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Robust Coordination of Linear Threshold
Dynamics on Directed Weighted Networks
Laura Arditti , Giacomo Como , Member, IEEE, Fabio Fagnani , and Martina Vanelli

Abstract—We study dynamics in a network of interacting
agents updating their binary states according to a time-
varying threshold rule. Specifically, agents revise their state
asynchronously by comparing the weighted average of the
current states of their neighbors in the interaction net-
work with possibly heterogeneous time-varying threshold
values. Such thresholds are determined by an exogenous
signal representing an external influence field, modeling
the different agents’ biases toward one state with respect
to the other. We prove necessary and sufficient conditions
for global stability of consensus equilibria, robustly with
respect to the (constant or time-varying) external field.
Our results apply to general weighted directed interaction
networks and build on the supermodularity properties of
certain network coordination games whose best response
dynamics coincide with the linear threshold dynamics. In
particular, we introduce a novel notion of robust improve-
ment paths for such games and characterize the necessary
and sufficient conditions for their existence.

Index Terms—Best response dynamics, coordination
games, linear threshold dynamics (LTD), network games,
network robustness, robust stability.
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I. INTRODUCTION

ROBUSTNESS, defined as the ability of a system to main-
tain its performance under a range of different operating

conditions, is undoubtedly a fundamental issue that has long
been studied in control [2]. While playing a key role in several
domains, robustness and the related notion of resilience have
lately become central in multiagent and network systems, such
as infrastructure systems [3], [4], [5], [6], financial networks [7],
[8], [9], [10], as well as social and economic networks [11], [12],
[13], [14]. In such contexts, robustness is typically presented
as the capability of the system to react to localized perturba-
tions by absorbing their effect locally and preventing the global
propagation of cascading failures that could prove detrimental
for the whole system. A characteristic feature that has been
recognized is that the topology of the interconnection pattern
is a key factor determining the robustness or fragility of such
network systems [15], [16], [17], [18], [19].

In this article, we focus on linear threshold dynamics (LTD),
a prototypical family of nonlinear network systems first intro-
duced in [20] for fully mixed populations of agents and later
extended in various directions [21], [22], [23], [24]. While LTD
can be defined in different ways, their core structure consists of
a set of agents identified with nodes of an interaction network
that strategically change their binary state (±1) according to a
threshold rule. Specifically, agents adopt state +1 if and only
if the fraction of their neighbors in the interaction network
that do so is greater than or equal to a certain exogenous
threshold. Various studies of LTD models [21], [25], [26],
[27], [28], [29] have concerned topological conditions guar-
anteeing or preventing full contagion (i.e., convergence to a
configuration where all agents are in state +1) starting from
an initial condition of relatively few agents in state +1. Most
of these studies concern random networks of a specific type.
A remarkable exception is [21], which introduced the concept
of cohesiveness of a subset of nodes in a network, through
which one can in principle characterize the extent of a spreading
phenomenon.

In the literature, LTD models are typically modeled as closed
systems without explicit input or output signals. The basic chal-
lenge of this article is to study LTD intrinsically equipped with
an external field modeling a possibly node-specific influence
from the external environment. While in the classical LTD
models without an external field the asymptotic outcomes are
always consensus equilibria, our analysis concentrates on when
a possibly time-varying external field can modify this behavior.
Precisely, our results are of two types:

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
http://creativecommons.org/licenses/by/4.0/
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1) robust stability results showing that the LTD converges
to a consensus for every possibly time-varying external
field taking values in a certain range;

2) control results showing that a suitable control signal is
capable of preventing the system from reaching consensus
by steering it to a different polarized configuration or by
forcing persistent oscillations.

Such behaviors will depend on the topology of the interaction
network (building on suitable generalizations of the concept of
cohesiveness) and the constraints on the input signal.

LTD can be interpreted as the best response dynamics in a
network game whereby agents choose strategically between two
states and their payoff is an increasing function of the number of
their neighbors choosing the same state. Such games are known
as network coordination games and represent one of the most
studied models describing network systems with interactions of
the strategic complement type [30], [31]. They find numerous
applications in modeling social and economic behaviors like the
emergence of social norms and conventions or the adoption of
new technologies [21], [32], [33], [34], [35].

Optimal seeding and other intervention problems for network
coordination games have been studied in [36] and, in the more
general setting of supermodular games, in [37] and [38]. Our
goal is different in this article, as we are mainly interested
in understanding the resilience of the system against external
attacks. Recently, the vulnerability of network coordination
games against adversarial attacks has been investigated in [39]
and [40], while [1], [41], and [42], studied games with a mix
of coordinating and anticoordinating players, and [43] proposed
network coordination games as a microfoundation for commu-
nity structure in networks.

Our analysis strongly relies on the interpretation of the LTD
as a type of best response dynamics of an underlying network
coordination game. We then build on the supermodularity of
such games, i.e., the increasing difference property [44], [45].
Specifically, the convenience for a player to switch from a state
to an alternative state is monotone in the fraction of players
in their neighborhood already playing the alternative state. Such
property continues to hold true under the influence of an external
field. A variation of the external field modifies the threshold of
the agents, in extreme cases transforming them into stubborn
agents, i.e., agents whose best response is always the same state,
regardless of his/her fellow agents’ states.

In particular, we study conditions under which a system
converges to a consensus equilibrium, independently from the
values taken by an external field. As it turns out, two conditions
need to be satisfied for the robust stability property to hold true.
The first condition, to be referred to as robust indecomposability,
is a generalization of the lack of cohesive partitions [21] to
parametrized families of heterogeneous network coordination
games. It is equivalent (see Theorem 3) to the lack of coexistent
equilibria, i.e., equilibria that are not consensus configurations,
for any value of the external field within a certain range. On the
other hand, the second condition guarantees that the external
field is incapable of creating stubborn agents for both states.
While the necessity of these two conditions for convergence to
a consensus is quite intuitive, the proof of sufficiency is more

involved and resides on the possibility of finding improvement
paths for the game that are robust to modifications of the external
field. This is achieved in Theorem 4, which is one of our main
results and uses, in a crucial way, the supermodularity of the
game. The rest of this article is organized as follows. We report
some basic notation in the remaining part of this section. In
Section II, we present the problem. We introduce the LTD with an
external field and the fundamental concept of indecomposability
(Definition 1). We then state two main results on the asymptotic
behavior of such a model, Proposition 1 and Theorem 1, and
we illustrate the outcomes through a number of examples and
simulations. Section III is completely devoted to the analysis of
network coordination games, especially the structure of their
set of Nash equilibria that play a crucial role in our study
of the LTD and the reachability and stability results that we
gain from supermodularity properties. Section IV-A contains
the core technical part of this article. In particular, Theorem 4
contains robust reachability and stability results for network
coordination games that are the fundamental ingredients to then
prove Theorem 1. Finally, Section V concludes this article.

A. Notation

For a finite set I, we consider vector spaces RI equipped with
the partial order

x ≤ y ⇔ xi ≤ yi ∀i ∈ I .

We use the notation x � y when x ≤ y and xi < yi for some i
in I. A function f : RI → RJ is referred to as monotone non-
decreasing (nonincreasing) if it preserves (reverses) the partial
order ≤, i.e., if f(x) ≤ f(y) (f(x) ≥ f(y)) for every x ≤ y.
For a vector x in RI , |x| in RI stands for the vector with entries
(|x|)i = |xi| for every i in I. The symbol 1 indicates a vector
with all entries equal to 1.

II. PROBLEM STATEMENT AND MAIN RESULTS

Throughout this article, we model networks as (finite directed
weighted) graphs G = (V, E ,W ), with a set of nodes V , set of
directed links E ⊆ V × V , and a weight matrix W in RV×V

+ ,
whose entries are such that Wij > 0 if and only if (i, j) ∈ E .
We do not allow for the presence of self-loops, equivalently,
we assume that the weight matrix W has a zero diagonal. We
refer to the graph as undirected in the special case when the
weight matrix W = W ′ is symmetric, so that there is a link
(i, j) directed from node i to node j in E if and only if there is
also the reverse link (j, i) directed from node j to node i in E
and both links have the same weight Wij = Wji.

For a graph G = (V, E ,W ) and a subset of nodes S ⊆ V , we
denote by

wS
i =

∑
j∈S

Wij

the S-restricted out-degree of a node i in V . In the special case
when S = V coincides with the whole node set, we simply refer
to wi = wV

i as the out-degree of a node i in V and let w = W1
be the vector of out-degrees.
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The nodes of the network represent interacting agents. Every
agent i in V is endowed with a binary time-varying state Xi(t).
A link (i, j) in E is meant to be directed from its tail node
i to its head node j. The presence of a link (i, j) indicates a
direct influence of agent j on agent i, with its weight Wij to
be interpreted as a measure of such influence. Let A = {±1}
be the binary state set of each agent, and let X = AV be the
configuration space: a configuration x in X is a vector whose
entries xi represent the states of the single agents. The constant
vectors x = ±1 will be referred to as consensus configurations.
On the other hand, we shall refer to every x in X \ {±1} as a
coexistent configuration.

We consider asynchronous time-varying (ATV) LTD on a
network G = (V, E ,W ), whereby agents i in V update their
binary state Xi(t) in A as described below. For a nonempty
set of vectors H ⊆ RV , let h(t) in H for t ≥ 0 be an exogenous
signal modeling a time-varying external field. Let every agent i
in V be equipped with an independent rate-1 Poisson clock.1 If
agent i’s clock ticks at some time t ≥ 0,2 then agent i modifies
his/her current state Xi(t

−) into a new state Xi(t) such that

Xi(t) =

⎧⎪⎨
⎪⎩
+1, if

∑
j WijXj(t) + hi(t) > 0

Xi(t
−), if

∑
j WijXj(t) + hi(t) = 0

−1, if
∑

j WijXj(t) + hi(t) < 0 .

(1)

The update rule above can be rewritten in the following equiva-
lent way. For i in V and time t ≥ 0, let

ri(t) =
1

2
− hi(t)

2wi
(2)

be a time-varying threshold for agent i. Also, for a configuration
x in X , let

w−
i (x) =

∑
j:xj=−1

Wij , w+
i (x) =

∑
j:xj=1

Wij (3)

be the aggregate weight of links pointing from agent i to agents
in state −1 and, respectively, to those in state +1. Then, (1) is
equivalent to

Xi(t) =

⎧⎪⎨
⎪⎩
+1, if w+

i (X(t−)) > wiri(t)

Xi(t
−), if w+

i (X(t−)) = wiri(t)

−1, if w+
i (X(t−)) < wiri(t)

(4)

i.e., if agent igets activated at time t ≥ 0, then: (a) he/she updates
his/her stateXi(t) to+1 if the weighted fractionw+

i (X(t−))/wi

of his/her out-neighbors currently in state +1 is above the time-
varying threshold ri(t) (equivalently, if the weighted fraction
w−

i (X(t−))/wi of his/her out-neighbors in state−1 is below the
complementary threshold 1− ri(t)); (b) he/she updates his/her

1The assumption that all Poisson clocks have rate 1 is made merely for the
sake of simplicity in the exposition. In fact, it is not hard to show that all results
in the article continue to hold true, as stated in the more general setting where
every agent i’s Poisson clock has rate λi > 0.

2Observe that, with probability 1, no two agents’ clocks will ever tick at
the same time t. In fact, the updating mechanism could have been equivalently
formulated assuming that updates occur at the ticking of a global rate-|V|Poisson
clock and that each time such a global clock ticks, one agent is sampled uniformly
at random from V and made to update his/her action according to the threshold
rule described in the main text.

Fig. 1. Network considered in Example 1.

state Xi(t) to −1 if w+
i (X(t−))/wi is below ri(t); or (c) he/she

keeps his/her current stateXi(t) = Xi(t
−) ifw−

i (X(t−))/wi =
ri(t).

If we stack the agents’ states in a vector X(t) in X , then
X(t) is a continuous-time inhomogeneous Markov chain on the
configuration space X . In the rest of this article, we focus on
the asymptotic behavior of the ATV-LTD X(t) on a graph G =
(V, E ,W ) with external field h(t), as described above.

Specifically, we shall determine the necessary and sufficient
conditions for almost sure convergence (i.e., convergence with
probability one) to a consensus configuration. In particular, our
main result concerns robust convergence to consensus for ATV-
LTD on a graph G when the external field h(t) is an arbitrary
(unknown) signal whose range is a hyperrectangle in the form

H =
{
h : h− ≤ h ≤ h+

}
=

∏
i∈V

[
h−
i , h

+
i

]
(5)

for two (known) vectors h− and h+ in RV such that h− ≤ h+.
The conditions for robust, almost sure convergence to the

consensus of the ATV-LTD will be determined in terms of
the graph-theoretic properties of G. In particular, we have the
following definition.

Definition 1: Let h− and h+ in RV be two vectors such
that h− ≤ h+. Then, a graph G = (V, E ,W ) is (h−, h+)-
indecomposable if for every nontrivial binary partition of the
node set

V = V+ ∪ V− , V+ ∩ V− = ∅ , V+ = ∅ , V− = ∅ (6)

there exist s in {−,+} and a node i in Vs such that

ws
i + shs

i < w−s
i (7)

where ws
i = wVs

i . In the special case when h− = h+ = h, we
shall more briefly refer to the graph G as h-indecomposable.

The following example illustrates the notion of indecompos-
ability introduced in Definition 1 above in a simple case.

Example 1: Consider the graph G = (V, E ,W ) displayed in
Fig. 1, with set of nodes V = {1, 2, 3, 4, 5} and weight matrix

W =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 1 1
1 0 0 0 1
0 1 0 0 1
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠ .

The out-degree vector is then w = W1 = (1, 3, 2, 2, 3) .



6518 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 10, OCTOBER 2024

1) First, we verify that G is 0-indecomposable. To see it, first
notice that if, for some s in {−,+}, either Vs = {i} for some
i in V or Vs = {i, j} for some i = j in V such that (i, j) /∈ E ,
then we have ws

i = 0 < 1 ≤ w−s
i , so that (7) is satisfied. It is

then sufficient to consider binary partitions as in (6) where,Vs =
{i, j} for some s in {−,+} and i = j in V such that both (i, j)
and (j, i) belong to E . This leaves us with four possibilities,
corresponding to the four undirected links in the graph: (a) for
Vs = {2, 4}, we have that 5 ∈ V−s and ws

5 = 2 > 1 = w−s
5 so

that (7) is satisfied; for Vs = {2, 5}, we have that 4 ∈ V−s and
ws

4 = 2 > 0 = w−s
4 so that (7) is satisfied; (c) for both Vs =

{3, 5} and Vs = {4, 5}, we have that 2 ∈ V−s and ws
2 = 2 >

1 = w−s
2 so that (7) is satisfied.

2) Second, we verify thatG is not δ1-indecomposable. Indeed,
let us fixV− = {2, 4, 5} andV+ = {1, 3}. Then,w+

1 + 1 = 1 =
w−

1 , w−
2 = 2 > 1 = w+

2 , w+
3 = 1 = w−

3 , w−
4 = 2 > 0 = w+

4 ,
and w−

5 = 2 > 1 = w+
5 , so that (7) is violated by every i in

Vs and s in {−,+}.
3) Now, we show that G is not (h−, h+)-indecomposable

for h− = (0,−1, 0, 0, 0) and h− = (0, 0, 0, 0, 1). Indeed, let us
fix V− = {1, 2, 3} and V+ = {4, 5}. Then, we have that w−

1 −
h−
1 = 1 > 0 = w+

1 , w−
2 − h−

2 = 1 + 1 = 2 = w+
2 , w−

3 − h−
3 =

1 = w+
3 , w+

4 + h+
4 = 1 = w−

4 , and also w+
5 + h+

5 = 1 + 1 =
2 = w−

5 , so that (7) is violated by every i in Vs and s in {−,+}.
In contrast, it can be verified that G is both h−-indecomposable
and h+-indecomposable in this case.

4) Finally, let h− = 0 and h+ = (0, 2, 0, 0, 2). We now show
that G is (h−, h+)-indecomposable. To verify that, first notice
that if Vs = {i} for some s in {−,+} and i in V , then ws

i +
shs

i = shs
i < wi = w−s

i , so that (7) is satisfied. Similarly, if 1 ∈
Vs and 2 ∈ V−s, then ws

1 + shs
1 = 0 < 1 = w−s

1 . Moreover, if
{2, 5} ⊆ Vs for some s in {−,+}, then (7) is satisfied by every i
in V−s ∩ {1, 4}. This leaves us with four possibilities: (a) V− =
{1, 2, 3} and V+ = {4, 5}; (b) V− = {1, 2, 4} and V+ = {3, 5};
(c) V− = {4, 5} and V+ = {1, 2, 3}; (d) V− = {3, 5} and V+ =
{1, 2, 4}. In both cases (a) and (b), we have w−

2 − h−
2 = 1 <

2 = w+
2 so that (7) is satisfied, whereas in both cases (c) and

(d), we have w−
5 − h−

5 = 1 < 2 = w+
5 so that (7) is satisfied.

Therefore, G is (h−, h+)-indecomposable.
Our first result, stated below, shows that the (h−, h+)-

indecomposability of the graphG is indeed a necessary condition
for robust convergence to a consensus configuration of ATV-
LTD when the external fieldh(t) is a arbitrary signal whose range
is the hyperrectangle (5). First, we state a very simple concept:
a configuration x∗ in X is called absorbing for the ATV-LTD, if
X(t∗) = x∗ for some t∗ ≥ 0 implies that X(t) = x∗ for every
t ≥ t∗.

Proposition 1: LetG = (V, E ,W ) be a graph. For two vectors
h− and h+ in RV such that h− ≤ h+, let H be as in (5). If G
is not (h−, h+)-indecomposable, then there exist h∗ in H and
a coexistent configuration x∗ in X \ {±1} such that x∗ is an
absorbing configuration for the ATV-LTD on G with constant
external field h(t) = h∗.

Proof: That the graph G is not (h−, h+)-indecomposable
means that there exists a nontrivial binary partition of the node
set as in (6) such that

ws
i − w−s

i + shs
i ≥ 0

for all i in Vs and s in {−,+}. The above can be rewritten as

s(w+
i − w−

i + hs
i ) ≥ 0 . (8)

Now, let h∗ in RV be a vector with entries

h∗
i =

{
h−
i , if i ∈ V−

h+
i , if i ∈ V+

and let x∗ in X be a configuration with entries

x∗
i =

{−1, if i ∈ V−
+1, if i ∈ V+ .

Clearly, h− ≤ h∗ ≤ h+, so that h belongs to H. Moreover, the
fact thatV− = ∅ = V+ andV− = V = V+ implies thatx∗ = ±1
is a coexistent configuration. The inequality in (8) then implies
that

x∗
i

⎛
⎝∑

j

Wijx
∗
j + h∗

i

⎞
⎠ = x∗

i

(
w+

i − w−
i + h∗

i

) ≥ 0 (9)

for every i in V . Now, letX(t) evolve according to the LTD on G
with constant external field h(t) = h∗ and initial configuration
X(0) = x∗. It then follows from (1) and (9) that X(t) = x∗ for
every t ≥ 0, thus, proving the claim. �

Example 2: Consider the graph G shown in Fig. 1 and let
h− = (0,−1, 0, 0, 0) and h− = (0, 0, 0, 0, 1). As verified in Ex-
ample 1, G is not (h−, h+)-indecomposable, so that Proposi-
tion 1 implies the existence of a vector h∗ such that h− ≤
h∗ ≤ h+ and of a coexistent configuration x∗ in X \ {±1}
such that x∗ is a fixed point for the LTD on G with constant
external field h(t) = h∗. Specifically, in this case we can take
h∗ = (0,−1, 0, 0, 1) and x∗ = (−1,−1,−1,+1,+1).

While Proposition 1 states that, if the graph G is not (h−, h+)-
indecomposable, robust convergence to a consensus configu-
ration is not ensured for the ATV-LTD on G, the following
result establishes necessary and sufficient conditions for robust
convergence to a consensus configuration when the graph G is
(h−, h+)-indecomposable.

Theorem 1: Let G = (V, E ,W ) be a graph. For two vectors
h− and h+ in RV such that h− ≤ h+, let H be as in (5). If G
is (h−, h+)-indecomposable, then the ATV-LTD on G with any
external field h(t) ∈ H for t ≥ 0 is such that, for every initial
configuration X(0) in X , with probability 1 there exists t∗ ≥ 0
such that

i)

X(t∗) ∈ {±1}; (10)

and
ii) if w≥− h− and w≥h+, then

X(t) ∈ {±1} ∀t ≥ t∗ ; (11)

iii) if w≥− ah−a and w � ah−a for some a = ±1, then

X(t) = a1 ∀t ≥ t∗ . (12)

Moreover:
iv) if w � −h− and w � h+, then there exists a signal

h(t) ∈ H for t ≥ 0 such that, for every initial config-
uration X(0) in X , with probability 1 the ATV-LTD on



ARDITTI et al.: ROBUST COORDINATION OF LINEAR THRESHOLD DYNAMICS ON DIRECTED WEIGHTED NETWORKS 6519

G with external field h(t) visits both consensus configu-
rations +1 and −1 infinitely often.

Proof: See Section IV-B. �
Theorem 1(i) is to be interpreted as a converse to Propo-

sition 1, as it states that, if the graph G is (h−, h+)-
indecomposable, then the set of consensus configurations is
reached in finite time with probability 1 from every initial
configuration X(0). Theorem 1 (i) and Proposition 1 together
guarantee that (h−, h+)-indecomposability of the network is a
necessary and sufficient condition for global robust reachability
of the set of consensus configurations for the ATV-LTD.

Moreover, because of the form of the update rule (1), the
condition w ≥ −h− implies that the consensus configuration
+1 is absorbing. Symmetrically, the condition w ≥ h+ implies
that the consensus configuration −1 is absorbing. Hence, point
(ii) of Theorem 1 states that if, both w ≥ −h− and w ≥ h+,
then for every initial configuration X(0) in X , the ATV-LTD
gets absorbed in finite time in one of these two consensus con-
figurations. In fact, the probability with which X(t) is absorbed
in the consensus configuration+1 rather than in−1will depend
on the initial configuration X(0), the graph G, and the particular
external field h(t).

On the other hand, let us consider the casea = +1 in point (iii)
of Theorem 1 (the case a = −1 being completely symmetrical).
Then, as discussed above, the condition w ≥ −h− ensures that
the consensus configuration x∗ = +1 is absorbing. On the other
hand, the condition w � h− is equivalent to the existence of
some agent i in V such that wi < h−

i . From the form of the
update rule (1), we then deduce that any such agent i will switch
his/her action to +1 the first time he/she gets activated and will
stick to Xi(t) = +1 ever after. Point (iii) of Theorem 1 then
states that with probability 1, all other agents will follow such
agent i and switch to state +1 in a cascade until the absorbing
consensus configuration +1 is reached in finite time.

Finally, in contrast to points (i)–(iii), point (iv) of Theorem 1
does not describe a robust behavior. Rather, the two conditions
w � −h− and w � h+ ensure that there exist two (not neces-
sarily distinct) agents i and j in V such that wi < −h−

i and
wj < h+

j , respectively. This implies that agent i will always
switch to−1 the first time he/she gets activated under the external
field h−, while agent j will always switch to +1 the first time
he/she gets activated under the external field h+. Point (iv) of
Theorem 1 states that, by manoeuvring the external field h(t)
within its range H, one is able to make the system oscillate
infinitely often between the two consensus configurations.

The proof of Theorem 1 is one of the main contributions of
this article. The key technical challenges are twofold: on the one
hand, we are considering LTD with time-varying external field
h(t) and seeking robustness results with respect to h(t), on the
other hand, considering weighted directed graphs prevents one
from appealing to potential game arguments. We will address
these challenges by first focusing on the special case of LTD
with constant external field and studying it from a supermodular
game theory perspective in Section III. We will then introduce
and characterize the key notion of robust improvement path
in Section IV-A, and finally apply it to prove Theorem 1 in
Section IV-B.

Fig. 2. Network considered in Example 4.

Fig. 3. In the upper panel, dynamics of N(t) =
∑

i
Xi(t) for the graph

in Fig. 1 and h(t) = (0, h2(t), 0, 0, h5(t)) with h2 and h5 as in the lower
panel. ATV-LTD get absorbed in consensus configurations for different
initial conditions (see Example 3).

Example 3: Consider once again the graph G shown in Fig. 1
and let h+ = (0, 2, 0, 0, 2). As is shown in Example 1, G is
(0, h+)-indecomposable. Hence, since w ≥ −h− and w ≥ h+,
Theorem 1 (ii) implies that the ATV-LTD on G with any external
field0 ≤ h(t) ≤ h+ for t ≥ 0gets absorbed with probability 1 in
finite time in a consensus configuration.

In Fig. 2, we simulated the dynamics of N(t) =
∑

i Xi(t)
for different initial conditions when the external field is h(t) =
(0, h2(t), 0, 0, h5(t)) with h2 and h5 as in Fig. 2 (notice that
0 ≤ h(t) ≤ h+). ATV-LTD dynamics get absorbed in consensus
configurations.

Example 4: Consider the graph G shown in Fig. 3,
with node set V = {1, . . . , 7} and out-degree vector w =
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Fig. 4. In the upper panel, dynamics of N(t) =
∑

i
Xi(t) for the graph

in Fig. 3 and h(t) = (h1(t), 0, 0, 0, 0) with h1 as in the lower panel.
ATV-LTD get absorbed in consensus configurations for different initial
conditions (see Example 4 with α = −2 and β = 1).

(3, 1, 3, 3, 3, 3, 3). Let

h− = (α, 0, . . . , 0) , h+ = (β, 0, . . . , 0)

for α ≤ β in R. Then, for every nontrivial binary partition as
in (6), let s in {−,+} be such that 1 ∈ V−s. If 2 ∈ Vs, then
ws

2 + shs
2 = 0 < 1 = w−s

2 , so that (7) is satisfied. On the other
hand, for j = 2, . . . , 6, if {1, . . . , j} ⊆ V−s and j + 1 ∈ Vs,
then ws

j+1 + shs
j+1 ≤ 1 < 2 ≤ w−s

j+1, so that (7) is satisfied.
This proves thatG is (h−, h+)-indecomposable for everyα ≤ β.
Now consider three different cases.

If−3 ≤ α ≤ β ≤ 3, so thatw ≥ −h− andw ≥ h+, then The-
orem 1 (ii) ensures that, with probability 1, X(t) gets absorbed
in finite time in one of the two consensus configurations (see
Fig. 4).

On the other hand, if 3 < α ≤ β, so that w ≥ −h− and w �
h−, then Theorem 1 (iii) ensures that, with probability 1, X(t)
gets absorbed in finite time in the consensus configuration x∗ =
+1 (see Fig. 5).

Finally, if α < −3 and β > 3, so that w � −h− and w � h+

then Theorem 1 (iv) ensures that there exists a time-varying
signal h− ≤ h(t) ≤ h+ such that, with probability 1, X(t)
fluctuates forever between the two consensus configurations,
visiting both of them infinitely many times (see Fig. 6).

III. LTD WITH CONSTANT EXTERNAL FIELD

In this section, we study the special case of an LTD with a
constant external field. We refer to it as an asynchronous LTD

Fig. 5. In the upper panel, dynamics of N(t) =
∑

i
Xi(t) for the graph

in Fig. 3 and h(t) = (h1(t), 0, 0, 0, 0) with h1 as in the lower panel. ATV-
LTD get absorbed in the consensus configuration x∗ = +1 for different
initial conditions (see Example 4 with α = 3 and β = 5).

Fig. 6. In the upper panel, dynamics of N(t) =
∑

i
Xi(t) for the graph

in Fig. 3 and h(t) = (h1(t), 0, 0, 0, 0) with h1 as in the lower panel. ATV-
LTD fluctuates for different initial conditions (see Example 4 with α =
−3.1 and β = 3.1).
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(A-LTD). As we shall see, in this special case, the absorbing
points of the A-LTD can be interpreted as the (pure strategy
Nash) equilibria of an underlying network coordination game
and the convergence can be studied purely in terms of the
improvement paths of such a game. We shall provide a full
characterization of such equilibria and of the asymptotic behav-
ior of the corresponding A-LTD in terms of the graph-theoretic
properties of the network.

A. LTD and Coordination Games

We start with the formal introduction of a network coordina-
tion game.

Definition 2: For a graph G = (V, E ,W ) and a vector h in
RV , the (network) coordination game on G with external field h
is the game with player set V , whereby every player i in V has a
binary action setA = {±1} and the utility functionui : X → R
specified by

ui(x) = xi

∑
j∈V

Wijxj + hixi . (13)

Notice that the utility of a player i increases when his/her
neighbors play the same action as his/her, thus, modeling the
interactions of strategic complements. The external field hi

represents the bias of player i in choosing an action over its
alternative. Indeed, the sign of external fieldhi determines which
is the best action for player i in the absence of any network
influences.

As customary in game theory, for a configuration x in X
and a player i in V , we let x−i in X−i = AV\{i} stand for the
configuration of all players except for player i. We shall then
use the common abuse of notation ui(x) = ui(xi, x−i) for the
utility perceived by player i in configurationx. The best response
correspondence for a player i in V is defined as

Bi(x−i) = argmax
xi∈A

ui(xi, x−i) .

An action a in A is dominant (strictly dominant) for a player i if
a ∈ Bi(x−i) (Bi(x−i) = {a}) for every x−i in X−i. A player i
having a strictly dominant actiona is referred to as ana-stubborn
agent. A (pure strategy Nash) equilibrium is a configuration x∗

in X such that

x∗
i ∈ Bi(x

∗
−i) ∀i ∈ V .

The set of equilibria is denoted by X∗
h . An equilibrium x∗ is

strict if Bi(x
∗
−i) = {x∗

i} for every i in V .
The following statement gathers a few simple results on

coordination games.
Lemma 1: Consider the coordination game on a graph G =

(V, E ,W ) with external field h in RV . Then, for every i in V:
i) the utility function can be written as

ui(x) = xi

(
hi + w+

i (x)− w−
i (x)

)
, (14)

where w+
i (x) and w−

i (x) are defined as in (3);
ii) for every configuration x in X

xi ∈ Bi(x−i) ⇐⇒ ui(x) ≥ 0 ; (15)

iii) the best response correspondence has the threshold form

Bi(x−i) =

⎧⎪⎨
⎪⎩
{+1}, if w+

i (x) > riwi

{±1}, if w+
i (x) = riwi

{−1}, if w+
i (x) < riwi ,

(16)

where ri =
1
2 − hi

2wi
is the threshold of player i;

iv) action a = ±1 is a strictly dominant strategy if and only
if ahi > wi.

Proof: (i) This is a consequence of the definitions of w+
i (x)

and w−
i (x).

(ii) This follows from the equivalent form (14) in (i).
(iii) By substituting the identity w−

i (x) = wi − w+
i (x) into

(14), we have that

ui(x) = xi

(
hi + 2w+

i (x)− wi

)
,

from which (16) follows directly.
(iv) This follows directly from item (iii). �
Comparing the form of the best response (16) with the evo-

lution of the ATV-LTD X(t) described in (4), we can notice
that jumps occur only when the activated agent i can strictly
increase its utility and that the evolution indeed corresponds for
i to choose its unique best response action. We now introduce
a related classical game theoretic concept, that of improvement
path, that exactly captures this phenomenon.

Definition 3: Given two configurations x and y in X and a
nonnegative integer l, a (length-l) path from x to y is an (l + 1)-
tuple of configurations (x(0), x(1), . . . x(l)) such that x(0) = x,
x(l) = y, and for every k = 1, 2, . . . , l, there exists a player ik
in V satisfying

x
(k)
−ik

= x
(k−1)
−ik

, x
(k)
ik

= x
(k−1)
ik

. (17)

The l-tuple (i1, i2, . . . , il) is referred to as the sequence of active
players. The path is called

1) monotone if x(0) � x(1) � · · · � x(l);
2) antimonotone if x(0) � x(1) � · · · � x(l).
3) an improvement path (I-path) if

uik

(
x(k)

)
> uik

(
x(k−1)

)
, k = 1, 2, . . . , l . (18)

In other words, a path is any sequence of configurations such
that two consecutive configurations differ in just one component,
corresponding to a single agent modifying its own action. In
monotone paths, players can modify their actions from −1 to
+1 only, conversely, only modifications from +1 to −1 are
allowed in antimonotone paths. In a I-path, the agent modifying
its action always increases its utility. Notice that, by convention,
the singleton (x) is to be considered as an I-path of length 0
from x to x.

When there exists an I-path from a configuration x to a
configuration y, we say that y is I-reachable from x and use
the notation x → y. If y is reachable from x by a monotone or
antimonotone I-path, we will use the notation x ↑ y and x ↓ y,
respectively. Observe that all these relations are reflexive and
transitive.

Definition 4: A subset of configurations Y ⊆ X is called
1) globally I-reachable if for every x ∈ X there exists some

configuration y ∈ Y that is I-reachable from x;
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2) I-invariant if for every y ∈ Y and z ∈ X that is I-
reachable from y, we have that z ∈ Y;

3) globally I-stable if it is globally I-reachable and I-
invariant.

The next result explicitly connects the previous notions to the
asymptotic behavior of an A-LTD.

Proposition 2: Let X(t) be an A-LTD on a graph G =
(V, E ,W )with constant external fieldh in RV . Consider a subset
Y ⊆ X . Then,

i) Y is globally I-reachable if and only if for every initial
configuration X(0) in X , with probability 1 there exists
t∗ ≥ 0 such that X(t∗) ∈ Y;

ii) Y is I-invariant if and only if for every initial configura-
tion X(0) in Y , X(t) ∈ Y for every t ≥ 0;

iii) Y is globally I-stable if and only if for every initial
configuration X(0) ∈ X , with probability 1 there exists
t∗ ≥ 0 such that X(t) ∈ Y for every t ≥ t∗.

Proof: (i) It follows from comparing the form of the best
response in (16) with the evolution of the ATV-LTD X(t) de-
scribed in (4) thatX(t) can have a transition from a configuration
x in X to another configuration y in X if and only if there exists
i in V such that x−i = y−i, yi = xi, and Bi(y−i) = {yi}. Then,
by [46, Th. 1.2.2], we have

P (∃t ≥ 0 : X(t) = y |X(0) = x) > 0 ⇔ x → y.

This implies that a subset of configurations Y is globally I-
reachable if and only if P (∃t : X(t) ∈ Y|X(0) = x) > 0 for
every x in X . A standard result in the theory of finite-state
Markov chains establishes that this last condition is actually
equivalent to the fact that P (∃t : X(t) ∈ Y|X(0) = x) = 1 for
every x ∈ X .

(ii) Y is invariant if and only if for every y ∈ Y there is no
I-path from y leading outside of Y . By previous considerations,
this is equivalent to saying that the process X(t) initialized in
X(0) = y cannot deterministically leave the set Y .

(iii) This point follows from (i) and (ii) �.
We notice that every equilibrium x∗ ∈ X ∗

h , by definition,
forms an I-invariant subset, so that it constitutes an absorbing
point for the LTD: if X(0) ∈ X∗

h , then X(t) = X(0) for every
t, deterministically.

B. Coordination Games as Supermodular Games

A key property of coordination games is that pure Nash
equilibria always exist and form a globally I-reachable subset of
configurations. This, together with other properties that will be
needed in our future derivations, are consequence of the fact that
such games possess the so called increasing difference property
that is, for every player i, its utility variation when its action
changes from −1 to +1

ui(1, x−i)− ui(−1, x−i) = 2

⎛
⎝∑

j∈V
Wijxj + hi

⎞
⎠ (19)

is a monotone nondecreasing function of the configuration x−i

of the other players. Games with such a property are called super-
modular and have received a considerable amount of attention

in the literature [30], [31], [44], [45]. A first direct yet crucial
consequence of the increasing difference property (19) is the
following. For every x−i in X−i, define

B+
i (x−i) = maxBi(x−i) B−

i (x−i) = minBi(x−i) .

Then, it holds the following.
Lemma 2: For every player i inV , bothB+

i (x−i) andB−
i (x−i)

are monotone nondecreasing in x−i.
To state the other consequences of the increasing difference

property, we need to introduce some further notation. For two
vectors x and y in RI , the (entrywise) supremum x ∨ y in RI

and infimum x ∧ y in RI have entries, respectively,

(x ∨ y)i = max{xi, yi}, (x ∧ y)i = min{xi, yi} ∀i ∈ I .

We use the notation ∨L and ∧L to indicate the supremum and
infimum, respectively, of a nonempty subset L ⊆ RI . The next
result characterizes properties of monotone and antimonotone
I-paths.

Lemma 3: For x, y, z in X , the following relations hold true:
i) x ↑ y, x ↑ z ⇒ x ↑ (y ∨ z);

ii) x ↓ y, x ↓ z ⇒ x ↓ (y ∧ z);
iii) x ↑ y, x′ ≥ x ⇒ x′ ↑ (y ∨ x′);
iv) x ↓ y, x′ ≤ x ⇒ x′ ↓ (y ∧ x′);
v) x → y ⇒ x ↑ y′, x ↓ y′′ for some y′′ ≤ y ≤ y′.

Proof: (i) Let (y(0), y(1), . . . y(l)) and (z(0), z(1), . . . z(r))
be two monotone I-paths from x to y and z, respectively.
Let (i1, . . . , il) and (j1, . . . , jr) be the two corresponding se-
quences of active players. Let (js1 , . . . , jsk) be the subsequence
of (j1, . . . , jr) consisting of exactly those players that are
not in the sequence (i1, . . . , il). We claim that the sequence
(x(0), . . . , x(l+r)) defined by

1) x(h) = y(h) for h = 0, . . . , l,
2) x(h+l) = x(h+l−1) + 2δjsh for h = 1, . . . , k

is a monotone I-path from x to y ∨ z. By construction, it is
a monotone path. Moreover, x(h+l−1) ≥ z(sh−1) for every h =
1, . . . , k. Since {+1} = Bjsh

(z(sh−1)), by Lemma 2, {+1} =

Bjsh
(x(h−1+l)). This implies that it is an I-path.

(ii) The proof is completely analogous to that of (i).
(iii) Let (x(0), x(1), . . . , x(l)) be a monotone I-path from

x to y with a set of active players (i1, . . . , il). Consider the
subsequence (is1 , . . . , isk) of those players for which x and
x′ coincide. Then, (x(0) ∨ x′, x(is1 ) ∨ x′, . . . , x(isk ) ∨ x′) is a
monotone I-path from x′ to y ∨ x′. Indeed, notice that, by
construction, x(isk ) ∨ x′ = x(l) ∨ x′ = y ∨ x′. We only need to

show that it is an I-path. Since (x(ish ) ∨ x′)−ish
≥ x

(ish )

−ish
and

using the increasing difference property (19) we obtain that

0 ≤ uish

(
x(ish)

)
− uish

(
x(ish−1)

)

≤ uish

(
x(ish) ∨ x′

)
− uish

(
x(ish−1) ∨ x′

)
.

(iv) The proof is completely analogous to that of (iii).
(v) If x ↑ y, then y ∨ x = y. If x ↓ y, then x ≥ y and y ∨ x =

x. In both cases the result is evident. The general case can be
proven by induction on the length of a minimal I-path from x
to y. Indeed, by definition of an I-path, for sure we can find an
intermediate configuration z for which one of the two possible
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cases hold: x ↑ z → y or x ↓ z → y. In the first case, using the
induction hypothesis z ↑ y′ ≥ y, we obtain by transitivity that
x ↑ y′ ≥ y. In the second case, using the induction hypothesis
z ↑ y′ ≥ y and point (iii) with x ≥ z, we obtain that x ↑ (x ∨
y′) ≥ y. Similarly, we prove the other relation. �

We introduce two maps f+, f− : X → X on the configura-
tion space, respectively defined by

f+(x) =
∨

{y ∈ X |x ↑ y}

f−(x) =
∧

{y ∈ X |x ↓ y} (20)

for every x in X . Thanks to Lemma 3, we have that f+(x)
(f−(x)) represent the maximal (minimal) configuration that is
I-reachable from x by a monotone (antimonotone) path. Notice
that both sets in the right-hand side expressions of (20) are
nonempty as they contain the configuration x. The following
gathers a number of properties relating the equilibria of coordi-
nation games with the behavior of the maps (20).

Proposition 3: Consider the coordination game on a graph
G = (V, E ,W ) with external field h in RV . Then,

i) f+ and f− are monotone nondecreasing maps;
ii) a configuration x in X is an equilibrium if and only if

f+(x) = x = f−(x) ;

iii) for every configuration x in X , f−(f+(x)) ∈ X∗
h and

f+(f−(x)) ∈ X∗
h are, respectively, the greatest and least

Nash equilibria that are I-reachable from x;
iv) the set of equilibria X∗

h is nonempty and

x∗ = f+(−1), x̄∗ = f−(1)

are, respectively, the least and the greatest element in X∗
h;

v) X∗
h is globally I-stable.

Proof: (i): It follows from Lemma 3 (i) that x ↑ f+(x) for
every configuration x in X . If x′ ≥ x, Lemma 3 (iii) yields x′ ↑
f+(x) ∨ x′. Therefore, f+(x′) ≥ f+(x) ∨ x′ ≥ f+(x). The
proof for f− is analogous.

(ii) coincides with the definitions of equilibrium.
(iii) Put X+ = {x ∈ X | f+(x) = x}. We notice that for ev-

ery x ∈ X , f+(x) ∈ X+. Moreover, X+ is closed with respect
to the antimonotone I-path. Namely, if x ∈ X+ and x ↓ y, then
also y ∈ X+. To see this, by induction, it is sufficient to prove it
when x and y are connected by an antimonotone I-path of length
1, namely, there exists i ∈ V such that yi < xi, y−i = x−i, and
Bi(y) = {−1}. If y ∈ X+, then it would exists z ∈ X and a
player j ∈ V such that zj > yj , z−j = y−j , and Bj(y) = {+1}.
Evidently j = i and from Lemma 3 (iii) applied to y ↑ z andx ≥
y we would obtain x ↑ x ∨ z. Since by construction x ∨ z = x,
this would imply that f+(x) = x contrarily to the assumption
that x ∈ X+. Similarly, X− = {x ∈ X | f−(x) = x} is closed
with respect to monotone I-path. Notice that X∗

h = X+ ∩ X−.
Consider now y = f−(f+(x)). Being in the image of f−,

necessarily y ∈ X−. On the other hand, since f+(x) ∈ X+, by
the fact thatX+ is closed with respect to antimonotone I-path, we
have that also y ∈ X+. Hence y is an equilibrium. The argument
for f+(f−(x)) is completely analogous.

If now y in X∗
h is any equilibrium reachable from x, namely

x → y, by Lemma 3 (v) it follows that x ↑ y′ ≥ y. By definition
of f+(x) we have that f+(x) ≥ y′ ≥ y. Therefore, by point (i),
we have that

f−(f+(x)) ≥ f−(y) = y

with the last equality above following from point (ii). Similarly,
we can show that f+(f−(x)) ≤ y. This concludes the proof of
point (iii).

(iv) It follows from point (iii) that x∗ = f+(−1) =
f+(f−(−1)) is a Nash equilibrium. If x∗ ∈ X ∗

h is any other
Nash equilibrium, using the monotonicity of f+ [see point (i)]
and the trivial fact that f−(x∗) ≥ −1 we obtain that

x∗ = f+(f−(x∗)) ≥ f+(−1) = x∗.

An analogous argument proves that x̄∗ = f−(1) is the greatest
Nash equilibrium.

(v) By definition, X∗
h is invariant, while global reachability

follows from point (iii) �.
The fact that X∗

h is globally I-stable implies that the A-LTD
X(t) is absorbed in finite time in the set of Nash equilibria of the
underlying coordination game. Formally, we have the following
result.

Theorem 2: Let X(t) be the A-LTD on a graph G =
(V, E ,W ) with constant external field h in RV . Then, with
Probability 1, there exists t∗ ≥ 0 such that

X(t) ∈ X∗
h ∀t ≥ t∗ .

Proof: The claim follows directly from Proposition 2 (iii) and
Proposition 3(v). �

C. Pure Nash Equilibria of Coordination Games

By virtue of Theorem 2, in order to shape our analysis of the
asymptotics of the process X(t) and, in particular, determine
the conditions that guarantee the convergence to a consensus,
we need to analyze the set of Nash equilibria X∗

h . This is done
in the remaining part of this section.

We first set some notation. Let

X•
h = X∗

h ∩ {±1} , X◦
h = X∗

h\{±1}
indicate, respectively, the subsets of consensus and coexistent
equilibria of the coordination game on G with external field h.
We then introduce the following notion.

Definition 5: A coordination game on a graph G with external
field h is:

1) regular if |X •
h| = 2;

2) biased if |X •
h| = 1; more precisely, for a = ±1, the coor-

dination game is a-biased if X•
h = {a1};

3) frustrated if |X •
h| = 0.

Notice that, in a frustrated coordination game, neither of
the consensus configurations is an equilibrium. Since X∗

h is
never empty, a frustrated coordination game always admits at
least one coexistent equilibrium. In contrast, when the game is
not frustrated (either regular or biased) at least one consensus
configuration is an equilibrium. Besides consensus, there might
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or might not exist coexistent equilibria. To distinguish these
cases, the following further classification proves useful.

Definition 6: A coordination game on a graph G with external
field h is

1) unpolarizable if X◦
h = ∅;

2) polarizable if X◦
h = ∅.

The set of equilibria of an unpolarizable regular coordina-
tion game contains both consensus configurations ±1 and no
other configurations, whereas unpolarizable biased coordination
games admit a single (consensus) equilibrium: x∗ = +1 in the
positively biased case and x∗ = −1 in the negatively biased
one. On the other hand, polarizable coordination games always
admit coexistent equilibria possibly in addition to consensus
ones (if they are regular or biased). In the sequel, we shall identify
necessary and sufficient conditions for a coordination game to
be regular, biased, or frustrated, and for it to be polarizable or
unpolarizable.

We now introduce two sets that will play a key role in our
analysis

Sa(h) = {i ∈ V | ahi > wi} , a = ±1 . (21)

By Lemma 1 (iii), Sa(h) coincides with the set of players for
which a is a strictly dominant action, i.e., the set of a-stubborn
agents. The following simple result relates the presence of a-
stubborn players with that of the consensus equilibrium −a1.

Lemma 4: Consider a coordination game on a graph G =
(V, E ,W ) with external field h and let x∗(h) and x∗(h) be its
least and greatest equilibria, respectively. Then

i) x∗(h) = −1 ⇔ S+1(h) = ∅ ⇔ h ≤ w
ii) x∗(h) = +1 ⇔ S−1(h) = ∅ ⇔ h ≥ −w.

Proof: If x∗(h) = −1, then there cannot be +1-stubborn
players, i.e., S+1(h) = ∅, so that h ≤ w. On the other hand,
if h ≤ w, then, using the threshold form of the best re-
sponse in Lemma 1 (ii), we deduce that −1 is an equilibrium,
namely, x∗(h) = −1. This proves (i), while (ii) can be proven
analogously. �

In fact, Lemma 4 directly implies the following result.
Proposition 4: Let G be a graph with an out-degree vector w.

Then, the coordination game on G with external field h is:
i) regular if and only if

−w ≤ h ≤ w ; (22)

ii) a-biased for a = ±1 if and only if

w ≥ −ah , w � ah ; (23)

iii) frustrated if and only if

w � −h , w � h . (24)

Remark 1: The necessary and sufficient conditions in Propo-
sition 4 can be readily interpreted in terms of the presence
of stubborn agents, as introduced in Section III-A. In fact,
Lemma 4 implies that (22) is equivalent to the fact that no
player is stubborn, (23) is equivalent to the existence of at least
one a-stubborn agent but no −a-stubborn agents, and (24) is
equivalent to the existence of both +1- and −1-stubborn agents.
Hence, Proposition 4 states that a coordination game is regular
if and only if there are no stubborn agents, biased if and only if

it contains stubborn agents of one type only, and frustrated if it
contains stubborn agents of both types.

In contrast to the relative simplicity of the characterization
above, necessary and sufficient conditions for polarizability of
coordination games as per Definition 6 are in general more
involved and rely on the notion of indecomposability introduced
in Definition 1.

Proposition 5: The coordination game on a graph G with
external field h is unpolarizable if and only if G is h-
indecomposable.

Proof: Let s in {±}. Given any configuration x∗ in X , for
any player i such that x∗

i = s1, from (14) we can write that

ui(x
∗) = s(hi + w+

i (x
∗)− w−

i (x
∗))

= s(hi + sws
i (x

∗)− sw−s
i (x∗))

= shi + ws
i (x

∗)− w−s
i (x∗) . (25)

We now argue as follows. If the coordination game on G with
external field h is polarizable, then there exists an equilibrium
x∗ = ±1. From (25) and Lemma 1 (i) we derive that, for every
s and i such that x∗

i = s1

shi + ws
i (x

∗)− w−s
i (x∗) ≥ 0 .

Let Vs
x∗ denote the subset of agents playing action s1 in x∗.

This implies that relatively to the nontrivial binary partition V =
V+
x∗ ∪ V−

x∗ , (7) is violated for every i in Vs
x∗ and s in {±}. Hence,

G is not h-indecomposable.
On the other hand, if G is not h-indecomposable, then by

Proposition 1 there exists a coexistent absorbing configuration
x∗of the LTD on G with constant external field h. Such x∗ in X◦

h

is a coexistent equilibrium of the coordination game on G with
external field h, which is then polarizable. �

Remark 2: Given a graph G = (V, E ,W ) and r in [0,1], a
subset of nodes S ⊆ V is called r-cohesive [21] if

wS
i ≥ rwi ∀i ∈ S (26)

and r-closed if its complement V \S is (1− r)-cohesive. Notice
that, using the identity wi = ws

i + w−s
i , condition (7) in the

special caseh− = h+ = h can be rewritten as 2ws
i < wi − shi .

In the special case when players have homogeneous thresh-
olds ri = r in [0, 1], equivalently when the external field is
proportional to the node degree vector, i.e., h = (1− 2r)w,
(7) is equivalent to ws

i < rwi. Hence, in this special case, h-
indecomposability of a graph G is equivalent to the nonexistence
of nonempty proper subsets of nodes S that are both r-cohesive
and r-closed. In this sense, Proposition 5 generalizes [47, Prop.
9.7] to coordination games on weighted directed graphs with
heterogeneous thresholds.

Example 5: Let G = (V, E ,W ) be a graph with two nodes
V = {1, 2} connected by two directed links of weightW12 = w1

and W21 = w2, respectively. Consider a coordination game on
G with external field h = (h1, h2).

As illustrated in Fig. 7 , by Proposition 4, the coordination
game is: regular if |h| ≤ w (white region);+1-biased ifh ≥ −w
and h � w (dark gray region); −1-biased if h ≤ w and h � −w
(light gray region); frustrated ifh1 > w1 andh2 < −w2 orh1 <
−w1 and h2 > w2 (dotted region).
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Fig. 7. Classification of two-player coordination games as in Exam-
ple 5, based on Propositions 4 and 5.

On the other hand, Proposition 5 ensures that the coordination
game on G is unpolarizable if and only if one of the following
holds true: (i) h < w, (ii) h > −w, (iii) |h1| < w1, (iv) |h2| <
w2, as illustrated in Fig. 7. Notice that, for the special case of
only two-players, the coordination game is polarizable if and
only if it is frustrated.

Biased unpolarizable coordination games can be character-
ized in an equivalent simpler form.

Proposition 6: The coordination game on a graph G with
external field h has the unique equilibrium x∗ = a1 for a in
{±1} if and only if the following conditions are both satisfied:

a) w � ah;
b) every nonempty subset R ⊆ V \ Sa(h) contains some

node i such that

wR
i < w

V\R
i + ahi . (27)

Proof: (Only if) Assume that the coordination game is a-
biased and unpolarizable. Then, condition (a) follows from
Proposition 4 (ii). Also, this implies that Sa(h) = ∅. To prove
(b), assume by contradiction that there exists a nonempty subset
R ⊆ V \ Sa(h) such that

wR
i ≥ w

V\R
i + ahi (28)

for every i inR and letx inX be a configuration such thatxi = a
for every i in V \ R and xi = −a for every i in R. Notice that
(25) and (28) imply that ui(x) ≥ 0, so that, by Lemma 1 (i),
−a = xi ∈ Bi(x−i), for every i in R = V−a

x . If a = +1 (a =
−1), this implies that there are no monotone (antimonotone) I-
paths of positive length starting atx, so that in particularfa(x) =
x. Then, by Proposition 3 (iii), we get that

x∗ = f−a(x) = f−a(fa(x))

is an equilibrium. Now, notice that on the one hand, x∗
i = −a

for every i in R (since xi = −a and x∗ = f−a(x)), on the other
hand, x∗

i = a for every i in Sa(h) (since those are stubborn
players). Hence, x∗ is a coexistent equilibrium, thus, contradict-
ing the assumption that the game is unpolarizable. Therefore,
if the coordination game is a-biased and unpolarizable, both
conditions (a) and (b) must be satisfied.

(If) Given any player i in V \ Sa(h), from the application of
(27) with R = {i} we obtain that

ahi + wi ≥ ahi + w
V\R
i > wR

i ≥ 0 .

Sinceahi + wi > ahi − wi ≥ 0 for every i inSa(h), we deduce
thatah+ w ≥ 0. Together with assumption (a), by Proposition 4

(ii), this yields that the game is a-biased. We finally prove that
the game is unpolarizable. By contradiction, suppose there exists
a coexistent equilibrium x∗. Necessarily x∗

i = a for every i in
Sa(h). Put R = V−a

x∗ and notice that (25) yields

0 ≤ ui(x
∗)

= −ahi + w−a
i (x∗)− wa

i (x
∗)

= −ahi + wR
i − w

V\R
i

for every i in R, thus, contradicting condition (b). The proof is
then complete �.

Remark 3: In the special case h = (1− 2r)w considered in
Remark 2, i.e., when players have homogeneous thresholds
ri = r in [0, 1], (27) is equivalent to wR

i < (1− r)wi, so
condition (b) of Proposition 6 reduces to the nonexistence of
(1− r)-cohesive subsets ofV\Sa(h). In the literature [21], such
property is referred to as the set V\Sa(h) being uniformly not
(1− r)-cohesive. In this sense, Proposition 6 generalizes [47,
Prop. 9.8] to coordination games with heterogeneous thresholds.

We conclude this section with the statement below, gathering
some results on global I-stability of consensus equilibria for
coordination games that directly follow from the analysis just
developed.

Corollary 1: For a graph G with an out-degree vector w,
consider the coordination game on it with external field h.
Assume that G is h-indecomposable and that |h| ≤ w. Then,
X∗

h = {±1}.
Proof: Proposition 4 (i) implies that when |h| ≤ w, the game

is regular so that the two consensus configurations −1 and +1
are both equilibria. Since G is h-indecomposable, Proposition 5
guarantees that the game is unpolarizable. Then, the set of
equilibria is X∗

h = {±1}. �
If we combine Corollary 1 and Theorem 2, we obtain the

following result, that provides sufficient conditions for the A-
LTD with constant external field h in RV to be absorbed in finite
time in a consensus configuration.

Corollary 2: Let X(t) be the A-LTD on a graph G =
(V, E ,W ) with constant external field h in RV . Assume that
G is h-indecomposable and that |h| ≤ w. Then, with probability
1, there exists t∗ ≥ 0 such that

X(t) ∈ {±1} ∀t ≥ t∗ .

The generalization of such a result to a time-varying external
field h(t) is not straightforward. The analysis of the general
case is carried on in the next section and leads to the proof of
Theorem 1.

IV. ROBUST STABILITY

In this section, we first introduce and characterize robust
versions of the notions introduced in Definitions 5 and 6 and we
generalize the results in Section III-C. We then combine the ro-
bust analysis of the set of Nash equilibria of coordination games
with the reachability and stability properties of supermodular
games proved in Section III-B. This is done in Theorem 4 and
will pave the way to the proof of Theorem 1 on the asymptotic
behavior of the ATV-LTD.
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A. Robustness Network Coordination

For a graph G = (V, E ,W ) and a set of vectors H ⊆ RV , we
say that a property of the coordination game on G is satisfied
H-robustly if it is satisfied for every external field h in H. In
what follows, we concentrate on the special case when, for two
vectors h− and h+ in RV such that h− ≤ h+, the set H is the
hyperrectangle in (5). In this case, verifying that certain proper-
ties are H-robustly satisfied can be significantly simplified with
respect to checking the property for every single value of h inH.
Below we report results in this sense, starting with the following
robust version of Proposition 4.

Corollary 3: Let G be a graph with an out-degree vector
w and let H be as in (5) for two vectors h− ≤ h+. Then, the
coordination game on G is

i) H-robustly regular if and only if

w ≥ h+ , w ≥ −h− ; (29)

ii) H-robustly a-biased for an action a = ±1 if and only if

w ≥ −ah−a , w � ah−a ; (30)

iii) H-robustly frustrated if and only if

w � −h+ , w � h− .

Another interesting property is the robust unpolarizability, to
be interpreted as the resilience of a coordination game against
getting coexistent equilibria. By virtue of Proposition 5, this
can equivalently be expressed as a robust indecomposability of
the graph G. However, it is useful to reformulate this in a form
analogous to Definition 1, as in the following result.

Theorem 3: Let G = (V, E ,W ) be a graph and let H be as
in (5) for two vectors h− ≤ h+. Then, the following conditions
are equivalent:

a) the coordination game on G is H-robustly unpolarizable;
b) G is H-robustly indecomposable;
c) G is (h−, h+)-indecomposable.

Proof: Clearly, equivalence between conditions (a) and (b)
directly follows from Proposition 5. We shall now prove equiv-
alence between conditions (a) and (c).

First, assume that the coordination game on G is not H-
robustly unpolarizable, i.e., there exists an external field h in
H such that the set of equilibria X∗

h contains a coexistent
configuration x∗ = ±1. Notice that h−

i ≤ hi ≤ h+
i implies that

x∗
ihi ≤ sih

si , where si = sgn(x∗
i ), for every player i inV . Then,

Lemma 1 (i) and (ii) imply that

0 ≤ ui(x
∗)

= x∗
ihi + x∗

iw
+
i (x

∗)− x∗
iw

−
i (x

∗)

≤ sih
si + wsi

i − w−si
i .

Hence, there exists no node i inV satisfying (7) for the nontrivial
binary partition V = V+

x∗ ∪ V−
x∗ . This proves that condition (c)

is not satisfied.
On the other hand, if condition (c) is not satisfied, then

Proposition 1 implies that there exist h∗ in H and a coexistent
configuration x∗ in X \ {±1} such that x∗ is an absorbing
configuration for the A-LTD on G with constant external field

h∗. Because of the equivalence (ii) in Proposition 2, it follows
that x∗ ∈ X ◦

h∗ , so that the coordination game on G with external
field h∗ is polarizable, hence condition (a) is not satisfied. �

We now focus on the stability results in Corollary 1, for which,
besides their straightforward robust generalization, some deeper
consequences can be derived as reported below. These results
build on the stability properties gathered in Proposition 3 and
will in turn prove instrumental for the analysis carried out in the
next section.

Theorem 4: Let G = (V, E ,W ) be a graph of order n = |V|
and let H be as in (5) for two vectors h− ≤ h+. Assume that G
is H-robustly indecomposable. Then,

i) for every configuration x in X there exists an H-robust
I-path from x to {±1} of length at most n. In particular,
{±1} is H-robustly globally I-reachable;

ii) if condition (29) holds true, then {±1} is H-robustly
globally I-stable;

iii) if there exists an action a = ±1 such that (30) holds
true, then there exists an H-robust I-path from every
configuration x in X to a1. In particular, in this case,
the set {a1} is H-robustly globally I-stable.

Proof: (i) In the proof, we will make use of the maps f+

and f− defined in (20) for different values of the vector h and
this dependence will be captured in the notation f+(·, h) and
f−(·, h).

Given an arbitrary configuration x in X , consider the external
field hx in H with entries

hx
i = hxi

i , i ∈ V

and let

x = f+(f−(x, hx), hx) , x = f−(f+(x, hx), hx) .

By Proposition 3 (iii), the above are, respectively, the least and
greatest equilibria of the coordination game on G with external
field hx that are I-reachable from configuration x. As the graph
G is H-robustly indecomposable, it follows from Theorem 3
that the coordination game on G is H-robustly unpolarizable.
Since hx ∈ H, this implies that the coordination game on G
with external field hx is unpolarizable, so that its equilibria x
and x are both consensus configurations. Since clearly x ≤ x,
there are three possible alternative cases

a) x = x = +1;
b) −1 = x < x = +1;
c) x = x = −1.

In both cases (a) and (b) we have

+1 = x = f−(f+(x, hx), hx) = f+(x, hx) .

This implies that there exists a monotone pathγ fromx to+1 that
is an I-path for the coordination game on G with external field
hx. Since in any monotone path only players originally playing
action −1 can get activated, and since h−

i = hx
i for every such

player, we have that γ is also an I-path for the coordination game
onG with external fieldh−. A direct monotonicity argument then
shows that γ is also a monotone I-path for the coordination game
on G with any external field h in H. Similarly, in both cases (b)
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and (c) we have

−1 = x = f−(f+(x, hx), hx) = f−(x, hx) ,

so that by an argument completely analogous to the one de-
veloped above we can find an H-robust anti-monotone I-path
from x to −1. The proof of point (i) is then completed by the
observation that the length of monotone and antimonotone paths
is never larger than n.

(ii) By Corollary 3 (i), we have that X∗
h = {±1} for every

h ∈ H. Result then follows from Proposition 3 (v).
(iii) By Corollary 3 (ii), we have that X∗

h = {a1} for every
h ∈ H. The same argument used in (i) to prove the existence of
anH-robust I-path to {±1} leads to the existence of anH-robust
I-path from every configuration x in X to a1. We complete the
proof using Proposition 3(v). �

B. Proof of Theorem 1

We now apply the results of Section IV-A to prove Theorem 1.
Recall that the ATV-LTD X(t) on a graph G = (V, E ,W ) with
external field h(t) is a continuous-time inhomegeneous Markov
chain X(t), whereby agents i in V get activated at the ticking of
independent rate-1 Poisson clocks and, when activated at time
t ≥ 0, they modify their state according to the update rule (1).

We shall denote by Λ(t) in RX×X the transition rate matrix of
the continuous-time Markov chain X(t), whose entries Λxy(t)
stand for the transition rates from configuration x in X to
configuration y in X at time t ≥ 0. Notice that Λ(t) depends
on the external field h(t) and for this reason it is time-varying.
We have that Λxy(t) = 0 whenever x and y differ in more than
one entry, reflecting the fact that with probability 1 no two agents
will modify their action simultaneously. On the other hand, if
there exists i in V such that x−i = y−i and xi = yi, then

Λxy(t) =

⎧⎨
⎩
1, if yi

(∑
j Wijxi + hi(t)

)
> 0

0, if yi
(∑

j Wijxi + hi(t)
)
≤ 0 .

Finally, the diagonal entries of Λ(t) are nonpositive and such
that every row sum is zero, i.e., Λxx(t) = −∑

y =x Λxy(t).
Notice that the form of the update rule (1) of the ATV-LTD

implies that the following uniform bounds hold true for the
transition rates of X(t) at any time t ≥ 0:

Λxy(t) > 0 ⇒ Λxy(t) ≥ 1 ∀x, y ∈ X (31)∑
y =x

Λxy(t) ≤ n ∀x ∈ X (32)

where we recall that n = |V| is the number of agents.
(i) For every initial profile X(0) = x(0), Theorem 4 (i) guar-

antees the existence of an H-robust I-path (x(0), x(1), . . . x(l))
of length l ≤ n from x(0) to the set of consensus configurations
{±1}. Consider now the discrete-time jump chain [46, p. 87]
associated to X(t), defined by

Y (k) = X(Tk) , k = 0, 1, . . .

where 0 = T0 < T1 < T2 < . . . are the random times when the
value of X(t) changes. Using (31) and (32), we can estimate the

probability that the ATV-LTD follows this path at some time as

P
(
Ys+1 = x(1), . . . , Ys+l = x(l)

∣∣∣Ys = x(0)
)
≥ 1/nl ≥ 1/nn

for every s ≥ 0. This implies that

P
(
Ys+k ∈ {±1} ∀k = 1, . . . , n |Ys = x(0)

)
≤ 1− 1/nn .

A standard induction argument now yields that, for every initial
condition x(0) in X and for every h = 1, 2, . . .

P
(
Ys = ±1 ∀s = 0, . . . , hn |X(0) = x(0)

)
≤ (1− 1/nn)h

and thus, also

P (Ys = ±1 ∀s = 0, . . . , hn) ≤ (1− 1/nn)h .

Let now T±1 = inf{t ≥ 0 : X(t) ∈ {±1}} be the (possibly
infinite) first time that X(t) is a consensus configuration. Then

P (T±1 < +∞) = 1− lim
h→+∞

P (Ys = ±1 ∀s = 0, . . . , hn)

≥ 1− lim
h→+∞

(1− 1/nn)h

= 1

thus, proving that, with probability 1, the set of consensus
configurations, {±1} is reached in finite time.

(ii) It follows from Corollary 3 (i) that the coordination
game on G is H-robustly regular, namely both consensus con-
figurations are equilibria for every h ∈ H. This implies that
Λxy(t) = 0 for every x ∈ {±1}, y = x, and t ≥ 0. This yields
(ii).

(iii) Applying Theorem 4 (iii) and arguing as in the proof of
point (i) we show that the all-a configuration a1 is reached in
finite time with probability a, i.e., Ta1 = inf{t ≥ 0 : X(t) =
a1} satisfies

P (Ta1 < +∞) = 1 .

Since a1 is an equilibrium for every h ∈ H, as in the proof of
(ii) we obtain that a1 is an absorbing point for the ATV-LTD.

(iv) By assumption, there exist two players i and j in V such
that wi < h+

i and wj < −h−
j . Since i ∈ S+(h

+) and G is H-
robustly indecomposable, Corollary 1 implies thatX∗

h+ = {+1}
is globally I-stable for the coordination game on G with external
field h+. This implies that, for every τ > 0, the ATV-LTD on G
with an external field h(t) such that h(t) = h+ for all t in [0, τ),
is such that

α+ = min
x∈X

P (X(τ) = +1|(X(0) = x)) > 0 .

Analogously, since j ∈ S−(h−) and G is H-robustly indecom-
posable, we get that the coordination dynamics with an external
field that is constant h(t) = h− in the interval [0, τ) is such that

α− = min
x∈X

P (X(τ) = −1|(X(0) = x)) > 0 .

For the ATV-LTD with periodic piecewise constant external field
defined as follows:

h(t) =

{
h+, if 2kτ ≤ t < (2k + 1)τ k ∈ Z+

h−, if (2k + 1)τ ≤ t < (2k + 2)τ k ∈ Z+
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we then have that

P (X((2k+1)τ)=+1, X((2k + 2)τ)=−1|X(2kτ)=x)≥α

for every k ∈ Z+ and x ∈ X , where

α = α+α− > 0 .

It then follows that with probability 1 there exist infinitely many
nonnegative integer values of k such that:

X((2k + 1)τ) = +1 , X((2k + 2)τ) = −1

thus, proving that X(t) keeps fluctuating forever. �

V. CONCLUSION

We have studied asynchronous time-varying LTD on general
weighted directed graphs of interacting agents, equipped with
an external field modeling exogenous interventions or individual
biases toward specific actions. We have proven necessary and
sufficient conditions for global stability of consensus equilibria,
robustly with respect to the (constant or time-varying) external
field.

A key step in our analysis has consisted in the introduction of
novel robust notions of improvement and best response paths.
Our analysis has strongly relied on the supermodularity of coor-
dination games, as well as their peculiar threshold structure for
best response correspondences. The extension of such concepts
and results to more general supermodular games is a challenging
problem that deserves further investigation.
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