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Fast sparse optimization
via adaptive shrinkage

Vito Cerone ∗ Sophie M. Fosson ∗ Diego Regruto ∗

∗ Department of Control and Computer Engineering,
Politecnico di Torino, Italy (e-mail: sophie.fosson@polito.it).

Abstract. The need for fast sparse optimization is emerging, e.g., to deal with large-dimensional
data-driven problems and to track time-varying systems. In the framework of linear sparse
optimization, the iterative shrinkage-thresholding algorithm is a valuable method to solve Lasso,
which is particularly appreciated for its ease of implementation. Nevertheless, it converges slowly.
In this paper, we develop a proximal method, based on logarithmic regularization, which turns
out to be an iterative shrinkage-thresholding algorithm with adaptive shrinkage hyperparameter.
This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster
convergence, while keeping the simplicity of the original method. Our contribution is twofold:
on the one hand, we derive and analyze the proposed algorithm; on the other hand, we validate
its fast convergence via numerical experiments and we discuss the performance with respect to
state-of-the-art algorithms.

Keywords: Sparse learning, optimization, estimation, iterative/recursive algorithms, proximal
algorithms, accelerated algorithms.

1. INTRODUCTION

Sparse optimization consists in learning sparse models
through the solution of suitable optimization problems.
We call “sparse” those models that depend on a reduced
number of parameters, which is a desirable condition for
several motivations, ranging from the decrease of numer-
ical complexity and memory footprint to the circumven-
tion of overfitting; see, e.g., Hastie et al. (2015); Brunton
and Kutz (2019) for an overview. Recently, the attention
on sparsity is increasing in system identification and in
machine learning, on the one hand to select models that
are physically interpretable, on the other hand, to train
models that can be embedded in devices with limited
resources, such as mobile applications; see, e.g., Brunton
et al. (2016); Zhao et al. (2020); Louizos et al. (2018) for
different perspectives on this topic.

Nowadays, the optimization techniques to learn sparse
models are quite mature, in particular in the context of
linear systems. The Lasso problem, proposed in Tibshirani
(1996), is a popular, effective approach, that combines
least squares and ℓ1 minimization to search sparse solu-
tions via convex optimization. However, the development
of fast algorithms for sparse optimization is still an open
problem. In fact, in case of large-dimensional datasets,
the convexity is not sufficient to guarantee solutions in a
reasonable time. This aspect becomes critical, e.g., to iden-
tify time-varying or hybrid systems, where the parameters
either evolve in time or switch among different unknown
modes; in this framework, a prompt identification is nec-
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essary to track the dynamics; see, e.g., Lauer and Bloch
(2019); Fosson (2021).

In the specific case of Lasso, several methods are proposed
in the literature to minimize it efficiently. Among the
iterative algorithms, the iterative shrinkage-thresholding
algorithm (ISTA) proposed by Daubechies et al. (2004) is
a simple proximal method, straightforward to implement
even in a distributed context. Similarly, the alternating
direction method of multipliers (ADMM) is low-complex
and prone to distributed and parallelized computation; see
Boyd et al. (2010) for a complete overview. ISTA and
ADMM share an R-linear convergence rate, as proven
in Bredies and Lorenz (2008); Hong and Luo (2017),
while in practice ADMM is usually faster. Methods to
accelerate ISTA are proposed in the literature, such as
FISTA, see Beck and Teboulle (2009), which improves the
nonasymptotic global rate of convergence from O

(
t−1

)
to

O
(
t−2

)
.

In this paper, we analyze a different strategy for fast sparse
optimization. We start from the development of a proximal
gradient method for a Lasso-kind problem with logarith-
mic regularization, here denoted as Log-Lasso, and we
obtain a variant of ISTA whose shrinkage hyperparameter
is adaptive, i.e., it is updated at each iteration, based on
the current estimate. This feature makes the algorithm
significantly faster than ISTA. Throughout the paper, we
name AD-ISTA the proposed adaptive ISTA.

More precisely, by starting from the analysis in Dahlke
et al. (2012), we show that ISTA, FISTA and ADMM
share a common behavior in the minimization of Lasso: in
a first phase, they decrease the least squares term, while
the ℓ1-norm substantially increases; in a second phase,
they reduce the ℓ1-norm while keeping the least squares



error almost constant. This trajectory yields a transient
overestimation of the sparsity, which is time-consuming.
In contrast, the proposed approach is not affected by this
drawback. In this work, we limit the investigation to linear
systems and Lasso, while the proposed methodology might
be extended to different optimization problems.

In summary, our contributions are as follows. Firstly, we
illustrate how to apply a proximal method to Log-Lasso,
which results into AD-ISTA, and we propose a straight-
forward analysis of its convergence; contextually, we show
that AD-ISTA is equivalent to an ISTA with adaptive
shrinkage parameter. Secondly, we illustrate via numerical
experiments that AD-ISTA improves the trajectory with
respect to classical algorithms, which results in a faster
convergence. Moreover, by applying the approach of the
fast ISTA (FISTA) proposed by Beck and Teboulle (2009),
we propose an accelerated version of AD-ISTA, called AD-
FISTA. Finally, we also compare AD-ISTA and AD-FISTA
to ℓ1 reweighting methods.

We organize the paper as follows. In Sec. 2, we state the
problem. In Sec. 3, we derive and illustrate the proposed
approach, while Sec. 4 discusses the expected faster behav-
ior. This is validated via numerical experiments in Sec. 6,
where we add to the comparison the related algorithms
illustrated in Sec. 5; finally, we draw some conclusions.

2. PROBLEM STATEMENT

Let us consider sparse optimization problems of the kind

min
x∈Rn

G(x) +Rα(x) (1)

where G : Rn 7→ R+ is a convex, smooth cost functional
and

Rα(x) :=

n∑
i=1

αir(xi) (2)

is a sparsity promoting regularization with weights α =
(α1, . . . , αn), αi ≥ 0 for each i = 1, . . . , n. Usually, Rα(x)
is not differentiable at x = 0, and it may be non-convex.

To solve this class of composite non-smooth problems,
where gradient descent is not feasible, we can exploit the
proximal gradient method (PGM). PGM consists in iter-
ating a Landweber step on G, i.e., a gradient descent step
with constant stepsize τ > 0, and a proximal mapping.
More precisely, by defining λ := τα ∈ Rn and

proxRλ
(z) := argmin

x∈Rn

(
Rλ(x) +

1

2
∥x− z∥22

)
, (3)

PGM is as follows: for t = 0, 1, 2, . . .

xt+1 = proxRλ
(xt − τ∇G(xt)) . (4)

The convergence of G(xt) + Rα(xt), where xt is the
sequence of iterates of PGM, is proven when Rλ is convex,
G has Lipschitz continuous gradient, with constant L, and
τ = 2

L . Specifically, if x⋆ ∈ Rn is a minimizer, then
G(xt)+Rα(xt) converges to the minimum G(x⋆)+Rα(x

⋆).
In addition, if G is strongly convex, the convergence of xt to
the (unique) minimizer is also proven; see, e.g., Combettes
and Pesquet (2011); Calafiore and El Ghaoui (2014).

Lasso is an instance of problem (1): given A ∈ Rm,n and
a vector of measurements y ∈ Rm, Lasso corresponds to
G(x) = 1

2∥Ax−y∥22 andRα(x) = α∥x∥1, with scalar α > 0.

On the other hand, PGM applied to Lasso corresponds
to ISTA. The convergence of ISTA can be proven in a
peculiar way, developed by Daubechies et al. (2004), that
exploits the definition of a surrogate functional. With this
approach, the sequence xt generated by ISTA is proven to
converge to a minimizer, even though G(x) is not strongly
convex. We notice that 1

2∥Ax− y∥22 is not strongly convex
when m < n, which allows to efficiently use ISTA in
compressed sensing; see, e.g., Fornasier (2010).

The development of our approach starts by considering a
Lasso with possible non-convex regularization Rα, i.e.,

min
x∈Rn

F(x) :=
1

2
∥Ax− y∥22 +Rα(x). (5)

In principle, we can apply PGM to solve (5). However, we
have to cope with two critical points. On the one hand, the
computation of proxRλ

may be not straightforward when
Rλ (or equivalentlyRα) is non-convex. On the other hand,
to prove the convergence of the algorithm is challenging.

In the literature, some attention is devoted to the applica-
tion of PGM to problem (5). In particular, Bredies et al.
(2015) provide conditions under which F(xt) converges
in infinite-dimensional Hilbert spaces, by leveraging the
results in Attouch et al. (2011), and they analyze the
specific case of ℓp regularization. Moreover, Bayram (2016)
analyze the convergence of xt for (5) whenRλ(x) is weakly
convex and ATA is positive definite, which is not the case,
e.g., of compressed sensing.

In the following, we focus on the case

r(xi) = log(|xi|+ ϵ) (6)

where ϵ > 0 is a design hyperparameter that tunes
the concavity of the function. We call Log-Lasso the
problem (5)-(2)-(6). We consider Log-Lasso because log-
regularization is known to be efficient, see, e.g., Candès
et al. (2008); however, the proposed approach might be
extended also to other classes of non-convex regularizers.

3. PROPOSED APPROACH

In this section, we develop the proposed approach by
starting from the application of PGM to (5)-(6). Firstly,
we analyze the convergence of PGM applied to (5); then,
we deal with the computation of the proximal operator of
the log-regularizer.

Given F(x) defined in (5), we introduce the surrogate
functional

S(x, ζ) = F(x) +
1

2τ
∥x− ζ∥22 −

1

2
∥Ax−Aζ∥22 (7)

where ζ ∈ Rn is an auxiliary variable. We assume τ <
∥A∥−2

2 , so that

1

τ
∥x−ζ∥22−∥Ax−Aζ∥22 ≥

(
1

τ
− ∥A∥22

)
∥x−ζ∥22 ≥ 0 (8)

where the equality holds only for x = ζ. Then, we proceed
by alternating minimization of (7) with respect to x and
to ζ. According to (8),

x = argmin
ζ∈Rn

S(x, ζ). (9)

On the other hand, we have

argmin
x∈Rn

S(x, ζ) = proxRλ

(
ζ + τAT (y −Aζ)

)
. (10)



Then,

xt+1 = proxRλ

(
xt + τAT (y −Axt)

)
. (11)

We notice that F(xt) = S(xt, xt) ≥ S(xt+1, xt) ≥
S(xt+1, xt+1) = F(xt+1) ≥ 0, i.e., F(xt) is a non-
increasing, bounded sequence. This yields the following
result.

Lemma 1. Given the sequence xt generated by PGM ap-
plied to (5), F(xt) converges. Moreover, PGM applied
to (5) defines an asymptotically regular map, that is,
lim
t→∞

∥xt+1 − xt∥2 = 0.

In the following lemma, we specify how to compute
proxRλ

(z) = argmin
x∈Rn

Rλ(x) +
1
2∥x − z∥22 in case of log-

regularizer (6), for any z ∈ Rn. Since the problem is
separable, we explicitly evaluate the minimum for each
component i = 1, . . . , n. From now onwards, we tune the
hyperparameters λ = τα and ϵ such that

Assumption 1. For each i = 1, . . . , n, λi < ϵ2.

Lemma 2. Under Assumption 1, given any zi ∈ R,

argmin
xi∈R

µ(xi) := λi log(|xi|+ ϵ) +
1

2
(xi − zi)

2 =

=


zi − γi(zi) if zi >

λi

ϵ

zi + γi(zi) if zi < −λi

ϵ

0 if zi ∈
[
−λi

ϵ
,
λi

ϵ

]
(12)

where

γi(zi) :=
|zi|+ ϵ−

√
(|zi|+ ϵ)2 − 4λi

2
. (13)

Proof. Let us consider the case xi ∈ [0,+∞).

For xi ∈ (0,+∞), we have µ′(xi) = λi

xi+ϵ + xi − zi, and

µ′′(xi) = 1 − λi

(xi+ϵ)2 > 1 − λi

ϵ2 . Thus, µ
′′(xi) > 0 under

Assumption 1, i.e., µ(xi) is strongly convex in [0,+∞).
Therefore, if there exists a stationary point, it corresponds
to the unique minimum; otherwise, the minimum is at xi =
0, since µ is strongly convex in [0,+∞) and lim

xi→+∞
µ(xi) =

+∞.

Let us compute the possible stationary points. We notice
that xi + ϵ ̸= 0 because xi ∈ [0,+∞). Therefore,

µ′(xi) = 0 ⇔ λi + (xi − zi)(xi + ϵ) = 0

⇔ xi =
zi − ϵ±

√
(zi + ϵ)2 − 4λi

2
.

(14)

Then, we have to check whether these two solutions are
consistent with the condition xi ≥ 0.

First of all, it is straightforward to evaluate that (zi+ϵ)2−
4λi ≥ 0 whenever zi ∈ Ω := (−∞,−2

√
λi − ϵ) ∪ (2

√
λi −

ϵ,+∞). Afterwards,

zi − ϵ+
√
(zi + ϵ)2 − 4λi > 0 ⇔ zi ∈

(
λi

ϵ
,+∞

)
⊂ Ω;

zi − ϵ−
√
(zi + ϵ)2 − 4λi < 0 for any zi ∈ Ω.

We remark that
(
λi

ϵ ,+∞
)
⊂ Ω because 2

√
λi − ϵ < λi

ϵ
under Assumption 1.

In conclusion, if xi ∈ [0,+∞), the minimizer is xi =
zi−ϵ+

√
(zi+ϵ)2−4λi

2 if zi > λi

ϵ ; otherwise, if zi ≤ λi

ϵ , the
minimizer is xi = 0.

We omit the computations for the case xi ∈ (−∞, 0),
which are based on the same ideas and yield symmetric
conclusions. To sum up,

argmin
xi∈R

λi log(|xi|+ ϵ) +
1

2
(xi − zi)

2 =

=


zi − ϵ+

√
(zi + ϵ)2 − 4λi

2
if zi >

λi

ϵ
zi + ϵ−

√
(zi − ϵ)2 − 4λi

2
if zi < −λi

ϵ
0 otherwise.

(15)

From (15), we easily derive the thesis. □
Remark 1. The evaluation of the proximal operator is
more complex for ℓp. As one can see in Zuo et al. (2013);
Bredies et al. (2015), no closed form is provided. This
makes the choice of log regularization more affordable. On
the other hand, the results in (Bredies et al., 2015, Lemma
3.3) that define an exact formula for the proximal opera-
tion do not envisage the logarithmic case, as Assumption
3.2 in Bredies et al. (2015) requires that r′(xi) → ∞ for
xi → 0, which is not our case.

Lemma 2 provides an interesting interpretation of PGM
applied to Log-Lasso. In fact, according to Lemma 2, we
can formulate the PGM iteration as

zt = xt + τAT (y −Axt),

xt+1 = Sλ
ϵ ,γ(zt)

(zt)
(16)

where γ(z) = (γ1(z1), . . . , γn(zn)) is defined in (13) and
Sλ

ϵ ,γ(z)
(z) is a shrinkage-thresholding operator, defined

componentwise as

Sλi
ϵ ,γi(zi)

(zi) :=


zi − γi(zi) if zi >

λi

ϵ

zi + γi(zi) if zi < −λi

ϵ
0 otherwise.

(17)

In (17), γi(zi) is the shrinkage value, while λi

ϵ is the
threshold below which variables are set to zero. We notice
that, by using the notation of (17), we can write ISTA as

xt+1 = Sλ,λ
(
xt + τAT (y −Axt)

)
(18)

because in ISTA the shrinkage and thresholding hyperpa-
rameters are the same. In particular, in (18), λ is time-
invariant and constant for each component i. In contrast,
(16) represents a generalization of ISTA, where shrinkage
and thresholding hyperparameters, namely γ(z) and λ

ϵ , are
different. In particular, γ(z) is time-varying, as it adapts
to the current value of xt + τAT (y−Axt) and it penalizes
more the values closer to zero. This penalization is “less
democratic” than the one of ISTA, and it causes less bias
in the non-zero components of the solutions. The proposed
algorithm (16) is an adaptive ISTA (AD-ISTA), because
the shrinkage is adaptive.

4. WHY AD-ISTA IS FASTER THAN ISTA?

In this section, we discuss why AD-ISTA is expected
to be faster than ISTA. The aim of this analysis is to
illustrate the role played by the shrinkage hyperparameter



in determining the trajectory of the algorithm. More
rigorous proofs are left for extended work.

As to ISTA, the role of λ in the speed of convergence is
fundamental. In general, by increasing λ we obtain a faster
algorithm; on the other hand, a too large λ would cause a
substantial bias in the solution. Prior information on the
solution can be used to set λ. As an extreme example, if the
solution has support S, |S| = k ≪ n, we assume λ ∈ Rn

where λi /∈ S are very large, then the correct support
is identified in one step, and the problem is immediately
reduced to dimension k ≪ n, which substantially reduces
the number of iterations.

In Daubechies et al. (2008), the Authors analyze the
dynamics of ISTA for Lasso: ISTA first reduces the residual
∥Ax − y∥22 and contextually overestimates the ℓ1-norm;
then, it corrects back the ℓ1-norm. This causes a “long
detour” which yields slow convergence, see (Daubechies
et al., 2008, Fig.1). For this motivation, the Authors
propose to constrain the ℓ1-norm within a given ball;
however, this does not result in a clear acceleration of the
method.

The idea is further developed in (Dahlke et al., 2009,
Section 1.2), where the Authors propose to project the
Landweber iteration ℓ1-balls with slowly increasing radius.
In practice, they implement the idea by proposing an
ISTA with decreasing shrinkage-thresholding hyperparam-
eter. This algorithm, called D-ISTA is further analyzed in
Dahlke et al. (2012). In particular, it is proven to converge
with R-linear rate under some conditions, e.g, by assuming
that the hyperparameter decreases geometrically. How-
ever, choosing a suitable decreasing hyperparameter is
challenging.

In AD-ISTA we solve this issue, because the hyperparam-
eter adapts to the magnitude of the gradient step over
the previous estimate. This provides a larger shrinkage
for small values in magnitude. In particular, if we start
from the natural initial condition x0 = 0, and if τ is
small, in general the hyperparameter is larger in a first
phase, which keeps the ℓ1-norm small, while as far as the
components move away from zero, the shrinkage is smaller.
Therefore, to some extent, we have a decreasing behavior,
but only for those components that move far from zero.
This adaptation is the key motivation that makes AD-
ISTA more effective than ISTA.

We remark that in the literature the study of optimal
hyperparameters for ISTA currently is an active topic. For
example, a learned ISTA (LISTA) is developed in Gregor
and LeCun (2010), and subsequently enhanced in, e.g.,
Liu et al. (2019); Chen et al. (2021). Since ISTA iterates
a linear step and a non-linearity, the main structure is
similar to a neural network, and techniques to learn the
hyperparameters are studied in the mentioned papers. The
main drawback of this approach is the time required for
the training.

5. RELATED ALGORITHMS

In this section, we present an accelerated version of AD-
ISTA and we compare AD-ISTA to an ℓ1-reweighting
method.

5.1 AD-FISTA: a fast version of AD-ISTA

Since AD-ISTA shares the same structure of ISTA, the fast
version of ISTA proposed in Beck and Teboulle (2009) and
known as FISTA can be applied to it. Basically, FISTA
exploits two previous iterates to compute the current
estimate and it shares the improved convergence rate
O
(

1
t2

)
, while keeping the low complexity of ISTA per

iteration.

The application of FISTA approach to AD-ISTA, that
we denote as AD-FISTA, is as follows: given v0 = x0 ∈
Rn, u0 = 1 ∈ R, for any t = 0, 1, 2, . . . ,

zt = vt + τAT (y −Avt)

xt+1 = Sλ
ϵ ,γ(zt)

(zt)

ut+1 =
1 +

√
1 + 4u2

t

2

vt+1 = xt+1 +
ut − 1

ut+1
(xt+1 − xt).

(19)

For the same motivations illustrated in Beck and Teboulle
(2009), we expect that AD-FISTA converges in less itera-
tions than AD-ISTA.

5.2 Comparison to ℓ1-reweighting ISTA

In the context of sparse optimization, ℓ1-reweighting tech-
niques are popular to improve the accuracy of ℓ1 minimiza-
tion methods. The key idea, proposed in Candès et al.
(2008) is to iterate the solution of a Basis Pursuit by
updating the weight of the ℓ1-norm, with the final aim of
penalizing less the larger components in magnitude, which
is in line with the approach proposed in this work. The
algorithm in Candès et al. (2008) leverages the local mini-
mization of a log-concave penalty through its linearization.
This yields to weight the ℓ1-norm with the derivatives
of the log-concave penalty. An ISTA-based variant of ℓ1
reweighting is proposed in (Fosson, 2018, Sec. III), and it
is observed to be fast with respect to classic ℓ1-reweighting.
In case of logarithmic penalty, this algorithm, here denoted
as RW-ISTA, is as follows:

(wt)i =
1

|(xt)i|+ ϵ
, i = 1, . . . , n

xt+1 = Sλwt,λwt

(
xt + τAT (y −Axt)

)
.

(20)

Even though RW-ISTA originates from the ℓ1-reweighting
framework, while AD-ISTA is obtained via proximal meth-
ods, the final structure of RW-ISTA has an adaptive
shrinkage-thresholding parameter as in AD-ISTA. This
may explain the increased velocity of RW-ISTA observed
in Fosson (2018). On the other hand, in RW-ISTA, shrink-
age and thresholding parameters are equal, while, as dis-
cussed above, in AD-ISTA they are different.

6. NUMERICAL RESULTS

In this section, we present some numerical results to
validate the proposed method.

For our experiments, we consider a matrix A ∈ Rm,n with
m = 500 and n = 1000, whose components are inde-
pendently generated with Gaussian distribution N (0, 1

m ).
Given y = Ax̃ + η, where η ∈ Rm is an unknown ran-
dom noise ∼ N (0, 10−2), we aim at estimating x̃, which



has sparsity k = 10, and non-zero components randomly
generated with uniform distribution, with magnitude in
(1, 2). To estimate x̃, we implement the proposed AD-
ISTA and AD-FISTA, and we compare them to ISTA,
FISTA, ADMM, and RW-ISTA. We set λ = 10−3 for
Lasso, and λ = 4 × 10−4 and ϵ = 10−2 for Log-Lasso.
Finally, τ = ∥A∥−2

2 . The considered setting guarantees
that Lasso and Log-Lasso are successful, that is, by solving
them we recover the correct support; see, e.g., Fuchs (2005)
for theoretical guarantees. In particular, all the algorithms
converge almost to the same solution. Instead, our goal is
to analyze the convergence rate, in terms of number of
iterations. We specify that each iteration has comparable
computational complexity for all the algorithms; therefore
the number of iterations well represents the velocity of the
algorithm.
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Figure 1. Residual norm ∥Axt − y∥2 with respect to ∥xt∥1
and ∥xt∥0, respectively. The curve are parametrized
with time. We label the iterations 1,10,20,50,200,500
to ease the comparison of the algorithms. “True”
refers to the value of x̃, which is estimated by Lasso
with a small bias on the non-zero components.

In Fig. 1, we can see the evolution of ∥Axt − y∥2 with
respect to ∥xt∥1 and ∥xt∥0 in a single experiment. As
discussed in previous sections, ISTA, FISTA, and ADMM
are characterized by a transient overestimation of ∥xt∥1.
As a consequence, a similar behavior is observed for the
sparsity ∥xt∥0. In contrast, the proposed AD-ISTA and
AD-FISTA keep ∥xt∥1 smaller. As expected AD-FISTA
is faster. Also RW-ISTA maintains a low ∥xt∥1, but less
effectively than the proposed algorithms.
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Figure 2. The time evolution of ∥Axt − y∥2, ∥xt∥1 and
∥xt∥0.

In Fig. 2, we depict the time evolution of ∥Axt−y∥2, ∥xt∥1
and ∥xt∥0, for the same experiment. We can see that the
number of iterations required by AD-ISTA and AD-FISTA
is substantially lower than the one of ISTA, FISTA and
ADMM.

In Table 1, we collect some statistics on the number
of iterations over 100 random runs. We notice that the
maximum of iterations required by AD-ISTA and AD-
FISTA is smaller than the minimum of iterations required
by ISTA, FISTA and ADMM.



Number of iterations

Algorithm Mean Min Max

ISTA 895.44 703 1085

FISTA 595.94 467 722

ADMM 318.49 255 378

RW-ISTA 147.47 126 173

AD-ISTA 138.34 119 162

AD-FISTA 90.64 78 107
Table 1. Number of iterations to converge over

100 random runs.

7. CONCLUSIONS

In this work, we propose and analyze AD-ISTA, a variant
of ISTA developed by applying the proximal gradient
method to Log-Lasso. AD-ISTA converges in less itera-
tions with respect to ISTA, FISTA and ADMM, thanks
to an adaptive shrinkage hyperparameter, that limits the
increase of the ℓ1-norm during the first phase. Moreover,
by applying the principles of FISTA, we also propose the
accelerated version AD-FISTA. Through numerical exper-
iments, we verify that AD-ISTA is faster than the state-of-
the-art algorithms for Lasso and that we obtain a further
acceleration with AD-FISTA. Possible extensions of this
work include the rigorous proof of the convergence rate
and the generalization to sparse optimization problems
different from Lasso.
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