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ABSTRACT Quanvolutional Neural Networks (QNNs) have been successful in image classification,
exploiting inherent quantum capabilities to improve performance of the traditional convolution. Unfor-
tunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can
be altered by both intrinsic noise and by the interaction with natural radiation. In this paper we aim at
investigating the propagation of logical-shift errors (i.e. the unexpected modification of the qubit state) in
QNNs. We propose a bottom-up evaluation reporting data from 13, 322, 547, 200 logical-shift injections.
We characterize the error propagation in the quantum circuit implementing a single convolution and then
in various designs of the same QNN, varying the dataset and the network depth. We track the logical-
shift error propagation through the qubits, channels, and subgrids identifying the faults that are more
likely to cause misclassifications. We found that up to 10% of the injections in the quanvolutional layer
cause misclassification and even logical-shifts of small magnitude can be sufficient to disturb the network
functionality. Our detailed analysis shows that corruptions in the qubits’ state that alter their probability
amplitude are more critical than the ones altering their phase, that some object classes are more likely than
others to be corrupted, that the criticality of subgrids depends on the dataset, and that the control qubits,
once corrupted, are more likely to modify the QNN output than the target qubits.

INDEX TERMS Quantum Computing, Quantum Machine Learning, Fault Tolerance, Fault Injection,
Reliability Evaluation

I. INTRODUCTION

In recent years, Quantum Computing (QC) underwent tanta-
lizing improvements which could broaden the classical con-
cept of computation as a whole. With the current widespread
access to simulators and quantum devices over the cloud,
researchers have been able to quickly expand QC’s reach to
fields such as finance [1], chemistry [2], biomechanics [3],
machine learning [4], [5], and many others. Quantum algo-
rithms are implemented by encoding the input data in quan-
tum bits (qubits) and executing quantum circuits, which are
sequences of operations on one or more qubits. The quantum
advantage is achieved by exploiting the quantum properties
of qubits, namely superposition and entanglement. Lately,
the potentiality of QC has been successfully applied to reduce
the inefficiencies associated with the execution of convo-
lution in traditional computing systems. Hybrid quantum-
classical machine learning models, called Quanvolutional

Neural Networks (QNNs) [6], deliver promising speedups in
terms of convergence and inference times over the classical
Convolutional Neural Networks (CNNs) while maintaining a
very similar classification accuracy [7].

The most challenging obstacle preventing quantum tech-
nology from thriving is reliability. Superconducting qubits,
which are the most widely used quantum devices (adopted by
IBM and Google, among others), ideally need to be operated
at a temperature close to absolute zero and shielded from all
external interference, which is unfortunately unachievable.
As a consequence, retention and relaxation errors shorten
significantly the computationally useful lifetime of a qubit,
inducing a logical-shift error in the qubit state. On top
of this, it has been proven, through both experiments and
simulations, that quantum devices are extremely sensitive to
natural ionizing radiation [8]–[16]. Rather than flipping a bit,
as would happen in CMOS technology [17], intrinsic noise
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and external radiation both trigger the qubit(s), modifying the
resulting qubit logic state. Since the logic state of the qubit is
not binary, the fault induces a rotation in the qubit(s) state(s),
i.e., a logical-shift error.

While Quantum Error Correction (QEC) strategies have
been developed for mitigating single qubit noise effect, their
overhead is unacceptable for current Noisy Intermediate-
Scale Quantum (NISQ) machines. Additionally, the transient,
correlated, and stochastic nature of radiation-induced faults
would in any case make QEC ineffective since multiple
qubits would be affected by the charge deposited by the par-
ticle. Thus, the current and foreseeable quantum technology
will still need to deal with logical-shift errors. The goal of our
evaluation is to understand if and how these faults impact the
execution of QNNs. Despite the fact that extensive research
to understand and improve the reliability of traditional neural
networks has been triggered already [18]–[20], studies about
fault propagation in QNNs are still lacking.

To fill this research gap, in this paper we propose a detailed
investigation of the behavior of the QNN model based on
the Hardware Efficient Ansatz for implementing the quantum
convolution. The quantum circuit we target is the starting
point of a large number of current (and future) QNN models
[7], [21]–[25]. Then, we showcase a methodology to track
fault propagation in QNNs by considering three different
implementations of the very first such model ever designed
[6]. To the best of our knowledge, this is the first work
addressing the reliability of QNNs to logical-level faults.
Although QNNs are rapidly evolving and not yet employed
in the field, it is by no means premature - but rather absolutely
urgent - to consider their reliability. By promptly addressing
the issue imposed by both intrinsic and extrinsic radiation-
induced faults, we can immediately start to develop new
reliability solutions, rather than patching it up only after its
impact will become evident in the field. In this paper we
inject more than 13 billion logical-shift faults in the quantum
layer, adapting to QNNs an open-source fault-injector for
quantum circuits (QuFI) [16]. We aim at filling the gap
in the reliability evaluation of QNNs by investigating and
understanding how faults in the quantum layer propagate in
the network during inference and why they cause misclas-
sifications. We aim at advancing the knowledge of QNNs
reliability by:

• Detailing a methodology to evaluate, through fault in-
jection, the reliability of QNNs to logical-shift faults.

• Studying the reliability profile of the qLayer, identifying
the more critical qubit(s) and how logical-shift faults
modify the layer output.

• Measuring the probability for a logical-shift fault to
cause a misclassification in QNNs.

• Understanding the fault-impact dependence on the input
image, the data set, and the QNN design.

• Assessing how the corruption of different subgrids or
portions of the feature maps impacts the QNN accuracy.

The remainder of the paper is organized as follows: Sec-

tion II provides background and related works in the field of
quantum computing and QNNs, Section III outlines the de-
sign space exploration of our evaluation, Section IV describes
the adopted experimental setup, and Section V presents and
discusses the experimental results and their implications.
Section VI highlights the impact of the proposed methodol-
ogy. Finally, Section VII draws conclusions and paves a path
for future work.

II. BACKGROUND AND RELATED WORK
This Section covers the fundamentals of quantum comput-
ing, quanvolutional neural networks, quantum noise, and
radiation-induced faults. We aim at providing the necessary
information to describe the context in which the proposed
work has been carried out.

A. QUANTUM COMPUTING
In the classical computation domain, the smallest unit of
information is a binary digit, which can either encode a 1
or a 0. Instead, the quantum computation paradigm uses a
two-state quantum mechanical system, called qubit, which
can exploit quantum properties such as superposition and
entanglement. The former allows a qubit to exist in multiple
different states at once, whilst the latter is capable of linking
multiple qubits into a higher level object which displays
correlation patterns among all its elements. A superposition
state is represented by the linear combination of the basis
states |1⟩ and |0⟩ according to a pair of complex probability
amplitudes:

|Ψ⟩ = α |0⟩+ β |1⟩ (1)

Such a general formulation for |Ψ⟩ can be visualized on the
Bloch Sphere, as seen in Fig. 1 (upper), mapping the quantum
state onto a vector in spherical coordinates, thus controlled by
the polar (ϕ) and azimuthal (θ) angles.

Quantum algorithms are executed by means of quantum
circuits, described as a temporal sequence of possibly simul-
taneous operations (quantum gates) applied to specific qubits.
Gates can operate on single qubits, or on multiple qubits. The
latter are usually composed of one or more control qubits that
condition the execution of a certain operation on one or more
target qubits.

Since QC is probabilistic by nature, the circuit execution is
repeated multiple times. Instead of having a single output, the
circuit provides a probability distribution of qubit collapses
from multiple runs. At the time of writing, quantum devices
still belong to the NISQ era. These devices are capable of suc-
cessfully executing only small algorithms, since technology
development, in terms of contol and insulation, has not yet
reached the standards for fault-tolerance. This also implies
that some qubits can experience intrinsic noise that changes
their state. Moreover, as detailed in Section II-B, despite the
transient nature of radiation-induced faults, their persistence
is orders of magnitude longer than the overall quantum circuit
runtime [8]. Unfortunately, then, the repeated executions do
not mitigate all possible sources of error.
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FIGURE 1: Comparison of the effect of (a) noise and (b)
particle impact at the physical and logical level of the qubit.
The single logical qubit is implemented with several physical
qubits (5 in the picture) correlated by a QEC mechanism.
Noise affecting one physical qubit, being well characterized,
can be compensated for without affecting the logical qubit
state. The charge deposited by the particle instead spreads
across the whole physical substrate, jeopardising QEC effi-
cacy by generating a rotation of stochastic amplitude in the
logical qubit’s state, i.e. an error syndrome that cannot be
corrected.

Quantum circuits are defined at a logical, high abstraction
level, only to be later transpiled into sequences of basic
operations, the ones that can be directly carried out by ar-
chitecture of each specific quantum device. The transpilation
process involves mapping the quantum circuit onto a system
of imperfect components, taking into account optimizations,
noise reduction metrics, and heuristics [26].

B. QUANTUM NOISE AND RADIATION-INDUCED
FAULTS
Logical qubits are exceptionally complex to implement and
control on physical devices. Among the available technolo-
gies, we focus on the superconducting transmon qubit, since
it is, by far, one of the most promising and widely adopted.

To prevent the qubit’s information from being corrupted, it
must be completely isolated from the external environment,
a task hardly achievable. Real qubits are characterized by
two decoherence times, T1 and T2. The former, called spin-
lattice coherence time, refers to the natural energy decay
time of an excited qubit in state |1⟩ to the ground state |0⟩.
The latter, or spin-relaxation time, is the minimum interval
before a qubit’s state gets affected by external interference
or by neighboring qubits. Figure 1(a) shows a simplified
visualization of how noise gradually modifies the qubit logic
state.

Error handling techniques are continuously improved to
increase T1 and T2, in order to preserve quantum properties
for a longer time. QEC mechanisms, as depicted in Figure 1,
exploit hardware redundancy to ensure an accurate computa-
tion output even if the state of a qubit has degraded during the
circuit execution. The quantum state of a single logical qubit
is encoded into multiple physical qubits (as an example, 5

physical qubits in Figure 1). Algorithms have to be adapted
to act across multiple qubits and to apply the QEC. Currently,
the most promising solution is the use of surface codes [27],
which require at least 2d physical qubits for each logical
qubit, where d represents the distance, i.e., the number of
errors that can be corrected. Unfortunately, the high cost of
QEC makes it impractical for current NISQ machines. At the
time of writing, most quantum device providers map logical
qubits directly to physical ones, thus logical-shifts in qubits,
as the one we inject, can be retraced one-to-one to the state
of the device at the hardware level.

Lately, it has been demonstrated that transmon qubits are
incredibly susceptible to natural radiation, that, by depositing
charge in the substrate, breaks Cooper pairs and releases
quasiparticles. These quasiparticles can tunnel the Josephson
Junction, exciting the qubit(s) and thus suddenly shifting
their state(s) [14], as shown in Figure 1(b - upper). Numerous
recent studies on the interaction of ionizing radiation with
transmon-based devices have all highlighted a significant
reduction in the correctness and interpretability of quantum
circuit output [9]–[15], [28]. Recent experiments by Google
Quantum AI furthermore demonstrate that the charge de-
posited by external radiation spreads across the quantum
chip, suddenly modifying the state of multiple correlated
physical qubits at once [8], as depicted in Figure 1(b - lower).
In an even more recent study revolving around surface codes,
the same Google Quantum AI team was forced to statistically
outrule an high-energy event [29].

The rapid spread of charge across the qubits and the
fault incidence rate have proven to be extremely significant,
leading to a transient fault duration that has been measured
to be of several milliseconds, which, as already mentioned, is
orders of magnitude longer than a single circuit multiple-shot
execution. Google’s experiment measured that a radiation-
induced corruption event happens every tens of seconds on
an array of just 25 physical qubits. To put this error rate in
perspective, hours are needed to observe a radiation-induced
event in a tens of thousands nodes traditional supercom-
puter [30].

Observation I The radiation-induced fault rate of qubits
is orders of magnitude higher than the one of traditional
transistors.

Unfortunately, the known QEC approaches, such as the
Shor error correcting code [31] or surface codes [27], become
ineffective when multiple physical qubits are affected by
radiation [29]. If multiple logical qubits are mapped on the
physical qubits of a single chip (as in most cases) we can
expect one impinging particle to modify the state of mul-
tiple logical qubits. Stochastic and unpredictable radiation-
induced faults, then, add over the intrinsic noise and suddenly
modify the logical qubit state. As a result, even if QEC was
implemented, we would still expect logical-shift faults in
quantum circuit executions making our evaluation valid also
for future quantum machines.
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FIGURE 2: A generic architecture of a hybrid QNN, with details of the quanvolutional layer. The input image is divided into
2 × 2 subgrids. A four-qubit quantum circuit performs both a 2 × 2 convolution and pooling operation on each subgrid. The
output of the quanvolutional layer is a tensor of 4 channels representing the extracted feature map.

These evidences highlight that stochastic particle strikes
could possibly hinder large-scale use of QCs. More than ever
it is now time for experts in the reliability domain to tackle
the threat posed by such faults.

Observation II Logical-shift errors can occur in current
NISQ machines, as radiation-induced faults suddenly
change the qubit(s) quantum state and are not corrected
by QEC approaches, since the deposited charge induces
correlated faults in multiple physical qubits.

Regrettably, efficient and effective techniques to preserve
the circuit output in case of logical-shift faults are still lack-
ing. A possible approach to reduce the impact of radiation
could be to shield quantum devices in deep underground
caves [10], as recently announced by Oak Ridge National
Lab and Fermi National Lab of the US Department of Energy
[32]. Another option would be to replicate quantum chips,
but the redundant chips, to maintain quantum properties,
should share a quantum network and should be able to
entangle qubits among different chips [33]. Both approaches
are extremely resource intensive and expensive, and thus will
hardly be the solution.

C. QUANTUM MACHINE LEARNING
Quantum Machine Learning (QML) explores how to devise
and implement efficient quantum circuits that offer advan-
tages over classical machine learning algorithms [34], [35].
The classical machine learning neuron operation is encoded
in a binary fashion as active or resting, which could intu-
itively be translated to the basis states |0⟩ and |1⟩ of a qubit.
This theoretically allows learning models to exploit quantum
features like superposition and entanglement, possibly pro-
viding speedups or new processing approaches [6], [21], [36].

Li et al. [37] present an exciting and long-awaited appli-

q0 : RY (0) RX (α) RY (β) RX (γ) ⟨q0⟩
q1 : RY (π) ⟨q1⟩
q2 : RY (π) • ⟨q2⟩
q3 : RY (0) RZ (δ) • ⟨q3⟩

FIGURE 3: Ansatz circuit implementing quanvolution. The
values that parametrize the gates are randomly generated and
kept constant during the experiments. The values fixed for
the experiments are as follow: α = 2.353, β = 4.599, γ =
3.761, and δ = 5.974.

cation of quantum multiplicative weight primal-dual ideas in
supervised machine learning, achieving a quadratic improve-
ment over classical counterparts. In addition, Kerenidis et al.
[38] propose quantum classification via Slow Feature Anal-
ysis, while Havlíček et al. [39] have developed and tested
fully quantum neural networks, such as quantum support
vector machines, on real quantum hardware, showing how
an ever-increasing number of approaches are being adapted
and tested with success in the QC field. Recently, also Con-
volutional Neural Networks (CNNs) have been mapped on
quantum circuits. The quantum convolutional layer (quan-
volutional layer or qLayer for short) encodes a convolution
kernel and a max pooling operation in the structure of
a Bounded-error Quantum Polynomial time (BQP) circuit,
called Hardware Efficient Ansatz, and applies it to local
subsections of an input, producing an output of higher-level
features. The substitution of a classical convolutional layer
with a quanvolutional layer maintains the accuracy unaltered
(since the two layers perform a comparable operation), but
the network with the quanvolutional layer still presents a
lower loss and a faster convergence [6], [7], [21], [36], [40].
The models proposed in these papers still use the concept
of the Hardware Efficient Ansatz circuit, that we extensively
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analyse in this paper, to derive the quantum layer. The
detailed reliability evaluation of the quantum layer together
with the fault effect characterisation we propose can be
directly applied to most of the available QNN models. To
showcase how our results and observations can be used to
evaluate the quantum fault propagation in QNN models, we
target its original implementation [6] as a specific case study.
We perform an exhaustive fine-grain fault injection campaign
considering three incrementally complex versions of the orig-
inal design, so as to let the reader compare the results with
traditional convolution fault propagation. A generic hybrid
architecture example is depicted in Figure 2. The input image
is divided into subgrids and both convolution and pooling on
the image are performed through a 4-qubit quantum circuit.
The combination of all subgrids is the output feature map
that is propagated to the downstream layer. As our results
demonstrate, logical-shift faults as the one caused by intrinsic
noise or natural radiation, can potentially corrupt the output
prediction, therefore justifying the reason for studying faults’
impact in QNNs.

III. EXPLORATION OF DESIGN SPACE
To have a thoughtful understanding of logic-shift error prop-
agation we propose a bottom-up approach, starting from a
per-qubit reliability characterization of the qLayer circuit,
to later consider the fault propagation in the QNN and its
impact on the final classification. We study three network
designs with incremental depths and two datasets. The hereby
proposed methodology can be adapted and easily applied to
test fault propagation in any other QML model, although such
extensive analysis exceeds the scope of this paper. We high-
light several aspects that can impact the fault effect on the
QNN operation, from the dependence of error propagation
with the input image to the vulnerability of different qubits
and different subgrids (position of the corrupted quanvolution
in the feature map). We consider only faults affecting the
quantum part of the QNN, thus no fault has been introduced
in the classical layers.

A. QUANVOLUTIONAL LAYER
The first evaluation we propose is the characterization of
the reliability profile of the ansatz 4-qubit quantum circuit
implementing the quanvolution layer (qLayer), shown in
Figure 3. The objective of this first exclusively quantum
analysis is that of understanding the inner workings of fault
propagation in this quantum circuit. The qLayer is composed
of three main sections: encoding, the actual random circuit,
and measurement. The sequence of these elements produces
an output tensor of size comparable to a classical convolution
and pooling operator on 2×2 subgrids with a stride of 2. The
qLayer is not a direct quantum translation of the convolution
operation for CNNs, but rather it is the standard quantum dual
of a convolution kernel for QNNs, as per the works of [22]–
[25], [41]–[43]. Each of the 4 qubits calculates one of the
4 channels of the feature map. Larger qLayers are possible,
but in all the available QNN implementations the size of the

subgrids is kept to 2 × 2, which provides the best trade-off
between accuracy, circuit complexity, and performance [6],
[21]. Thus, for this paper, we keep constant the qLayer size at
2× 2. The proposed methodology and the following insights
can be applied to any current and future qLayer sizes.

The circuit contains two Controlled-NOT (CNOT) gates,
each controlled by qubits 2 and 3, respectively targeting
qubits 1 and 0. The CNOT gate, a Multi-Qubit gate, will per-
form an X-gate (the equivalent of the NOT gate in classical
computing) on the target qubit if the state of the control qubit
is |1⟩. Given the entanglement caused by these two gates, we
test also the propagation of faults from control qubits to target
ones. At the end of the circuit, the expectation of each qubit
is extracted, by running the circuit on a minimum of 1024
shots.

To have a fine-grain evaluation of the reliability of the
quanvolution operation, in the analysis carried out in Sec-
tion V-A, we have considered a fixed input subgrid and
injected a fault in each of the 4 qubits (one qubit corrupted
at a time). The aim of the per-qubit evaluation is to under-
stand which channel (qubit) is less reliable and if there is a
difference between control and target qubits. As detailed in
Section V-A, we found that faults in control qubits have a
more significant impact on the QNN output, since they get
propagated to the target qubit, and that the injection on one
qubit affects only the channel associated with the corrupted
qubit, with negligible effects on the other channels.

B. QNN AND INPUT DATA SET
To understand how faults occurring in the qLayer propagate
in the QNN, we make use of the knowledge gained from
the previous in-depth analysis results on the quanvolutional
layer, testing three hybrid models, so as to let the reader make
a direct comparison with the well studied fault propagation
mechanisms of convolution layers in classical CNNs. We
inject logic shifts only at inference time, not during train-
ing, which is a common practice also in traditional CNN
reliability evaluation [18], [19]. In fact, while errors during
training can potentially reduce the performance or increase
the convergence time, these effects are easily detectable and
solved with additional training steps. On the contrary, silent
errors during inference can lead to potentially harmful real-
time mispredictions and should be strictly avoided.

Recent experiments showed that the charge deposited by
radiation migrates in the Silicon substrate, eventually af-
fecting physically close qubits [8], [44]. Since the 4 qubits
implementing the qLayer must be connected and close to
each other, we expect the single-particle interaction to corrupt
all of them. As such, in the QNN reliability evaluation, we
will simultaneously corrupt all four qubits during subgrid
computation.

As a baseline, we consider the QNN design available
in [6], a hybrid classical-quantum adaptation of the Le-Net
model [45] for image classification, which is one of the first
(classical and quantum) models to be designed. The inputs
we used are taken from the MNIST handwritten digits and
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FIGURE 4: Combined view of the three hybrid quantum neural networks studied. ModelA is composed of only a Quan-
volutional layer, directly connected to the Flatten layer. ModelB integrates a traditional convolution layer between the
Quanvolutional and the Flatten layer. ModelC is composed of all the elements in the figure above, i.e., a qLayer followed
by 2 convolutional layers. Proportions for the output tensor dimensions have been preserved.

fashion data sets [46], both consisting of 70, 000 28×28 pix-
els grayscale images representing either handwritten digits or
clothing apparel.

We chose the MNIST data sets (handwritten digits and
fashion items) since they are widely regarded as a corner-
stone of classical ML research. Additionally, the current scale
of quantum devices does not yet allow for the usage of state-
of-the-art, high-resolution data sets. Nevertheless, the results
and insights provided by our analysis are still fundamental
for characterizing the analyzed quantum design.

The QNN receives, as input, grayscale images with values
ranging between 0 and 255. For each 2×2 subgrid in the input
image, each pixel is encoded using amplitude embedding
through a parameterized rotation RY around the Y-axis,
mapping each value linearly to the range [0, π]. In the qLayer,
the quanvolution circuit is executed for each subgrid and the
resulting tensor is propagated to the downstream layers.

We trace the fault propagation during the QNN inference
and measure its impact on the output correctness. We dis-
tinguish between masked faults (the output is unaffected),
tolerable Silent Data Corruptions (the output is altered, but
the correct class is selected), and misclassifications.

To have an overview of possible logical-shift errors prop-
agation we perform an exhaustive fault injection (more than
273, 646, 592 faults per image) in at least 30 random images
from each data set. In other words, once we have selected the
injection site (qubit, channel, grid, etc...) we perform a com-
plete fault injection, considering all the possible parametrized
rotations, for each input image. Then, to understand the
impact of error propagation from the input frame, we perform
further experiments on 100 images. We have not observed
a significant dependence of fault propagation with the input
image class.

C. QNN MODELS
The error propagation in classical CNNs is known to be
dependent on the network depth (i.e., the number of layers
the fault needs to traverse to reach the output) [18], [19]. In

particular, convolution tends to spread the faults happening
in upstream (traditional) layers. With the aim of understand-
ing the dependence of logical-shift error propagation on
the network depth we consider three designs of increased
complexity of the same QNN (based on [6]), hereby called
ModelA, ModelB, and ModelC.

ModelA, whose structure is represented in Figure 4, is the
quintessential Quanvolutional Neural Network, composed of
the minimum number of layers. The qLayer takes as input a
(28, 28, 1) tensor and outputs a (14, 14, 4) tensor. The latter
is flattened and redirected into a softmax dense layer.

From the barebone ModelA, we derive ModelB and Mod-
elC, which are obtained by adding respectively one and two
cascaded Conv2D operators between the quanvolutional and
flatten layers. The concatenation of a qLayer with classical
convolutional layers has been done following state-of-the-art
approaches in literature [6], choosing suitable filter sizes for
the classical layers in the networks: each additional Conv2D
layer doubles the number of filters used in the preceding
operator and uses a filter size of 2 × 2, with a stride of 2.
It is worth noting that we do not consider multiple cascaded
qLayer applications, following the approach in [6].

Each of the derived designs has been re-trained to adapt
the weights to the network depth. The accuracy on both the
training and validation data sets obtained after the training of
the three QNN designs is similar (at most 3% of difference)
and comparable to the performance of the corresponding
fully classical implementation.

Interestingly, as we detail in Section V-D, increasing the
depth of the QNN by adding cascaded traditional convolu-
tional layers reduces the quantum transient fault impact on
the output, masking some faults and reducing the probability
to have misclassifications.

D. SINGLE AND MULTIPLE SUBGRID INJECTIONS
Finally, we also compare the reliability of QNNs when multi-
ple subgrids are corrupted. In fact, the near-future prospect of
highly integrated quantum chips prevented us from consider-

6 VOLUME x, 2023

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3372880

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Marzio Vallero et al.: Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

ing unrealistic the possible corruption of multiple subgrids at
inference time, as detailed in Section V-E. For this reason,
we also conducted experiments injecting on two distinct
subgrids. As we show, when multiple subgrids are corrupted,
the impact on the QNN’s output is higher, increasing the
probability of having misclassifications.

IV. EXPERIMENTAL SETUP
In this Section, we describe the setup of the conducted exper-
iments, providing details on the framework used to model the
transient fault’s effect.

A. LOGICAL-SHIFT ERROR MODEL
Fault injection in quantum circuits is more complex than
in classical CMOS devices. In fact, the classical bit has
only two states (0 and 1) and, thus, a bit-flip fault model is
sufficient to study the reliability of CMOS devices. As seen
in Observation II, for quantum bits in a superposition, the
interaction of ionizing particles can modify the quantum state
by inducing a parametrized rotation (changing the ϕ and/or θ
angle in the Bloch Sphere, refer to Fig. 1). The magnitude
of such parametrized rotations depends on the deposited
charge, as shown with simulations [15] and experimentally
validated [10], which can range from meV to GeV [47]. Thus,
in contrast to classical computing, the quantum fault model
has to take into account many more possible state changes
than a "simple" bit-flip (i.e. the X-Pauli gate), as a particle
impact can induce any given parametrized rotation.

Since the energy of the impinging particle is continous in a
wide range (meV to GeV) [48], the fault’s rotation range will
also be continuous. As such, we consider all parametrized
rotation magnitudes in our fault injection. This makes for a
systematic analysis which is as general as possible, without
being tied to a specific particle energy range. The fault model
and the results hereby presented can be easily weighted or
normalized once more information on the correlation be-
tween exact impinging particle energy and fault amplitude
will be known.

B. LOGICAL-SHIFT INJECTION AND SIMULATION
In this paper we only consider faults affecting the quantum
part of the QNN. The effect of faults in the classical parts
of CNNs has already been investigated deeply [18]–[20].
The simulations have been carried out without considering
a device-level noise profile, as it is a well-separated event
with respect to particle-impacts, and its effects would add
up to those of transient faults. In addition to this, we recall
that noise has close to no impact on the Ansatz circuit, as
previously stated in Section III.

To inject logical-shift errors into the quantum convolution
circuit during the QNN inference (we do not inject during
training), we apply a tuned stimulus to modify the qubit state.
To model the injected fault that, as discussed in Section II-B,
can have parametrized rotations of different magnitudes, we
use the QuFI fault injector, which inserts an extra U3 gate to
model the fault [16]. The U3 gate can modify the ϕ and/or θ

angles used to define the qubit’s actual state (refer to Fig. 1).
The ϕ angle modifies the phase of a qubit, and the θ angle
changes the |0⟩− |1⟩ probability. The possible range for each
angle without state duplication are ϕ = [0, 2π], and θ = [0, π].
We also make a discretization of the angles range using a π

12
step size, which results in 325 possible configurations (i.e.,
distinct fault magnitudes to be injected).

To track fault propagation in QNNs, we broaden the ap-
plicability spectrum of the open source QuFI by porting
it to the Pennylane [49] framework. We also achieve the
possibility of running quantum circuits on devices provided
by different vendors implementing different technologies, not
to be limited to IBM machines, and a more direct QML-
oriented development, since Pennylane inherently supports
multiple libraries dedicated to the task.

The updated version of QuFI is part of our contribution
and will be released as open-source to stimulate further
research in QNNs reliability.

C. FAULT EFFECT EVALUATION

As previously stated, the quantum circuit output is proba-
bilistic, with each possible state having a certain probability
to be selected. For instance, a 2-qubit circuit has 4 possible
states: |00⟩, |01⟩, |10⟩, and |11⟩. Ideally, the correct state
will have the highest probability so it can be selected as the
output. We use the Quantum Vulnerability Factor (QVF) [50]
metric to measure the impact of a transient fault in the output
probability distribution. The QVF, corresponding to the Ar-
chitecture Vulnerability Factor (AVF) [51] and the Program
Vulnerability Factor (PVF) [52] in traditional computing
systems, ranges from [0, 1], and indicates the probability of
a fault to propagate affecting the output. In other words, the
QVF indicates how likely the fault is, given the probabilistic
output, to induce the selection of a corrupt state. A QVF close
to zero indicates a high probability of selecting the correct
state. Values close to one indicate that an incorrect state is
likely to be selected. QVF values around 0.5 mean that the
correct state and at least one incorrect state have similar
probabilities, which makes the identification of correct states
dubious.

To evaluate the effect of the propagation of logical-shifts
in the qLayer to the downstream layers we measure also
the misclassification rate of the tested QNNs. We inject
faults into the qLayer during inference and let the corrupted
output feed the downstream operations. Then, we check if
the classification of the faulty execution is different than the
classification of the fault-free one. We do not compare the
faulty classification with the ground truth since we want to
measure the impact of faults in the execution of a QNN.
The (unlikely) event of a fault improving accuracy is purely
stochastic and not scientifically relevant, as we cannot rely
on radiation to improve the QNN’s accuracy. Moreover, we
never observed such an event.
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FIGURE 5: Quantum Vulnerability Factor (probability for a
fault to modify the output correctness) heatmap for single
logical-shift fault injections in the circuit implementing the
qLayer. We inject θ logical-shifts from 0 to π and ϕ logical-
shifts from 0 to 2π in one qubit.

V. CHARACTERIZATION RESULTS
In this Section, we detail the experimental results obtained
from 13, 322, 547, 200 logical-shift fault injection simula-
tions (267, 233 quantum circuit injections per input image,
per configuration). This extensive evaluation provides a very
accurate evaluation, with the statistical error being lower
than 1% [53]. Our bottom-up evaluation starts from the
characterization of the reliability of the quanvolution circuit,
then understanding the fault effect on the QNN’s output, and
identifying how many faults induce misclassification. Then,
we consider the QNN’s reliability dependence on the data set,
the input image, and the subgrid. Finally, we evaluate how
faults propagate in three different QNN designs of increasing
complexity (ModelA, ModelB, ModelC) and we also discuss
the impact of double faults. Our complete set of results is
available in a public repository [54].

A. QUANVOLUTIONAL LAYER RELIABILITY
As a first reliability evaluation, we detail the propagation
of logical-shift faults in the quantum computation core of
QNNs, that is, the quanvolutional layer implemented with the
ansatz circuit depicted in Figure 3. For this evaluation, we
consider the quanvolutional layer as a standalone quantum
circuit, i.e. without the integration with the upstream and
downstream portions of the QNN. To have a fine grain
understanding, we inject in each qubit separately.

To assess the resilience profile of the circuit, we use as
input a fixed 2 × 2 subgrid, with the top-right and bottom-
left pixels as white (value 255) and the other two as black
(value 0), i.e., a diagonal black and white subgrid. This
corresponds to encoding qubits 0 and 3 of Figure 3 in state
|0⟩, whilst qubits 1 and 2 are encoded in state |1⟩, since
they are prepared by rotations around the Y-axis of 0 and π
radians, respectively.

In Figure 5 we plot, for each (θ, ϕ) logical-shift, the
Quantum Vulnerability Factor (QVF) for the qLayer circuit,
increasing the logical-shift in θ (0 to π) and ϕ (0 to 2π).
We inject in each qubit separately. A QVF close to 1 (red)

indicates a shift that entails an high probability of selecting
the wrong output, while values close to 0 (green) indicate
shifts that do not modify the output selection.

In Figure 5 we can see that the QVF increases (worsens)
as we move to the right of the picture, while it is almost
unaltered as we move up in the picture. This means that
the qLayer circuit becomes highly affected by the azimuthal
faults (θ logical-shift) for values greater than π

2 . While this
result might seem obvious and intuitive (a higher modifica-
tion leads to a higher impact on the output), it has been shown
that for quantum circuits logical-shifts of higher magnitude
do not necessarily have a higher probability to modify the
circuit output [16].

Interestingly, the qLayer shows a relatively low vulnera-
bility to the polar angle (ϕ), albeit a small QVF rise between
3π
4 and 5π

4 . Analyzing the details of the single qubit QVF
heatmaps (not reported here but included in the public repos-
itory [54]) we found that qubits 0 (target) and 3 (control) are
responsible for lowering the average resilience of the circuit
for 0 < θ < π

4 and 3π
4 < ϕ < 5π

4 (white region). This is
because those two qubits undergo more quantum gates than
qubits 1 and 2.

The QVF heatmap suggests that the θ shifts are critical,
whilst ϕ logical-shifts are not. We will further investigate this
property at the network level in the following Section V-B.

Observation III Due to the usage of amplitude embed-
ding, ϕ logical-shifts do not significantly modify the
qLayer output, while θ shifts cause an effect on the
output that is proportional to the shift magnitude.

We have also observed that a single injected fault in a
qubit of the qLayer circuit modifies all its logically connected
qubits, and consequently the output bit-string. This means
that the computation of the qLayer is likely to spread the
fault, corrupting the cascaded layers in the network’s archi-
tecture.

Observation IV A fault in a single qubit of the qLayer
spreads to all its logically connected qubits.

B. FAULT PROPAGATION IN QNNS
To understand how faults propagate in QNNs and identify
the faults that generate misclassifications, we perform an
extensive fault injection campaign injecting a logical-shift
fault in each of the 4 qubits executing one quanvolution
(i.e., calculating one subgrid). We consider all three network
models, with an increasing depth, on both input data sets
and over single and double subgrids injected. Faults that did
not corrupt the softmax vector output of the neural network
have been labeled as masked. Faults that modified the output
vector have been labeled as either tolerable if they did not
alter the output predicted class, or misclassified otherwise.

We have observed that all of the θ logical-shifts propagate
to ModelA’s output (not necessarily modifying the classifica-
tion) while none of the injections of ϕ logical-shift causes
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TABLE 1: Phase-shift fault-induced misclassification proba-
bility

QNN design data set Single grid Double grid

ModelA digits 3.49% 6.05%

fashion 1.23% 1.94%

ModelB digits 5.52% 10.65%

fashion 3.99% 6.58%

ModelC digits 1.69% 8.62%

fashion 3.16% 6.33%

an observable effect on the network output. The fact that
the injections of ϕ logical-shift do not propagate should not
surprise. As discussed in Section IV, the qLayer circuit uses
amplitude embedding, i.e. maps the convolution data in the
θ angle of the qubit state, the |0⟩ − |1⟩ probability. Thus,
changes to the phase (ϕ angle) of a qubit state are expected
to have a small impact on the qLayer output (as confirmed in
Observation IV in Section V-A) and, as our fault injection in
the QNN shows, ϕ polar shifts do not modify the inference.
In the following, we only report θ shift injections.

Observation V In a simple QNN with just one qLayer
no ϕ logical-shift modifies the output but all θ logical-
shifts propagate to the output.

Table 1 shows the measured average probability among all
the logical-shift faults injected in the qLayer circuit to induce
a misclassification across all the possible configurations of
data sets, models, and the number of subgrids injected at a
time. Our analysis shows that the misclassification rate can
vary from 1.23% to up to 10.65%, depending on the QNN
design and data set. This misclassification probability is the
result of the interaction of a plethora of factors: in the next
subsections, we go into the details of the dependencies of
the misclassification rate from the logical-shift magnitude,
network design, and the number of simultaneously injected
subgrids.

The measured misclassification rates for QNNs, shown in
Table 1, are comparable to the ones of classical CNNs, that
range from 1% (floating-point) to 7% (with a specific fixed-
point data type) [18]. From Observation I, we know that the
CMOS error rate is orders of magnitude lower than the one
of a superconducting transmon qubit. Thus, while CNNs and
QNNs have similar misclassification probability, the latter are
much more likely to experience a fault (see Section II-B) and
will experience a considerably higher misclassification rate.

Observation VI The probability for a fault to generate a
misclassification in a QNN or in a CNN is comparable.
However, in QNN the fault rate is orders of magnitude
higher.

In Figure 6 and Figure 7, we provide respectively an exam-
ple of the effects of a tolerable fault and of a misclassification
fault on the softmax vector output. To better understand the
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FIGURE 6: Example of a fault that does not induce misclas-
sification. We plot the softmax layer outputs for the baseline
fault-free (in the Figure, labeled as golden) execution (in
green) and faulty execution (in red) obtained by injecting
a fault amplitude of θ = π

2 in all qubits of the qLayer
processing a subgrid. Despite class 2 confidence increasing
significantly, class 0 is still correctly classified.
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FIGURE 7: Example of a fault that induces misclassification.
We plot the softmax layer outputs for the baseline fault-
free (in the Figure, labeled as golden) execution (in green)
and faulty execution (in red) obtained by injecting a fault
amplitude of θ = π

2 in all qubits of the qLayer processing
a subgrid. The fault increases the confidence of class 4,
promoting it to the selected output class, whilst class 6 (the
correct classification) lags behind as the third most probable
output.

effect of fault propagation, in Figure 6 we show an exam-
ple of a fault that does not induce misclassification whilst
modifying significantly the classes’ probability distribution.
The plotted data refers to a θ = π

2 fault injected in all 4
qubits of the qLayer applied to a single subgrid out of the 196
possible subgrids of the input image. In the baseline fault-
free execution, class 0 is selected with very high confidence
(0.48 vs 0.18 of the second class). The fault triplicates the
confidence for class 2 to be selected while reducing the one
for class 0. Nonetheless, despite a significant reduction in the
classification confidence (0.44 of class 0 vs 0.26 of class 2),
class 0 is still the one with the highest probability.

In Figure 7 we show an example of a misclassification
fault. The baseline fault-free execution classifies the input as
class 6, but with low confidence (0.38), since both class 4 and
class 5 have a high probability at the QNN output. The θ = π

2
fault we inject in the qLayer reduces to 1/3 the probability of
class 6 and doubles class 4 probability, eventually leading to
misclassification.
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C. MISCLASSIFICATION DEPENDENCE ON SUBGRID
AND INPUT
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(a) Handwritten digits data set
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(b) Fashion data set

FIGURE 8: Heatmaps showing the misclassification proba-
bility for faults injecting in each subgrid (identified by the
coordinates in the images). Data has been obtained testing
100 images of (a) digits and (b) fashion data sets.

To understand possible QNN reliability dependencies from
the input frame and the corrupted subgrid, we have performed
an extensive fault injection on 100 images for each data
set and injected a fault in every single subgrid of the input
image. Since each image has 196 subgrids, this campaign is
computationally demanding to execute, requiring a total of
more than 7 billion injections for both data sets.

Figure 8 shows the average misclassification probability
for each subgrid on the digits (a) and fashion (b) data sets.
To ease visualization, we plot the misclassification rate as a
heatmap, where the (row, column) are the coordinates of the
subgrid location. As can be seen by comparing Figures 8a
and 8b, the two data sets have a completely different reliabil-
ity dependence on the corrupted subgrids.

In the handwritten digits data set (Figure 8a) some sub-
grids are extremely likely to generate misclassification while
others, even if corrupted, have a low probability to impact the
network output. For instance, the subgrid in (row: 4, column:
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FIGURE 9: Misclassification ratio with respect to fault angle
amplitude theta on the barebone ModelA, considering a
single failed subgrid, computed on the digits data set.
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FIGURE 10: Misclassification ratio with respect to fault
angle amplitude theta on ModelB, considering a single failed
subgrid, computed on the digits data set.

7) has a misclassification ratio of 10.3% whilst a fault in the
subgrid (row: 1, column: 5) has a 0.8% probability to induce
a misclassification. In the fashion data set (Figure 8b) the
heatmap has a homogeneous distribution of misclassification
ratios, suggesting that the probability of incorrectly labeling
an image on this second data set is not significantly depen-
dent on the corrupted subgrid. Finally, we have not registered
an input image class dependence on the misclassification rate.

Observation VII The misclassification probability de-
pends on the corrupted subgrid in the digits data set,
while there is no dependence between misclassification
and object class.

D. FAULT PROPAGATION DEPENDENCE ON QNN
DESIGN
To understand if the QNN design impact the fault propa-
gation, we inject in a single random subgrid of the qLayer
on ModelA (one qLayer), ModelB (one qLayer and one
Conv2D layer), and ModelC (one qLayer and two Conv2D
layers) with data set partitions of size 30, to test how much
downstream classical layer(s) impact the quantum fault prop-
agation. Details about the three QNN designs can be found in
Section III-C.

At first, we present the analysis of ModelA on the MNIST
handwritten data set partition, and plot in Figure 9 the per-
centage of misclassified, tolerable, and masked faults with
respect to the amplitude of the angle θ in the parametrizable
U3 fault gate. There is an evident correlation between the
amplitude of θ and the incidence of mislassifications in the
network’s output. Faults with an amplitude of just θ = π

2
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FIGURE 11: Misclassification ratio with respect to fault
angle amplitude theta on ModelC, considering a single failed
subgrid, computed on the digits data set.

produce a 3.18% misclassification ratio, which bumps up to
6.43% for a fault amplitude of θ = π. Moreover, given the
relatively shallow architecture of ModelA, the classical part
of the network cannot sufficiently compensate for the fault
and no masked event is ever registered. All of the injected
faults in fact produce a variation in the output softmax vector.

In Figure 10, once again computed on the handwritten
digits data set, ModelB undergoes a fault at the qLayer
level, which gets propagated first through the Conv2D layer
and later in the Flatten and Softmax layers. On a fault gate
amplitude of θ = π

2 , the misclassification ratio is valued at
5.84%, rising to 7.39% when considering the maximum fault
amplitude. Much like for ModelA, it is once again clear to
see that there is a correlation between the azimuthal angle of
the U fault gate θ and a rise in the misclassification ratio.
No masked event has been observed. On average, as seen
in Table 1, the misclassification ratio for ModelB is 5.52%
on the handwritten digits data set, whilst the same analysis
on the fashion data set boasts a slightly lower average rate
of 3.99%. The average probability for ModelB to produce a
wrong output class prediction increases, w.r.t. ModelA, by a
significant margin in both data sets.

ModelC’s reliability behaviour is detailed in Figure 11,
once again on the handwritten digits data set. Unlike the other
experiments, we observe, on average, a stable distribution
of masked events with a probability of 26.67%: this can be
explained by the fact that the increasing number of filters
in the Conv2D operators eventually disperses the effect of
a portion of the faults introduced at the quantum layer and
eventually those get canceled out by undergoing a product
operation with weights or kernel parameters equal to zero.

Observation IX Downstream Conv2D layers can help
in masking some qLayer faults.

It is important to note that this event depends on the
qLayer, as it is not the direct quantum translation of a
convolution and thus boasts a different behaviour. Moreover,
a significant drop in the overall misclassification rate is
observed, with average values of 1.69% for the handwritten
digits data set and a maximum registered at 3.17% at the
highest fault gate amplitude of θ = π. Similarly, on the
fashion data set, an average of 3.16% misclassifications is
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FIGURE 12: Misclassification ratio with respect to fault an-
gle amplitude theta on the barebone QNN model, considering
two failed subgrids, computed on the digits data set.

registered, with a masked events ratio of 26.59%.

Observation VIII Larger θ logical-shifts increase the
misclassification probability, in all the tested QNN de-
signs.

E. DOUBLE SUB-GRIDS CORRUPTION
In a general quantum workload, we cannot rule out the pos-
sibility to experience multiple radiation-induced corruptions
across the whole execution, especially in iterative approaches
such as QNNs or in deep quantum circuits. CMOS devices, in
terrestrial applications, can be corrupted mostly by neutrons
and the probability for a CMOS-based chip (even large
GPUs) to be corrupted by an impinging neutron is very low,
in the order of 10−6 to 10−8 [17], [55]. Since the flux of
neutrons at sea level is about 13n/cm2/h, the error rate of
a CMOS chip is in the order of 10−5 to 10−9 errors per
hour [17], making it highly unlikely to observe two events
in a single computation. Unfortunately, this does not hold
for qubits, since they have an intrinsic coherent time in the
order of ms and a sensitivity to radiation that is much higher
than CMOS transistors (Observation II) and, moreover, they
can be affected by various uncorrelated radiation sources
(neutrons, muons, etc..) [8], [10]. Additionally, we expect
quantum chips to be highly integrated in the near future,
possibly including multiple qLayer circuits (observation I) on
a smaller surface area. As a result, we can expect to have the
single particle deposited charge corrupting multiple logical
qubits or possibly even multiple qLayer circuits.

Therefore, as a final analysis, we have injected in two
separate random subgrids at the same time across all QNN
models and input data sets. The results presented in Figure 12
refer to ModelA on the handwritten digits data set partition
of size 30. Much like the single corrupted subgrid ca, a corre-
lation between the amplitude and the misclassification ratio
is evident, where a fault amplitude of θ = π

2 is responsible
for changing the output predicted class in 6.24% of cases,
almost doubled with respect to the previous experiment on
single subgrid injections. The misclassification ratio tops out
at 9.0% with the highest amplitude injection of θ = π. We
did not observe any masked injections.

Additional experiments obtained by testing double subgrid
injections on both ModelB and ModelC have been per-
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formed, boasting a steady increase in the rate of misclassi-
fication events. Moreover, ModelC undergoes a reduction in
the number of masked events when the number of injected
subgrids is doubled. The average rates for these experiments
are reported in Table 1.

Observation X The corruption of two subgrids signifi-
cantly increase the misclassification probability.

Complete access to the data regarding all these experi-
ments, which have not been further commented on here due
to lack of space, is available at [54].

VI. DISCUSSION AND PROJECTIONS
The QNN architecture we have characterized is the first
model of its kind ever proposed [6]. This design is the
cornerstone over which rapidly growing and vibrant research
is being carried out [22]–[25], [41]–[43]. In particular, the
structure of the Hardware Efficient Ansatz we have deeply
investigated is being used to implement quanvolution in the
vast majority of QNNs models. For this reason, our tool
and analysis results can be used to understand the reliability
behavior of current and future QNNs making use of the same
quanvolutional layer or other layers derived from it according
to their shared characteristics.

Thanks to the continuous advancements in quantum com-
puting technology, the application landscape for QNNs keeps
broadening. As we have shown, however, the widespread
adoption of QC could be stifled by logical-shifts caused by
either intrinsic noise or cosmic rays, particularly on super-
conducting transmon quantum devices [8]–[16]. Despite the
fact that QNNs have a misclassification ratio comparable to
that of CNNs, their reliability is much more significantly
hindered with respect to their classical counterparts, given
that the radiation-induced fault rate for quantum devices is
orders of magnitude higher with respect to CMOS. The usage
of surface codes along scalability and construction quality
improvements may have a positive role in improving the
reliability of many QML models, at which point the hereby
presented systematic results may simply be reweighted ac-
cording to the way in which they impact the output distri-
bution. At the moment, however, there is no guarantee that
surface codes will not fail in the event of a particle impact,
and may as well worsen the results in this circumstance.

Hardware/software co-design has been demonstrated to be
critical for quantum computers [26], [56]–[61]. Our analysis
adds the logical-shift fault issue to the reliability assess-
ment of these devices and architectures. This work’s results,
alongside the methodology employed, can direct algorithm
design, innovative software/hardware hardening solutions
development, and more robust circuit architecture imple-
mentation. For instance, quantum circuit designers could
leverage our framework to implement and test purposefully
made quantum error correction codes, adding redundancy in
the most critical part or duplicating only the most critical
quanvolutions, and thus largely reducing the misclassifica-

tion ratio. The information regarding subgrid criticality can
help, knowing the data set used in the field, in designing a
future scheduler or optimizer for Quantum Machine Learning
workloads to map each subgrid execution onto more or less
reliable quantum hardware with respect to their impact in
case of a fault. Moreover, we envision that transpilers may
exploit our analysis through an additional heuristic metric,
aimed at reducing the impact of radiation-induced faults,
and adaptable to any physical quantum device. Lastly, our
analysis highlights that better training or a different QNN
design might increase the classification confidence and re-
duce radiation-induced misclassifications, nonetheless this
can hardly solve the faults issue altogether.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a methodology to deeply
investigate the propagation of logical-shift faults in Quan-
volutional Neural Networks. By using a fault model derived
from experiments and simulations, we demonstrate that the
corruption of the quanvolutional layer significantly impacts
QNNs’ operations and classification. Our data shows that θ
logical-shifts are very likely to propagate in the QNN, and
that up to 10% of injections induce misclassification. As we
have seen, the misclassification probability depends on the
logical-shift magnitude, on the corrupted subgrid, on the data
set, and on the number of classical layers that follow the
corrupted layer.

In the future, we intend to propose mitigation or hardening
solutions for QNNs. We aim at blocking the fault propagation
in the quanvolutional layer and reducing its probability to
cause a misclassification.
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