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ABSTRACT

Context. Reconstructing an image from noisy, sparsely sampled Fourier data is an ill-posed inverse problem that occurs in a variety
of subjects within science, including data analysis for Very Long Baseline Interferometry (VLBI) and the Spectrometer/Telescope
for Imaging X-rays (STIX) with respect to solar observations. The need for high-resolution, high-fidelity imaging fosters the active
development of a range of novel imaging algorithms in a variety of different algorithmic settings. However, despite these ongoing,
parallel developments, such synergies remain unexplored.
Aims. We study, for the first time, the synergies between the data analysis for the STIX instrument and VLBI. In particular, we
compare the methodologies that have been developed in both fields and evaluate their potential. In this way, we identify key trends
in the performance of several algorithmic ideas and draw recommendations for the future spending of resources in the study and
implementation of novel imaging algorithms.
Methods. To this end, we organized a semi-blind imaging challenge with data sets and source structures that are typical for sparse
VLBI, specifically in the context of the Event Horizon Telescope (EHT) as well as STIX observations. We used 17 different algorithms
from both communities, from six different imaging frameworks, in the challenge, making this work the largest scale code comparison
for STIX and VLBI to date.
Results. We identified strong synergies between the two communities, as proven by the success of the imaging methods proposed
for STIX in imaging VLBI data sets and vice versa. Novel imaging methods outperform the standard CLEAN algorithm significantly
in every test case. Improvements over the performance of CLEAN offer deeper updates to the inverse modeling pipeline necessary
or, consequently, the possibility to replace inverse modeling with forward modeling. Entropy-based methods and Bayesian methods
perform best on STIX data. The more complex imaging algorithms utilizing multiple regularization terms (recently proposed for VLBI)
add little to no additional improvements for STIX. However, they do outperform the other methods on EHT data, which correspond to
a larger number of angular scales.
Conclusions. This work demonstrates the great synergy between the STIX and VLBI imaging efforts and the great potential for
common developments. The comparison identifies key trends on the efficacy of specific algorithmic ideas for the VLBI and the STIX
setting that may evolve into a roadmap for future developments.

Key words. methods: numerical – techniques: high angular resolution – techniques: image processing –
techniques: interferometric – Sun: flares – galaxies: jets

1. Introduction

Inverse problems are a class of problems for which the causal
factors that lead to certain observables are recovered, as opposed
to a forward problem in which the observables are predicted
based on some initial causes. A common difficulty when solving
inverse problems is “ill-posedness”, namely, the direct (pseudo-)
inverse (if it exists and is singly valued) is unstable against
observational noise (Hadamard & Morse 1953). Therefore, to
construct reliable approximations of the (unknown) solution,
additional prior information has to be encoded in the reconstruc-
tion process, and this procedure is referred to as regularization
(Morozov 1967). Ill-posed inverse problems arise in a variety of
settings, for example, in medium scattering experiments (e.g.,
Colton & Kress 2013), medical imaging (e.g., see the review

in Spencer & Bi 2020), or microscopy. In an astrophysical
context, ill-posed inverse problems include, among others with
respect to Lyα forest tomography (Lee et al. 2018; Müller et al.
2020b, 2021), lensing (e.g., see the review Mandelbaum 2018),
or (helio)seismology (Gizon et al. 2010).

A specific class of inverse problems is the reconstruction
of a signal from a sparsely undersampled Fourier domain.
This problem formulation equally applies to radio interferom-
etry (Thompson et al. 2017) and magnetic resonance tomog-
raphy (Spencer & Bi 2020), as well as to solar hard X-ray
imaging (Piana et al. 2022). Although the fundamental prob-
lem formulation is similar, the degree of undersampling, the
spatial scales and features of the scientific targets, the cal-
ibration effects, and noise corruptions differ. Therefore, the
scientific communities developed independently from each other
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Fig. 1. Exemplary comparison of the STIX (u, v) (left
panel) and of the EHT (right panel; Event Horizon
Telescope Collaboration 2019a,b) coverage. In both
cases, the Fourier domain is undersampled, although
the degree of undersampling is more enhanced in the
STIX case.

multiple regularization methods specifically tailored to the
needs of the respective instruments. This has resulted in some
occasions in duplicate, parallel developments (e.g., of modern
maximum-entropy methods: Chael et al. 2016; Massa et al.
2020; Mus & Martí-Vidal 2024), while in other instances, it
had led to to complementary, mutually inspiring, and interdis-
ciplinary efforts (e.g., multiobjective optimization: Müller et al.
2023).

Given that image reconstruction from solar X-ray imaging
and radio interferometry data is a rather challenging problem
without unique solutions, there is no algorithm that is consis-
tently optimal in every set of circumstances. Therefore, research
on imaging algorithms for solar X-ray imaging and for radio
interforemtry, particularly Very Long Baseline Interferometry
(VLBI), are currently active fields of science (see, for instance,
recent works on VLBI by Issaoun et al. 2019; Broderick et al.
2020b,a; Arras et al. 2022; Sun et al. 2022; Tiede 2022; Müller
& Lobanov 2022, 2023b,a; Müller et al. 2023; Roelofs et al.
2023; Mus & Martí-Vidal 2024; Chael et al. 2023; Kim et al., in
prep.) and on solar X-ray imaging by Massa et al. (2019, 2020);
Siarkowski et al. (2020); Perracchione et al. (2023). Here, we
compare the data reduction methods that were recently proposed
for solar X-ray imaging with the recent developments from the
field of VLBI and identify their mutual potential to be applied
in the respective opposite field. This work constitutes and con-
tributes to a roadmap for future developments in imaging and
spending of scientific resources.

In VLBI (and radio-interferometry in general), multiple and
differently placed antennas observe the same source at the same
time. The correlation product of the signals recorded by an
antenna pair in the array during an integration time approx-
imately determines a Fourier component (i.e., visibility) of
the true sky brightness distribution (Thompson et al. 2017).
The Fourier frequency is determined by the baseline separat-
ing the two antennas of one antenna pair projected onto the
sky plane. This is described by the van Cittert-Zernike theorem
(van Cittert 1934; Zernike 1938). The angular frequency domain
(often referred to as the (u, v) domain) gets “filled” due to the
rotation of the Earth with respect to the source on the sky. How-
ever, due to limited numbers of antennas in the array, the (u, v)
domain is only sparsely covered by measurements. The set of fre-
quencies measured by the antenna array is called (u, v) coverage.
The image of the radio source is then derived from the visibility
set through a Fourier inversion process (Thompson et al. 2017).
Moreover, VLBI often deals with challenging calibration issues,
among with scale-dependent thermal noise, particularly at mm

wavelengths (Janssen et al. 2022). At imaging stage, these are
typically factored out in station-based gains.

The Spectromenter/Telescope for Imaging X-rays (STIX:
Krucker et al. 2020) is the instrument of the ESA Solar Orbiter
mission (Müller et al. 2020a) dedicated to the observation of
the X-ray radiation emitted by solar flares. The telescope pro-
vides diagnostics on the temperature of the plasma and on the
flare-accelerated electrons by observing the corresponding X-ray
radiation emitted by thermal and non-thermal bremsstrahlung.
STIX modulates the flaring X-ray radiation by means of pairs
of grids. The X-ray flux transmitted by each grid pair creates a
Moiré pattern, whose intensity is measured by a coarsely pixe-
lated detector. The measurements provided by the detector allow
for the determination of amplitude and phase for a single visibil-
ity of the flaring X-ray source. Thus, similarly to VLBI, the data
provided by STIX is a set of visibilities that can be used for image
reconstruction of the flare X-ray emission. However, there are
some differences between STIX and VLBI. Due to the smaller
number of visibilities (30 for STIX vs. ∼> 150 for VLBI; there
is a comparison of the (u, v) coverage in Fig. 1) the achievable
dynamic range for STIX is ∼10. The synergy is therefore great-
est to VLBI snapshot imaging. Moreover, while it has become
more common in mm-VLBI to do the imaging without phase-
information (Chael et al. 2018; Müller & Lobanov 2022), for
STIX well-calibrated visibility-phases are available. Neverthe-
less, at the beginning of the STIX visibility phase calibration
process, the problem of image reconstruction from visibility
amplitudes alone has been addressed for STIX (Massa et al.
2021).

Imaging routines that were proposed for STIX include back-
projection (Hurford et al. 2002), CLEAN (Högbom 1974) and its
recent unbiased version U-CLEAN (Perracchione et al. 2023),
expectation maximization (Massa et al. 2019; Siarkowski et al.
2020), the maximum entropy method MEM_GE (Massa et al.
2020), and the parametric forward-fitting method VIS_FWDFIT
(Volpara et al. 2022). In radio astronomy, the classical de-
facto standard is CLEAN and its many variants (Högbom 1974;
Schwarz 1978; Schwab 1984). CLEAN has been extended to
the multiscalar domain, primarily to adapt to extended emis-
sion (Wakker & Schwarz 1988; Starck et al. 1994; Bhatnagar &
Cornwell 2004; Cornwell 2008; Rau & Cornwell 2011; Offringa
& Smirnov 2017) or to allow super-resolution within CLEAN
(Müller & Lobanov 2023b). Maximum entropy methods have
been historically suggested as an alternative (e.g., Cornwell &
Evans 1985) and have been studied in the context of compres-
sive sensing since then (among others Pantin & Starck 1996;
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Wiaux et al. 2009; Garsden et al. 2015). A wide variety of
additional algorithms have been recently proposed for radio
interferometry including Bayesian algorithms (e.g., Arras et al.
2019, 2021; Kim et al., in prep.), deep learning (Aghabiglou
et al. 2023; Dabbech et al. 2022; Terris et al. 2023; Wilber
et al. 2023b), and compressive sensing (Müller & Lobanov
2022, 2023b; Wilber et al. 2023a). For this work, we focus on
sparse VLBI arrays such as the Event Horizon Telescope (EHT)
due to the similarity of the undersampling and dynamic range
to the STIX instrument. Novel, super-resolving imaging algo-
rithms have recently been developed specifically for the EHT in
the context of regularized maximum likelihood (RML) methods
(Honma et al. 2014; Akiyama et al. 2017b,a; Chael et al. 2016,
2018; Müller & Lobanov 2022, 2023a), Bayesian algorithms
(Broderick et al. 2020b,a; Tiede 2022), and multiobjective opti-
mization (Müller et al. 2023; Mus et al. 2024).

In this work, we are specifically focused on two key research
questions. First, we considered whether there are strong syner-
gies between the STIX data analysis and VLBI imaging and
room for mutual algorithmic development. To this end, we
investigated the efficacy of VLBI data analysis methods for
STIX and quantitatively evaluate whether the recently proposed
VLBI imaging frameworks are interesting in the context of
STIX. Then, we took the vice versa approach by testing STIX
algorithms in frontline VLBI settings. This was realized in a
semi-blind data analysis challenge.

Second, we considered which of the numerous regularization
frameworks (e.g., inverse modeling, RML, compressive sensing,
maximum entropy, Bayesian algorithms, and evolutionary meth-
ods) are the most promising and worthy to invest resources for
further development in the future? We have achieved conclusive
indications in this direction by basing our data analysis challenge
on a wide range of methods, consisting of submissions by 17
different methods.

The rest of the paper is structured as follows. We recall the
basic introduction to the VLBI and STIX imaging problem in
Sect. 2. We present the imaging methods we used in Sect. 3.
We present the outline of the data analysis challenge, evaluation
metrics, and, our reconstruction results in Sect. 4. We test our
selected algorithms on real STIX data in Sect. 4.4. We present
our conclusions in Sect. 5.

2. Theory

In this section, we present the basic notions of VLBI and
STIX imaging. The concepts here presented are the bases for
understanding the image reconstruction problem.

2.1. VLBI

The correlation product of an antenna pair in a VLBI array
is approximately the Fourier transform of the true sky bright-
ness distribution. This is described by the van-Cittert-Zernike
theorem:

V(u, v) =
"

I(l,m)e−2πi(lu+mv) dl dm, (1)

where I(l,m) is the sky brightness distribution, and l,m represent
the direction cosines. We typically ignore w-projection terms
due to small field of view for VLBI. The observables V(u, v)
are called visibilities with respect to the harmonics, u, v, deter-
mined by the baselines separating the antennas projected on the
sky plane. When we produce an image in VLBI we are trying

to recover the image intensity, I(l,m), from the measured vis-
ibilities. Since the Fourier domain (i.e., (u, v) domain) is only
sparsely sampled by observations, VLBI imaging constitutes an
ill-posed inverse problem. The problem is further complicated by
calibration effects and thermal noise. Particularly, the observed
visibilities for an antenna pair, i, j, at a time, t, are related to the
model visibilities by the relation:

V(i, j, t) = gig
∗
jV(i, j, t) + Ni, j, (2)

where Ni, j is Gaussian thermal noise with an unknown corre-
lation structure and gi is complex valued gain factors specific
to antenna, i. The gain factors typically vary over the time
of an observation. While most VLBI algorithms were devel-
oped and are applied in the context of gain-corrupted data sets;
for instance, by alternating imaging with self-calibration loops
(hybrid imaging Readhead & Wilkinson 1978; Mus et al. 2022)
or by closure only imaging (Chael et al. 2018; Müller & Lobanov
2022; Müller et al. 2023), we focus in this work on dealing with
undersampling and noise corruption issues and ignore the need
for self-calibration in VLBI.

2.2. STIX

The STIX instrument contains 30 sub-collimators, that is, units
consisting of a grid pair and a detector mounted behind it. The
period and orientation of the front and of the rear grid in each
pair are chosen in such a way that the transmitted X-ray flux cre-
ates a Moiré pattern on the detector surface with period equal to
the detector width (e.g., Hurford 2013; Prince et al. 1988). STIX
Moiré patterns encode information on the morphology and loca-
tion of the flaring X-ray source. Therefore, from measurements
of the transmitted X-ray flux performed by the detector pixels, it
is possible to compute the values of amplitude and phase of 30
complex visibilities (Massa et al. 2023).The imaging problem for
STIX can then be described by the following equation:

V(u j, v j) =
"

I(x, y)e2πi(xu j+yv j) dx dy, (3)

where j = 1, . . . , 30 is the sub-collimator index, V(u j, v j) is
experimental visibility corresponding to the (u j, v j) angular fre-
quency, and I(x, y) is the angular distribution of the intensity
of the X-ray source. We note that, unlike the VLBI case, in
the STIX case there is a plus sign inside the complex expo-
nential that defines the Fourier transform (cf. Eqs. (1) and (3)).
Furthermore, the angular frequencies sampled by STIX are only
determined by geometric properties of the instrument hardware
(Massa et al. 2023); therefore, they are the same for every
recorded event.

STIX measures a number of visibilities which is at least an
order of magnitude lower compared to that measured by VLBI.
Therefore, the ill-posedness of the imaging problem for the X-ray
imager is more enhanced compared to that of the radio domain.
However, the great advantage of STIX is that the data calibration
(in particular, the visibility phase calibration) depends only on
the geometry of the sub-collimator grids and is therefore stable
in time (Massa et al. 2023).

3. Imaging methods

In this paper, we compare the reconstructions from a variety of
algorithms and algorithmic frameworks. We will briefly explain
each of these frameworks in the following subsections. A tabular
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overview of the algorithms, their optimization details, their basic
ideas, regularization properties, advantages, and disadvantages
is presented in Appendix A.

3.1. CLEAN

CLEAN and its many variants (Högbom 1974; Wakker &
Schwarz 1988; Schwarz 1978; Bhatnagar & Cornwell 2004;
Cornwell 2008; Rau & Cornwell 2011; Offringa & Smirnov
2017; Müller & Lobanov 2023b) are the de-facto standard imag-
ing methods for VLBI and STIX. CLEAN reformulates the
imaging problem as a deconvolution problem by means of the
dirty beam BD and dirty map ID. The former is the instrumen-
tal point spread function (PSF), while the latter is the inverse
Fourier transform of the all measured visibilities sampled on an
equidistant grid, filled by zeros for every non-measured Fourier
coefficients (i.e., for gaps in the (u, v) coverage) and reweighted
by the noise ratio (natural weighting) or the power within a grid-
ding cell (uniform weighting) or a combination of both (Briggs
1995). In this way, CLEAN solves the problem:

ID = BD ∗ I. (4)

In the classical CLEAN (Högbom 1974), this problem is solved
iteratively in a greedy matching pursuit process. In a user-defined
search window, we searched for the maximal peak in the resid-
ual, stored the position and strength of the peak in a list of
CLEAN components, shifted the dirty beam to the position of
the peak, and subtracted a fraction of the beam (determined by
the CLEAN gain) from the residual. This procedure was repeated
with the new residual until the residual is noise-like, namely, we
computed the following approximation:

ID ≈ BD ∗

∑
i

aiδ(li,mi)

 , (5)

with ai being the intensity of the i-th CLEAN component, and
li,mi the coordinates of its location. Finally, using BC to denote
the CLEAN beam, namely, a Gaussian beam that is fitted to
the central lobe of the dirty beam, the final CLEAN image is
computed by convolving the CLEAN components with BC:

IC = BC ∗

∑
i

aiδ(li,mi)

 . (6)

It is also standard to add the last residual to the reconstructed
image to account for any non-recovered flux. While CLEAN
remains in use, mainly because it is straightforward and inter-
active, it remains fairly limited (e.g., see the recent summaries
on the limitations of CLEAN; Pashchenko et al. 2023; Müller &
Lobanov 2023c). We summarize some of the main limitations
of CLEAN here. The representation of the image by a sample
of point sources is not a reasonable description of the phys-
ical image, particularly when representing extended emission.
This issue has two important consequences. First, the model that
is fitted to the data (i.e., CLEAN components) and the final
image (CLEAN components convolved with the clean beam)
are not the same. Particularly, for high dynamic range imaging,
we would therefore self-calibrate the image to a model that was
deemed physically unfeasible. Second, the representation of the
image by CLEAN components makes the use of a final convolv-
ing necessary, thus limiting the effective resolution. Moreover,
the value of the full width at half maximum (FWHM) of the

Gaussian beam utilized in the final convolution is a parameter
that has to be arbitrarily selected by the user, although estimates
on maximum baseline coverage are usually adopted. As a conse-
quence, CLEAN is a strongly supervised algorithm. It is key to
the success of CLEAN for the astronomer performing the anal-
ysis to build their perception of image structure in an interactive
way; namely, by changing the CLEAN windows, gain, taper, and
weighting during the imaging procedure. This makes CLEAN
reconstructions often challenging to reproduce.

Multiple of these issues can be effectively solved by recently
proposed variants of the standard CLEAN algorithm (e.g.,
Müller & Lobanov 2023b; Perracchione et al. 2023). The clas-
sical way to increase resolution for CLEAN is by updating
the weights, for instance, to uniform or even super-uniform
weighting. Since most interferometric experiments have a higher
density of short baselines rather than long ones, this leads to an
overweighting of large-scale structures at the sake of resolution.
Uniform weighting, or any hybrid weighting in between (Briggs
1995), addresses this fact by giving a larger weight to the long
baselines, at the cost of the overall structural sensitivity.

The U-CLEAN algorithm recently proposed by Perracchione
et al. (2023) combines the CLEAN method with an extrapo-
lation/interpolation scheme that allows for a more automated
CLEAN procedure. Specifically, the method utilizes the Fourier
transform of the CLEAN components as a priori information
for performing a reliable interpolation of the real and the imagi-
nary parts of the visibilities. This feature augmentation technique
is particularly useful for image reconstruction from STIX data
since, in that case, the interpolation task suffers from the extreme
sparsity of the (u, v) coverage. Once the visibility interpola-
tion step is completed, image reconstruction is performed by
minimizing the reduced χ2 between the interpolated visibility
surface and the Fourier transform of the image via a projected
Landweber algorithm (Piana & Bertero 1996).

DoB-CLEAN is a recently proposed multiscalar CLEAN
variant (Müller & Lobanov 2023b) that models the image by
the difference of elliptical Bessel functions (DoB-functions),
which are fitted to the (u, v) coverage. CLEAN is not used as
a deconvolution algorithm, but as a feature finder algorithm. The
cleaning of the image is performed by switching between the
DoB-dictionary to a dictionary consisting of the difference of
elliptical Gaussian functions. Both DoB-CLEAN and U-CLEAN
waive the necessity for the final convolution of the CLEAN
components with the CLEAN beam (Müller & Lobanov 2023b;
Perracchione et al. 2023); hence, the algorithms are not biased
by the arbitrary choice of the CLEAN beam FWHM.

3.2. Maximum entropy

Historically, maximum entropy methods (MEM) were among the
first algorithms that were proposed for imaging (e.g., Frieden
1972; Ponsonby 1973; Ables 1974). Despite its relative age,
MEM was disfavored in practice in comparison to CLEAN.
However, there are a number of active developments for MEM
-based algorithms (e.g., Massa et al. 2020; Mus & Martí-Vidal
2024). Many of them reinterpret the MEM functional as one
of many objectives in forward modeling frameworks (Chael
et al. 2016, 2018; Müller et al. 2023; Mus et al. 2024). These
algorithms are based on the constrained optimization frame-
work (originally presented in Cornwell & Evans 1985) or on
the unconstrained optimization setting.

MEMs are regularization techniques that use a large image
entropy as a prior information, namely, among all the possible
solutions that could fit the data, the most simple (in the sense
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of information fields) is selected. If I = I (x) and G = G (x),
the entropy is measured by the Kullback–Leibler divergence
functional (Kullback & Leibler 1951):

RMEM(I) = −
∫

I ln
( I
G

)
dx, (7)

where G is a possible prior image. Common priors include “flat”
priors (i.e., a constant image is rescaled in such a way that the
sum of the pixels is equal to a priori estimate of the total flux)
or Gaussian images corresponding to the size of the compact
flux emission region of the image structure. To ensure that the
proposed guess solution fits the data, the value of the reduced
χ2 data-fitting metric is constrained. In particular, the problem
presented in Cornwell & Evans (1985) is:

maximize
I

−
∑

i

Ii log
Ii

G
,

subject to χ2(V,F I) −Ω = 0 ,

Fmod −
∑

i

Ii = 0,

(Cons_MEM)

where V is the array of visibilities, F is the forward operator
(undersampled forward operator), Fmod is the model flux, and Ω
is the noise estimation. To satisfy the non-negativity of the solu-
tion, we modeled the image by a lognormal transform, which is a
strategy that has become popular in Bayesian algorithms (Arras
et al. 2019, 2021).

From the optimization viewpoint, the main disadvantage
of the problem (Cons_MEM) is its non-convexity, given the
quadratic equality constraint defined by the reduced χ2. There-
fore, Massa et al. (2020) defined a new version of the maximum
entropy problem, named MEM_GE, in which the objective func-
tion is a weighted sum of the reduced χ2 and of the negative
entropy functional:

minimize
I

χ2(V,F I) + λ
∑

i

Ii log
Ii

G
,

subject to Fmod −
∑

i

Ii = 0,

Ii ≥ 0 ∀i

(MEM_GE)

where λ is the regularization parameter balancing the trade-
off between data-fitting and regularization. Furthermore, in the
MEM_GE implementation, G is chosen as a “flat” prior. The
optimization problem (MEM_GE) is convex and can be solved
by standard optimization techniques. Specifically, Massa et al.
(2020) adopted an accelerated forward-backward splitting (Beck
& Teboulle 2009; Combettes & Pesquet 2011). We note that
the MEM_GE approach is similar to regularized maximum
likelihood approaches (cf. Sect. 3.3). However, the latter often
combines several regularization terms and therefore makes a
single description by a proximal point minimization method
more challenging. Therefore, the minimization techniques that
are typically adopted in RML approaches are gradient descent,
conjugate gradient (CG), or limited-memory BFGS (L-BFG-
S) (Hestenes & Stiefel 1952; Liu & Nocedal 1989). In this paper
(among aspects), we compare the latter strategy for entropy
objectives (RML_MEM) with the MEM_GE approach. A fur-
ther difference between MEM_GE and RML approaches is in the
assumed prior distribution (“flat” prior versus Gaussian prior)
and in the automatic stepsize and balancing update developed
for MEM_GE (Massa et al. 2020).

3.3. Regularized maximum likelihood

Regularized maximum likelihood (RML) methods approach the
imaging problem by balancing data fidelity terms and regular-
ization terms, namely, by solving an optimization problem that
takes the form:

Î ∈ arg min
I

∑i

αiS i(V,F I) +
∑

j

β jR j(I)

 , (8)

where V represents the observed visibilities, F the forward oper-
ator (undersampled Fourier transform), S i the data fidelity terms,
and R j the regularization terms. Also, αi, β j ∈ R+ are the reg-
ularization parameters that control the balancing between the
different terms. The data fidelity terms measure the fidelity
of the guess solution, I, and the regularization term measures
the feasibility of the solution according to the perception of
the image structure. The usual data fidelity terms are reduced
χ2-metrics between the observed visibilities and the predicted
visibilities. For VLBI, the use of calibration independent clo-
sure quantities has become more common (Chael et al. 2018;
Müller & Lobanov 2022; Müller et al. 2023), but for this work,
we use the reduced χ2-metric to the visibilities. The regulariza-
tion terms encode various prior assumptions on the feasibility of
the image, for instance, simplicity (l2-norm), sparsity (l1-norm),
smoothness (total variation, hereafter, TV, and the total squared
variation), maximal entropy (Kullback–Leibler divergence), or
a total flux constraint. For a full list of regularization terms
that were used in VLBI we refer the interested reader to the
discussions in Event Horizon Telescope Collaboration (2019b).
While RML methods are expected to produce excellent, super-
resolving images (Roelofs et al. 2023; Event Horizon Telescope
Collaboration 2019b), they depend strongly on the correct regu-
larization parameter selection, αi, β j. For the sake of simplicity,
we focus on entropy, sparsity and total variation terms for this
paper. Thus, we chose a representative (but not necessarily ideal)
parameter combination. In particular, we tested the following
approaches:

Î ∈ arg min
I

{
χ2(V,F I) + α∥I∥l1

}
(l1)

Î ∈ arg min
I

{
χ2(V,F I) + α|I|TV

}
(TV)

Î ∈ arg min
I

{
χ2(V,F I) + α

∫
I ln

I
G

dx
}

(MEM)

Î ∈ arg min
I

{
χ2(V,F I) + α

∫
I ln

I
G

dx + β∥I∥l1

}
(MEM-l1)

Î ∈ arg min
I

{
χ2(V,F I) + α

∫
I ln

I
G

dx + β|I|TV

}
(MEM-TV)

Î ∈ arg min
I

{
χ2(V,F I) + α|I|TV+β∥I∥l1

}
(TV-l1)

Î ∈ arg min
I

{
χ2(V,F I) + α

∫
I ln

I
G

dx + β|I|TV+γ∥I∥l1

}
,

(MEM-TV-l1)
(9)

with respective regularization parameters, α, β, γ. In practice, we
need to ensure that the pixels are not negative. This is handled by
the lognormal transform, namely, apply the change of variables
I 7→ exp I, before evaluating the Fourier transform (Chael et al.
2018; Arras et al. 2022). The prior for the entropy functional
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G is chosen as a Gaussian whose full width at half maximum
(FWHM) is consistent with the size of the compact emission
region. The size of the compact emission region may be eval-
uated in practice from multiwavelength studies of the source
(Event Horizon Telescope Collaboration 2019b).

3.4. Compressive sensing

Compressive sensing (CS) is aimed at sparsely representing the
image in a specific basis. Typically wavelets have been used for
this task (e.g., see Candès et al. 2006; Donoho 2006; Starck
& Murtagh 2006; Starck et al. 2015; Mertens & Lobanov 2015;
Line et al. 2020, for an application within radio interferometry).
The sample of basis functions is called a dictionary, Γ, while the
single basis functions are called atoms. In the following, we show
how we chose Γ as a wavelet dictionary. The idea behind the CS
technique is to represent the image as a linear combination of the
atoms, namely, I = ΓI, and to recover the array of coefficients,
I, by solving:

Î ∈ arg min
I

{S (V,F ΓI) + β∥I∥l1} . (10)

Such algorithms and many variants have been studied in radio
interferometry for a long time (Weir 1992; Bontekoe et al. 1994;
Starck et al. 1994, 2001; Pantin & Starck 1996; Maisinger et al.
2004; Li et al. 2011; Carrillo et al. 2012, 2014; Garsden et al.
2015; Girard et al. 2015; Onose et al. 2016, 2017; Cai et al.
2018a,b; Pratley et al. 2018; Müller & Lobanov 2022, 2023b).
For the comparison that was carried out for this work, we
consider the DoG-HiT algorithm that was recently proposed
by Müller & Lobanov (2022, 2023c). Difference-of-Gaussian
(DoG) hard iterative thresholding (DoG-HiT) utilizes DoG
wavelet functions. For DoG-HiT, the basis functions are fitted to
the (u, v) coverage, hence, they are optimally separating the mea-
sured and non-measured Fourier coefficients. The minimization
problem is solved with an iterative forward-backward splitting
technique.The algorithm has been proven to recover images
of comparable quality as RML methods (Müller & Lobanov
2022; Roelofs et al. 2023), although the optimization landscape
is much simpler. With only one free regularization parameter,
DoG-HiT is a substantial step towards an unsupervised imaging
algorithm without the need for large parameter surveys. Origi-
nally, DoG-HiT was proposed for closure-only imaging; for this
comparison, we fit the visibilities directly instead.

3.5. Multiobjective imaging

Multiobjective optimization (MOEA/D) is a recently proposed
(Müller et al. 2023; Mus et al. 2024) imaging algorithm for
VLBI. It mimics the formulation of the imaging problem in the
RML framework, namely, with a set of data fidelity terms and
regularization terms. However, instead of solving a weighted
sum of these terms as in Eq. (8), we have solved a multiobjective
problem consisting of all the regularizers and data terms as sin-
gle objectives (for more details, we refer to Müller et al. 2023). A
solution to the multiobjective problem is called Pareto optimal if
the further optimization along one objective automatically leads
to the worsening of another one. The set of all Pareto optimal
solutions is called the Pareto front. MOEA/D recovers the Pareto
front. Since several regularizers introduce conflicting assump-
tions (i.e., sparsity in comparison to smoothness) the Pareto
front divides into a number of disjunct clusters (Müller et al.
2023), everyone describing a locally optimal mode of the multi-
modal reconstruction problem. In this spirit, it is not the goal of

MOEA/D to recover a single image, but to recover a full hyper-
surface of image structures. This is most easily realized with the
help of evolutionary algorithms (Zhang & Li 2007; Li & Zhang
2009). In order to select the (objectively) best cluster of repre-
sentative solutions, we applied the accumulation point selection
criterion proposed in Müller et al. (2023), namely: we selected
the cluster of images that has the largest number of members in
the final population.

3.6. Bayesian Imaging

Bayesian reconstruction methods have been intensively studied
in radio interferometry (e.g., see Junklewitz et al. 2016; Cai et al.
2018a,b; Arras et al. 2019, 2021, 2022; Broderick et al. 2020b,a;
Tiede 2022; Roth et al. 2023; Kim et al. in prep.). Bayesian
imaging methods calculate the posterior sky distribution P(I|V)
from the prior distribution P(I) and visibility data V by Bayes’
theorem:

P(I|V) =
P(V |I)P(I)
P(V)

, (11)

where P(V |I) is the likelihood distribution and P(V) is the evi-
dence. The prior distribution contains prior knowledge on the
source I, such as the positivity and smoothness constraints, while
the likelihood represents our knowledge of the measurement
process.

In Bayesian imaging, instead of obtaining an image, sam-
ples of possible images are reconstructed; therefore, it allows
us to estimate the mean and standard deviation from the sam-
ples. Bayesian imaging has a distinctive feature: the uncertainty
information in the visibility data, V, domain can be propagated
in other domains. As a consequence, the reliability of recon-
structed parameters, such as the image, I, and antenna gain, can
be quantified by the uncertainty estimation.

Bayes’ theorem can be written by the negative log probabil-
ity, also called the energy or Hamiltonian,H (Enßlin 2019):

H(I|V) ≡ − ln(P(I|V)) = H(V |I) +H(I) −H(V). (12)

The maximum a posteori sky posterior distribution of I is
determined by minimizing an objective function containing the
likelihood and prior:

ÎMAP ∈ arg min
I
{H(V |I) +H(I)} , (13)

where H(V |I) is the likelihood Hamiltonian and H(I) is the
prior Hamiltonian. We note that the evidence term is ignored
in the objective functional since it does not depend on the sky
brightness distribution of I.

From the posterior sky brightness distributionP(I|V), we can
calculate the posterior mean:

Î =
∫

I P(I|V)dI. (14)

We note that the reconstructed image in this work is the pos-
terior sky mean of I. Furthermore, the standard deviation of sky
for I can be analogously calculated from the posterior distribu-
tion, P(I|V). The standard deviation allows us to quantify the
reliability of reconstructed results.

Bayesian inference requires substantial computational
resources in order to obtain the posterior probability distribution
instead of a scalar value for each parameter. For instance, sam-
pling by a full-dimensional Markov chain Monte Carlo (MCMC)
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procedure or evalutaing the high-dimensional integrals of the
mean directly can often take too much time (Cai et al. 2018a,b).

In this work, images are reconstructed by means of the
Bayesian imaging algorithm resolve. In order to perform a high-
dimensional image reconstruction, variational inference (VI)
methods (Knollmüller & Enßlin 2019; Frank et al. 2021) are used
in resolve. In the variational inference method, the Kullback–
Leibler divergence (Kullback & Leibler 1951) is minimized in
order to find an approximated posterior distribution as closely as
the true posterior distribution. Although the uncertainties tend
to be underestimated in the VI method, it enables us to esti-
mate the high-dimensional posterior distribution. In conclusion,
it strikes a balance between the performance of the algorithm
and the statistical integrity.

Bayesian imaging shares some similarities with RML
approaches, in the sense that the RML methods can be
interpreted as the maximum a posteriori (MAP) estimation
in Bayesian statistics. The negative log-likelihood function,
H(V |I), in Eq. (13) is equivalent to the data fidelity term and
the negative log-prior, H(I), can be interpreted as the Bayesian
equivalent to the regularizer in RML methods (Kim et al., in
prep.). For instance, the correlation structure between image pix-
els can be inferred by Gaussian process with non-parametric
kernel in resolve (Arras et al. 2021). The unknown correlation
structure can be inferred by the data, which plays a similar role
as a smoothness prior in RML methods.

4. Challenge

4.1. Synthetic data sets

To test this variety of algorithmic frameworks, we compared our
results to a set of synthetic data. These include typical image
structures that could be expected for the STIX and the EHT
instruments. In particular, we study the following synthetic data
sets.

STIX synthetic data sets replicate a solar flare. To mimic spa-
tial features that may be expected for observations with STIX,
we simulated a double Gaussian structure and a loop shape (see
Volpara et al. 2022, for more details on the definition of the con-
sidered parametric shapes). In particular, the double Gaussian
structure represents typical non-thermal X-ray sources at the
flare footpoints, while the loop shape represents a thermal source
at the top of the flare loop. Furthermore, the two Gaussian
sources have different size and different flux: the left source has a
FWHM of 15 arcsec and flux equal to 66% of the total flux, while
the right source has a FWHM of 10 arcsec and flux equal to 33%
of the total flux. We generated synthetic STIX visibilities cor-
responding to these configurations by computing their Fourier
transform in the frequencies sampled by STIX. For the experi-
ments performed in this paper, we only considered the visibilities
associated with the 24 sub-collimators with coarsest angular res-
olution. Indeed, the remaining six sub-collimators have not yet
been considered for image reconstruction, since their calibration
is still under investigation (Massa et al. 2022).

We added an uncorrelated Gaussian noise to every visibility.
To study the effect of the noise level on the final reconstruction,
we prepared three different data sets with varying noise levels.
We note that statistical errors affecting the STIX visibilities are
due to the Poisson noise of the photon counts recorded by the
STIX detectors. We simulated three different levels of data statis-
tics corresponding to a number of counts per detector equal to
∼500, ∼2500, and ∼5000. These data statistics will be referred
to as low signal-to-noise ratio (low S/N), medium S/N, and high

S/N for the remainder of the paper. Then, we added Gaussian
noise to the visibilities with a standard deviation that is derived
from the Poisson noise affecting the count measurements, result-
ing in an effective median S/N of ≈5, 12, and 16, respectively.
Due to the small number of visibility points for STIX, the recon-
struction is sensitive to the random seed of the random noise
distribution. To get a statistical assessment on the reconstruction
quality, we recovered the images from ten different realizations
of the STIX data with a varying seed for the random noise dis-
tribution and average the results. In Figs. 2 and 3, we show the
average over the ten reconstructions.

Since the similarity between STIX and VLBI imaging is
greatest (in terms of accessible dynamic range, spatial scales,
and degree of undersampling) when the VLBI (u, v) coverage
is sparsest and this is the data regime that has undergone the
rapid development of novel methods that we are scrutinizing in
this work (e.g., Chael et al. 2016, 2018; Akiyama et al. 2017b,a;
Arras et al. 2022; Müller & Lobanov 2022, 2023b; Müller et al.
2023; Mus & Martí-Vidal 2024), we focus here on geomet-
ric models that mimick EHT observations. In fact, we have
focused our study on a crescent geometric model. This model
is a simple geometric approximation to the first image of the
shadow of the supermassive black hole in M87 presented by
Event Horizon Telescope Collaboration (2019a). It was specif-
ically used for the verification of the imaging strategies for the
analysis of M87 (Event Horizon Telescope Collaboration 2019b),
as well as SgrA* (Event Horizon Telescope Collaboration 2022).
We added thermal noise that is consistent with the system tem-
peratures reported in Event Horizon Telescope Collaboration
(2019b) and we assume that the phase and amplitude calibration
are known.

The next generation EHT (ngEHT) is a planned extension
of the EHT that is supposed to deliver transversely resolved
images of the black hole shadow (Doeleman et al. 2019; Johnson
et al. 2023). In order to test the algorithmic needs of this future
frontline VLBI project, we also considered the synthetic data
inspired by the first ngEHT analysis challenge presented by
Roelofs et al. (2023). We used a general relativistic magneto-
hydrodynamic (GRMHD) simulation of the supermassive black
hole M87 (Mizuno et al. 2021; Fromm et al. 2022). We generated
a synthetic set of data corresponding to the proposed ngEHT
configuration, which consists of the current EHT antennas and
ten additional proposed antennas (for more details, see, e.g.,
Raymond et al. 2021; Roelofs et al. 2023). We added thermal
noise and assumed a phase and amplitude calibration. For
VLBI, due to the larger number of visibilities with uncorrelated
Gaussian noise contribution, we do not need to study several
realizations of the noise contribution.

STIX and VLBI (and particularly EHT) utilize various astro-
nomical conventions, data formats, software packages, and vari-
ous programming languages for the respective data analysis. To
transfer the STIX data sets into a VLBI framework, we created
a virtual VLBI snapshot observation that has exactly the same
(u, v) coverage as STIX; and vice versa, we extract the (u, v) cov-
erage, visibilities, and noise ratios from the VLBI observations,
saving the related data arrays and matrices in a readable format
for STIX.

4.2. Comparison metrics

We compared the reconstruction results to the ground truth
images using three different metrics, inspired by the metrics that
were used in the recent imaging challenge presented by Roelofs
et al. (2023). First (and most importantly) we computed the
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Fig. 2. Reconstruction results and scoring of the various imaging algorithms on the double Gaussian source model for STIX. In the upper panel, we
show the reconstruction results for medium noise levels. In the lower panels, we compare the scoring of the reconstructions across various methods
and noise-levels: the lower left panel shows the correlation, the lower middle panel the resolution and the lower right panel the dynamic range.
Cons_MEM is over-resolving the source.
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Fig. 3. Same as Fig. 2, but for the synthetic loop configuration.

match between the ground truth images and the recovered images
by means of the cross correlation:

ρ =
1
N

N∑
j=1

(
IGT

j − ⟨I
GT⟩
) (

IR
j − ⟨I

R⟩
)

σIGTσIR
, (15)

where IGT and IR represent the ground truth and the recovered
image, respectively, ⟨ · ⟩ denotes the mean of the image pixel val-
ues, and σ is their standard deviation. This metric has been used
in the past to determine the precision of VLBI algorithms in the
framework of the EHT (Event Horizon Telescope Collaboration
2019b; Roelofs et al. 2023).
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Moreover, we calculated the effective resolution of a recon-
struction. Since the reconstructions are typically more blurred
than the ground truth image, we determined the effective res-
olution via the following strategy. We blurred the ground truth
image gradually with a circular Gaussian beam and computed ρ
between the recovered image and the blurred ground truth image.
We did this for a predefined set of blurring kernels and selected
the one that maximizes ρ.

Finally, we determined the dynamic range with a strategy
inspired by the proxy proposed in Bustamante et al. (2023). To
have an approximation for the dynamic range that is indepen-
dent of the resolving power of an algorithm, we first blurred
every recovered image to the nominal resolution θnom, namely,
the width of the clean beam. We did this in a similar way to
the approach we used to estimate the image resolution. We grad-
ually blurred the recovered images with a blurring kernel and
calculated the cross correlation ρ between the blurred recov-
ered image and the ground truth image, which had been blurred
with the nominal resolution. Finally, we blurred the recovered
images with the beam (Gaussian with width θres) that maximizes
the correlation to the true image at nominal resolution. Then we
computed the proxy of the dynamic range in the image:

D =
max
(
IGT ∗ Gθnom

)
|IGT ∗ Gθnom − IR ∗ Gθres |

, (16)

where Gθ denotes a circular Gaussian with standard deviation
equal to θ. We obtained the qth quantile of D, where we chose
q = 0.1 in consistency with Roelofs et al. (2023); Bustamante
et al. (2023):

D0.1 = quantile(D, q)|q=0.1. (17)

The numerical complexity of an algorithm is an additional
important benchmark. We note that imaging algorithms pro-
posed for VLBI (and radio interferometry in general) were
historically proposed for bigger arrays with a larger number
of visibilities, rendering them relatively fast in a STIX setting,
comparable in speed to the algorithms that were proposed for
STIX directly. The running time of the single algorithms (once
the hyperparameters are fixed) is not a concern, as it allows
for nearly real time image analysis due to the small number of
visibilities that were adapted for these examples. In this paper,
we do not touch on the question how well the various algo-
rithms scale to bigger data sizes as are common for denser
radio interferometers in general. With a relatively small com-
putational effort to evaluate the model visibilities, the time for
user-interaction and finetuning of the software specific hyper-
parameters becomes more relevant to the overall time that is
consumed for the reconstructions.

Some algorithms, for example, DoG-HiT, MOEA/D,
Cons_MEM, and MEM_GE, allow for an automatized imaging
with minimal interaction, while other algorithms depend on a
finetuning of a varying number of hyperparameters (e.g., RML
and Bayesian algorithms), or manual interaction (CLEAN).
Given these considerations, it is challenging to assign a quan-
titative metric on the numerical and application complexity of
the algorithms, since the actual time needed to set up and run
the algorithms is prone to external factors such as the quality of
the data set or the experience of the user. Therefore, we opted for
a qualitative comparison for the computational resources needed
and reported on our experiences with the various data sets and
imaging algorithms.

4.3. Results

The data sets were independently analyzed in a semi-blind
way with the algorithm presented in Sect. 3. The reconstruc-
tion results are shown in Figs. 2–5. Below, we provide a
more detailed description of the performances of the methods,
grouping them into their respective categories.

CLEAN-type algorithms. CLEAN is shown to exhibit a
worse level of performance in terms of accuracy compared to all
the other algorithms considered in the challenge, as proven by the
systematically lowest correlation values (see panel b of Figs. 2–5
and panel a of Fig. 6). When inspecting the achieved spatial res-
olutions (panel c of Figs. 2–5 and panel b of Fig. 6), it becomes
clear that the worse performance of CLEAN is directly related
to its suboptimal resolution. While CLEAN has a well defined
resolution limit (determined by the central lobe of respective
point-spread function), it has been recognized both in VLBI
(e.g., Lobanov 2005; Honma et al. 2014) and for STIX (e.g.,
Massa et al. 2022; Perracchione et al. 2023) that this limit is
too conservative in the presence of strong prior information.
Lobanov (2005) provided an analytic proxy for the resolution
limit of an interferometric observation. While this resolution is
only achievable in a specific model-fitting setting, namely, when
constraining the possible source features to Gaussian model
components, it demonstrates that more sophisticated regulariza-
tion methods may enable super-resolution imaging. As we will
discuss below, this is in particular achieved for the entropy-based
methods (MEM_GE, MEM, Cons_MEM), sparsity promoting
algorithms (l1) and the Bayesian reconstructions (resolve).

There are several available extensions of CLEAN that allow
for super-resolution imaging. Classically, the issue of resolu-
tion is addressed by varying the CLEAN weights associated
to the visibilities; we refer to Briggs (1995) for a complete
overview. Moreover, recently novel CLEAN variants were pro-
posed both for STIX and VLBI that achieve super-resolution by
solving the disparity between the image and the model; namely,
by making the unphysical convolution with the beam unneces-
sary, for instance, DoB-CLEAN (Müller & Lobanov 2023b) and
U-CLEAN (Perracchione et al. 2023). U-CLEAN is included
in the overall comparison, and performs very well compared to
CLEAN by outperforming CLEAN in terms of resolution, accu-
racy, and dynamic range for all source models and experimental
configurations.

In Fig. 6, we compare the performance of various CLEAN
methods (CLEAN with natural weighting, CLEAN with uni-
form weighting, U-CLEAN and DoB-CLEAN) in more detail
for the double Gaussian source in the case of the low, medium,
and high S/N. For benchmarking, we also show the reconstruc-
tion quality of two of the best performing algorithms again,
resolve, and MEM_GE. Changing the weighting scheme is
improving the scoring of the CLEAN algorithm. However, this
standard (and often performed, albeit rather simple) trick does
not bring the same amount of improvements that more sophisti-
cated interferences (such as those realized within U-CLEAN and
DoB-CLEAN) offer. U-CLEAN achieves slightly higher resolu-
tions than DoB-CLEAN, while DoB-CLEAN achieves slightly
higher dynamic ranges. While these approaches show significant
improvements to standard CLEAN, they do not perform as well
as the best available forward-modeling approaches.

CLEAN remains the de facto standard method for VLBI and
STIX reconstructions, partly due to its speed. The Fourier trans-
form only needs to be evaluated in the major cycles, while the
minor cycles only comprise of fast array substitution operations.
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Fig. 4. Reconstruction results and scoring of the various imaging algorithms on the crescent source model observed with the EHT configuration.
The upper panel compares the reconstructions, the lower left panel shows the correlation, the lower middle panel the resolution and the lower right
panel the dynamic range. Note: resolution values are close to zeros for a few algorithms (Cons_MEM, MEM, l1 and MEM_l1) since they over-
resolve the source, namely, they recover structures that are finer than those in the ground truth image due to too much enhancing of the regularizer.
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Fig. 5. Reconstruction results and scoring of the various imaging algorithms on the GRMHD source model observed with the ngEHT configuration.
The upper panel compares the reconstructions, the lower left panel shows the correlation, the lower middle panel the resolution and the lower right
panel the dynamic range.

As a consequence of the small number of pixels and the rela-
tively simple source structures, the CLEAN reconstructions had
a numerical running time of approximately 30 s on a standard
notebook. However, CLEAN lacks a strictly defined stopping
rule. Hence, the exact time of execution depends on the manually
fixed number of iterations. On the other hand, DoB-CLEAN and
U-CLEAN incorporate more complex operations with extended

basis functions. This slows the data analysis down considerably,
taking up to 15 min for DoB-CLEAN for STIX data sets. It
should be noted here that when using CLEAN-like algorithms, a
considerable chunk of time is devoted to interactive choices done
by the astronomer, most importantly, the selection of the CLEAN
windows. For the examples studied in this work this consider-
able effort has been waived since the ground truth models are
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Fig. 6. Comparison of the reconstruction quality among different CLEAN variants (CLEAN, U-CLEAN, Clean with uniform weights, and DoB-
CLEAN), benchmarked against bayesian reconstructions and reconstructions done with MEM_GE, in the case of the STIX double Gaussian
configuration. The lower left panel shows the correlation, the lower middle panel the resolution and the lower right panel the dynamic range.

compact and rather simple and former experiences with disk
masks as explored by the EHT (Event Horizon Telescope
Collaboration 2019b) existed and were utilized. The reconstruc-
tion in a completely blind, more complex data-set may take
considerably longer.

Maximum entropy methods. Inspecting the cross corre-
lation metric ρ for the STIX data sets, the entropy-based
methods perform best. There are only marginal differences
between the different versions of entropy maximization, namely,
between Newton type minimization and forward-backward split-
ting. Cons_MEM tops the performance overall for low-S/N data,
but performs less effectively for higher S/N data compared to
MEM_GE. This correlates with the relatively small dynamic
ranges recovered for Cons_MEM in these cases. We note that
the dynamic range was computed at a common resolution (i.e.,
CLEAN resolution). The performance of Cons_MEM may be
explained by the fact that regularization is less strictly employed
at low S/N, since the squared programming still requires reduced
χ2 = 1, even for data that are highly corrupted with noise, while
accounting for the fact that Cons_MEM tends to overresolve the
source structure. It reconstructs structures on scales smaller than
the ground truth. The regularization assumption, balancing of
the Lagrange multipliers, and (possibly) the lognormal repre-
sentation of the model bias the reconstruction towards shrinked
structures. This behaviour, which will be also detected for spar-
sity promoting RML algorithms (l1), is a warning sign to accept
super-resolved structures only with relative caution, although it
is not necessarily mirrored in the metrics presented. It is how-
ever notable that this is not an uncommon situation for imaging
sparsely sampled Fourier data in the sense that it is similar to
CLEAN philosophy. It may be shown that CLEAN is effec-
tively a sparsity-promoting minimization algorithm (Lannes
et al. 1997) that over-resolves the image drastically, which makes
a final convolution with the clean beam as a low-pass filter
necessary.

MEM_GE performs significantly better than CLEAN, but
worse than RML methods for the VLBI data sets (and was more
complicated to apply in practice). This is not unexpected given
the much larger number of visibilities and the wide range of
existing spatial scales in the image, especially for the GRMHD
image. While MEM_GE still recovers the overall structure sig-
nificantly better than CLEAN, the reconstruction of the crescent
observed with an EHT configuration shows some artifacts (non-
closed crescent, spurious background emission that limits the
dynamic range). We note that MEM_GE is equipped with a

tailored rule for the regularization parameter selection when
applied to STIX data (Massa et al. 2020). However, the same rule
is not applicable to VLBI data and, therefore, an ad hoc choice of
the regularization parameter has been adopted for reconstructing
the images shown in Figs. 4 and 5.

We would like to highlight the remarkable performance of
the plain MEM method with the crescent EHT data set, whereby
it seems to outperform the alternative MEM_GE approach and
even Bayesian imaging. This improved performance may be
attributed to the adopted form of the entropy functional. For
MEM_GE, a flat prior has been used, for plain MEM a Gaussian
with the size of the compact emission region. This resembles
a strategy that was applied by the EHT, where the size of the
compact emission is constrained as an additional prior infor-
mation from independent observations at smaller frequencies
(Event Horizon Telescope Collaboration 2019b). In particular,
it has been demonstrated that the size of the Gaussian prior
for the computation of the entropy functional plays a significant
role in the reconstruction (compare the dropping percentage of
top-sets for varying sizes presented in Event Horizon Telescope
Collaboration 2019b).

Maximum entropy methods, as well as the closely related
RML reconstructions, have a small numerical complexity due
to the small number of visibilities and the efficacy of the lim-
ited BFGS (respectively the SQP minimization for Cons_MEM)
optimization techniques. For the STIX examples the numer-
ical runtime took roughly a minute on a common notebook
and extends up to 3 min for the more complex ngEHT setting,
indicating a proper scaling to a larger number of visibilities.
It is further noteworthy (as mentioned above) that MEM_GE
is equipped with a tailored rule to select the regularization
parameter and Cons_MEM is free of any tunable regularization
parameters at all, marking them as remarkably fast and simple to
use algorithms in practice.

Bayesian reconstruction method. While the resolve algo-
rithm may be outperformed by alternative approaches in some
examples, for instance, by DoG-HiT for the EHT or by
MEM_GE in the case of STIX data, it is among the best algo-
rithms across all instances and metrics. In particular, it shows
to be an interdisciplinary alternative since it performs equally
well for VLBI and STIX data analyses. Bayesian reconstructions
add the additional benefit of a thorough uncertainty quantifi-
cation, however, at the cost of an increased complexity and
computational resources (see our comparison in Appendix A).
The probabilistic approach can be beneficial for the robust
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image reconstruction from sparse and noisy VLBI and STIX
data set.

Bayesian methods typically need more numerical resources
than comparable approaches due to the sampling; however,
resolve achieves a significant speed-up by means of the adoption
of variational inference (VI) methods (Knollmüller & Enßlin
2019; Frank et al. 2021). Furthermore, we note that resolve is
the only software included in this comparison which backend
has been implemented in C++ rather than python (used for RML,
MEM, DoG-HiT, and CLEAN) or IDL (used for MEM_GE)
contributing further to a significant speed-up. For the STIX syn-
thetic data sets, the computational time is around 2 min with
256 × 256 pixels and 6 min for EHT synthetic data set with
256×256 pixels. For the real STIX data sets, 512×512 pixels are
used and the computational time is 6 min. By the standardized
generative prior model in resolve, the independent Gaussian
random latent variables are mapped to the correlated log-normal
distribution. The Gaussian approximated latent variables are
estimated by the minimization of the Kullback–Leibler diver-
gence in the variational inference framework. The parametriza-
tion of the latent space makes it possible to achieve affordable
high-dimensional image reconstruction, although multi-modal
distribution cannot be described by approximated Gaussian dis-
tribution and the uncertainty values tend to be underestimated.

For the STIX real-data application, resolve dealt with
306 197 parameters in total; generally, resolve depends on a num-
ber of free parameters that need to be fixed manually. For the
examples studied in this paper, there were 11 free parameters
(compared to 1 free parameter for DoG-HiT and MEM and 3 for
RML). However, only the range (mean and standard deviation)
are fixed, not the exact values to ensure flexibility on the prior.

Compressive sensing technique. overall,DoG-HiT per-
forms very well, outperforming CLEAN and most non-MEM
RML methods (particularly with respect to the dynamic range;
see panel d of Figs. 2–5). However, this technique shows a
slightly worse resolution induced by the nature of the extended
basis functions. In particular, we would like to highlight the
performance of DoG-HiT for reconstructions with a EHT con-
figuration, topping the performance in terms of accuracy (ρ)
and an exceptionally high dynamic range. This is probably not
surprising, since DoG-HiT was explicitly developed for the
EHT (Müller & Lobanov 2022) and just recently saw promis-
ing application outside (Müller & Lobanov 2023c). DoG-HiT is
an unsupervised and automatized variant of RML algorithms, it
reduces the human bias to a minimum, making it easy and fast to
apply in practice. However, the numerical resources are slightly
higher. DoG-HiT needs approximately 5 min for the reconstruc-
tion of a single STIX data set, and roughly the same time for
the denser ngEHT configuration. This efficient scaling to bigger
data sets is caused by the fact that while the evaluation of the
Fourier transform gets numerically more expensive with a larger
number of visibilities, the number of wavelets needed to describe
the defects of the beam decreases due to the better uv coverage
as well.

Multiobjective imaging method. MOEA/D is the only algo-
rithm that explores the multimodality of the problem (see
Appendix A). It finds clusters of locally optimal solutions. It
computes a wide range of solutions for STIX ranging from
very successful clusters comparable to entropy methods to worse
reconstructions. The selection of the best cluster by the least-
square principle or accumulation point criterion presented in
Müller et al. (2023) however proved challenging. When applied

to STIX data, MOEA/D provides good quality reconstructions.
However, it reveals to be less promising than resolve when
applied to hard X-ray visibilities. Since MOEA/D (in contrast
to the other imaging algorithms described in this paper) does
not compute a single solution, but a sample of possible image
features instead, the numerical resources are comparably high.
It took 90 min to reduce a single STIX data set and more than
4 h for the ngEHT configuration on a common notebook. There
are however multiple considerations that need to be taken into
account when putting these running times into context. First,
the application is automatized and free of human interaction,
namely, adding no additional time for the setup of the algorithm.
Second, MOEA/D works with the full set of regularizers, also
including l2 and total squared variation that were omitted for the
RML approaches for the sake of simplicity. Lastly, a convergence
analysis showed that the algorithms may have converged already
after 200 rather than 1000 iterations such that the numerical
running time may have been severely overestimated.

Regularized maximum likelihood methods. instead of a
thorough parameter survey with all the data terms and regular-
ization terms for RML, we study only a representative selection
of terms for this paper inspired by the balacing principle, namely,
the scoring of all regularization terms were of similar size.
In fact, the regularization terms were chosen manually for a
good performance. The impact of the regularization terms is
as expected and as reported in the literature; also, l1 promotes
sparsity, thus super-resolution. TV promotes piecewise constant
filaments connected by smooth functions. An entropy term pro-
motes simplicity of the solution. For RML methods, all these
terms need to be balanced properly. This leads to a high num-
ber of free hyperparameters, which stands as a severe drawback.
This is typically tackled by parameter surveys, namely, by the
exploration of the scoring of the method with different weight-
ings on synthetic data. This strategy was successfully applied
in Event Horizon Telescope Collaboration (2019b, 2022) and
demonstrated the robustness of the reconstruction, but it is still
a lengthy and time-consuming procedure. While RML meth-
ods rank among MEM methods with respect to the numerical
complexity (i.e., it just takes several minutes to recover a solu-
tion), the parameter survey may take significant time depending
on the number of competing regularization terms that need to
be surveyed. In the case of the EHT, this procedure added
up to 37 500 parameter combinations that needed to be sur-
veyed Event Horizon Telescope Collaboration (2019b). Without
parallelization, this would add up to more than 20 days of com-
putation, but in reality always a parallel computing infrastructure
is utilized. For this paper, we opted for a simpler approach by
manually selecting well working weights by a visual inspec-
tion of keytrends on synthetic data sets. Adaptive regularization
parameter updates (e.g., as for MEM_GE Massa et al. 2020),
multiobjective evolution (as realized for MOEA/D, see Müller
et al. 2023), or the choice of more data-driven regularization
terms (e.g., as for DoG-HiT, see Müller & Lobanov 2022, 2023c)
were recently proposed to solve the issue of lenghty parame-
ter surveys towards an unsupervised imaging procedure. When
applied to STIX data, l1 and MEM_l1 prove to be the best
performing among all the RML methods with respect to the
three metrics. In particular, they achieve dynamic range val-
ues among the highest ones within the challenge. However,
a visual inspection of the reconstructions (see Figs. 2 and 3)
shows a shrinking effect in the l1 reconstructions, in line with
the sparsity promoting property of the method. This may pos-
sibly indicate an overestimated regularization parameter that
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Fig. 7. Imaging results of SOL2023-05-16T17 event recovered with various algorithms (CLEAN, U-CLEAN, MEM_GE, resolve, and DoG-HiT,
from left to right, respectively).

led the regularization term dominate the reconstruction. The
good performances of the RML methods are confirmed when
applied to VLBI data, although in this case, the differences
between performances of the various regularization terms are
less pronounced.

4.4. Real data

As additional verification, we test selected algorithms (i.e., the
best-performing methods and CLEAN for benchmarking) on a
real data set observed with STIX. Specifically, we consider the
SOL2023-05-16T17 event integrated in the time range 17:20:30–
17:21:50 and in the energy range 22–76 keV. We show the
reconstruction results with five different algorithms in Fig. 7. All
algorithms successfully identify a double-Gaussian structure. As
discussed in the previous section in greater detail, the novel algo-
rithms improve over CLEAN mainly by a higher resolution. All
four algorithms considered here (i.e., two proposed by the STIX
community and two provided by the VLBI community increase
the resolution, and closely agree in terms of the super-resolved
structure.

5. Discussion and conclusion

In this work, we explore the synergies between VLBI and STIX
imaging. By cross-applying the proposed imaging algorithms
and evaluating their performance, we have successfully demon-
strated the strong synergies and rich opportunities of mutual
interaction between the communities. This code-comparison is
one of the most large-scale code comparisons carried out in
the field to date, as it includes submissions by 17 different
algorithms from a variety of algorithmic frameworks includ-
ing inverse modeling, MEM, RML, and Bayesian approaches,
as well as multiobjective evolutionary and compressive sensing.
With the background of ongoing efforts regarding the devel-
opment of novel imaging methods, we can identify some key
trends that may lead future developments in the fields. Our main
findings are as follows.

Modern imaging methods outperform CLEAN in terms of
accuracy, dynamic range, and resolution in nearly all circum-
stances. The amount of additional physical information that
could be extracted by more sophisticated imaging algorithm is
significant, hence fostering the further development of modern
imaging methods. There are long-standing and simple alterna-
tives to the standard CLEAN procedure (e.g., varying the weight-
ing scheme), which are in frequent use. However, significant
improvements to the CLEAN strategy of imaging either requires
deeper fixes to the inverse modeling pipeline as done by modern
CLEAN variants (Müller & Lobanov 2023b; Perracchione et al.
2023) or completely changing the paradigm towards forward
modeling techniques.

The VLBI side developed a wide range of RML imag-
ing methods that deal with the multimodality of the problem
(MOEA/D; Müller & Lobanov 2022) and work towards unsu-
pervised imaging with a multiscalar imaging (DoG-HiT; Müller
et al. 2023). While these automatized, blind imaging algorithms
perform all well on STIX data sets outperforming CLEAN for a
variety of data properties (i.e., noise levels), they do not out-
perform the data reconstruction algorithms with significantly
simpler optimization landscape, faster numerical performance,
and simpler use in practice; primarily with respect to MEM
methods, such as MEM_GE (Massa et al. 2020). That may be an
important hint for the future development of methods for STIX.
Particularly, the compressive sensing algorithm DoG-HiT does
not bring the same amount of improvements as it does in VLBI,
since the coverage does not allow for the same kind of separation
between covered and non-covered parts.

The overall best reconstructions for STIX were achieved with
entropy based algorithms (forward-backward splitting, Newton
type, and squared programming). Due to their additional rela-
tive simplicity, we recommend setting our focus the development
on these methods rather than introducing the highly complex
data terms recently proposed for VLBI. In this paper, we com-
pare three entropy-based imaging algorithms that differ in the
exact form how the entropy functional is defined, the selection
of the regularization parameter and the minimization procedure.
They show slightly varying performance in different settings,
which demonstrates that the MEM approach is flexible enough to
adapt to multiple situations. Bayesian imaging algorithm resolve
(Arras et al. 2019, 2021, 2022) performs just as well both for
STIX and for VLBI, thereby constituting a viable alternative all
over the board.

For VLBI reconstructions, the amount of available data (i.e.,
the sampling of the Fourier domain) and the amount of testable
spatial scales (ranging several orders of magnitude) is higher.
It has been demonstrated that the best results are obtained with
combining many priors (l1, TV, MEM, TSV for RML, prior
distribution for Bayesian) rather than with a single penaliza-
tion to adapt to the fine structure (Event Horizon Telescope
Collaboration 2019b; Müller et al. 2023). On the contrary, we
have to deal with the problems of finding the correct weightings
and priors, along with a misidentification that may be prone to
biasing the data, as was observed with over-resolved structures in
case of sparsity promoting regularization. The STIX algorithm
MEM_GE is strikingly successful as well, but it does not yet
allow for the high fidelity reconstructions that had been proposed
by RML or DoG-HiT specifically.
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Appendix A: Overview of the imaging methods

Method (MS-)CLEAN MEM
Software Difmap, MrBeam, Casa, Aips, SSW-IDL Casa, ehtim, MrBeam, SSW-IDL
Idea Deconvolve dirty image and dirty beam Minimize entropy
Data term Residual Visibilities, Closures

(or in basis functions for MS-CLEAN)
Minimizer/solver Matching Pursuit Forward-Backward Splitting, SQP, trust-constr
Output Model ̸= image (except for DoB-CLEAN, U-CLEAN) Regularized model
Resolution Clean beam Super-resolution
Accuracy Small due to suboptimal representation High
Dynamic range High Medium
Regularization properties
-> Calibration Self-calibration during imaging Closure-only possible
-> Thermal Noise Divergence!, manual stopping Entropy assures simplicity
-> (u, v) coverage Spurious, copy covered features in gaps Entropy

(->DoB-CLEAN, U-CLEAN: better extrapolation)
Speed Fast Fast
Supervision Huge human bias Small
Resources Small, only shifts Medium, FFT evaluated in every iteration

and subtractions performed
Adaptability Small, not all extensions Medium, new entropy functionals needed

could be written as a deconvolution problem
Maternity Probed for decades, de-facto standard Probed for decades

Method RML CS
Software ehtim, SMILI MrBeam
Idea Generalized Tikhonov method Sparsity promoting regularization
Data term Visibilities, closures Visibilities, closures
Reg term L1, L2, TV, TSV, Entropy, Flux L1 in wavelet basis
Minimizer/solver Newton type Forward-backward splitting
Output Regularized model Regularized model
Resolution Super-resolution Super-resolution
Accuracy Highest (for correct parameter weighting) High
Dynamic tange Medium, limited by field of view High (multiscalar representation)
Regularization properties
-> Calibration Closure-only Closure-only
-> Thermal noise By balancing reg. terms with data terms By balancing
-> (u, v) coverage By balancing Multiscalar dictionary

adapts to the (u, v) coverage
Speed Fast (but parameter surveys needed) Fast, no survey needed
Supervision Small, but parameter survey needed Unsupervised
Resources Medium, FFT evaluated in every iteration Medium, FFT evaluated in every iteration
Adaptability Medium, new data terms needed High, same multiresolution support

information could be reused
Maternity Intensively tested for the EHT, Relatively young

rare application outside

Methods Bayesian Multiobjective
Software Resolve, Themis, Comrade MrBeam
Idea Posterior exploration Multiobjective Pareto optimality
Data term Likelihood (Visibilities, closures) Closures
Reg term Prior distribution Multiobjective combination of

L1,L2,TV, TSV, entropy, flux
Minimizer and posterior estimation Newton type: VI, MCMC Genetic Algorithm
Output Posterior distribution from posterior samples Pareto front (clusters of solutions)
Resolution Super-resolution Super-resolved clusters

determined by averaging as well as blurred clusters
Accuracy Highest Limited by number of pixels

and genetic optimization
Dynamic tange High Limited by number of pixels

and genetic optimization
Regularization properties
-> Calibration Built in Bayesian model Closure-only
-> Thermal noise By prior distribution By balancing multiobjective functionals
-> (u, v) coverage By prior distribution By balancing
Speed Slow Slow, but no survey needed
Supervision Small, but larger number of parameters Unsupervised
Resources High due to the high High, FFT evaluated in every iteration

-dimensionality of the problem on the full population
Adaptability Medium, need to be built Medium, new reg. terms needed

in the prior model
Maternity Probed in practice In development

Table A.1. Tabellaric overview of the properties, advantages and disadvantages of imaging frameworks that are frequently used in VLBI and for
STIX.
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