
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A human-cyber-physical system for Operator 5.0 smart risk assessment / Simeone, Alessandro; Grant, Rebecca; Ye,
Weilin; Caggiano, Alessandra. - In: INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. -
ISSN 0268-3768. - ELETTRONICO. - 129:5-6(2023), pp. 2763-2782. [10.1007/s00170-023-12481-z]

Original

A human-cyber-physical system for Operator 5.0 smart risk assessment

Publisher:

Published
DOI:10.1007/s00170-023-12481-z

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2986528 since: 2024-03-04T11:44:43Z

Springer



Vol.:(0123456789)1 3

The International Journal of Advanced Manufacturing Technology (2023) 129:2763–2782 
https://doi.org/10.1007/s00170-023-12481-z

ORIGINAL ARTICLE

A human‑cyber‑physical system for Operator 5.0 smart risk 
assessment

Alessandro Simeone1 · Rebecca Grant2 · Weilin Ye3 · Alessandra Caggiano4,5 

Received: 16 June 2023 / Accepted: 4 October 2023 / Published online: 19 October 2023 
© The Author(s) 2023

Abstract
In the context of Industry 5.0, characterized by the human-centred transformation of manufacturing processes, assessing 
operator risk is crucial for ensuring workplace safety and well-being. In this respect, this paper presents the development of 
a human-cyber-physical system (HCPS) capable of estimating operator risk by leveraging diverse sensing data. By compre-
hensively analysing complex patterns and interactions among physiological, environmental, and manufacturing variables, the 
HCPS offers an advanced approach to operator risk assessment. Through the integration of cutting-edge sensing technolo-
gies, real-time data collection, and sophisticated analytics paradigms, the HCPS accurately identifies meaningful patterns 
and anomalies. It dynamically adapts to changing manufacturing conditions, generating risk profiles for operators and work 
processes. Timely alerts and notifications enable proactive interventions, enhancing safety measures and optimizing work 
processes. The HCPS empowers decision-making and supporting the well-being and productivity of operators in the Industry 
5.0 paradigm, while maintaining a safe working environment. A simulated case study is reported to validate the proposed 
framework on a variety of industrial scenarios.

Keywords Human factors · Sustainable production · Risk · System monitoring

1 Introduction

In recent years, there has been a global emphasis on peo-
ple and their well-being, transcending disciplinary bounda-
ries, with a focus on respecting the health and development 
of individuals [1]. This shows, in new ethical standards, 

legislation, trading standards, and working patterns [2]. With 
reference to the manufacturing context, the well-being and 
longevity of workers are of utmost importance to ensure that 
manufacturing can be sustained into future generations and 
industrial revolutions as well as to maintain productivity and 
business [3]. As a result, while Industry 3.0 emphasized the 
development of robotic and manufacturing automation, the 
shift towards Industry 4.0 and the emerging trend of Indus-
try 5.0 prioritize and highlight the importance of placing 
humans at the core of manufacturing systems [4].

The increasing implementation of automation supported 
by Information and Communication Technology (ICT) has 
led to the evolution of the operator’s role in the new con-
nected manufacturing systems. In this respect, Industry 5.0 
designates the realization of the so-called Resilient Opera-
tor 5.0, defined as a smart and skilled operator aided by 
information and technology, to overcome obstacles ensuring 
operative long-term sustainability and workforce well-being 
in the face of difficult and/or unexpected conditions [1].

In order to enhance manufacturing efficiency in this 
new context, it is beneficial to utilize advanced monitoring 
technology that takes a holistic approach, considering the 
manufacturing environment, workforce, and machinery. By 
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implementing improved resource monitoring, manufacturers 
can gain better insights into manufacturing quality, reduce 
downtime, and improve key performance indicators (KPIs). 
Previous studies have demonstrated the positive impact of 
such monitoring on machinery and tooling health [5]. There 
is now opportunity to improve the wider system resources 
to increase manufacturing outputs, by further extending this 
monitoring applicability to workers [6].

In this framework, to address the challenge of estimating 
operator risks in a manufacturing environment, the develop-
ment of a human-cyber-physical system (HCPS) is proposed 
in this research work. The HCPS aims to utilize a wide range 
of sensing data to accurately assess the level of health risk 
faced by operators. This is realized by integrating human 
physiology, environmental conditions, and manufacturing 
variables to gain a comprehensive understanding of the 
complex patterns and interactions among these factors. The 
HCPS employs sophisticated data analytics techniques, such 
as fuzzy logic, to process the collected multi-dimensional 
data over time.

The concept is to acknowledge the dynamic nature of the 
manufacturing environment by consistently monitoring and 
adapting to fluctuations in variables such as machine opera-
tion, task complexity, and workloads. By considering the 
real-time context and interdependencies between different 
factors, the system can provide a continuous assessment of 
operator risk in terms of risk profiles for individual opera-
tors on specific work processes. The system can also issue 
timely alerts and notifications to operators and supervisors 
when risk levels exceed predetermined thresholds, enabling 
proactive interventions and mitigations.

2  Literature survey

A review of literature and industrial practice highlights the 
interesting knowledge gap on how modern manufacturing 
tools integrate with factories and manufacturing personnel, 
especially in system methods, data processing algorithms, 
and decision-making. As automation increasingly replaces 
manual processing, there is a gap in operator monitoring, 
which is consistent with the most recent operator concept.

In fact, human roles have evolved alongside technological 
and industrial revolutions, moving away from the original 
Operator 1.0 designation. Recently, the notion of Operator 
5.0 has emerged, referring to a smart and skilled operator 
who harnesses human skills supported by information and 
technology to secure the long-term sustainability of manu-
facturing operations and promote the well-being of the work-
force in demanding or unforeseen circumstances [7].

However, in this new era of information physical sys-
tems, operators still need to complete inherent tasks, as their 
interaction around the robotics and automation evolves. 

This highlights the need to explore the concept of a healthy 
operator in hazardous work environments [8] to be achieved 
through real-time monitoring using wearable trackers and 
analysing the operator’s interaction with big data to monitor 
safety and predict potential risks [9].

Although the contributions in the development of sensor 
systems and the IoT emphasize the wide availability of com-
mercially available solutions, an attractive research direction 
comes from the lack of system methods for integrated sys-
tem development applied in manufacturing environment. In 
addition, the limited contributions available in the literature 
on decision support systems have promoted the development 
of intelligent systems [10].

Cyber-physical systems (CPS) are computational enti-
ties that are tightly integrated with the physical world and 
its ongoing processes. They interact extensively with their 
surroundings and utilize data-accessing and data-processing 
services available on the Internet [11]. Efforts have been 
made to incorporate human factors into CPS, leading to the 
development of human-cyber-physical systems (HCPS). 
HCPS aim to enhance human capabilities in dynamically 
interacting with machines in both the cyber and physical 
realms. This is achieved by employing human-computer 
interaction techniques designed to cater to the cognitive and 
physical needs of operators.

While recent research efforts have focused on human 
factors in manufacturing system design, human-robot col-
laboration, fatigue recognition, and musculoskeletal risk pre-
vention, the application of these efforts to transformation 
processes is limited [12, 13].

The integration of CPS and human-CPS approaches is 
gaining traction in monitoring operator health and safety. 
CPS combine physical elements with computational and net-
working components, enabling the collection and analysis 
of real-time data from manufacturing processes. Human-
CPS focuses on the interaction between operators and CPS, 
considering human factors and safety considerations [14].

IoT and sensor networks have transformed the monitor-
ing of manufacturing environments by deploying inter-
connected sensors to capture data on parameters like tem-
perature, humidity, noise levels, and air quality. This data 
analysis helps identify hazards, monitor ergonomic condi-
tions, and ensure safety compliance, leading to real-time 
alerts and notifications for risk mitigation and improved 
operator safety [15].

The miniaturization of sensing technology has expanded 
its applications, particularly in physiological monitoring. 
Physiological sensors, such as smartwatches, provide indi-
viduals with better access to health-related data for under-
standing their bodies. Extensive reviews have explored the 
use of physiological sensors in manufacturing and extreme 
environments, including health monitoring in complex sys-
tems [16–19]. Similarly, healthcare research has examined 
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the integration of sensing technology for recovery, amputee 
prostheses, and soft machines [20, 21].

Physiological sensors can monitor biological/chemical 
states, track body positioning, and measure strain using 
coordinate systems and accelerometery. Monitoring sur-
geon postural health in healthcare performance and identi-
fying postural risks in manufacturing are examples of their 
applications [22–25]. Various products exist for monitoring 
physiological and kinematic states, but the selection criteria 
depend on sensor location convenience, task risk, environ-
mental demands, desired sampling rate, accuracy, and timely 
integration within a safety feedback loop [26]. While physi-
ological sensors perform well in their designated environ-
ments, challenges arise when integrating them into larger 
systems, particularly concerning data transfer and appropri-
ate hardware configuration.

In factories, environmental sensors are essential for moni-
toring the quality of the working environment. They provide 
real-time data on temperature, humidity, noise levels, and 
pollutants, ensuring worker well-being and productivity. 
Advanced technologies, including gas sensors, particulate 
matter sensors, and temperature/humidity sensors, enable 
data collection and real-time feedback. Wireless connec-
tivity enables remote monitoring and control, facilitating 
prompt responses to deviations. Integration with data ana-
lytics and visualization platforms enhances the utility of 
environmental sensor systems by providing insights, pattern 
recognition, and risk prediction. Challenges in this domain 
include sensor calibration, data security, and standardization 
for interoperability [27].

In recent years, the measurement of key variables in man-
ufacturing processes has been facilitated by innovative sens-
ing designs allowing to deal with physical constraints and 
challenging operating conditions [12]. Commercial sensors 
like accelerometers are increasingly integrated into machine 
tools, providing data with high sampling rates beyond the 
capability of machine PLCs. Traditionally, manufacturing 
process data were limited to time series data (e.g. vibration, 
pressure, force, torque), providing temporal information for 
process and tool monitoring. Recent advancements in sig-
nal processing and hardware have greatly enhanced image 
data processing, resulting in a significant increase in image 
acquisition in manufacturing. Technological progress has 
also enabled high-speed sensing, allowing processes to be 
monitored with exceptional temporal resolution. Both con-
dition monitoring data and event data can be acquired on 
the manufacturing machines. Condition monitoring data, 
measured by sensors (e.g. force, vibration, acoustic emis-
sion, temperature), reflect the current health condition or 
state of the machines. Event data encompasses information 
on machine-related incidents (e.g. installation, breakdown, 
overhaul) and actions taken (e.g. component change, preven-
tive maintenance) [12, 28].

2.1  Research gap

The emergence of HCPS as a developing paradigm for 
comprehending and establishing intricate human-centred 
intelligent systems has garnered significant attention from 
both industry and academia, particularly in the realm of 
human-centric smart manufacturing. Regardless of the per-
spective taken, whether involving humans directly (human-
in-the-loop) or excluding them (human-out-of-the-loop), 
advanced manufacturing technologies are conceived by 
humans, designed to benefit humans, and function alongside 
humans. Therefore, it is crucial to integrate both human and 
cyber elements into smart manufacturing systems instead 
of excluding humans from the equation. Several surveys 
and reviews have been published exploring the interac-
tions between humans and cyber systems in sensing, con-
trol, Industry 4.0, and manufacturing applications. HCPS, 
serving as the fundamental basis of human-centric smart 
manufacturing, is still in the early stages of research and 
development [7].

While CPS can be referred as the operating system or 
fundamental technology for X 4.0 (e.g. Industry 4.0, Engi-
neering 4.0, Education 4.0), HCPS and human-smart manu-
facturing (HSM) would serve as the theoretical foundation 
and operating system for the upcoming X 5.0 (e.g. Industry 
5.0, Operator 5.0, Engineering 5.0, Education 5.0, and Soci-
ety 5.0) [7].

The literature review emphasized the necessity of devel-
oping an integrated system capable of sensing and facilitat-
ing risk-aware decision-making regarding actions such as 
maintenance and scheduling, while considering operator 
health and safety as crucial factors.

In this respect, this work aims at developing a HCPS to 
assess the various health and safety-related risks for the 
operator by collecting, processing, and combining informa-
tion from various sensing data. Such system can be used 
to upgrade an existing production system into an operator 
5.0-compliant environment.

3  Research framework

The HCPS proposed in this paper has a multi-layered struc-
ture as illustrated in Fig. 1. A physical layer is responsible 
for the acquisition of human health data, working environ-
ment data, and manufacturing process data. Such acquisition 
is enabled by a series of specific sensing units.

The data transmission is powered by the design and reali-
zation of a network layer including a tailored ICT infra-
structure, which, through diverse transmission technologies, 
allows for sensing data to be conveyed to the central unit for 
processing purposes.
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The analytic layer converts data to information on a 
fog-cloud platform. Specifically, at the fog level, data pre-
processing is performed while at the cloud level, tailored 
data fusion procedures carry out an intelligent risk assess-
ment and diagnosis. In this layer, cloud-based storage is 
performed as data are continuously generated.

The application layer deploys the results from the ana-
lytic layer to further characterize the risks and prompt 
actions.

A detailed description of the various layers is reported in 
the following subsections.

3.1  Physical layer

In the context of a human-cyber-physical system frame-
work, the physical layer refers to the collection of sensing 
units and computing elements. Real-time data collected 
from product sensors can be processed locally by the con-
troller and/or transmitted to the cloud for further process-
ing. In this paper, the physical layer is made of sensing units 
for the acquisition of relevant data on the physiological sta-
tus of the operator, a comprehensive characterization of the 
workshop environment as well as a complete assessment of 
manufacturing process health.

3.1.1  Human physiological data

In this research context, physiological data are limited to 
a number of essential offline and online variables. The 
offline variables are manually inputted and regularly 
updated; such data include the following: age; body mass 
index (BMI), defined as the ratio of the body weight to the 
square of the body height; and medical history, including 
information on pregnancy, maternity, injury and surgery 
recovery, and mental health. Real-time physiological data 
can be acquired from wearable sensors throughout any 
working shift [9]. Concerning online data, wearable sen-
sors will provide for a continuous monitoring of physi-
ological parameters. such as blood pressure — both sys-
tolic and diastolic, respiration rate and heart rate, oxygen 
saturation, hydration level and body temperature, and 
eye-related data such as eye blink frequency and duration. 
Data on musculoskeletal parameters should be acquired 
too, such as posture, including neck posture, body vibra-
tion, and especially limb vibration.

Ultimately, data on exposure should be acquired too, 
possibly via GPS data which give an indication on how 
long a worker is exposed to various hazards; also, the 
number of walking steps can be useful to an overall health 
risk assessment.

Fig. 1  Framework flow chart
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3.1.2  Environmental data

In addition to the human data, a comprehensive environ-
mental characterization of the workshop in which workers 
operate is also very important as environmental conditions 
often induce various diseases [9]. In this respect, basic envi-
ronmental sensing units placed in the workplace can be used 
to acquire ambient temperature, humidity, ventilation and 
airflow rate, ambient lighting and noise.

Other relevant variables such as presence of chemicals 
particles in the air, with particular reference to priority 
compounds [29] such as benzene, carbon monoxide, for-
maldehyde, methane, ethane, naphthalene, nitrogen oxides, 
radon, trichloroethylene, and tetrachloroethylene. Data on 
perceived indoor quality can be acquired by monitoring the 
volatile organic compounds [15] such as acetic acid, hexa-
nal, 2-butoxyethanol, 2-ethylhexanol, hexanoic, limonene, 
and phenol.

Data on the presence of dust, oxygen concentration/defi-
ciency ambient noise including infrasounds (0.1–1 and 1–10 
kHz) and ultrasounds (10–20, 20–40, and 40–400 kHz), 
odour [30], and ionizing radiations can be added for the 
construction of a more comprehensive dataset.

3.1.3  Manufacturing process data

For a comprehensive operator risk assessment, in addition to 
physiological data and environmental data, manufacturing 
processes and machines have to be monitored so as to assess 
any potentially dangerous scenarios in manufacturing oper-
ations. Relevant manufacturing process and machine data 
can be collected from diverse sources, such as machine and 
process monitoring systems as well as the machine control.

Recent years have seen an increase in the use of sensors in 
production machines to monitor machine and process status 
using relevant sensor signals. Although many of the acquired 
variables are used for tool, process, and machine condition 
monitoring, they also have an impact on the operator’s well-
being. These variables may include vibrations, noise, tem-
perature, power consumption, and more, depending on the 
specific manufacturing process and machine [28].

Power consumption is commonly measured to ensure the 
normal operation of machines and processes and can be used 
to detect potential faults and related manufacturing risks. 
Vibrations are often measured to detect malfunctioning, 
which may reduce the service life of machines or lead to pro-
cess failure. However, vibrations also generate noise that can 
pollute the environment and affect human health. Although 
noise emission is now regarded as a machinery quality flaw, 
manufacturing processes and machines are still noisy. Moni-
toring noise levels via different sensors can provide valu-
able data for the diagnosis and monitoring of machine and 
process health, as well as mitigate noise emissions to a level 

that is safe for human operators [31]. Temperature is also 
increasingly measured on production machines to monitor 
the thermal changes induced by the environment or internal 
heat sources, and it represents another relevant index for 
ensuring safe working conditions. Finally, other sensors may 
be employed on production machines to measure relevant 
variables specific to the production machine/process, such 
as chemicals, leaks, and fumes.

3.2  Network layer

The proposed cyber-physical system in this paper can be 
likened to a multi-layered Open Systems Interconnection 
(OSI) model, with the network layer responsible for data 
forwarding. Data from the physical layer are transmitted to 
the storage layer through a tailored network infrastructure, 
requiring different communication paths due to the diverse 
sensing units used (Fig. 2). Wearable sensors collect human 
physiological online data and employ a microcontroller unit 
(MCU) for orderly data acquisition. Real-time acquisition of 
certain sensor data, like respiration, requires no additional 
computation, while blood pressure data undergoes specific 
algorithms. The MCU handles pre-processing and transfers 
essential data to the central unit, with Bluetooth being a 
suitable communication technology due to its low-power 
requirements.

Bluetooth, operating at a transmission power of 2.5 mW 
and utilizing 40 channels between 2.402 and 2.48 GHz, 
follows a master-slave architecture in the human wearable 
sensing system [32]. The MCU acts as the master, sampling 
data from slave sensors. While Bluetooth is suitable for com-
munication between the MCU and storage layer, longer dis-
tances beyond 10 m require more stable data transmission, 
making wireless area network (WLAN) a preferable choice.

WLAN, commonly known as Wi-Fi based on IEEE 
802.11 standards, enables wireless communication and pro-
vides an Internet connection for firmware updates. Its longer 
data transfer distance makes it ideal for environmental data 
collection [33]. A preliminary study is necessary to optimize 
sensor positioning for effective data collection, especially 
considering the potential large number of sensors and their 
scattered locations within the workshop. A single WLAN 
can connect sensors within a workshop, while an external 
roaming getaway can facilitate information sharing across 
workshops.

However, disturbing factors like ionizing radiation and 
excessive heat in the air can impact WLAN data collection 
quality and reliability. In such cases, a wired LAN becomes 
a suitable solution for communication among mechanical 
sensors. Manufacturing data from various machines and 
equipment can be equipped with sensing units and monitor-
ing dashboards that have a default LAN interface for data 
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transmission to the central unit. Additionally, LAN enables 
input and collection of offline physiological data.

The capabilities of complex manufacturing systems can 
be significantly enhanced by the 5th generation mobile net-
work (5G), as it greatly improves communication capacity, 
data transmission rate, coverage nodes, and real-time per-
formance. In the context of human-cyber-physical systems 
(HCPS), 5G plays a crucial role where numerous heteroge-
neous nodes communicate and generate massive data and 
information transmission across different layers. Further-
more, 5G is vital for enabling interactions between humans 
and CPS, including monitoring humans’ physical and mental 
state, real-time task performance using VR/AR, remote con-
trol, and human-robot collaboration (HRC) [7].

3.3  Smart analytic layer

The raw data generated by the diverse sensing units need 
to be processed and submitted to a data fusion procedure to 
obtain useful information to be employed for the intelligent 
diagnosis executed by the proposed cyber-physical system.

In this work, a dedicated three-level architecture com-
prising a device layer, a fog layer, and a cloud layer is 
developed, forming a complex cyber-physical system 
where the fog layer acts as an intermediary between the 
physical devices and the cloud. Data originating from the 
physical layer at the factory level undergo pre-processing 
at the fog level before being transmitted to the cloud layer, 

which handles tasks such as data fusion, risk assessment, 
and intelligent diagnosis.

Fog computing aims to provide data processing and stor-
age capabilities closer to the end devices, rather than directly 
sending raw data from sensors to the cloud. At the fog layer, 
small-scale cloud functionality is ensured through fog nodes, 
which are devices equipped with computing, storage, and 
network connectivity [34, 35]. The goal is to enhance effi-
ciency and performance and reduce the amount of data 
transmitted to the cloud for processing, analysis, and stor-
age, thereby minimizing network traffic and latency [36, 37].

The employment of cloud architectures with fog layers 
in smart manufacturing represents a promising approach 
to setup interconnected networks providing reliable and 
responsive computation services. The main challenges 
are related to the limited communication bandwidth and 
computation capabilities of fog nodes, requiring efforts 
to reduce data communication load and computation time 
latency. Novel approaches for manufacturing data reduction 
and efficient modelling and machine learning methods are 
a promising solution. Other challenges include supporting 
resource heterogeneity, scalability, fog node mobility, and 
interoperability, calling for the development of appropriate 
data and control interfaces [35]. While the implementation 
of cloud architectures incorporating fog layers in manufac-
turing is still in its early stages, some proposals have been 
presented in the literature [34, 37], emphasizing the associ-
ated benefits such as connectivity between physical devices 
and the cloud, heterogeneity and distribution of fog nodes, 

Fig. 2  Network architecture concept
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low and predictable network latency, secure remote access 
to large volumes of factory data, and high-performance 
computing [34].

The framework proposed in this work leverages the capa-
bilities of both the cloud and fog to integrate complex and 
heterogeneous data, including human physiological data, 
environmental data, and manufacturing data, generated by 
various sensing units and computing elements.

3.3.1  Data pre‑processing at fog level

The raw data generated by the diverse sensing units can be 
categorized into two main types, i.e. digital and analogue 
signals. Digital data such as temperature, time, and pressure 
data can be simply converted from binary to decimal. Ana-
logue data include the voltage data which are read by ana-
logue to digital converters (ADC) and require some signal 
processing program for extracting useful information. For 
example, a respiratory signal can be extracted from an ECG 
signal via independent component analysis (ICA) algorithm, 
which can directly separate respiratory signals from various 
interferences, avoiding the design of several complex filters.

Data from wearable devices have to be pre-processed by 
the MCU at the edge level, while other data are directly 
transferred to the fog nodes where pre-processing steps 
are carried out when necessary. Sensing units such as 

temperature and humidity sensors generally directly output 
the digital data which can be easy to read by simply conver-
sion of binary to decimal. Position sensors generally acquire 
redundant data such as geographic position of latitude and 
longitude, time and data, as well as satellite information 
which are not needed in the health monitoring system. 
Therefore, resampling operations are required to homoge-
nize the overall dataset. Different pre-processing steps such 
as data filtering, selection, normalization, encoding, trans-
formation, and feature extraction are required, which are car-
ried out at fog level. Afterwards, the pre-processed data are 
further processed at the cloud level of the analytical layer, 
when data fusion, risk assessment, intelligent diagnosis, and 
data storage tasks are carried out.

3.3.2  Knowledge base

The first step for the developed decision-making procedure 
is the construction of a knowledge base. In this context, the 
knowledge base is meant to be a summary of the relationship 
among the various variables. The knowledge base of this 
framework links together various human “states” in refer-
ence to different bodily systems that can be impacted by poor 
work environments. Figure 3 provides a visual of these ele-
ments and their reference to data and environmental condi-
tions. Manufacturing roles are known for being practical and 

Fig. 3  Data fusion methodology
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therefore physical, generally requiring a variety of strenuous 
work dexterous work. Both have implications on musculo-
skeletal state and vice versa.

More strenuous activity in manufacturing adds additional 
strain to the cardiovascular system which is repetitive over 
a longer duration increases the body temperature, leading 
to stress and dehydration. Lack of care to ensure operators 
are hydrated and have appropriate electrolytes (if necessary) 
can lead to fatigue, headaches, and lower physical ability.

Measuring all of these individual elements is a difficult task 
that often requires multiple sensing technologies or expensive 
sampling methods. While fitness trackers and smart watches 
can provide some of this information, there are concerns 
regarding the confidentiality and use of health data.

To properly assess these elements, multi-dimensional 
sensors and sensor fusion would need to report on various 
manufacturing levels. Operators would require feedback 
when physical thresholds are crossed, such as alerts to 
drink water if they are dehydrated or to reduce movement 
if the temperature increases. Over time, mapping out these 
processes and responses would provide a more extensive 
knowledge base that could be used to identify correlations 
or statistical relationships and recognize process limitations.

At the management level, this would enable more efficient 
job design, rotation, and procedures for dealing with processes 
that could be described as “physiological bottlenecks”.

3.3.3  Fuzzy inference–based data fusion

The data fusion methodology is based on a fuzzy inference 
process [9] interpreting the values in the input vector (sim-
ple measured variables) and, based on some sets of rules 
(knowledge base), assigns values to the output vector, con-
sisting of more complex variables representing risk factors.

Such approach aims at evaluating the interaction among 
physiological, environmental, and process variables, by pro-
gressively transforming groups of such simple variables into 
more complex risk variables, consisting in decision-making 
drivers to characterize the risk according to six main risk 
categories: physical, biological, ergonomic, chemical, safety, 
and mental-related risks [38].

Physical risks denote factors within the working envi-
ronment that can harm the body without necessarily touch-
ing it. Biological risks are associated with working with 
animals, people, or infectious plant materials. Ergonomic 
risks indicate the type of tasks, body positions, and work-
ing conditions that can put strain on the body, for which, 
long-term exposure can result in serious long-term ill-
nesses. Chemical risks are related to the exposure to any 
chemical compound in the workplace in any form (solid, 
liquid, or gas). Safety risks include unsafe conditions that 
can cause injury, illness, and death. Mental risks refer 
to the potential hazards or stressors that can negatively 

impact on the operator psychological well-being, cognitive 
functioning, and overall mental health [38].

Figure 3 shows the data fusion methodology, where p1, p2, 
…pP represent the physiological variables; e1, e2, …eE repre-
sent the environmental variables; and m1, m2, …mM represent 
the manufacturing variables. The full set of such variables is 
fused using a fuzzy-based layer-by-layer progressive approach.

To initialize such procedure, the first step is to define the 
dependencies among the measured variables and then define 
a hierarchy which will identify the data fusion patterns.

Once identified such relationships, the full dataset of meas-
ured variables will be fused into a first layer of r1

1
, r1

2
,… , r1

f1
 

risk factors, where the superscript 1 indicates the first layer 
and f1 the related number of risk factors. At this point, the 
procedure is iterated, i.e. the dependencies among the first 
layer risk factors is defined and such factors are fused into a 
second layer consisting in r2

1
, r2

2
,… , r2

f2
 second-layer factors. 

There can be the need of repeating the fusion procedure over 
L layers. The number of layers depends on the number and 
types of variables and the manufacturing context.

At this point the risk factors rL
1
, rL

2
,… , rL

fL
 are eventually 

fused into the six risk categories physical (PR), biological 
(BR), ergonomic (ER), chemical (CR), safety (SR), and men-
tal risk (MR). Analogously, a final step is then performed to 
define an overall indicator, i.e. the overall risk (OR) which 
serves as synthesis of the whole risk for the operator.

The fusion is enabled by a knowledge base, which 
involves occupational health expertise, company policies, 
and process engineering in a form of fuzzy inference rules 
[39]. The fuzzy inference consists in a mapping process 
from a set of fuzzy inputs to a crisp output based on fuzzy 
logic, which deals with vague and imprecise information. 
The fuzzy inference process includes fuzzy sets, member-
ship functions, logical operations, and if-then rules. The 
mechanism is exemplified in Eq. 1 and illustrated in Fig. 4.

where Il
x
,… , Il

y
 are input variables, 

∼

Ix,… ,
∼

Iy are the fuzzy 
sets which the input variables belong to by the membership 
functions, Ol+1

z
 is the corresponding output variable in the 

next layer l + 1, and 
∼

Oz is the fuzzy set which the output vari-
able belongs to by the membership function [39]. “*” repre-
sents a logical operator, such as “AND”, “OR”, and “XOR”.

The fuzzification process is carried out considering the 
specific variables and their ranges, in this respect, while 
for the physiological variables, medical guidelines can be 
followed, and for environmental variables, it is possible to 
refer to specific standards [40].

In specific ranges for machine tools and process equip-
ment, the ranges have to be determined by considering the 
specific machine configurations and materials involved. 

(1)IF

{

Il
x
∈

∼

Ix ∗ ⋯ ∗ Il
y
∈

∼

Iy

}

THEN Ol+1
z

∈
∼

Oz
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An excerpt of the variables ranges adopted for the fuzzy 
logic–based fusion is reported in Table 1.

Concerning the inference process, a number of rules 
have to be set to link the fuzzy input to a fuzzy output. A 
defuzzification step is then carried out in order to convert 
the fuzzy quantities into crisp quantities. In this respect, 
various methods can be used, such as the max-member-
ship method, the centroid method, the weighted average 
method, and the mean-max membership method [39]. The 
results of this step consist in a set of charts showing the 
risk value and trend over time. A statistical risk distribu-
tion over time can be easily computed too, as per Eq. 2.

(2)RCi,t =
Ri,t

∑6

i=1
Ri,t

∙ 100 (%),∀t

where RCi, t represents the percentual contribution of the risk 
category i to the overall risk for a given time instant t, and 
Ri, t is the risk level related to the risk category i.

The normalized risk values Ri, t are generated through a fuzzy 
logic inference procedure and fall within the range of [0,1], where 
0 signifies the lowest risk, and 1 signifies the highest risk.

To get to these results, the first step is defining the ranges 
for all the variables. As regards the physiological variables, 
ranges are defined according to medical guidelines custom-
ized upon the operator characteristics coming from offline 
health background data and information [13]. Concerning 
the working environment variables, ranges can be defined by 
relevant literature and by international standards such as EN 
15251:2007, EN 16798-1:2019, and ASHRAE 55-2017 [41]. 
Similarly, the wide availability of literature and industrial 
practice on machine and equipment sensor monitoring can 
help define the proper ranges for manufacturing variables 
related to the specific unit/process, machine, and equipment 
under investigation. Once the ranges have been identified, a 
normalization procedure has to be carried out to “translate” 
them into a number of risk classes; three in this work were 
named as “low”, “medium”, and “high”.

At this point, key thresholds on the risk values, such 
as a warning threshold and a higher critical threshold, are 
defined by the system administrator for diagnosis purposes. 
Such values are to be decided on a case-by-case basis. 
The procedure for setting the key thresholds involves vari-
ous considerations. First of all is the identification of the 
risk indicators which are made available in the proposed 
approach through the layer-wise data fusion. Subsequently, 
the system administrator, in compliance with the company 
policy, should determine the specific risk appetite, i.e. type 
and amount of risk that the company is prepared to retain/

Fig. 4  Fuzzy fusion procedure

Table 1  Examples of variable ranges

Variable Level Units

Low Normal High

Respiratory rate <12 12–15 >15 Times/min
Heart rate <60 60–100 >100 Beats per minutes
Oxygen saturation <95 95–100 100 %
Body temperature <36.5 36.5–37.5 >37.5 °C
… … … … …
Hydration level <50 50–60 >60 %
Ambient ventilation <5 5–8 >8 l/s
Ambient lighting <300 >300 lux
Ambient temperature <16 16–34 >34 °C
… … … … …
Humidity <20 20–60 >60 %
Oxygen deficiency <19.5 >19.5 >23 %
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take and risk tolerance [42]. Accordingly, it is necessary to 
take into account the historical data, the prevention meas-
ures, the exposure, the operator training, and the company 
capacity to perform appropriate course of actions when and 
where required [43].

If the operator risk is estimated to be over the above-
mentioned thresholds, an online diagnosis procedure is 
triggered, which is carried out by a backtrack involving the 
analysis of all the intermediate complex variables generated 
by the fuzzy inference system up to the sensing data, which 
is helpful to distinguish different risk classes. This paper 
considers two risk classes, i.e. workshop equipment from 
operator/process pairing–related risk. From a computational 
perspective, the diagnosis can be powered by analytic tools 
such as outlier analysis and analysis of variance (ANOVA) 
or more refined tools such as machine learning classifiers.

3.4  Application layer

In the application layer, the output of the diagnosis is 
employed to support decision-making on the course of 
action that should be taken when a risk is identified.

Two main scenarios are envisaged in this work, described 
as follows:

• Workshop equipment–related risk: The risk comes from 
machine fault, equipment malfunctions, and environmen-
tal issues such as excessive pollution and noise.

• Operator/process pairing–related risk: The risk comes 
from an incompatibility between the human health state 
and the process.

Such scenarios imply different actions to be taken, i.e. 
extraordinary maintenance or equipment upgrading for 
workshop equipment–related risk, while different scheduling 
strategies in case of operator/process pairing–related risk.

4  Case study

The case study refers to a manufacturing cell where both 
manual and semiautomated welding processes are performed 
by two different operators. The welding process considered 
in this case study is gas tungsten arc welding, also referred 
to as tungsten inert gas (TIG) welding, which is an electric 
arc welding process that produces an arc between a non-con-
sumable electrode and the piece being welded. In this type of 
welding, a shielding gas forms a protective envelope around 
the weld area to help protect the weld. An inert gas such 
as argon or helium helps protect the area from contamina-
tion. TIG welding is one of the most precise and controlled 
welding processes, providing a very smooth welding finish 
and allowing to weld a big range of metals including both 

ferrous and non-ferrous metals (such as copper, magnesium, 
aluminium). However, the main shortcoming is that TIG is 
a complex welding method to learn with great control and 
accuracy, which needs a deep arc, correct distance, and accu-
rate manoeuvring for a better result and hence is a demand-
ing process to master. This means that experienced operators 
are required to execute the TIG welding process, especially 
when the latter is carried out manually.

Safety concerns related to TIG welding are due to the 
exposure to high heat arcs (dangerous for the safety of eyes 
and skin) and potential radioactive gases (due to radioac-
tivity of tungsten). The most important safety precautions 
for the health of operators include wearing protective gear 
and PPE (such as helmets, aprons, gloves, goggles, jack-
ets, sleeves, pants, and safety shoes, to protect skin and face 
from impending burns), ensuring a ventilated workplace and 
installing appropriate fume extraction solutions (to circu-
late fresh air and reduce the toxicity of fumes exposure to 
the welder), making sure that all electrical connections are 
secure, the welding equipment is properly grounded and that 
the workplace is dry (to avoid electric shock), and ensuring 
that the welding area is clear of any combustible materials.

The workpieces considered in this paper are flange-pipe 
assemblies which require a fillet weld to be realized both 
outside and inside, as illustrated in Fig. 5.

Two different processes are carried out in the manufactur-
ing cell under study: (1) manual TIG welding and (2) semi-
automated TIG welding. The description of the process steps 
for both processes is reported below.

4.1  Process 1: manual TIG welding

In manual TIG welding, the operator employs a handheld 
torch to perform welding along the joint and manually 
adds the filler metal to the weld area. A skilled operator is 
required, who is responsible for the following process steps:

1. Pre-weld parts inspection (ensure the quality of metal 
parts before assembling them)

2. Electrode preparation (pick and grind the electrode and 
insert the electrode into the collet)

3. Configuration of the proper parameter setting (e.g. select 
the current that is required) and set on the shielding gas 
chosen for the process

4. Arrangement of the welding station (cleaning and 
clamping of the parts)

5. Manual welding of the parts and in-process inspection
6. Removal of the completed part
7. Post-weld inspection (visual inspection to verify the 

integrity of the completed weld)

Table 2 shows the duration of each activity step in the 
manual welding process.
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4.2  Process 2: semi‑automated TIG welding

In semi-automated welding, an operator manually loads 
the part(s) into the welding fixture. A weld controller then 
controls the torch/part motions and welding parameters to 
ensure a high-quality, repeatable weld. After the weld is 
completed, the operator then removes the completed part 
and the process begins again. The operator is responsible for 
a series of operations which include the following:

1. Pre-weld parts inspection (ensuring the quality of metal 
parts before assembling them)

2. Electrode preparation (pick and grind the electrode and 
insert the electrode into the collet)

3. Configuration of the proper parameter setting (e.g. select 
the current that is required) and set on the shielding gas 
chosen for the process

4. Arrangement of the welding station (cleaning and 
clamping of the parts)

5. Automatic welding of the parts: The operator ensures 
that the equipment is functioning properly and safely 
and that the welds are produced to meet the required 
specifications.

6. Removal of the completed part
7. Post-weld inspection (visual inspection to verify the 

integrity of the completed weld)

Table 3 shows the duration of each activity step in the 
semi-automated welding process.

To simulate the activities carried out by the operators 
in the manufacturing cell, an 8-h working shift was con-
sidered, with short breaks (5-10 min) after each assembly 
and a lunch break of 30 min.

In order to take into account the characteristics of 
potentially different workers involved in the welding pro-
cesses, two different operators were included in the simu-
lations, i.e. a young and fit operator and an elderly operator 
with cardiovascular medical history.

Two different scenarios were simulated with the aim to 
highlight the response of the developed HCPS in terms of 
risk characterization under different circumstances, with 
particular reference to the identification of operator-related 
risks and workshop equipment–related risks.

In the first scenario, the elderly operator is assigned 
to the manual welding process, due to his experience and 
skill in performing the TIG welding process. On the other 
hand, the younger operator is assigned to the semi-auto-
mated welding process.

In the second scenario, a malfunctioning of the ventila-
tion system was simulated in order to assess the response 
of the human-cyber-physical system under changing man-
ufacturing equipment conditions.

The variables utilized for the case study are reported in 
Table 4.

Each fuzzy inference process has been constructed by 
setting three sets of gaussian membership functions for each 
input and output variable, i.e. low, medium, and high.

Fig. 5  Flange-pipe and assem-
bly scheme

Table 2  Manual welding process activity breakdown

Activity Duration (s)

Handling 300
Grinding 600
Configuration 300
Tooling 900
Welding process Welding 15

Inspection 15

Table 3  Semi-automatic 
welding process activity 
breakdown

Activity Duration (s)

Handling 300
Grinding 600
Configuration 300
Tooling 900
Welding 1125
Inspection 120
Removal 600
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The fuzzy-based fusion methodology has been implemented 
as per Fig. 6. The sensing variables are subject to a first-layer 
fuzzy inference for normalization purposes, i.e. assigning to 
each sampled value a low/medium/high class. This step facili-
tates the computational procedures. In this respect, the first-
layer outputs are fed into a second-layer fuzzy inference, where 
the 58 variables are fused into 14 complex variables. Follow-
ing this step, the procedure is applied to a third-layer inference 
which outputs the physical, ergonomic, chemical, safety, and 
mental risk. The biological risk has been disregarded in all the 
scenarios due to the non-relevance to this case study. The over-
all risk has been computed with the same approach.

To take into account the fatigue, each risk factor is multi-
plied by a fatigue coefficient, gradually increasing within each 
assembly task and ranging from 10% (first assembly task) 
to 40% (last assembly task). The fatigue coefficient repre-
sents the level of fatigue experienced by workers and reaches 
its maximum value at the end of each assembly task. This 
approach recognizes that fatigue can amplify the effects of 
risk factors, potentially increasing the likelihood or severity 
of adverse outcomes. Literature contributions report various 
non-linear and complex fatigue functions [44]; however, in 
this work, the authors have modelled the fatigue as a linear 
function of time to simplify the analytic processing. While it 
is widely acknowledged that fatigue can significantly increase 

the risk for factory workers, the specific percentage increase 
in risk due to fatigue can vary depending on the nature of the 
work, the individual worker health and fitness level, and other 
factors such as working environment conditions. In this work, 
the fatigue values are defined in line with relevant literature, 
and it is worth to remind that they are mainly thought for 
proof-of-concept purpose in order to demonstrate the appli-
cability of the methodology [45, 46].

As concerns the risk diagnosis, this case study has estab-
lished two thresholds to identify significant risks that trigger the 
appropriate course of actions. Specifically, a warning threshold 
of 0.7 and a critical threshold of 0.8 have been defined.

When considering the threshold settings, it is important to 
account for the unique characteristics of each company. For 
instance, a company characterized by lower capacities in terms 
of equipment and resources and longer response times should 
set lower key thresholds (i.e. corresponding to lower levels 
of risk) compared to a company which is able to timely and 
effectively mitigate high-risk circumstances. From an analyti-
cal perspective, it is essential that each threshold is determined 
on a case-by-case basis by following the guidelines mentioned 
in Section 3.3. Furthermore, from a system usage standpoint, 
the proposed HCPS can adapt to variable threshold values set 
by the system administrator, both for online assessment and 
for scenario simulation.

Table 4  Sensing variables 
utilized in the case study

ID Variable ID Variable ID Variable

p1 Age e1

…

e9

Priority compounds m1 Heat source

p2 BMI m2 Radiant heat flux
p3 Medical history m3 Mechanical vibrations
p4 Mental health e10

…

e16

Volatile organic compounds m4 Power consumption

p5 Pregnancy + maternity m5 Machine overload
p6 Gender m6 Electromagnetic radiations
p7 Systolic blood pressure e17 Ambient ventilation m7 Ultraviolet light
p8 Diastolic blood pressure e18 Ambient lighting m8 Blue light
p9 Respiratory rate e19 Ambient temperature m9 Infrared light
p10 Heart rate e20 Dust m10 Ionizing radiations
p11 O2 saturation e21 Humidity
p12 Body temperature e22 O2 deficiency
p13 Sitting posture e23

…

e25

Ultrasounds

p14 Neck posture e26

…

e28

Infrasounds

p15 Eye blink frequency e29 Noise
p16 Eye blink duration
p17 Body vibrations
p18 Hand-arm vibration
p19 Hydration level
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5  Results and discussion

5.1  Scenario 1

In scenario # 1, an operator/process-related risk was simu-
lated. Specifically, the hypothesis is that the current work-
ing configuration includes the young and fit operator on 
the semi-automatic process, while the elderly operator 
is allocated to the manual process because of his experi-
ence and skills. The system detected that these working 

conditions are not suitable for the elderly operator. To 
address this issue, one possible solution is to swap the 
operators. By implementing this swap, the elderly operator 
would be assigned to the semi-automatic process, while 
the young operator would take over the manual process.

Figures 7–10 present the results for both operators, i.e. 
young and elderly for both processes, i.e. manual and semi-
automatic. The charts are obtained by plotting each type 
of risk (physical, ergonomic, chemical, safety, mental, and 
overall) against the time. The charts report also the warning 

Fig. 6  Data fusion tree for the 
case study
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and critical thresholds, in order to be able to quantify the 
time exposure (in minutes) to risks within or above such 
thresholds.

The results of the manual processes performed by elderly 
operator reveal higher levels of risk, as shown in Fig. 7. 
As regards the physical risk (Fig. 7a), a warning level for 
approximately 74.08 min and a critical level for 75.92 min 
were reported, indicating a relatively high risk of physical 
strain or hazards for the operator. Ergonomic risk (Fig. 7b) 
exhibited a significantly higher warning level for approxi-
mately 106.68 min, with a short exposure to critical level for 
1.93 min at the end of the shift, indicating considerable pos-
ture concerns amplified by the higher BMI. Chemical risk 
(Fig. 7c) displayed a duration in the warning level of 51.15 
min and a negligible duration in the critical level of 0.27 
min.

For the semi-automatic processes performed by young 
workers, Fig. 8 shows no significant warning or critical 
levels for any of the factors or the overall process. It is pos-
sible to appreciate the variations of the various risk factors 
throughout the shift, with small peaks of physical, safety 
and mental risks in correspondence of the grinding phase 
(Fig. 8a, d, e) along some peaks in ergonomic risks during 
the inspection (Fig. 8b). It is also possible to appreciate 
the increasing risk trend during each assembly task due 

to the fatigue. The charts indicate a relatively low level 
of risk associated with the semi-automatic process for the 
young operator.

In order to mitigate the risk for the elderly operator, an 
operator swap is considered. In this way, the elderly opera-
tor will be allocated to the semi-automatic welding, while 
the young operator will be allocated to the manual welding.

Following the operator swap, the results for semi-auto-
matic processes performed by the elderly operator (Fig. 9) 
indicate a generally low level of risk. While ergonomic 
risk reach warning level for 2 min (Fig. 9b), no significant 
warning or critical levels were reported for other factors or 
the overall process, suggesting minor corrective measures 
in terms of ergonomic risk mitigation.

When examining the results for manual processes per-
formed by young workers (Fig. 10), it can be observed 
that the ergonomic risk (Fig. 10b) reaches the warning 
level for approximately 14.47 min, indicating the need 
for attention to posture considerations during the welding 
and inspection processes. The chemical risk reaches the 
warning level for a total of 41.3 min. Similarly, the safety 
risk (Fig 10d) reaches warning level for approximately 
9.77 min during the welding process phase, suggesting 
to improve the safety-related conditions (such as PPE). 
Moreover, the overall risk within the warning level for the 

Fig. 7  Manual welding — elderly operator, risk breakdown: a physical risk, b ergonomic risk, c chemical risk, d safety risk, e mental risk, and f 
overall risk
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duration of 6 min (Fig. 10f) indicates a moderate level of 
concern across all factors combined, limited to the end of 
the shift, when the fatigue will increase to its maximum 
extent, remaining however below the critical level.

5.2  Scenario 2

In scenario # 2, a workshop equipment–related risk was 
simulated. The hypothesis is that a failure of the ventilation 
system occurred during the first break, specifically during 
the manual process with the young operator. In this way, the 
equipment fault-related hazards will begin to appear starting 
from the second welding assembly. This scenario has been 
simulated by setting significant changes to the dataset in 
terms of ambient ventilation, oxygen deficiency, and noise, 
keeping however such values within the legal ranges.

Fig. 11 compares the equipment fault scenario to the 
no-fault scenario with the same operator (young and fit 
operator referred to the manual welding). It is possible to 
see how, for the first assembly task, all the risks are per-
fectly overlapped. As the second assembly task begins, the 
physical risk (Fig. 11a) has a rapid and high rise, reaching 
warning levels for 154.16 min, and critical levels for a total 

duration of 86.75 min. This is due to the worsening of crit-
ical respiration–related factors in the physical risk, such 
as the air quality and the breathing difficulties, due to the 
ventilation system fault. The ergonomic, safety, and men-
tal risks show no change, while chemical risk (Fig. 11c) 
reaches the warning level for about 51 min. The overall 
risk (Fig. 11f) reaches the warning level for 109.55 min, 
and it never reaches the critical level. On average, the over-
all risk results to be higher than the no-fault case by 14% 
from the fault occurrence to the end of the working shift.

Among the various scenarios that could be simulated, 
two specific scenarios, namely, operator-related risk and 
workshop equipment–related risk have been selected as 
case study. These scenarios, which are described in detail 
in Section 4, offer clear and effective demonstrations of 
the feasibility of the proposed method.

The same approach can be applied to more complex 
scenarios involving multiple risk sources, e.g. related to 
the operator, the process/machine and the working envi-
ronment together. In this case, the system allows to char-
acterize the risk breakdown by performing a backward root 
cause analysis enabled by the intermediate fusion layers 
(as shown in Figs. 3 and 6) and prompt customized courses 
of actions.

Fig. 8  Semi-automatic welding — young and fit operator, risk breakdown: a physical risk, b ergonomic risk, c chemical risk, d safety risk, e 
mental risk, and f overall risk
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6  Conclusions

The HCPS developed in this paper provides a valuable 
tool for understanding and managing operator risks in 
manufacturing environments by leveraging the power of 
data fusion and advanced analytics. It highlights safety 
hotspots, supports decision-making processes, and assists 
the work processes optimization to ensure the well-being 
and productivity of operators. The potential of such HCPS 
lies in the adaptability, reconfigurability, and scalability 
over a number of processes, environments, and operators. 
The contribution beyond the state of the art provided by 
this research work is represented by the development of 
the HCPS, based on Industry 4.0 key enabling technolo-
gies, that collects a variety of diverse data related to the 
operator, the process/machine, and the working environ-
ment and dynamically estimates the risk for the operator 
during the work shift. This methodological approach can 
serve as online health and risk monitoring tool with the 
possibility of being implemented as ex-ante risk assess-
ment during the design phase of the production system, 
scheduling definition, and scenario construction as well 
as during daily manufacturing system operation. The data 

simulation utilized in the case study for proof-of-concept 
purpose includes two likely scenarios occurring in a com-
mon manufacturing system, which were selected as clearly 
identifiable and effective to demonstrate the application 
feasibility of the proposed method.

The sensing variables to be selected in the HCPS are 
process specific; therefore, a thorough preliminary study is 
required for their identification. The variables are identified 
and normalized into three risk classes: low, medium, and 
high. A challenging task is represented by the modelling 
of relationships among variables for data fusion, which 
requires building an updatable knowledge base from rel-
evant literature and specialized practices. The main con-
tribution of this research is the development of a meth-
odology for deploying these relationships via layer-wise 
data fusion, using an operational fuzzy inference procedure 
to categorize a large number of sensing variables into a 
defined number of risk categories, considering their com-
plex interactions.

The fuzzy inference fine-tuning relies, by definition, on 
the expertise. Alternatives can be found in neuro-fuzzy or 
other intelligent regression paradigms, taking into account 
the computational complexity and load.

Fig. 9  Semi-automatic welding — elderly operator, risk breakdown: a physical risk, b ergonomic risk, c chemical risk, d safety risk, e mental 
risk, and f overall risk
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In case the operator swap still indicates non-tolerable 
levels of risk, it can be assumed that the problem lies in the 
operator personal health only. Such scenario has not been 
included in the case study as considered redundant, whereas 
the case study shows the system ability to detect risks related 
to both equipment and human physiology.

From a hardware perspective, the proposed methodology 
requires the acquisition and setup of the physical 
layer sensing units, which must undergo a feasibility 
assessment to minimize the number and invasiveness of 
the required sensors. Similar considerations apply to the 
network infrastructure setup and configuration. From a 
soft computing perspective, the main challenge is the 
construction and the calibration of the knowledge base, 
including the fuzzy-based inference fine-tuning. In terms of 
decision-making, the system administrator, along with the 
management team, should identify suitable risk thresholds 
which properly fit the company scope and requirements 
based on the specific characteristics of the manufacturing 
system including processes, equipment, operators, 
environment, etc.

Further developments of this research work involve 
the implementation of a machine learning–based 

classification system within the application layer for an 
enhanced risk cause diagnosis. A possible approach con-
sists in inputting the risk-related features generated by 
the HCPS presented in this work into a machine learn-
ing–based pattern classifier such as neural networks, sup-
port vector machines, and decision trees, to be trained 
with available historical data. This approach can enable 
the automatic identification of risk reduction strategies. 
The exploration of such mitigating actions is beyond the 
scope of this paper and is currently being investigated by 
the authors in terms of development of procedures for 
automatic action identification. It is worth mentioning 
that other commercially available simulation software 
tools, such as NX®/Tecnomatix® Process, simulate soft-
ware or more recent motion capture systems, typically 
perform specific risk assessments in silos, with possibility 
to produce a body loading report and show areas of stress 
across the body for ergonomic improvement. As simula-
tion modelling for the human-in-the-loop is becoming far 
more common and increasing in accuracy and representa-
tion, it is also raising the need to include other risk factor 
considerations from other elements of the system beyond 
the human (interactions, equipment, environment, etc.).

Fig. 10  Manual welding — young and fit operator, risk breakdown: a physical risk, b ergonomic risk, c chemical risk, d safety risk, e mental 
risk, and f overall risk
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Moreover, the development of digital twins, i.e. com-
putable virtual abstractions of manufacturing personnel, 
objects, processes, and phenomena, will be investigated 
in view of their implementation with the aim to simulate 
behaviours, monitor real-world status and operating condi-
tions, reveal abnormal patterns, and predict future trends.
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