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A B S T R A C T

The steady state neutron transport equation can be studied resorting to different eigenvalue formulations,
useful to investigate the criticality state of a nuclear system. In this respect, the knowledge of the eigenvalue
spectra featuring the main eigenproblems is fundamental, from a practical standpoint, to guide the eigenvalue
solvers searching for the dominant eigenpairs. The study of the eigenvalue spectrum shape on the complex
plane is also relevant to better understand the physico-mathematical aspects of the neutron transport numerical
approximations. This paper investigates the features of the eigenvalue spectra with respect to various
parameters like modelling approximations, departure from criticality and spatial heterogeneity in a one-
dimensional slab geometry framework. The sensitivity of the energy spectrum characterising the fundamental
eigenfunction is then evaluated with respect to the model adopted and to perturbations in the input parameters.
1. Introduction

Non-trivial mathematical solutions of the source-free, steady state,
neutron transport equation for a multiplying medium can only be found
by casting the equation into the form of an eigenvalue problem,

�̂�𝜑𝜆 = 𝜆�̂�𝜑𝜆, (1)

where �̂� and �̂� are linear operators representing some physical aspects
of the transport process and the generic eigenvalue is here denoted
by 𝜆. The eigenvalue may belong to either a finite or infinite set,
possibly including also a continuous part, depending on the structure
of operators �̂� and �̂�. This is a fundamental problem of nuclear reactor
physics, which is usually solved with the introduction of an eigenvalue
acting on the fission operator, the so-called multiplication eigenvalue
𝑘 (Bell and Glasstone, 1970).

Many other possible eigenvalue formulations exist, each featured by
different properties and stressing different physical aspects (Davison,
1957). The balance in Eq. (1) can be physically interpreted saying that
the particle balance is satisfied when the action of �̂� on the flux distri-
bution 𝜑𝜆,𝑖 is equal to the action of �̂� scaled with a tuning parameter
𝜆𝑖. The eigenvalue 𝜆𝑖 associated with an eigenfunction featured by a
uniform sign on the domain is defined as the fundamental eigenvalue,
and is usually identified with 𝑖 = 0. In this respect, the eigenvalue turns
out to be a parameter scaling some physical properties featuring the
system and ‘‘encoded’’ in the linear operator �̂� (e.g., the number of
neutrons emitted by fission 𝜈, the geometrical dimensions, . . . ). Each
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eigenvalue formulation leads to different eigenfunctions 𝜑𝜆,𝑖, unless the
system is critical. In this specific case, no scaling is needed to satisfy the
particle balance, and all the eigenvalue formulations yield the same
eigenfunction, describing the critical distribution of neutrons in the
phase space.

Although it is not always possible attributing a physical interpreta-
tion to each eigenfunction in off-critical situations, the eigenfunctions
are often employed in several applications for reactor design and anal-
ysis, such as perturbation theory, the calculation of kinetic parameters
and the generation of multi-group constants. Due to their vast practical
use, the different eigenvalue problems have been investigated since
the very beginning of nuclear reactor physics. After the multiplication
eigenvalue 𝑘, the collision eigenvalue 𝛾 was introduced by Davison
(1957). Almost one year later, Henry (1958) introduced the concept
of time eigenvalue, which is tightly related to the application of the
Laplace transform to the neutron transport equation. About twenty
years later, the density eigenvalue 𝛿 was formulated (Ronen et al.,
1976) and recently generalised for core-design applications (Abrate
et al., 2023). The literature on the multiplication and time eigenvalues
is very rich, covering both theoretical aspects (see Sahni and Sjöstrand
(1990), Sanchez and Tomatis (2019) and McClarren (2019) for trans-
port theory and Saracco et al. (2012), Sanchez et al. (2017) and Dulla
et al. (2018) for diffusion theory) and practical applications (see, for
instance, Dugan et al. (2016, 2018)), while there are only a few works
focusing also on the collision and density eigenvalues. In Velarde et al.
vailable online 1 March 2024
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(1978) and Cacuci et al. (1982) the eigenvalue-dependent neutron en-
ergy spectra are compared for fast and thermal systems, with a focus on
the behaviour of the spectral indexes, while in Carreño et al. (2017) and
Carreño et al. (2019) the higher-order eigenfunctions computed with
the time, multiplication and collision formulations are applied in the
framework of a modal expansion method to solve the time-dependent
diffusion equation for full-core analysis. At last, in Kiedrowski (2012,
2014) the adoption of the Monte Carlo method to compute the time,
multiplication and collision eigenfunctions is presented, focusing on the
adoption of these spectra to generate the kinetic parameters for point
kinetics.

The works mentioned so far are mainly devoted to applications
involving these alternative eigenfunctions, but do not investigate more
theoretical aspects that could have an important impact on their cal-
culation and final usage, such as the behaviour of the eigenvalue
spectrum. The main objective of this work is to investigate some
fundamental properties of the eigenvalue problems mentioned, trying
to get some insights that could be useful for the application of these
eigenfunctions in reactor analysis. The first part of the paper introduces
the most popular eigenvalue problems arising in neutron transport, fo-
cusing on their eigenvalue spectrum, whose distribution in the complex
plane is fundamental to properly tune the numerical solvers employed
to determine the dominant harmonics. The second part of the work
focuses on the sensitivity of the energy spectrum featuring the various
formulations with respect to input parameters (e.g., cross sections) and
to the neutron transport model adopted to estimate it (e.g., the angular
expansion order). Since approaching this study analytically would be
challenging, the investigations are carried out numerically, relying on
the PN and SN approximations of the one-dimensional, multi-group
eutron transport equation, which is discretised spatially with the finite
ifference scheme.

. The neutron transport model in plane geometry

The neutron transport model in the absence of an external source
s described by the following system of equations, expressed compactly
ith a set of integro-differential linear operators,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝚟(𝐸)

𝜕𝜙
𝜕𝑡

+ �̂�𝜙 + (�̂� + 𝐹𝑇 + �̂�𝑇 )𝜙 = �̂�𝜙 + 𝐹𝑝𝜙 +
R
∑

𝑟=1
𝜆𝑟𝜖𝑟

𝜕𝜖𝑟
𝜕𝑡

= 𝐹𝑑,𝑟𝜙 − 𝜆𝑟𝜖𝑟 𝑟 = 1,… , 𝑅,

(2)

subject to appropriate initial and boundary conditions. The various op-
erators have the following definitions for the case of a one-dimensional
cartesian system:

• the streaming operator,

�̂� = 𝜇 𝜕
𝜕𝑥

∗; (3)

• the removal by collision operator, which can be seen as the sum
of capture, fission and scattering,

�̂� = 𝛴𝑡(𝑥,𝐸) ∗= �̂� + 𝐹𝑇 + �̂�𝑇

= 𝛴𝑐 (𝑥,𝐸) ∗ +𝛴𝑓 (𝑥,𝐸) ∗ +𝛴𝑠(𝑥,𝐸) ∗;
(4)

• the scattering operator, assuming that the number of neutrons
emitted by scattering 𝜈𝑠 ranges between 1 and 4, accounting for
the (n,xn) reactions,

�̂� = ∫

∞

0
𝑑𝐸′

∫

1

−1
𝑑𝜇′ 𝜈𝑠(𝐸′)𝛴𝑠(𝑥,𝐸′)𝑓𝑠(𝑥,𝐸′ → 𝐸, 𝜇′) ∗; (5)

• the prompt fission operator,

𝐹𝑝 = (1 − 𝛽)
𝜒𝑝(𝑥,𝐸) ∞

𝑑𝐸′
1
𝑑𝜇′ 𝜈𝛴𝑓 (𝑥,𝐸′) ∗; (6)
2

2 ∫0 ∫−1 n
• the delayed fission operator for the 𝑟th delayed precursor family,

𝐹𝑑,𝑟 = 𝛽𝑟
𝜒𝑑,𝑟(𝑥,𝐸)

2 ∫

∞

0
𝑑𝐸′

∫

1

−1
𝑑𝜇′ 𝜈𝛴𝑓 (𝑥,𝐸′) ∗ . (7)

At last, the delayed emissivity for the 𝑟th delayed precursor family is
defined as:

𝜖𝑟(𝑥,𝐸, 𝑡) =
𝜒𝑑,𝑟(𝑥,𝐸)

2
𝐶𝑟(𝑥, 𝑡). (8)

The other symbols have their usual meaning, as it can be found in
most reactor physics books (Bell and Glasstone, 1970; Duderstadt and
Hamilton, 1976).

In the following sections, these operators are assumed to be discre-
tised in energy with the multi-group approach, approximated in angle
with the PN or SN methods and discretised in space with the finite
difference scheme (Lewis and Miller, 1984). The numerical calculations
are carried out with an in-house Python package, called TEST (Transport
Equation Solver in Turin). More details on the numerical implementa-
tion of this code and its capabilities can be found in Abrate et al. (2019,
2021b, 2023), and the code package is publicly available on GitHub.

3. Spectrum analysis of the eigenvalue formulations in neutron
transport

In this section, the various eigenvalue problems are presented. The
behaviour of each spectrum is studied as a function of different mod-
elling parameters, like the number of spatial meshes 𝑁x, the angular
expansion order 𝑁 and number of groups 𝐺. Each approximation
to Eq. (2) introduces a number of degrees of freedom (DoF) equal to
the rank of the discretised transport operator and, thus, of eigenvalues.
The number of DoF featuring the PN model can be computed as

𝐷𝑜𝐹 =

⎧

⎪

⎨

⎪

⎩

GN + 1
2

(2Nx − 1), N = 1, 3, 5…

GN
2
(2Nx − 1), N = 2, 4, 6… ,

(9)

while the number of DoF of the SN approach is simply given as 𝐷𝑜𝐹 =
GNNx. The eigenvalue spectra are also studied as a function of some in-
put parameters, like the spatial heterogeneity and off-criticality levels.
For some selected eigenvalues, a comparison between fast and thermal
systems is also carried out, focusing on configurations representative of
Light Water Reactor (LWR), Molten Salt Fast Reactor (MSFR) and Lead
Fast Reactor (LFR) energy spectra.

Tables 1 and 2 report the group boundaries of the structures used
in the following calculations. The structures in Table 1 are nested,
i.e. each grid contains the preceding one, thus ensuring a consistent
comparison among different energy group grids, while the 8-group grid
in Table 2 is conceived to compare different reactor energy spectra. It
should be remarked here that, in order to carry out consistent compar-
isons among the eigenvalue formulations in the following sections, the
same 50 cm thick, 1D slab reactor (and models) are used to study the
effect of the various parameters. In order to ease the reader, the various
eigenvalue spectra of the same system are represented with the same
symbols and colours throughout the following sections.

3.1. The multiplication eigenvalue

Fermi first described the criticality concept by introducing an eigen-
value called reproduction factor 𝑘 (Fermi, 1942) with the aim of con-
trolling the recently discovered fission reaction (Hanh and Strassmann,
1939),

�̂��⃗�𝑘,𝑛 + �̂��⃗�𝑘,𝑛 − �̂��⃗�𝑘,𝑛 =
1
𝑘𝑛

𝐹 �⃗�𝑘,𝑛. (10)

When the system is sub-critical, the eigenvalue scales 𝜈 up (𝑘0 < 1),
hile, when the system is super-critical, 𝜈 is scaled down (𝑘0 > 1). Since

eutrons emitted by fissions are fast, this artificial scaling may alter

https://github.com/nicoloabrate/TEST
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Table 1
Energy group structures employed in the following sections.

Group boundary [MeV] 8.21 × 10−1 5.53 × 10−3 4.00 × 10−6 6.25 × 10−7 1.40 × 10−7 5.80 × 10−8

CASMO-2 x
CASMO-4 x x x
CASMO-7 x x x x x x
Table 2
8-group structure adopted for generating the cross sections of the LWR, LFR and MSFR cases. The energies are expressed in MeV.

8 2 ⋅ 101 1 ⋅ 100 1 ⋅ 101 1 ⋅ 10−1 1 ⋅ 10−2 1 ⋅ 10−3 1 ⋅ 10−4 1 ⋅ 10−5 6.25 ⋅ 10−7 1 ⋅ 10−11
the energy spectrum of the system with respect to the critical case: in
the sub-critical case there are more fissions, qualitatively resulting in a
harder neutron spectrum, while in the super-critical one the spectrum
may be softer. In practical cases like those discussed in Section 4, the
energy spectrum hardening/softening effect with respect to the critical
configuration depends also on the reactor design and on the cause of
the off-criticality condition. Hence, it may not be trivial to draw a priori
onclusions on the overall energy spectrum. The integration of Eq. (10)
ver the phase space allows to understand the physical meaning of the
eproduction factor, or effective multiplication factor,

𝑛 =
⟨𝐹 �⃗�𝑘,𝑛⟩

⟨(�̂� + �̂� − �̂�)�⃗�𝑘,𝑛⟩
, (11)

s the ratio between the number of neutrons produced by fission and
he number of neutron losses. The reason that probably contributed the
ost to make the 𝑘-eigenvalue the main way of addressing criticality

ies in the fact that it always yields a solution, if the system is fissile.
his can be justified physically: it is always possible to achieve critical-

ty by adjusting the multiplying properties of the fissile material. This
eature is also extremely convenient from a numerical point of view,
s most algorithms for the solution of eigenvalue problems, e.g., the
ower method (Bell and Glasstone, 1970), are tailored to compute
he eigenvalues at the extremities of the spectrum. In fact, among the
arious eigenvalue problems analysed in this work, the 𝑘-spectrum is
ertainly the simplest one.

Fig. 1 shows that the shape of the 𝑘-spectrum on the complex plane
is basically independent of the different numerical approximations.
It should be noted that, for the sake of clarity, the spectra in the
figures are shifted along the vertical axis to distinguish the solution
sets. In all these cases, the eigenvalues are real and positive numbers,
accumulating on the left of the fundamental eigenvalue, indicated
throughout the paper with a star symbol. The first 5–6 dominant
eigenvalues are roughly equal for the various models, showing a certain
separation between each other, while the other ones try to reproduce
the continuum of eigenvalues featuring the spectrum of the transport
operator (Case, 1960). According to the number and type of DoFs, the
higher eigenvalues tends to shift either towards the left, for increasing
Nx and 𝐺, or to the right, for increasing 𝑁 . Fig. 1(d) compares the P1
and the S2 models, which are formally equivalent only when no space
discretisation occurs. The figure clearly shows that the discrepancy
between the two sets of eigenvalues increases for the higher-order
eigenvalues, associated with higher spatial frequencies and thus a more
relevant effect of spatial discretisation. All the calculations carried out
in this paper consider Mark vacuum boundary conditions.

Figs. 1(e) and 1(f) represent the effects of the off-criticality and
spatial heterogeneity levels for equal DoFs. As expected, the spectrum
is shifted towards the left/right and is inflated/shrunk when the system
is sub-critical/super-critical, respectively. The effect of the material
arrangement is investigated considering a bare reactor, a reflected
reactor (composed by 30 cm thick fuel surrounded at both sides by
water) and a fuel lattice (realised alternating 10 cm thick layers of
water and fuel) with the same total thickness, equal to 50 cm. The
reflected reactor and the lattice are depicted in Fig. 2. The spatial
heterogeneity shrinks the spectrum compared to the bare case, but the
3

specific arrangement alters the eigenvalue separation. In the reflected
case the distance between the dominant eigenvalues is larger than the
homogeneous case, while in the lattice case the eigenvalues tend to
form couples that are progressively closer.

The numerical studies reported confirm the interesting properties
of the spectrum of the 𝑘 formulation. Nevertheless, this eigenproblem
has two limitations that are too often ignored. The first is that, in
core-design applications, 𝑘 offers only qualitative information on the
criticality state, since it is not possible to act directly on the multiplying
properties of the system. In this respect, the recently introduced 𝜁
eigenvalue (Abrate et al., 2023) is much more flexible. The other lim-
itation is the fact that the 𝑘-eigenfunction can poorly describe the flux
distribution for a system that is actually time-dependent, as brilliantly
explained in Cullen et al. (2003).

3.2. The collision eigenvalue

Since also scattering leads to neutron emissions, Davison (1957)
proposed to introduce an eigenvalue acting on all collisions producing
neutrons,

�̂��⃗�𝛾,𝑛 + �̂��⃗�𝛾,𝑛 =
1
𝛾
(

�̂� + 𝐹
)

�⃗�𝛾,𝑛. (12)

Due to its collocation, 𝛾 is somehow similar to 𝑘, starting from its
physical meaning, which is closely related to the number of secondaries
per collision:

𝛾𝑛 =
⟨(𝐹 + �̂�)�⃗�𝛾,𝑛⟩

⟨(�̂� + �̂�)�⃗�𝛾,𝑛⟩
. (13)

As for 𝑘, the system is critical when 𝛾0 = 1, i.e. the number of neutrons
emitted is equal to the number of neutrons leaked or absorbed, while
it is larger/lower than the unity when the system is super-critical/sub-
critical. Since it also acts on 𝐹 , the 𝛾-spectrum inherits the property of
existence of a real, positive eigenvalue from 𝑘, provided that the system
is multiplying. In case this condition is not met, the criticality may still
be possible scaling the 𝜈𝑠, i.e. the number of particles emitted from the
(n, xn) multiplication reactions.

The action on �̂� enriches the physical features of the spectrum, as
visible from Fig. 3, which shows the effect of the energy and angular
models for isotropic and anisotropic scatterings. Contrarily to 𝑘, the
scattering anisotropy and the adoption of finer energy grids introduce
some complex eigenvalues, related to angular and energy transfer
effects, which do not appear when emissions are isotropic, as for fission.
It should be noticed that the spectrum computed with the CASMO-2
grid is purely real only when the scattering is isotropic. The order of the
scattering anisotropy strongly affects the spectrum: when a quadratic
scattering is assumed, the P5 and the P9 spectra show additional clusters
of complex eigenvalues around Re(𝛾) ∈ [0.2, 0.4] with respect to the
spectrum computed with the P1 model, which obviously is not able
to take into account the second anisotropy scattering order. When the
DoF are reduced, e.g. using 4 groups instead of 7 or moving from P9
to P1, the complex branches of coarser models try to do their best to
reproduce the pattern of the finer models. For the sake of conciseness,
the effect of Nx on the spectrum is not reported, being very similar to
what occurs for 𝑘: the addition of spatial DoF does not alter the features
of the spectrum.



Annals of Nuclear Energy 201 (2024) 110421N. Abrate et al.

t
e
p
c
t
a
t

t
t
𝛾

Fig. 1. 𝑘-spectrum for a homogeneous, isotropic, fissile slab.
Fig. 2. Sketch of the systems adopted to study the effect of spatial heterogeneities on the eigenvalue spectrum.
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Fig. 4 provides a comparison between the spectra of the P1 and
he S2 models, which are very similar except for the high-frequency
igenvalues, and an example of the behaviour of the spectra in the
resence of spatial heterogeneity. Despite some slight differences in the
omplex branches, it is not possible to notice specific effects induced by
he heterogeneity, as for 𝑘. In this respect, it is useful to notice that 𝑘
cts only on the fissile regions, while 𝛾 acts on each region because of
he scatterings.

Regarding the influence of the criticality level, reported in Fig. 5(a),
he 𝛾 spectrum behaves similarly to the 𝑘 case, i.e. the eigenvalues
end to be more dispersed when the system is sub-critical, despite
0 is less sensitive than 𝑘0 to this effect. Fig. 5(b) compares the 𝛾-

spectrum for three critical, homogeneous slabs featured by different
energy spectra 𝜑(𝐸), representative of a LWR, a MSFR and a LFR.
The complex branches, which are related to higher-order angular and
energy effects, are very sensitive to the type of reactor considered.
The LWR case is featured by the largest number of complex branches,
4

followed by the MSFR and by the LFR cases. Due to the action of 𝛾 c
n �̂�, this ranking suggests that the number of complex branches is
proportional to the moderating capabilities of the various reactors.

3.3. The time eigenvalue

The time eigenvalue 𝜔 (indicated also with the letter 𝛼 if the fission
elayed neutron emissions are not considered) is the most popular
ne after the multiplication eigenvalue 𝑘. Firstly introduced by Henry
1964), this formulation has been extensively investigated from both
heoretical (Dahl et al., 1983; Sahni and Sjöstrand, 1990; Sahni et al.,
995; Saracco et al., 2012; Dulla et al., 2018) and practical (Cacuci
t al., 1982; Singh et al., 2011; Dugan et al., 2016; McClarren, 2019;
oia et al., 2014; Vitali, 2020) aspects, due to its strong relationship
ith the time evolution of an off-critical system. With respect to the
ther formulations presented in this work, the time eigenproblem is the
nly natural spectral formulation of the transport equation, being asso-

iated with its Laplace transform. This operation amounts to assume
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Fig. 3. 𝛾-spectrum for a homogeneous, fissile slab (𝑁𝑥 = 25).

Fig. 4. 𝛾-spectrum of a homogeneous, fissile slab featured by linearly anisotropic scattering (left) and of a slab featured by different levels of heterogeneity, considering linearly
anisotropic scattering (right).

Fig. 5. 𝛾-spectrum for homogeneous, fissile slabs with linearly anisotropic scattering.
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Fig. 6. Full 𝜔-spectrum (left) and its enlargement (right) for a homogeneous, fissile slab, whose cross sections are collapsed according to the energy structures indicated (𝑁𝑥 = 25,
𝑃3). The dashed black lines indicate the mean collision frequency for the CASMO-7 grid. The scattering is assumed linearly anisotropic.
Fig. 7. Time spectrum with delayed neutrons of a homogeneous, fissile slab with isotropic scattering (𝑁𝑥 = 25, CASMO-4). The top graph shows the full spectrum, while the
bottom ones show two enlargements.
that both the neutron flux and the precursor concentrations follow an
exponential decay,

𝜙(𝑥,𝐸, 𝜇, 𝑡) = 𝜑𝜔,𝑛(𝑥,𝐸, 𝜇)𝑒𝜔𝑛𝑡. (14)

The last equation, which allows to cast Eq. (2) as an eigenproblem
of R + 1 equations, allows to identify the 𝜔𝑛 eigenvalues as time
frequencies and the eigenfunctions as the modes featuring the system
free evolution. In particular, 𝜔0 is the inverse of the reactor stable
period, which is a fundamental kinetic parameter in presence of de-
layed emissions. The combination of the neutron transport equation
and the equations for the precursors concentrations yields a non-linear
eigenproblem equivalent to Eq. (2),

�̂��⃗�𝜔,𝑛 +
(

�̂� + 𝜔𝑛�̂�
)

�⃗�𝜔,𝑛 = �̂��⃗�𝜔,𝑛 + 𝐹𝑝�⃗�𝜔,𝑛 +
R
∑

𝑖=1

𝜆𝑖
𝜔𝑛 + 𝜆𝑖

𝐹𝑖�⃗�𝜔,𝑛. (15)

Analytical and numerical studies have shown that the 𝜔-spectrum may
be featured by both a discrete and a continuous part. The presence of a
continuous spectrum depends on the transport model adopted and on
the approximation employed, as well as on the particular system geo-
metrical configuration. For example, a continuous spectrum can appear
also in diffusion theory, when infinite media are considered (Chentre
et al., 2018).

Another well-known aspect is the presence of clusters of discrete
eigenvalues, known as delayed frequencies, associated with the delayed
neutron emissions. As proved by Henry (1958), the delayed eigenvalues
accumulate at the right of each −𝜆𝑖, ∀𝑖 = 1,… ,R. The eigenpair
clustering, tightly related to the nature of the inhour equation (Sanchez
and Tomatis, 2019), justifies the presence of eigenstates featured by
very similar fluxes but different precursors spatial concentrations. Each
eigenstate (�⃗�𝜔,𝑛, 𝜀𝜔,𝑛,𝑖) in a cluster is important for the physical descrip-
tion of the system dynamics, despite only the eigenstate associated with
𝜔+𝜆1 > 0 has a uniform sign (Ravetto, 1974). When 𝜔+𝜆𝑖 < 0, �⃗�𝜔,𝑛 > 0
but 𝜀 < 0. Clustering is an issue for any numerical algorithm aiming
6

𝜔,𝑛,𝑖
at retrieving only the dominant eigenvalues, especially for sub-critical
and close-to-critical systems when the dominant eigenpairs are close to
the cluster.

Due to its collocation in Eq. (15), the term 𝜔∕𝚟(𝐸) is often referred
to as time absorption, although time capture is more appropriate, as the
fission cross section is not modified. The time capture ‘‘cross section’’
𝛴𝜔,𝑐 (𝐸) can be physically interpreted as a virtual reaction featured by a
1∕𝚟(𝐸) spectrum (Weinberg and Wigner, 1958). For critical systems, the
fundamental eigenvalue 𝜔0 vanishes, while for off-critical cases, there
are two possibilities: for super-critical systems, 𝛴𝜔,𝑐 (𝐸) hardens the
neutron spectrum, being positive and larger at lower energies; for sub-
critical systems, 𝛴𝜔,𝑐 (𝐸) softens the neutron spectrum, being negative
and lower at lower energies. The virtual capture can cause some numer-
ical issues: when 𝛴𝑡 + 𝜔∕𝚟 < 0 (or close to zero), the transport solver
(inner iterations) may experience some numerical instabilities, and the
search for the fundamental eigenvalue may be difficult in the case the
state of the system is not known (as it generally occurs). Concerning the
impact of the modelling approximations on the spectrum, increasing
Nx does not alter its shape, as already observed for the 𝑘 and 𝛾.
On the contrary, Fig. 6 shows that increasing the number of energy
groups introduces additional complex branches, whose number and
disposition are related to the group boundaries adopted to collapse the
cross sections: the CASMO-4 and CASMO-7 grids (see Table 1) share the
same fast and epithermal groups, while the CASMO-4 and the CASMO-
2 grid are featured by the same thermal group. As a consequence, the
branches associated with the shared groups overlap. The location of the
branches is related to the group-wise mean collision frequency, 𝓁−1

𝑔,𝑐𝑜𝑙𝑙 =
𝚟𝑔𝛴𝑔,𝑡, indicated by the dashed lines. In case G → ∞, the eigenvalues
would continuously fill the plane defined by 𝑅𝑒(𝜔) < −𝑚𝑖𝑛(𝓁−1

𝑔,𝑐𝑜𝑙𝑙).
The complex branches are also strongly influenced by the angular
approximation order employed, as visible from Fig. 7, which helps to
understand the interplay between the angle and energy variables. Each
energy group generates a batch of eigenvalues whose spread increases
for larger values of 𝐼𝑚(𝜔). As observed in Abrate et al. (2021a,b), the
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Fig. 8. Prompt spectrum (𝛼) of a homogeneous slab considering isotropic scattering, computed with 𝑃7 (left) and 𝑆8 (right) models (𝑁𝑥 = 100, G = 1). For the sake of readability,
the ordinate axes of the graphs are linear in the interval [−5 × 105 , 5 × 105].
batch in each group is formed by N + 1 (or N) symmetric, wing-shaped
branches, where N is the odd (or even) order of the PN (SN) mode.
New branches appear only when the succeeding odd/even order for
the PN/SN model is employed, while even (or odd) values of 𝑁 (or N +
1) only induce some distortions of the spectrum shape. The symmetry
of the branches with respect to the real axis is due to the symmetry of
the roots of the Legendre polynomial.

The mutual disposition of the wing-shaped branches depends on
the interaction between neutrons and the diffusing medium. Fig. 8
shows the time spectrum of the one-group P7 and S8 models for a
non-multiplying medium featured by different values of secondaries per
collision 𝑐 = 𝛴𝑠∕𝛴𝑡. In the P7 case, each angular batch is independent
for 𝑐 = 0, due to the absence of scattering, which couples the direc-
tions. When scattering is triggered, repulsion and crossing between the
branches are evident, due to the collision-driven angular redistribution.
In a multi-group case, the same physical justification can be adopted for
each group.

The S8 model exhibits the same behaviour, with some notable
exceptions. First, in the case of a purely absorbing medium, 𝑐 = 0, the 𝛼
spectrum degenerates into five points, and no fundamental mode can be
distinguished. This is a consequence of the inherent structure of the SN
model, which decouples each direction in the case of a purely absorbing
medium, contrarily to the PN model. The five degeneracy points should
be interpreted as one degeneracy per each N∕2 = 4 direction, due to the
symmetry of the quadrature weights, plus one degeneracy associated
with the Mark boundary conditions. In this case, it is not possible to
identify a fundamental eigenvalue. When 𝑐 increases, the spectrum
becomes similar to the P7 case, but with the wing-shaped batches
pointing towards −∞. The difference between the PN and SN spectra
cannot be ascribed only to the differences in their numerical setup,
but also to the absence of fission and external source. In case fission is
introduced, the two angular models would provide similar time spectra.

Figs. 9 and 10 show some details of the time spectrum for the
three material configurations discussed previously. The time spectra
are computed for a one-group, P7 model (Fig. 9), with the purpose of
highlighting the angular behaviour in the presence of heterogeneity,
and for a two-group, P3 model (Fig. 10), aiming at evaluating the
energy effects. The shape of the bare reactor spectrum is consistent with
the previous observations. When the heterogeneity appears, the pattern
becomes more intricate because of the interplay of spatial, angular
and energy effects. The one-group case is featured by N + 1 (i.e., 8)
slightly overlapping branches per imaginary half-plane for both the
heterogeneous arrangements, in contrast with the 4 branches per each
half-plane for the homogeneous reactor. Since both configurations have
different numbers of layers but are both featured by water and fuel,
the number of complex branches turns out to be proportional to the
number of materials. The number of layers seems to affect only the
disposition and separation of the branches, as observed in Fig. 8. At
a first glance, the fact that the angular branches are sensitive to the
material properties could appear non-physical, since �̂�𝜙 = ∇⃗ ⋅ (�⃗�𝜙).
7

Hence, this phenomena most likely origins from a spatial-angular effect,
in analogy to the spatial-energy coupling that features the heteroge-
neous media (Weinberg and Wigner, 1958) and that can be observed
in Fig. 10, where two details of the spectrum around −𝓁−1

1,𝑐𝑜𝑙𝑙 (fast) and
−𝓁−1

2,𝑐𝑜𝑙𝑙 (thermal) are provided: the fast and the thermal branches for
the heterogeneous media exhibit different shapes, justified by spatial,
angular and energy effects (see Fig. 9).

The influence of the criticality level on time spectra can be ap-
preciated with Fig. 11(a), where the 𝜔-spectrum computed with 25
meshes and the P1 model collapsing the cross sections on the CASMO-
4 grid is reported for a linearly anisotropic, fissile slab. As it can
be noticed, the fundamental eigenvalue exhibits a large sensitivity to
the criticality level, making its numerical search quite challenging in
practice, especially when 𝜔0 falls in the interval [−𝜆1, 1].

Contrarily to the 𝛾 case, the number of complex branches in the time
spectrum seems independent of the energy spectrum 𝜑(𝐸) featuring
the system, as it can be deduced from Fig. 11(b). Another relevant
information can be obtained comparing these spectra with the one
represented in Fig. 6, computed with the same Nx and 𝑁 but using the
CASMO-7 grid. In the last case, most of the groups are thermal, while
the 8 groups employed for the cases in Fig. 11(b) are almost uniformly
spaced in lethargy. The differences in the grids are reflected by the
distribution of the frequencies, which are more evenly distributed in
the 8-group case with respect to the CASMO-7 case, where most of the
branches are located towards the thermal collision frequencies.

3.4. The density eigenvalue

Except for 𝜔, both 𝑘 and 𝛾 act on the number of particles emitted by
fission and scattering, respectively, despite these parameters cannot be
modified, in practice, without affecting also other parameters. Probably
inspired by the desire of avoiding this drawback, Ronen et al. (1976)
introduced the so-called density eigenvalue,

�̂�𝜑𝛿,𝑛 =
1
𝛿
(

�̂� + 𝐹 − �̂�
)

𝜑𝛿,𝑛, (16)

which can be interpreted as the ratio between the number of particles
interacting in the system and the number of particles leaking out of the
system,

𝛿 =
⟨(�̂� + 𝐹 − �̂�)𝜑𝛿,𝑛⟩

⟨�̂�𝜑𝛿,𝑛⟩
. (17)

This eigenvalue lends itself to two physical interpretations. The most
intuitive one is to consider 𝛿 as a scaling factor for the material
density. From a different perspective, under some assumptions it can
be interpreted as a streaming eigenvalue changing the relationship
between the angular flux and the angular current (�̂�𝜙). In this respect,
𝛿 scales the geometrical size of the system (Velarde et al., 1978; Perel
et al., 1999). With respect to what it can be found in the literature, this
equivalence condition actually holds only with a specific assumption:
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Fig. 9. Time spectrum (left) a detail of the same spectrum (right) for Re(𝜔) = [−2 × 106 ,−5 × 105] (𝑁𝑥 = 121, 𝑃7, G = 1).
Fig. 10. Details on the fast (left) and thermal (right) frequencies featuring the time spectrum (𝑁𝑥 = 121, 𝑃3, CASMO-2).
Fig. 11. Time spectra for homogeneous, fissile slabs considering linearly anisotropic scattering. The dashed black line indicates the Corngold limit (left) and the delayed spectrum
limits (−𝜆𝑅 and −𝜆1).
if each geometrical coordinate is scaled with a factor 𝛽, ⃗ = 𝛽𝑟, the
divergence of the current should scale accordingly,

∇ ⋅ (�⃗�𝜙(𝑟, 𝐸, �⃗�)) ⟶𝛽∇ ⋅ (�⃗�𝜙(⃗, 𝐸, �⃗�))

= 𝛽(�⃗� ⋅ ∇𝜙(⃗, 𝐸, �⃗�) + 𝜙(⃗, 𝐸, �⃗�)∇ ⋅ �⃗�).
(18)

It can be shown that this condition is satisfied whenever ∇ ⋅ �⃗� = 0.
When the reference frame is not fixed in space, as for curvilinear ge-
ometries (Bell and Glasstone, 1970), the condition expressed in Eq. (18)
should be examined case by case. For spherical and cylindrical frames,
it is possible to prove that this condition still holds. For other ge-
ometries, a useful generalisation of the scattering term can be found
in Pomraning (1989).

When 𝛽 = 1∕𝛿, the scaled system is critical, as 𝛿 cancels out
in Eq. (16): given a certain material composition with 𝑘∞ > 1, criticality
is attained by changing the surface-to-volume ratio of the system,
and, thus, the leakage term. The condition on 𝑘∞ can be deduced
from elementary criticality theory in diffusion: for a homogeneous,
8

one-speed slab with zero-flux boundary condition 𝛿𝑛 reads

𝛿𝑛 =

√

𝑘∞ − 1
𝐿𝐵𝑛

, (19)

which yields a real and positive eigenvalue if and only if 𝑘∞ > 1. This
simple example also shows that 𝛿0 → ∞ when 𝐵0 → 0: it is not possible
to derive a 𝛿-based criticality condition for the infinite medium, where
no leakage occurs by definition.

Fig. 12 helps to understand the general structure of the 𝛿-spectrum,
which appears constituted by a branch of strictly real and positive
eigenvalues, a branch of strictly real and negative eigenvalues and
two complex conjugate branches. Additional DoF introduced by larger
values of Nx do not alter the overall shape of the spectrum, adding more
eigenvalues towards the origin of the complex plane, while increasing
𝑁 and G generates a number of complex branches that is proportional
to both 𝑁 and G: two complex conjugate branches appear in the P1,
CASMO-2 case (Fig. 12(d)), six complex conjugate branches are present
for the P3, CASMO-2 case (Fig. 12(b)), six branches can be appreciated
for the P , CASMO-4 case (Fig. 12(c)), while twelve branches can be
1
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Fig. 12. 𝛿-spectrum for a homogeneous, fissile slab considering isotropic scattering.
Fig. 13. 𝛿-spectrum for a homogeneous, fissile slab with isotropic scattering.
observed for the P3, CASMO-4 case (Fig. 13(b)). The position of the
complex branches is strongly related to angular-energy effects, which
cannot be appreciated in the case of the 𝑘 eigenvalue, since fission
is isotropic. The P1, CASMO-4 model (Fig. 13(a)) is featured by two
complex branches with Re(𝛿)> 0, while, if the same system is solved
with P3 and the CASMO-4 grid (Fig. 13(b)), these branches can be found
in the Re(𝛿)< 0 half-plane.

Finally, it is interesting to highlight that, when even-order (odd-
order) PN (SN) approximations are employed, a set of extremely large
eigenvalues (∼ 1015) appears. These spurious eigenvalues stems from
the fact that �̂� becomes singular when such parity orders are employed.
The SN formalism is useful to give a physical interpretation to this
effect. When 𝑁 is odd, the following equation could be written for the
streaming direction 𝜇𝑁∕2+1 = 0, parallel to the slab boundaries,

𝜇𝑁∕2+1
𝜕𝜙(𝑥, 𝜇𝑁∕2+1)

𝜕𝑥
= −1

𝛿
𝛴𝜙(𝑥, 𝜇𝑁∕2+1) = 0. (20)

Since 𝛴 and 𝜙 are non-zero, Eq. (20) holds only in the limit case 𝛿 → ∞.
9

As visible in Fig. 14, the overall shape of the spectrum seems not
very sensitive neither to the energy spectrum featuring the system nor
to the offset from criticality, provided that criticality can be achieved
with 𝛿. In this respect, it is not always possible to justify the existence
of a positive, real eigenvalue, especially in the case of a heterogeneous
medium. The cases with 𝛿0 < 0 seem to suggest that criticality can be
attained by exchanging artificially the rôle of production and removal
terms in case the fissile material was not sufficient to sustain the
chain reaction (as discussed previously for the homogeneous, one-speed
diffusion case). This behaviour should not be regarded as an unpleasant
issue concerning 𝛿, but rather as a consequence of the additional
physical constraints considered in the search for criticality. Fig. 14(b)
also shows that, among the ‘‘static’’ eigenvalue formulations, 𝛿0 is the
most sensitive one to the offset from criticality.

Finally, Fig. 15 shows the effect of the spatial heterogeneity on the
spectrum shape. In this case, apart from additional complex branches
around 𝑅𝑒(𝛿) = 0, related to the use of more energy groups and
common to each arrangement, it is not possible to appreciate evident
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Fig. 14. 𝛿-spectrum for homogeneous, fissile slabs with linearly anisotropic scattering.
Fig. 15. 𝛿-spectrum (left) for three critical slabs featured by different material arrangements (𝑁𝑥 = 121, 𝑃3, CASMO-7) and an enlargement on the positive half-plane (right).
Fig. 16. Group-wise fundamental 𝛿 modes obtained for a heterogeneous, moderated, critical system.
deformations of the spectrum due to the number of layers or their
composition. Nevertheless, the detail of the real, positive branch reveals
more fundamental eigenvalues for the lattice case, each associated with
an eigenfunction with uniform sign. These fluxes, reported in Fig. 16,
are very similar in space but featured by different energy spectra. Also
these multiple fundamental eigenpairs are related to the competition
between production and removal and between fuel and moderator.

3.5. Summary on the analysis of the eigenvalue spectrum

In the previous sub-sections, the behaviour of the eigenvalue spec-
trum has been thoroughly studied with respect to both modelling
and physical parameters, trying to highlight general features of its
shape that can be relevant for different applications, encompassing,
for instance, the optimisation of numerical solvers and higher-order
perturbation analysis. In order to support the reader, the results and
10
observations made in the previous subsections are summarised in the
following.

The characteristics of the eigen-spectrum mostly depend on the
specific physical term that is modified in the balance equation by the
introduction of the eigenvalue. For a given eigenvalue problem, the
shape of the spectrum is determined by the numerical model adopted
to approximate the transport equation (Nx, N, G) and by the physical
features of the system (the reactor design, the spatial arrangement, the
anisotropy of the scattering...):

• multiplication eigenvalue 𝑘: the spectrum is always real. While
the numerical approximations do not significantly affect the spec-
trum shape, the off-criticality, the angular model (SN+1 vs. PN)
and the spatial arrangement modify the separation and disposi-
tion of the higher-order eigenvalues.

• collision eigenvalue 𝛾: the spectrum is composed by a set of
purely real eigenvalues and by possible complex eigenvalues,
which are mostly introduced by energy and directional effects.
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Table 3
Summary of the sensitivity of the spectrum to modelling and physical parameters (H = high sensitivity, I = intermediate
sensitivity, L = low sensitivity).

Nx N G Anisotropy Energy spectrum Heterogeneity Angular model Off-criticality

𝑘 L L L L L H I I
𝛾 L I I H H I I H
𝜔 (𝛼) L H H L I H H I
𝛿 L H H L I L I L
Fig. 17. One-dimensional models of the LFR-like core (left) and LWR-like core (right) used for the sensitivity analysis.
The spatial discretisation does not alter its shape, while the order
of the angular model, the anisotropy of the scattering and the
number of energy groups strongly modify the disposition of the
higher eigenvalues. Also the reactor energy spectrum and the
off-criticality level are important parameters for determining the
shape of the eigenvalue spectrum.

• time eigenvalue 𝜔: the spectrum exhibits real discrete eigenval-
ues and a set of eigenvalues which asymptotically (Nx → ∞,
N → ∞, G → ∞) constitute a continuum on the complex plane.
The position of the discrete terms depends on the presence of
delayed emissions in the model and on the off-criticality level,
while the energy model and the order of the angular approx-
imation affect the way in which the eigenvalues progressively
fill the continuum part. The complex branches align according to
the group-wise collision frequency, and their number is propor-
tional to the quadrature set used in the angular model. Another
relevant parameter for the spectrum shape is the spatial hetero-
geneity, which introduces frequencies that are representative of
the different materials.

• streaming/density eigenvalue 𝛿: the spectrum is composed by a
set of purely real eigenvalues and by complex branches related to
energy and directional effects. Despite its complicated structure,
the shape of the 𝛿 spectrum is not as sensitive as the 𝜔 spectrum
to the spatial heterogeneity and to the angular model. However,
the number and the position of the complex branches are heavily
affected by 𝑁 , and extremely large eigenvalues may appear in the
PN (SN+1) model when 𝑁 is even. In heterogeneous systems, more
than one dominant eigenvalue could be found.

Table 3 briefly summarises the impact of different modelling and
physical parameters on the spectrum of each eigenvalue formulation.

4. Sensitivity of the energy spectrum on the eigenvalue formula-
tions

The second part of the work is devoted to performing a sensitivity
analysis of the energy spectra computed with the eigenvalue problems
analysed previously with respect to the critical spectrum of a reference
system. A similar analysis has been already carried out in Cacuci et al.
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(1982), although only for a thermal, reflected slab, described with
a two-group S4 model. In the reference, the critical spectrum of the
system was compared with the spectra 𝜑x(𝐸) (x = 𝑘, 𝛾, 𝛿, 𝜔) computed
solving the eigenvalue problems for slightly off-critical systems. The
departure from criticality was assumed to stem from perturbations in
the input parameters (e.g., the core dimensions or the fission cross
section). The outcomes of the analysis carried out in the reference
highlighted the features of the eigenvalue formulations from a more
practical point of view, and could be summarised as:

• a qualitative analysis related to the spectra hardness in the core
and reflector was established through local spectral indexes,
showing that the spectra hierarchy in each region holds inde-
pendently on the physical parameter inducing the deviation from
criticality;

• a quantitative analysis showed that the relationship between the
critical spectrum 𝜑𝑘=1(𝐸) and 𝜑x(𝐸) (x = 𝑘, 𝛾, 𝛿, 𝜔) depends on the
physical parameter responsible for the deviation from criticality,
implying that an eigenvalue formulation yielding a spectrum that
is always the closest to the critical spectrum does not exist. When
the deviation from criticality was caused by a uniform change in
the dimensions (which is a rather unlikely situation, in practice),
𝜑𝛿(𝐸) = 𝜑𝑘=1(𝐸), while when a physical parameter related to
fission was perturbed, 𝜑𝑘(𝐸) is the closest spectrum to the critical
one. In every situation, 𝜑𝛾 (𝐸) had intermediate features compared
to other spectra, suggesting that it is the most appropriate one to
describe the reference system when the deviation from criticality
is not related to fission.

In this section, we try to enrich the analysis carried out in Cacuci
et al. (1982), considering also a fast system based on the LFR concept,
with the aim of drawing more general conclusions. In addition to
perturbations in some physical parameters, our work focuses also on
temperature effects and perturbations in the computational model, like
boundary conditions and scattering anisotropy order. The outcomes of
this study should provide some empirical insights that may support
the choice of the most appropriate eigenvalue formulation for reactor
physics applications, like the preparation of group constants and the

calculation of kinetic parameters.
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Fig. 18. Direct (top) and adjoint (bottom) critical energy spectra in the regions of the LFR (left) and LWR (right) cores depicted in Fig. 17 (𝑁𝑥 = 99, 𝑃7, 𝐺 = 29).
Fig. 19. Fission cross section for the reactor configurations considered in this section.
The accuracy of the group constants depends on the group structure
(i.e., number of groups and their boundaries) and on the spectrum
used for the collapsing. For design calculations, the most appropriate
spectrum is the critical one, 𝜑𝑘=1(𝐸). However, due to modelling and
input data uncertainties, the spectrum used in the collapsing process
is an approximation to 𝜑𝑘=1(𝐸). As concluded in Cacuci et al. (1982)
and remarked in the following, the closest eigenvalue spectrum to
𝜑𝑘=1(𝐸) depends, in general, on the parameter causing the deviation
from criticality. Each eigenvalue formulation tunes one or more terms
of the neutron transport equation to satisfy the balance: when the
tuning parameter (i.e., the eigenvalue) acts in ‘‘the opposite direction’’
of the perturbation altering the criticality, its spectrum tends to the
critical one.

Fig. 17 sketches the two one-dimensional slab models for the LFR
and LWR cores devised for this study. The rationale behind the choice
of these systems is to have a relatively simple but representative
heterogeneous arrangement, featured by central and peripheral fuel
assemblies (FAs), the control rods and the external reflector (in the
12
LWR case, the reflector is assumed to be made of stainless steel,
as in Gen-III+ reactors). The multi-group cross section characterising
these systems have been generated with the Serpent 2 Monte Carlo
code (Leppänen et al., 2015) on a 29-group structure consisting of one
fast group, one thermal group and 28 groups with equal lethargy widths
between 6.25 ⋅ 10−07 and 10 MeV. This energy grid has been conceived
to allow a consistent comparison between the fast and thermal energy
spectra featuring the systems.

The forward and adjoint critical spectra in the different regions
composing these two systems are represented in Fig. 18. The adjoint
spectrum has the same hierarchy in the regions of both systems, con-
sistently with the interpretation of the adjoint as ‘‘importance’’ density
function (Lewins, 1965): the most important neutrons are located in
the central FAs, followed by the peripheral FAs, the reflector and
the control region. In the LWR the adjoint spectrum is approximately
uniform above the thermal region, except for the reflector, where the
importance is roughly inversely proportional to 𝐸, while in the LFR the
adjoint has two local maxima, in correspondence of the maxima of the
fission cross section for the LFR FAs (see Fig. 19).
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Fig. 20. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 344, P1) of LFR (left, 𝑘eff = 1.00256) and LWR (right, 𝑘eff = 1.00596) cores and the spectra of the same system
but computed with 𝑁𝑥 = 64.
4.1. Effect of spatial meshing

The first model perturbation studied involves the adoption of a
coarser spatial mesh. The ‘‘sensitivity’’ of the eigenvalue energy spectra
is assessed considering, in each spatial region 𝑖, the difference between
the critical spectrum (computed, in this case, with a P1 model and
Nx = 344 meshes) and the spectrum associated with each eigenvalue
formulation, weighted with the adjoint spectrum of the critical system,

+
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𝜀x,𝑖,𝑔 = 𝜑𝑘=1,𝑖,𝑔(𝜑𝑘=1,𝑖,𝑔 − 𝜑x,𝑖,𝑔) x = 𝑘, 𝛾, 𝛿, 𝜔. (21)
This adjoint-based metrics is preferred to the standard relative error
to avoid shifts in the energy profile of the relative difference. As an
example, in the LFR the differences in the thermal and low epithermal
regions would be weighted more than the ones affecting the high
epithermal and fast region, despite their lower ‘‘importance’’. Thus, to
prevent the relative error masking the behaviour of the energy spectra,
the adjoint flux integrated on each region is used. Despite the adoption
of the adjoint flux, it should be noticed that Eq. (21) is not derived from
classical perturbation analysis, but it is a rather intuitive and simple
way of measuring the sensitivity of the energy spectrum.
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The adjoint-weighted errors for the 𝑘, 𝛾 and 𝜔 eigenvalues are
isible in Fig. 20. Apart from the central FAs region, the errors have
similar trend for each formulation in the LFR case. The 𝛾 formulation

s the least sensitive to Nx in the outer regions, while in the CR and
n the central FAs 𝑘 is the most accurate. In the LWR case the errors
ave a more regular behaviour, having the same energy profile in each
egion and preserving the accuracy ranking (𝑘, 𝜔 and then 𝛾). The 𝛿
igenvalue has been analysed but omitted from the figure because of
ts nature: being tightly related to neutron leakages, the adoption of a
oarser mesh clearly introduces large distortions in the leakages, due to
he poorer representation of the flux gradients, which in turn generates
ery large errors.

.2. Effect of angular model

The effect of perturbations in the angular model on the spectra can
e appreciated in Fig. 21, where the critical spectrum computed with
P7 model is compared to the ones obtained with a P3 model.

In both reactors, the weighted, group-wise error is maximum in the
ast region. For the LFR, the trend with respect to 𝐸 is the same in the
uter regions of the core, where the eigenvalue spectra are harder than
he critical spectrum, while in the innermost FAs the error changes sign,
imilarly to what observed in Section 4.1 for the spatial meshes. The
egative sign in the outer regions indicates a spectrum hardening. The
nergy spectra computed with the different eigenvalues can be hardly
istinguished. Similar considerations can be made also in the case of P5
nd P1 models, suggesting that the various spectra are equally sensitive
o the angular model, for a fast reactor.

In the LWR case the trend with respect to 𝐸 is similar for all regions
i.e., the eigenvalue spectra are softer than the critical spectrum),
xcept for the borated water layer, where the eigenvalue spectra are
arder. In this case, a certain discrepancy between 𝛿 and the other
igenvalue formulations can be appreciated. The larger sensitivity of
can be due to the impact of the angular model on the scattering
ith the moderator, which has a direct impact on leakages. Similar

onsiderations hold also when the calculations are carried out with P5
nd P1 models.

.3. Effect of scattering anisotropy

The order of the scattering anisotropy 𝐿 is a parameter that, with
he optical thickness of a system, marks the difference between trans-
ort models and diffusion, which is not able to account for values of
> 1. Fig. 22 shows the usual sensitivity indicator for the eigenvalue

ormulations. To better appreciate the trends of these differences in the
arious regions, the average cosine of the scattering angle 𝜇0 has also
een reported as a function of 𝐸. The trend of 𝜇0(𝐸) is approximately

the same across the LFR regions, i.e. almost 0 in the thermal and
epithermal regions and forward-peaked in the fast region. In the LWR,
𝜇0(𝐸) exhibits important differences moving towards the centre of the
core: in the reflector it behaves like in the LFR case, while in the
borated water layer and in the peripheral and central FAs the scattering
is forward-peaked also in the epithermal region, due to the presence of
hydrogen.

The trend of the adjoint-weighted error between the critical spec-
rum and the ones computed with the eigenvalue formulations is ap-
roximately the same for the reflector, control rod and peripheral
As in the LFR: the eigenvalues behave similarly, but 𝛿 is the most
ppropriate formulation. Neglecting the forward-peaked scattering at
igh energy globally softens the eigenvalue energy spectra (𝜑𝑘=1 < 𝜑𝑥):

the isotropic scattering increases the chances of high-energy neutrons
to stay in the same region and slow down. The reduction of neutron
leakages is almost counterbalanced by 𝛿, which scales the geometry
down minimising the perturbation in the energy spectrum with respect
to the other formulations. The 𝛿 spectrum is the most appropriate also
n the central FAs, while the error of 𝑘 is shifted with respect to the
14
one of 𝛾 and 𝜔. The presence of a spectral shift in this region can be
explained by its larger thickness: particles have more chances to stay
in the central FAs, so their interaction with matter, which is affected
by the eigenvalue, makes more explicit the spectral differences.

In the LWR, which is optically larger, the trend strongly depends on
the region considered. The 𝜔, 𝛾 and 𝑘 spectra have a similar behaviour,
being very close except for the peripheral FAs, where the 𝛾 spectrum
s the most inaccurate. This large discrepancy can be related to the
osition of this region, which is close to the reflector, where the effect
f anisotropy on the slowing down is important. It should be also
cknowledged that 𝛾 is the only eigenvalue acting directly on the terms
elated to the anisotropy. Since the LWR is optically larger than the
FR, the relation between anisotropy and leakage is weaker, affecting
he performances of 𝛿, which is very accurate in the borated water layer
nd very inaccurate in the central FAs.

In both cases, the errors generally tend to increase with energy,
onsistently with the behaviour of 𝜇0, but the LFR seems more sensitive
o the anisotropy, as it can be appreciated looking at the 𝑘 static
eactivity.

.4. Effect of boundary conditions

It is well known that an approximated transport model, and the
elated boundary conditions (BCs), cannot represent the exact physical
ituation, even for simple geometries, like a slab surrounded by vac-
um. In the framework of the PN approach, these BCs can be imposed

with either the Mark or Marshak formalism (see Abrate et al. (2021b)
for more implementation details). In this section, the perturbation
induced by the adoption of the Marshak BCs instead of Mark ones is
assessed for the different eigenvalue formulations.

Fig. 23 reports the results of this sensitivity study. First of all, it
can be appreciated that the perturbation of BCs affects more the LFR
core (𝑘eff = 1.00039) than the LWR one (𝑘eff = 1.00011): the role of the
boundaries is more important in the LFR, where the mean free path
is larger. This fact can be appreciated looking at the energy spectra
in Fig. 23. The trend of the errors is roughly the same for the outer
regions of the LFR: 𝛿 is the most inaccurate, followed by 𝜔, 𝑘 and 𝛾. In
the central FAs, 𝛾 and 𝑘 are the most accurate in the epithermal and
fast regions, respectively. In the LWR case it can be noticed that the
errors have generally the same trend, but the 𝛿 one is always negative
(i.e., it is harder than the critical spectrum), while the errors of 𝜔, 𝑘 and
𝛾 are positive in the central FAs. As expected, the sensitivity to the BCs
is negligible for thermal neutrons and grows up to a maximum at the
beginning of the fast region in both reactors. Boundary conditions are
tightly related to neutron leakages. The P1 model allows to relate quite
intuitively Mark and Marshak BCs to different extrapolation lengths
𝑑 for a bare reactor, with 𝑑𝑀𝑎𝑟𝑠ℎ𝑎𝑘 > 𝑑𝑀𝑎𝑟𝑘. Therefore, adopting
Marshak BCs, in this case, is somehow equivalent to considering a
larger reflector. At a first glance, this would suggest that 𝛿 is the best
formulation in both cases, which clearly is not: 𝛿 scales either the
isotopic density or the geometry of the entire domain, with a totally
different impact on the spectrum.

4.5. Effect of input perturbations

The first type of perturbation in the input physical data investigated
in this section is the operating temperature of the system (see Fig. 24).
The LFR is critical at 673 K and becomes sub-critical when the temper-
ature is raised up to 1073 K, while the LWR is critical at 300 K and
becomes sub-critical at 570 K. In both cases, and for each region, 𝛿
is the less accurate formulation: despite the temperature affects all the
material parameters (no thermal dilatation is considered) as 𝛿 does, the
effect is not the same in different regions. The shape of the group-wise
errors of the other eigenvalues is approximately the same for the LFR,
with 𝑘 and 𝛾 being the most accurate in the fast and epithermal zones,
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Fig. 21. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P7) of LFR (left, 𝑘eff = 0.99973) and LWR (right, 𝑘eff = 0.99985) cores and the spectra of the same system
but computed with the 𝑃3 model.
respectively. In the LWR, 𝑘 seems the most accurate formulation, except
for the central FAs, where 𝛾 is more accurate.

The second physical perturbation is a ±2.5% variation in the fission
cross section of the initially critical reactors. According to the evidences
presented in Cacuci et al. (1982), perturbations in fission-related pa-
rameters should be best represented by the 𝑘 spectrum. The results
for our LWR case are in line with this statement (see Fig. 26 in the
Appendix), whilst the results for the LFR cases, depicted in Fig. 25,
shows that this conclusion may not always hold for fast reactors: for
the sub-critical case the 𝛾 spectrum is the most accurate in the outer
15
regions, while for the super-critical case the 𝛿 spectrum is the most
accurate one. The 𝑘 spectrum is the most accurate in the inner regions
in both cases. In the case of ± 2.5% variations in the capture cross
section (see Figs. 27, 28 in Appendix), the 𝛾 spectrum is the closest to
the critical one in each region of both systems, except for the central
FAs of the LWR, where 𝛿 performs better.

The last two cases pertain to variations in some geometrical dimen-
sions of the system, i.e. the thicknesses of the absorber layers and the
thicknesses of the left and right reflectors. For these perturbations (see
Figs. 29, 30–32 in the Appendix), the behaviour of the eigenfunctions
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Fig. 22. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, linear anisotropy 𝐿1) of LFR (left, 𝑘eff = 1.01645) and LWR (right, 𝑘eff = 1.00290) cores and the
spectra of the same system but with isotropic scattering (𝐿0).
are strongly dependent on the reactor concept, on the spatial region
and also on the energy group.

5. Conclusions and future perspectives

This paper has investigated some features of the eigenvalue and
energy spectra for the most popular eigenvalue formulations arising
in neutron transport, in an attempt to fill some gaps in the literature
16
and providing useful information that can be exploited in the fields of
numerical transport and reactor analysis.

The first part of the paper analyses the features of the eigen-
value spectrum on the complex plane varying both model parameters,
e.g., the spatial and group meshing, and physical features, like the
reactor concept and sub-criticality level. On top of its manifest impor-
tance for tuning the eigenvalue solvers, the knowledge of the shape
and features of the eigen-spectrum may be very useful to interpret the
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Fig. 23. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P1, Mark boundary conditions) of LFR (left, 𝑘eff = 1.00039) and LWR (right, 𝑘eff = 1.00011) cores and
he spectra of the same system with Marshak boundary conditions.
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ffects of numerical approximations, and can support the development
f methods for core stability analysis.

The second part of the paper extends previous analyses present in
he literature concerning the distortion caused in the energy spectrum
y the different eigenvalue formulations in off-critical systems, which
s interesting for group constant collapsing and kinetic parameters
17

a

eneration. The departure from criticality is caused considering coarser
odels, e.g., poorer angular approximations and coarser meshes, and

lterations in physical parameters as the scattering anisotropy and
he thermodynamic conditions, which, to our knowledge, were not
onsidered previously in the literature.

Among the outcomes of this analysis, it should be remarked that
formulation minimising the deviations from the critical spectrum
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Fig. 24. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P1, Mark boundary conditions) of LFR (left, 𝑘eff = 0.99775) and LWR (right, 𝑘eff = 0.99082) cores and
he spectra of the same system with higher operating temperatures (from 673 to 1073 K for the LFR and from 300 to 570 K for the LWR).
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annot be identified in general. Although deeper investigations should
e carried out to obtain some more practical indications on more
ealistic reactor configurations, this evidence shows that the legacy
pproach based on collapsing the group constants on the 𝑘 spectrum
s usually not the most accurate one. On the contrary, 𝛾 is hardly
ver the one yielding the worst results. This result, which extends the
onclusions drawn by Cacuci et al. (1982) also to fast reactors, could be
18

m

ustified by the fact that this eigenvalue acts simultaneously on more
egrees of freedom, i.e. fission and scattering, so it allows to achieve
riticality with milder perturbations than the ones induced by 𝑘. As
entioned above, future works should be devoted to a more complete

ssessment of the eigenvalue performances, especially analysing time-
ependent and more-realistic configurations, for instance involving the
ovement of the control rods.
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Fig. 25. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with higher (left, +2.5%) and lower

(right, −2.5%) fission cross section for the LFR case.
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See Figs. 26–32.
Fig. 26. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with higher (left, +2.5%) and lower
(right, −2.5%) fission cross section for the LWR case.
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Fig. 27. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with higher (left, +2.5%) and lower
(right, −2.5%) capture cross section for the LFR case.
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Fig. 28. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with higher (left, +2.5%) and lower
(right, −2.5%) capture cross section for the LWR case.
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Fig. 29. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with thicker (left, +2.5%) and thinner
(right, −2.5%) absorber layer for the LFR case.
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Fig. 30. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with thicker (left, +2.5%) and thinner
(right, −2.5%) borated water layer for the LWR case.
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Fig. 31. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with thicker (left, +2.5%) and thinner
(right, −2.5%) reflectors for the LFR case.
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Fig. 32. Relative difference between the critical spectrum 𝜑𝑘=1 (Nx = 140, P3, Mark boundary conditions) and the spectra of the same system with thicker (left, +2.5%) and thinner
(right, −2.5%) reflectors for the LWR case.
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