0)

max accommodate one such state, with
n(0)

max the largest integer smaller than η

α
− 1

2 . This condition
can be written as �Bk0 > 1, and hence it is independent of the
interface smoothness (the scale �) and holds even in the limit
of an interface with the vacuum (εg → +∞).

For a very smooth interface with λ � 1 (focusing for
simplicity on the case λ � η), the number of localized states
supported by Landau band n is given by

m(n)
max =

⌊
λ

(
1 −

√
1 − η − α(n + 1/2)

λ

)⌋
. (44)

This number decreases for increasing n or increasing mag-
netic field B ∼ α. Then, for each Landau band n, there is
a critical field above which there are no localized interface
states given by

α
(n)
th = (η − 2 + 1/λ)

n + 1/2
. (45)

Finally, in order to gain some insight into the spatial struc-
ture of the interface states, we plot in Fig. 8 the squared
modulus of the wave function as a function of the spatial co-
ordinate z. We observe that the probability density of the TDS
has a single peak, while that of the mth DDSs has m + 1 local

FIG. 8. Probability density for the interface states in the lowest
Landau band n = 0, with m = 0, 1, 2 (black, blue, and red lines, re-
spectively) for λ = η = 2.9 and α = 0.25 and 0.5 (solid and dashed
lines, respectively). For m = 2, the decay length in NLS side for the
larger value of α is close to diverge, signaling the merging of the state
into the bulk band.

maxima. Moreover, for increasing magnetic field, the decay
length in the NLS side increases until the interface states, one
by one, merge with the bulk (reflected wave) solutions. We
close this section with an estimate for the material Ca3P2 [48].
Using a unit cell size a ≈ 5.3 Å and q0 = 1, for an interface
varying over a distance of 10 unit cells (� ≈ 50 Å) one finds
that a magnetic field B ≈ 1 T can be considered weak and the
number of interface states is of the order of 1/α ≈ 5 × 102.

V. OPTICAL CONDUCTIVITY AND ABSORPTION LINE
SHAPES IN MAGNETIC FIELD

As stated in Sec. I, two main experimental routes used
to identify Volkov-Pankratov states in recent experiments are
ac charge current measurements [33] and absorption spec-
troscopy [34]. We therefore now aim at quantifying the
contribution of the interface states to the optical conductiv-
ity and to the absorption power. (See Refs. [61,62] for the
analogous bulk quantities.) In particular, we are interested in
radiation with frequency ω 
 100 THz and propose infrared
absorption spectroscopy in magnetic field and the related op-
tical conductivity as ways to detect the presence of additional
interface states, which can be clearly identified via the pres-
ence of peaks in both absorption spectra and ac conductivity
and by their behavior in magnetic field.

In order to fix the notation, let us consider a monochro-
matic incident radiation of amplitude A0, polarization ê,
frequency ω, and wave vector q, which can be introduced in
the Hamiltonian (37) as a perturbation via minimal substitu-
tion. In linear response, the oscillating electric field induces a
current density j(q, ω) = σ (q, ω)E(q, ω) proportional to the
field via the complex dynamical conductivity σ = σ1 + iσ2.

Assuming the electrons to be in equilibrium with thermal
distribution f at given temperature T and chemical poten-
tial μ, the power dissipated in the system is expressed as
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W (q, ω) = 2πωA2
0I (q, ω) in terms of the function

Ic(q, ω) = 1

π
Im
∑
a,b

|〈�a|eiq·rêc · j|�b〉|2
h̄ω − Ea + Eb + i�

[ f (Ea) − f (Eb)],

(46)

in which j is the electric current and the polarization of the
electric field êc, c = x, y, z, appears. �a and �b are the states
in Eq. (40), where a and b stand for the set of quantum
numbers labeling the states (particle-hole index, Landau state
indices n and s, and interface index m). The phenomeno-
logical broadening parameter � encodes all the processes
not explicitly modeled in our calculation, e.g., electron-
electron interactions and scattering with localized impurities
or phonons. In the limit � → 0, one recovers the energy
conservation delta function. We will refer to I as the lineshape
function. The dissipated power per unit volume is also directly
related to the electron loss function, recently investigated in
type-I Weyl semimetals in Ref. [63].

For definiteness, let us consider that the semimetal sample
occupies a volume V = LS , where L is a large length (L �
�, 1/k0) in the z direction and S is the area in the xy plane. As
the sum over s produces the ratio

∑
s = �/�0, where � =

SB is the magnetic flux through the sample and �0 = h/e
the magnetic flux quantum [64], it is convenient to define the
units I (0)

z = e2vzV/2π h̄�2
B and I (0)

p = e2D2
pV/2π h̄3vz�

4
B and

use them to express the results of Eq. (46) for the longitudinal
and perpendicular parts, respectively. In order to calculate the
lineshape function (46) we need the matrix elements of the
current density operator between the initial and final states of
the photoemission or absorption process. In the following sec-
tion, we derive the selection rules for the possible transitions
and their integral expressions.

Apart from the transitions involving interface states only,
there can be processes which involve the bulk states as well.
For these processes, the sum over the index m implicit in the
indices a, b in Eq. (46) is replaced by an integral over energies.
The pertinent matrix elements are constrained by the same
selection rules as for the interface states, see below, and can
be computed in an analogous manner.

The lineshape function (46) allows us to directly determine
the real part of the diagonal components of the dynamical
conductivity. The system has cylindrical symmetry and, in
general, σx = σy �= σz. In the dipole approximation, the real
part of the conductivity reads

σ1(ω) = π

ωV
I (ω), (47)

which is to be read as a tensor equality. The magnitude of the
conductivity along the longitudinal and transverse directions
is therefore fixed by the factors I (0)

z /V and I (0)
p /V , respec-

tively. Its numerical value is the sum of two contributions,

σc = σ (b)
c + �

L
σ (i)

c , c = x, y, z, (48)

originating from bulk states and interface states. With this
definition, it is explicit that the contribution from the interface
states scales as the inverse of the size L along z because of the
factor L in the denominator of (47).

A. Selection rules

The current j = e∂kH has the form ubiquitous in Dirac
Hamiltonians. The component along the main symmetry
axis of the semimetal is jz = evzτy, while the component
in the nodal plane reads j p = 2eDpkpτz. In the presence of
a magnetic field Bêz, kp is replaced by the gauge-invariant
momentum �p = kp + eA. In the symmetric gauge, it is
convenient to work with the two linear combinations of the
current density components,

ˆ̄j = 1√
2

( ĵx + i ĵy) = 2i
eDp

h̄�B
â†τz, (49a)

ĵ = 1√
2

( ĵx − i ĵy) = −2i
eDp

h̄�B
âτz, (49b)

where â†, â are the standard ladder operators that change the
Landau level index n by ±1.

We are now in position to compute the matrix elements
appearing in Eq. (46). We distinguish two situations, with the
radiation linearly polarized either along the system’s axis or
in the nodal plane. In the first case, the radiation couples to
the z component of the current density operator, which does
not change the Landau level. As a consequence, we have the
selection rule

〈n1, s1| ĵz|n2, s2〉 ∝ δn1,n2δs1,s2 , (50)

valid for both localized and bulk states. The full expressions
of the matrix elements are combinations of integrals of hyper-
geometric functions, which we compute numerically.

For the radiation field with linear polarization in the nodal
plane, instead, the operators (49) always couple neighboring
Landau bands, analogously to what found in type-I Weyl
semimetals [47]. Again, as the transverse part of the states is
the same for localized states and reflected waves, the selection
rule n2 = n1 ± 1 holds for both. The matrix elements then take
the form

〈n1, s1|ĵ |n2, s2〉 ∝ √
n2 δs1,s2δn1,n2−1. (51)

From the above selection rules, it follows that the nonzero
components of the conductivity tensor are the diagonal ones
σ j j , with j = x, y, z, plus the off-diagonal component σxy. We
will focus on the former in this work and evaluate Eq. (46)
numerically, using the exact eigenstates (C9) for the bound
states and (C16) for the reflected waves.

B. Absorption spectra and optical conductivity

Here and in the next section, we focus on the scenario
in which we have an insulator for z < 0 with energy gap
2εg = 2η (i.e., λ = η), and on states with energies within the
gap, i.e., |ε| < η. Moreover, we choose representative values
of λ = 0.31 and α = 0.75, where there exist three interface
states in the spectrum, as summarized in Table I.We exemplify
the various contributions to the lineshape function for the
radiation polarized in the axial direction in Fig. 9 and for the
radiation polarized in the nodal plane along x in Fig. 10, with
the chemical potential set to the energy of the nodal line.

An electric field in the z direction will not induce tran-
sitions between different Landau levels, and one observes
the three peaks of Fig. 9 at the transitions from the TDS
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TABLE I. Interface state energies for λ = 3.1, α = 0.75, identi-
fied by the quantum number m and Landau band n.

m n εm,n

1 0 2.2437
2 0 2.7247
1 1 1.9255

to the three states in Table I. At finite temperature, a
lower peak corresponding to the transition (m = 1, n = 0) ↔
(m = 2, n = 0) also appears, as this is the only allowed tran-
sition between DDSs.

Let us consider now the case of electric field in the x di-
rection. The lowest-lying localized state is identified by (m =
1, n = 1) and the transition from the TDS (m = 0, n = 0)
corresponds to the first peak in Fig. 10, as the current operators
ĵ and ˆ̄j change the Landau level n by 1. The following peak
corresponds to the transition (m = 0, n = 1) → (m = 1, n =
0), while the third peak, corresponding to the transition to
the (m = 2, n = 0) DDS and much smaller than the others,
is not shown in the figure. Application of the current opera-
tors induce also the transitions (m, n) = (1, 1) ↔ (1, 0) and
(1, 1) ↔ (2, 0), corresponding to the two peaks shown in the
inset of Fig. 10.

In the numerical plots throughout this section, we express
frequencies in units of vz/�. For definiteness, with the velocity
quoted in Sec. II and � = 25 Å, the peaks reported in the
figures are at frequencies ∼10 THz, in the infrared part of the
spectrum. Importantly, the energy separation of the localized
levels and therefore the position of the photoabsorption peaks
decreases in first approximation as 1/�.

As an example, we consider the compound Ca5P3H, a
semiconductor with a band gap ≈0.7 eV at the � point [65],
which is synthesized alongside the NLS Ca3P2 [7]. A practical
realization of our model would be an interface between these
two materials, in which the two compounds are mixed over a
region of a few unit cell width. In Table II, we also provide
the frequencies corresponding to the transition between the

FIG. 9. Imaginary part of the axial component of the lineshape
function Iz [in units of I (0)

z �/L] as a function of frequency for
λ = 3.1, α = 0.75, kBT = 0.25h̄vz/�, and μ = 0. Inset: Detail high-
lighting the transition between two DDSs. The contribution of the
interface-bulk transitions is not observable in this interval.

FIG. 10. Imaginary part of the component in the nodal-line plane
of the lineshape function Ix = Iy [in units of I (0)

p �/L as defined in the
text] as a function of the photon frequency (in units of vz/�) for λ =
3.1, α = 0.75, kBT = 0.25h̄vz/� and chemical potential on the nodal
line. The peaks originating from transitions between the TDS and the
DDSs are dominant in this plot. The transitions between DDSs are
highlighted in the inset. The interface-bulk transitions are of O(10−4)
in the shown interval.

zero-energy states (m = 0) and the interface states discussed
above.

Another possible platform to investigate the physics of the
interface states is a junction between the half-Heusler semi-
conductor CaCdSi, with a band gap of 0.59 eV [66] and the
NLS CaCdSn [2], with k0 ≈ 0.165 Å−1, Dpk2

0 ≈ 0.4 eV, and
h̄vF ≈ 3.16 Å. Engineering the interface in such a way that
the relative concentration in the substitution Si → Sn varies
over a few layers, as in Ref. [45], we find additional interface
states, listed in Table III for sample values of the parameters.

Finally, we propose that a smooth NLS-NLS’ interface
could also be realized in compounds related to each other
via chemical substitution, e.g., ZrSiS, ZrSiSe, and ZrSiTe
[15,21,67].

C. Bulk contributions

As discussed above, the current generated by the radiation
in the semimetal has two contributions, respectively coming
from the interface states and from the bulk reflected waves. It

TABLE II. Interface states (besides the zero-energy states) in a
Ca3P2-Ca5P3H junction with � = 30 Å in a magnetic field B = 0.5 T.
The effective parameters for this configuration are λ ≈ 4.1020, η ≈
1.8231, and α ≈ 0.0209. The first two columns list the quantum
numbers specifying the states as described in the main text. The third
and fourth columns contain the dimensionless energies (in units of
h̄vz/� ≈ 0.110 eV) and the energies in eV, while the last column
comprises the frequencies corresponding to the transitions between
the zero-energy topological state and each interface state. These
transitions take place for any polarization of the radiation.

m n εm,n Em,n (eV) ω/2π (1013 Hz)

1 0 1.8111 0.19868 4.8041
1 1 1.7911 0.19649 4.7510
1 2 1.7706 0.19424 4.6968
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TABLE III. Interface states (besides the zero-energy states) in
a CaCdSn-CaCdSi junction with � = 12 Å in a magnetic field B =
2 T. The effective parameter for this configurations are λ ≈ 1.8801,
η ≈ 1.5193, and α ≈ 0.0034. The first two columns list the quantum
numbers specifying the interface states, as described in the main text.
The third and fourth columns contain the dimensionless energies
(expressed in units of h̄vz/� ≈ 0.2633 eV) and the energies in eV,
while the last column comprises the frequencies corresponding to
the transitions between the zero-energy topological state and each
interface state. These transitions take place for any polarization or
the radiation.

m n εm,n Em,n (eV) ω/2π (1013 Hz)

1 0 1.514 0.3986 9.638
1 1 1.511 0.3978 9.619
1 2 1.508 0.3970 9.600
1 3 1.505 0.3963 9.582
1 4 1.502 0.3955 9.562
1 5 1.499 0.3947 9.543
1 6 1.496 0.3939 9.523
1 7 1.493 0.3930 9.504
1 8 1.490 0.3922 9.484
1 9 1.487 0.3914 9.463
1 10 1.483 0.3905 9.443
1 11 1.480 0.3897 9.422
1 12 1.477 0.3888 9.401
1 13 1.473 0.3879 9.380
1 14 1.470 0.3871 9.359

is then important to estimate the magnitude of the contribution
from bulk-bulk transitions and to classify the corresponding
resonant peaks that can appear in absorption and conductivity
measurements, possibly masking the contribution from the
interface.

In order to estimate the contribution from bulk-bulk transi-
tions, we consider the system far away from the interface, so
that one can neglect the interface terms and focus on Eq. (1)
directly. As detailed in Appendix E, since translation invari-
ance is restored, the eigenstates are labeled by the momentum
qz, as well as the Landau band n and the additional quantum
number s. The spectrum is given by

εn,±(qz ) = ±
√

q2
z + M2

n , (52)

with Mn = ωn − η in the units of Sec. IV. The first few bulk
Landau bands are represented in Fig. 11 for clarity. (Through-
out this section, we continue to use the energy scale h̄vz/�,
involving the characteristic length scale of the interface, even
though the interface does not play any role in the bulk-bulk
transitions. This choice allows us to compare the contribu-
tion of the bulk-bulk transitions with the contribution of the
interface-bulk transitions.) The same analysis as for the inter-
face states can be applied to the bulk states, and one finds
indeed the same selection rules on the quantum number n.
Importantly, a series of thresholds corresponding to the sep-
aration between the Landau levels involved in the transitions
appear, which we detail below, focusing on the absorption
processes.

For the electric field along z, the photon excites an electron
from the hole band to the conduction band, without changing

FIG. 11. Positive bulk Landau bands (52) closest to the Fermi
energy (set to zero) as a function of the bulk momentum for η = 3.1,
α = 0.75.

the Landau level n. This process has therefore a series of
thresholds at ω = 2|Mn|, of which the first is represented in
Fig. 12.

Conversely, if the electric field is in the plane of the nodal
line, then the only allowed transitions change n by 1. There
are here two types of processes, namely the ones which excite
electrons from below to above the Fermi energy and the ones
that only change the Landau band, without changing the sign
of the energy. The latter are strongly suppressed at low tem-
peratures, because of the occupation factors of the bands, but
nevertheless do not have a threshold frequency to be activated.
This contribution is very small, except for a large peak at
ω = α, corresponding to the separation between any pair of
adjacent Landau levels at qz = 0. Finally, the transitions that
flip the sign of the energy have an activation threshold ω = α,
plus a series of features depending on the specific configu-
ration of the Landau bands for the choice of parameters, see
Fig. 11, which are as exemplified in Fig. 13. Our analysis
suggests that there is ample room for observing the contri-
butions to the optical conductivity arising from transitions
to the DDS. For instance, comparing Figs. 10 and 13, one
sees that the interface contribution is manifest in the presence

FIG. 12. Bulk contribution to the imaginary part of the longitu-
dinal component of the lineshape function Iz [in units of I (0)

z ] as a
function of the frequency for η = 3.1, α = 0.75, kBT = 0.25h̄vz/�,
and μ = 0. A series of divergences corresponding to the threshold
for transitions between particle and hole bands with the same value
of the Landau index n is visible, see Fig. 11. The spacing between
them is therefore proportional to the magnetic field.
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FIG. 13. Bulk contribution to the imaginary part of the lineshape
function Ix [in units of I (0)

p ] as a function of the frequency. Here
η = 3.1, α = 0.75, kBT = 0.25h̄vz/�, and μ = 0. A divergence at
ω = α appears, corresponding to the separation between the minima
of neighboring Landau bands (qz = 0 in Fig. 11).

of additional peaks, whose position has a distinct functional
dependence from those in the bulk, specified in Eqs. (22)
and (42). The height of the peaks of Fig. 10 is proportional
to the rate � in the denominator of Eq. (46). Therefore,
we expect the contribution from the interface states in a
NLS-insulator junction to remain clearly identifiable provided

�/L � �/(Eg + E0 +
√

E2
g − E2

0 ). (In the regime 0 < Eg <

E0, the square root in the denominator should be omitted.)
Analogous conclusions can be reached from the comparison
of Figs. 9 and 12.

We conclude this section by pointing out that if the material
allow for adjusting the chemical potential, then one can also
access a regime in which μ is close to the lowest-lying of the
DDSs, thus greatly enhancing their contribution. This scenario
was explored in the case of Weyl semimetals in Ref. [47].
In this case, the TDS lies deep within the valence band and
can be safely neglected, while the most important transitions
involve the DDSs alone, as exemplified in Fig. 14, in which
we observe the secondary peaks from Figs. 9 and 10 to be
greatly enhanced. Nevertheless there are, also in this instance,
contributions arising from transitions between the interface
states and the continuum of bulk states. The bound state tran-
sitions are clearly distinguishable from transitions involving
the continuum from the shape of the absorption peaks, even
if this appears to be dependent on the direction of the electric
field and the choice of parameters.

VI. CONCLUSIONS

In this work, we have shown that at the interfaces between
NLSs and topologically trivial insulators, as well as between
NLSs with different radii of the nodal ring, in addition to
topological drumhead states, a series of dispersive, nontopo-
logical states arise if the interface is smooth enough. With
the help of the exact solution of a model Hamiltonian, we
have determined how the parameters characterizing the in-
terface smoothness and the nodal ring determine the number
of additional states, also in the presence of a magnetic field
along the system axis. The effective low-energy Hamiltonian

FIG. 14. Imaginary part of the functions Ix (solid line) and Iz

(dashed line), in units of I (0)
p �/L and I (0)

z �/L, respectively, as a
function of the frequency. Here the parameters are λ = η = 3.1,
α = 0.75, μ = 2.0, and � = 0.02. The component Ix exhibits the
transitions (1, 1) ↔ (2, 0) and (1, 1) ↔ (1, 0), while the transitions
to the bulk continuum (not shown) are O(10−2). The component Iz,
multiplied for clarity by a factor 10, shows the transition (1, 1) →
(2, 1) and, for this choice of parameters, the transitions to the bulk
continuum produce a smooth background of the same order of mag-
nitude of this peak.

used in this work is possibly the simplest model exhibiting a
nodal line, but since our results mostly depend on the spectral
features only, they hold qualitatively for a generic choice of
material.

We have characterized the radiation-induced transitions
between these dispersive drumhead states and the zero-energy
topological states, as well as between them and the bulk states.
For a generic NLS, and in particular for the specific choice of
parameters corresponding to Ca2P3, we have found that the
transitions can be clearly identified in optical conduction and
absorption spectroscopy measurements, with radiation in the
infrared part of the spectrum.

Because of its flat energy dispersion, the topological drum-
head states are not directly observable in dc conductance
experiments. We have shown that ac measurements in the
presence of additional interface states are dominated by transi-
tions from the drumhead state to the other localized states. Our
results, therefore, also provide an indirect way of detecting the
presence of the topological state itself.

From a more general perspective, in topological semimet-
als, surface states can couple to massless bulk modes via
various mechanisms, such as electron-impurity or electron-
phonon scattering [38–40,68]. Importantly, the dispersive part
of the interface spectrum does not enjoy the topological pro-
tection of the zero-energy mode and can strongly couple to
the bulk in Dirac materials through strain [69]. While such
hybridization can hinder their detection, it opens interest-
ing possibilities. It is indeed possible, in principle, to have
an attractive phonon-mediated electron-electron interaction in
topological semimetals [70], which points toward the possi-
bility that the Volkov-Pankratov states could generate surface
or interface superconductivity [71], while the bulk remains in
its normal state.

With the sophisticated material synthesis techniques
presently available, it appears likely that the prediction of this
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work may soon be tested experimentally, as already done for
topological insulators. As we have shown, the possibility of
observing the transitions between interface states is mainly
limited by the processes originating the linewidth broadening,
which points toward the necessity of very clean samples.
Finally, the presence of both an interface and the magnetic
field offers ample possibilities to tune the spectrum, that
can be exploited to fully adjust the optical conductivity and
the photoabsorption lineshapes for technological applications,
e.g., magnetic field detectors or magnetic-field-tunable laser
sources exploiting the transition resonances.
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APPENDIX A: ABSORBING THE PARTICLE-HOLE
SYMMETRY-BREAKING TERM

Let us consider the Dirac equation with the Hamiltonian
(8) including the particle-hole symmetry-breaking term:

[−iτy∂z + M(qp, z)(τz + γ τ0) − ε]ψ = 0, (A1)

where we use the notation M(qp, z) = d (qp) − λ tanh z. Mul-
tiplying Eq. (A1) by τy, we rewrite it in the form

[−i∂z + M(qp, z)
(
iτx + γ τy

)− τyε]ψ = 0. (A2)

Taking into account that Dp > −D0 > 0 [48], we
parametrize the ratio γ = D0/Dp as

γ = − tanh θ, (A3)

so that

iτx + γ τy = i
√

1 − γ 2

(
0 eθ

e−θ 0

)
. (A4)

Then we introduce the transformation ψ̃ = Uψ , with

U =
(

e−θ/2 0
0 eθ/2

)
, (A5)

such that

UτxU
−1 = τx cosh θ − iτy sinh θ,

UτyU
−1 = iτx sinh θ + τy cosh θ,

U (iτx + γ τy)U −1 = i
√

1 − γ 2τx.

Applying this transformation, Eq. (A1) can be recast in the
form

[−iτy∂z + M̃(qp, z)τz − ε̃]ψ̃ = 0, (A6)

where

M̃(qp, z) =
√

1 − γ 2M(qp, z) − ε sinh θ,

ε̃ = ε cosh θ. (A7)

We see that Eq. (A6) has the same form as Eq. (A1) with
γ = 0 and a redefinition of M(qp, z) and ε. Therefore, all
results obtained in Sec. III for γ = 0 can be easily adapted
to the case γ �= 0.

APPENDIX B: HYPERGEOMETRIC FUNCTION

In this Appendix, we collect few useful formulas involving
the hypergeometric function F (a, b; c; u) (see, e.g., Ref. [72]).
F (a, b; c; u) is a solution of the hypergeometric equation

u(1 − u) f ′′ + [c − (a + b + 1)u] f ′ − ab f = 0. (B1)

The general solution of Eq. (B1) can be expressed as

f (u) = A F (a, b; c; u)

+ B u1−cF (1 + a − c, 1 + b − c; 2 − c; u), (B2)

or equivalently as

f (u) =C F (a, b; a + b − c + 1; 1 − u)

+ D(1 − u)c−a−bF

× (c − a, c − b; c − a − b + 1; 1 − u), (B3)

where A, B and C, D are arbitrary complex coefficients. The
two pairs of coefficients can be related by means of the fol-
lowing identity:

F (a, b; c; u)= �(c) �(c − a − b)

�(c − a) �(c − b)
F (a, b; a+b − c+1; 1−u)

+ �(c) �(a + b − c)

�(a) �(b)
(1 − u)c−a−bF

× (c − a, c − b; c − a − b + 1; 1 − u). (B4)

The leading behavior of F (a, b; c; u) for u → 1− is

F (a, b; c; u) ∼ (1 − u)c−a−b �(c) �(a + b − c)

�(a) �(b)
, (B5)

provided that R(c − a − b) < 0.

APPENDIX C: SOLUTION OF THE
DIRAC-SCHRÖDINGER EQUATION

In this Appendix, we provide some technical details about
the solution of the Dirac-Schrödinger equation with the
Hamiltonian (10). In terms of φ±, defined in Eq. (14), we have
two coupled differential equations:

[∓∂z + d − λ tanh z]φ± = εφ∓. (C1)

First, we observe that in the asymptotic region z → +∞, the
general solution of Eq. (C1) takes the form(

φ+
φ−

)
∼
∑
r=±

cr

(
ε

rκ+ + d − λ

)
e−rκ+z, (C2)

while for z → −∞ it takes the form(
φ+
φ−

)
∼
∑
r=±

dr

(
ε

−rκ− + d + λ

)
erκ−z, (C3)

with c±, d± complex coefficients and κ± defined in (11).
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1. General solution

By using the variable change (15) with the identities

∂z = −2u(1 − u)∂u, tanh z = 1 − 2u,

and the factorization (16), Eq. (C1) can be recast in the form
of two coupled equations for χ±:

[±2u(1 − u)∂u ± (κ+ ± d ∓ λ) ∓ 2(κ ∓ λ)u]χ± = εχ∓,

(C4)

where κ = κ++κ−
2 . Notice that if we assume that χ± stay finite

for u → 0 (respectively, u → 1), then Eqs. (C4) reproduce the
asymptotic behavior in (C2) [respectively (C3)], but including
only the terms with r = +1. Equations (C4) can be decoupled
and result in the second-order equations[

u(1 − u)∂2
u + [κ+ + 1 − (2κ + 2)u]∂u

− (κ ∓ λ)(κ ± λ + 1)
]
χ± = 0. (C5)

We recognize Eq. (C5) as the hypergeometric Eq. (B1) with
a = κ ∓ λ, b = κ ± λ + 1 and c = κ+ + 1. The general solu-
tion can then be written in terms of hypergeometric functions
in the form (B2) or (B3).

2. Bound states

In the regime in which κ± are both real, it is convenient to
use the form (B2). The condition of normalizability requires
to omit the second term in (B2), and we obtain

χ± = A±F (κ ∓ λ, κ ± λ + 1; κ+ + 1; u). (C6)

The complex coefficients A± are determined by the first-order
Eqs. (C4) and by the overall normalization of the wave func-
tion. In fact, from the limit u → 0 of Eq. (C4), one finds the
relation

(κ+ + d − λ)A+ = εA−, (C7)

and hence we can write(
φ+
φ−

)
= uκ+/2(1 − u)κ−/2

×
[

F (κ − λ, κ + λ + 1; κ+ + 1; u)
κ++d−λ

ε
F (κ + λ, κ − λ + 1; κ+ + 1; u)

]
. (C8)

The wave function in Eq. (C8) is normalizable only if either
of the first two arguments of the hypergeometric functions is
a nonpositive integer, which gives the quantization condition
discussed in Sec. III. The full wave function of the interface
states reads

ψm =Nmuκ+,m/2(1 − u)κ−,m/2

×
[
F (−m,−m + 2λ + 1; κ+,m + 1; u) |+〉

+ κ+,m + d − λ

εm
F (−m + 2λ,−m + 1; κ+,m)

+ 1; u) |−〉
]
, (C9)

where εm and κ±,m are given in Eqs. (22) and (23), respec-
tively, and Nm is the overall normalization. The normalization

constant has a particularly simple form for the zero-energy
solution (18), where we find

N0 = 1

2λ−1/2
√

�
[(−1)d−λB(−1, λ − d, 1 − 2λ)

+ �(λ + d )Freg(2λ, λ + d, 1 + λ + d,−1)]−1/2,

(C10)

where Freg(a, b, c, z) is the regularized hypergeometric func-
tion and B(z, a, b) the incomplete Beta function [55].

3. Scattering states

In the regime in which κ− is real and κ+ = ik+ is imagi-
nary, it is convenient to use the general solution in the form
(B3). The condition of normalizability requires again to omit
the second term and we obtain

χ± = C±F (κ ∓ λ, κ ± λ + 1; κ− + 1; 1 − u), (C11)

with κ = κ−+ik+
2 . From the asymptotic behavior of Eq. (C4)

for u → 1, we find the relation

(−κ− + d + λ)C+ = εC−, (C12)

and we arrive at(
φ+
φ−

)
= uik+/2(1 − u)κ−/2

×
[

F (κ − λ, κ + λ + 1; κ− + 1; 1 − u)
−κ−+d+λ

ε
F (κ + λ, κ − λ + 1; κ− + 1; 1 − u)

]
.

(C13)

Far away from the interface, in the limit z → +∞ (u → 0),
the wave function assumes the form of a superposition of a
left-moving and a right-moving wave, thus describing a prop-
agating state in the NLS incoming from the right, incident on
the interface and reflected back. To see this, we use u ∼ e−2z

and the identity (B5) to arrive at the asymptotic form for
z → +∞,(

φ+
φ−

)
∼ �(κ− + 1) �(−ik+)

�(κ ′ − λ) �(κ ′ + λ + 1)
ϕ+(k+)e−ik+z

+ �(κ− + 1) �(ik+)

�(κ − λ) �(κ + λ + 1)
ϕ+(−k+)eik+z, (C14)

where κ ′ = κ−−ik+
2 and the spinors ϕ±(k) are given by

ϕ±(k) =
(

ε

ik + d ∓ λ

)
, (C15)

in agreement with Eq. (C2). From Eq. (C14) we can read
the reflection amplitude R given in Eq. (32). Since in this
case κ ′ coincides with the complex conjugate of κ , we find
|R|2 = 1, and the transmission coefficient is zero. The nor-
malization constant is obtained by imposing the condition∫ ∞

0
dz ψ

†
k+ψk′+ = δ(k+ − k′

+).
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Then the normalized scattering state reads

ψ = �(1 + κ ′ + λ) �(κ ′ − λ)

2
√

π�(κ− + 1) �[−ik+)
uik+/2(1 − u)κ−/2

×
[

F (κ − λ, κ + λ + 1; κ− + 1; 1 − u) |+〉

+ −κ− + d + λ

ε
F (κ + λ, κ − λ + 1;

× κ− + 1; 1 − u) |−〉
]
. (C16)

Finally, in the regime in which both κ+ and κ− are imag-
inary, the scattering state (C13) describes an incident wave
incoming from the right, which at the interface is partially
reflected back and partially transmitted to the left, with the
asymptotic form for z → −∞ given by(

φ+
φ−

)
∼ ϕ−(k−)e−ik−z. (C17)

The full wave function can be obtained from Eq. (C16)
by the analytic continuation κ− = −ik−, but the overall nor-
malization must be recalculated to include the contribution
of the propagating wave in the left region z → −∞. The
transmission coefficient is now finite and given in Eq. (33).

APPENDIX D: INTERFACE WITH VACUUM

An interesting case of the interface problem is realized
when the NLS occupies the half space z > 0 and has an open
surface at z = 0. This can be regarded as a special case of the
system studied in this work, where the gap in the insulating
side z < 0 diverges. In this section, we discuss this limit using
the exact solution of Sec. III. We have also studied the exact
solution of a different version of this problem, where the
infinite mass boundary condition at z = 0 is imposed in the
standard way. As expected, the qualitative features of the sur-
face states spectrum are the same, although the detailed shape
of the energy dispersions shows small quantitative differences.

We consider our model with γ = 0 for simplicity and re-
strict our discussion to the surface states. It is straightforward
to calculate the limit λ → +∞ of the interface states energies.
Using the formulas in Sec. III B, we obtain:

κ+,m = η − ηq2
p − 2m, (D1)

εm = 2
√

m
(
η − ηq2

p − m
)
, (D2)

with m = 0, 1, 2, . . . , mmax. The surface state dispersions
merge in the NLS bulk band at

q0,m =
√

1 − 2m/η, ε(0)
m = 2m.

Interestingly, the number of surface states only depends on the
nodal radius through the parameter η, and we find

mmax = �η/2�. (D3)

In order to calculate the limit of the wave functions, we can
proceed as follows. The mass function is

M
(
q2

p, z
) = ηq2

p − η + λ(1 − tanh z). (D4)

We want to take the limit λ → +∞ keeping η fixed and with
a prescribed value of the mass at z = 0. To achieve this, rather
than taking directly the limit λ → +∞, we set λ = 1

2 λ̃e2z0 ,
shift the coordinate z by z0, and perform the limit z0 → +∞,
keeping λ̃ fixed. This procedure gives a finite limit for the
mass function:

lim
z0→+∞ M

(
q2

p, z + z0
) = ηq2

p − η + λ̃e−2z. (D5)

From this expression, we see that
√

1 − λ̃/η represents the
radius of the nodal line at z = 0 (in units of k0) as long as
λ̃ < η; if λ̃ > η, this limit describes a system with a gap at
the surface z = 0. Applying this procedure to the zero-energy
state in Eq. (18), we find

ψ0(z) = N0e(ηq2
p−η)z−(λ̃/2)e−2z |+〉, qp < 1, (D6)

with normalization

N0 = [2(ηq2
p−η)−1�(λ̃/2)(ηq2

p−η)�
(
η − ηq2

p

)]− 1
2 . (D7)

This result can also be obtained directly by solving the
Dirac equation with the mass function (D5) at zero energy.
To find the other surface states, we first observe that in the
limit z0 → +∞, we have u → e−2(z+z0 ) and

uκ+/2 → e−κ+(z+z0 ), (1 − u)κ−/2 → e−(λ̃/2)e−2z
.

Moreover, we use the identity

lim
z0→∞ F (a, λ̃e2z0 ; c; e−2(z+z0 ) ) = M(a, c, λ̃e−2z ),

where M(a, c, z) is the confluent hypergeometric function
[55] defined by

M(a, c, u) = 1 + a

c
u + a(a + 1)

c(c + 1)

u2

2!
+ · · · .

Therefore, the eigenstates (20) become(
φ+
φ−

)
= e−κ+,mz− λ̃

2 e−2z

×
[

M(−m, 1 + κ+,m + 1, λ̃e−2z )
−2m
εm

M(−m + 1, κ+,m + 1, λ̃e−2z )

]
, (D8)

with κ+,m and εm given in Eqs. (D1) and (D2).

APPENDIX E: ESTIMATION OF THE BULK
CONTRIBUTIONS

The bulk transitions are most efficiently estimated using
a purely bulk theory, in which the transverse part of the
eigenstates is a Landau state labeled by the indices n, s as in
Eq. (40), while the longitudinal part is simply a plane wave
labeled by qz, the component of the momentum along z, and
by the particle-hole index r = ±. The longitudinal part takes
the form ψn,qz,r (z) = un,r (qz )eiqzz/

√
L with

un,r (qz ) = Nn,qz,r

[ −iqz

rεn(qz ) − Mn

]
, (E1)

where εn(qz ) has the expression given in (52) with the positive
sign and Mn is also provided after Eq. (52). The normalization
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factor is

Nn,qz,r = 1√
2rεn(qz )[rεn(qz ) − Mn]

. (E2)

In the limit in which the momentum of the radiation van-
ishes, one has the so-called vertical transitions only, where
qz is conserved. Hence, for notational simplicity, throughout
this section we will often omit the argument qz. Moreover, we
consider here the limit � → 0 in Eq. (46), where the energy
conservation is strictly enforced.

In the case with the electric field in the z direction, the
relevant matrix elements are

〈�n′,s′,∓| ĵz|�n,s,±〉 = −evzqzMn

εn|qz| δs,s′δn,n′ . (E3)

As the allowed transitions are those between states in
the same Landau orbital but with opposite energy, the
energy conservation implies |ω| = 2εn. We then find the
expression

Iz(ω)

I (0)
z

= 1

2π

∑
n

�
(

ω2

4 − M2
n

)
M2

n

|ω|
2

√
ω2

4 − M2
n

sinh
(

βω

2

)
cosh

(
βω

2

)+ cosh(βμ)
,

(E4)

where, following our conventions, the chemical potential is
measured in units of h̄vz/� and β = h̄vz/�kBT , accordingly.

When the electric field is in the plane of the nodal line, the
relevant matrix elements of the current density operator take
the form

〈�n′,s′,r′ | ˆ̄j |�n,s,r〉 = 2ieDp

h̄�B
〈un′,r′ |τz|un,r〉δs,s′δn′,n+1

√
n + 1, (E5)

〈�n′,s′,r′ |ĵ |�n,s,r〉 = 2eDp

ih̄�B
〈un′,r′ |τz|un,r〉δs,s′δn′,n−1

√
n, (E6)

with

〈un′,r′ |τz|un,r〉 = (r′εn′ − rεn)2 − (Mn + Mn′ )2 + 2(r′εn′Mn + rεnMn′ )

4
√

rr′εnεn′ (rεn − Mn)(r′εn′ − Mn′ )
. (E7)

In these transitions, the Landau level index changes by 1. By using the energy conservation ω = rεn − r′εn′ , one can rewrite
the square modulus of the matrix element as

|〈un−1,r′ |τz|un,r〉|2 = ω2[ω2 − (Mn + Mn−1)2]

ω4 − (M2
n − M2

n−1

)2 . (E8)

In this case, two types of processes contribute to Ix: those in which the energy changes sign (r′ = −r) and those in which the
energy does not change sign (r′ = r). In the first case, the transition can only take place if the photon carries more energy than
the minimal separation between the involved bands, |ω| > |Mn| + |Mn−1|. We arrive at the expression

I (1)
x (ω)

I (0)
p

= 4
∑
n�0

�(|ω| − |Mn| − |Mn−1|) n

2π

√
ω2 − (Mn + Mn−1)2

ω2 − (Mn − Mn−1)2

sinh βω

2

cosh βω

2 + cosh
β(M2

n −M2
n−1 )

2ω

, (E9)

written for μ = 0 for simplicity. In the second case, because of the form of the bands (see Fig. 11), there is no activation threshold
but instead an upper bound for the frequency, |ω| < ||Mn| − |Mn−1||, and one arrives at the expression

I (2)
x (ω)

I (0)
p

= 4
∑
n�0

�
(∣∣|Mn| − |Mn−1|

∣∣− |ω|) n

2π

√
(Mn + Mn−1)2 − ω2

(Mn − Mn−1)2 − ω2

sinh βω

2

cosh βω

2 + cosh
β(M2

n −M2
n−1 )

2ω

, (E10)

which is the same as (E9), except for the argument of the Heaviside theta function.
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