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Abstract: We numerically investigate the possibility of defining Stabilization-Free Virtual Element
discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-
operator-preserving stabilization term–of advection-diffusion problems in the advection-dominated
regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We
present numerical tests that assess the robustness of the proposed scheme and compare it with a
standard Virtual Element Method.

Keywords: Virtual Element Methods; stabilization; Streamline Upwind Petrov-Galerkin;
advection-diffusion; numerical tests

1. Introduction

The development of numerical methods for the solution of partial differential equations exploiting
general polygonal or polyhedral meshes has been a topic of great interest in later years. Among
the many families of schemes developed in this context [1–5], this paper considers Virtual Element
Methods (VEM).

Since the seminal papers [6–9], VEM have been applied to many problems in which polytopal
meshes can be exploited in order to better handle the geometrical complexities of the computational
domain. A brief, not exhaustive, list of papers is [10–19]. Virtual element schemes are based on the
definition of locally computable polynomial projections that are involved in the discrete bilinear forms.
These forms consist of the sum of two terms: a singular one that is consistent on polynomials and a
stabilizing one that ensures coercivity. In the literature, the arbitrary nature of the stabilization term
remains an issue to be investigated. Indeed, it has been shown that it can cause problems in many
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theoretical and numerical contexts. For instance, the isotropic nature of the stabilization can become
an issue when devising Streamline Upwind Petrov-Galerkin (SUPG) stabilizations [20, 21].

In the context of the theoretical development of a VEM scheme that does not require a stabilization
term, Stabilization-Free Virtual Elements Methods (SFVEM) have been recently introduced in [22,23],
for the lowest order primal and mixed discretizations of the Poisson equation. The key idea of the
proposed method is to define self-stabilized bilinear forms, exploiting only higher order polynomial
projections. The theoretical study of this method is an ongoing investigation, however some tests on
highly anisotropic problems show that this new approach is able to overcome some issues of standard
VEM related to the isotropic nature of the stabilization [24, 25]. Moreover, this approach has been
successfully applied to linear and non-linear elasticity problems in [26–29]. The aim of this paper is
to numerically investigate the SFVEM in the context of the SUPG formulation of advection-diffusion
problems in the advection-dominated regime.

The outline of the paper is as follows: In Section 2 we present the advection-diffusion model
problem. In Section 3 we define the numerical scheme. In Section 4 we discuss the well-posedness of
the discrete problem. Section 5 is devoted to a priori error estimates. Finally, in Section 6 we present
some numerical results that assess the behaviour of the proposed method, also comparing it to standard
SUPG-stabilized VEM schemes.

In the following, (·, ·)ω denotes the L2(ω)-scalar product, ‖·‖ω denotes the corresponding norm, and
‖·‖m,ω and |·|m,ω denote the Hm(ω) norm and semi-norm.

2. Model problem

Let Ω ⊂ R2 be a bounded open set. We consider the following advection-diffusion model problem:
find u such that −ε∆u + β · ∇u = f in Ω ,

u = 0 on ∂Ω ,
(2.1)

where ε > 0 is a positive real number and we assume that β ∈ [L∞(Ω)]2, ∇ · β = 0, and f ∈ L2(Ω).
Moreover, we define the bilinear form B : H1

0(Ω) × H1
0(Ω) → R and the operator F : L2(Ω) → R such

that

B (w, v) = (ε∇w,∇v)Ω + (β · ∇w, v)Ω , ∀w, v ∈ H1
0(Ω),

F (v) = ( f , v)Ω , ∀v ∈ L2(Ω) .

Then, the variational formulation of (2.1) reads as follows: find u ∈ H1
0(Ω) such that

B (u, v) = F (v) , ∀v ∈ H1
0(Ω). (2.2)

It is a standard result that the above problem (2.2) is well-posed under the above regularity assumptions
on the data. In the following, we consider homogeneous Dirichlet boundary conditions, but more
general boundary conditions can be considered and will be considered in the numerical tests. Finally,
for any open set ω ⊆ Ω, we define:

βω = sup
v∈[L2(ω)]2

‖β · v‖ω
‖v‖ω

.
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3. Problem discretization

This section is devoted to the discretization of (2.2) using an enlarged enhancement Virtual Element
space. The discretization defined here was introduced in [24].

3.1. Discrete space

Let Mh be a polygonal mesh of Ω. Let hE denote the diameter of E ∈Mh, and let h = maxE∈Mh hE

be the mesh parameter. We make the following mesh assumptions [6, 9]: There exists a constant κ > 0
independent of h such that, for any polygon E ∈Mh, if EE

h denotes the set of edges of E,

(1) E is star-shaped with respect to a ball of radius ρ ≥ κhE;

(2) ∀e ∈ EE
h , |e| ≥ κhE, where |e| denotes the length of e.

For each E ∈Mh, let Pn(E) be the space of polynomials of degree at most n, for any n ∈ N. As a
basis of Pn(E), we choose the following set of scaled monomials:

Mn(E) =

{
mα : R2 → R such that mα(x, y) =

(x − xE)α1(y − yE)α2

hE
, 0 ≤ |α| = α1 + α2 ≤ n

}
,

where (xE, yE) is the center with respect to which E is star-shaped. Moreover, let us define

Mn,t(E) = {mα ∈Mn(E) : |α| > t} ⊂Mn(E) , ∀t < n.

Let Π∇,En : H1(E)→ Pn(E) be the projection operator such that, ∀v ∈ H1(E),
(
∇Π∇,En v,∇p

)
E

= (∇v,∇p)E , ∀p ∈ Pn(E) ,∫
∂E

Π∇,En v =
∫
∂E

v, if k = 1,∫
E

Π∇,En v =
∫

E
v, if k > 1.

(3.1)

Then, given `E ∈ N we introduce the enlarged enhancement VEM discrete space:

VE
k,`E

=
{
v ∈ H1(E) : ∆v ∈ Pk+`E (E) , γ∂E(v) ∈ C0(∂E) , γe(v) ∈ Pk(e) , ∀e ∈ EE

h ,

(v, p)E =
(
Π∇,Ek v, p

)
E
, ∀p ∈ Pk+`E ,k−2(E)

}
, (3.2)

where γ denotes the trace operator and

Pk+`E ,k−2(E) = spanMk+`E ,k−2(E) .

Remark 3.1. The space VE
k,0 is the standard VEM space used in [9, 20].

Notice that, ∀`E, a possible set of degrees of freedom of VE
k,`E

is the one used for standard VEM
spaces (see e.g., [9, 20]), that is, for any vh ∈ VE

k,`E
,

(1) the values of vh at the vertices of E;

(2) for each e ∈ EE
h , the values of vh at k − 1 points internal to e;

(3) the scaled moments 1
|E| (vh,mα)E, ∀mα ∈Mk−2(E).
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3.2. Discrete problem

This section is devoted to define the SUPG-stabilized discrete formulation of (2.2), following [20].
Let E ∈Mh be given. If k > 1, let C̃k be the largest constant, independent of hE, such that

C̃kh2
E ‖∆p‖2E ≤ ‖∇p‖2E , ∀p ∈ Pk(E) , (3.3)

where C̃k depends on the constant κ appearing in the mesh assumptions, and on the degree k (see
e.g., [30]). The Péclet number associated to E is defined as

PeE = mk
βEhE

ε
, mk =

1
3 , if k = 1,
2C̃k, if k > 1.

Following the standard SUPG approach [31], for any E ∈Mh let the parameter τE be given, such that

τE =
hE

2βE
min {1,PeE} . (3.4)

To define the SUPG formulation of the problem, we introduce the space

H1,∆
loc(Mh) =

{
v ∈ H1

0(Ω) : ∆v ∈ L2(E) , ∀E ∈Mh

}
,

and ∀E ∈Mh, the bilinear form BE : H1,∆
loc(Mh) × H1

0(Ω)→ R such that, ∀w ∈ H1,∆
loc(Mh), ∀v ∈ H1

0(Ω),

BE (w, v) = aE (w, v) + bE (w, v) + dE (w, v) ,

where

aE (w, v) = (ε∇w,∇v)E + τE (β · ∇w, β · ∇v)E ,

bE (w, v) = (β · ∇w, v)E ,

dE (w, v) = −τE (ε∆w, β · ∇v)E .

Moreover, we introduce the operator FE : H1(E)→ R such that

FE (v) = ( f , v + τEβ · ∇v)E , ∀v ∈ H1(E).

The above operators are not computable from the degrees of freedom for functions in VE
k,`E

. For this
reason, we define discrete bilinear forms involving polynomial projections. For a given n ∈ N let
Π0,E

n :
[
L2(E)

]2
→ [Pn(E)]2 denotes the element-wise L2(E) projection onto Pn(E) and let

aE
h (w, v) =

(
εΠ0,E

k+`E−1∇w,Π0,E
k+`E−1∇v

)
E

+ τE

(
β · Π0,E

k+`E−1∇w, β · Π0,E
k+`E−1∇v

)
E
,

bE
h (w, v) =

(
β · Π0,E

k−1∇w,Π0,E
k−1v

)
E
,

dE
h (w, v) = −τE

(
ε∇ ·

(
Π0,E

k−1∇w
)
, β · Π0,E

k+`E−1∇v
)

E
.

Remark 3.2. Notice that, contrarily to standard VEM SUPG formulations (cf. [20, 21]), here we do
not require an additional non-polynomial stabilization term in the bilinear form aE

h . The choice of the
parameter `E is done in order to guarantee coercivity of aE

h , as detailed in the next section.
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Finally, to state our discrete problem, we define the bilinear form BE
h : H1,∆

loc(Mh) ×H1
0(Ω)→ R such

that, ∀w ∈ H1,∆
loc(Mh), ∀v ∈ H1

0(Ω),

BE
h (w, v) = aE

h (w, v) + bE
h (w, v) + dE

h (w, v) ,

and the operator FE
h : H1(E)→ R such that

FE
h (v) =

(
f ,Π0,E

k−1v + τEβ · Π
0,E
k+`E−1∇v

)
E
, ∀v ∈ H1(E).

Then, given
Vk,` =

{
v ∈ H1

0(Ω) : v ∈ VE
k,`E
, ∀E ∈Mh

}
,

our discretization of (2.2) reads: find uh ∈ Vk,` such that∑
E∈Mh

BE
h (uh, vh) =

∑
E∈Mh

FE
h (vh) , ∀vh ∈ Vk,`. (3.5)

4. Well-posedness

The aim of this section is to discuss the key points needed for the well-posedness of (3.5). It is
currently an open problem to identify a robust criterium to choose `E for any kind of polygon, in such
a way that aE

h is coercive. Thus, we assume that there exists at least a good choice of `E for each type
of polygon and in Section 6 we perform a numerical investigation of it.

Assumption 4.1. We assume that, ∀k ≥ 1 ∃`E such that ∃α > 0 independent of hE satisfying∥∥∥Π0,E
k+`E−1∇vh

∥∥∥2

E
≥ α ‖∇vh‖

2
E , ∀vh ∈ VE

k,`E
. (4.1)

From now on, we set `E as the smallest integer satisfying Assumption 4.1. With this choice, we
define the following VEM-SUPG norm:

|||vh|||
2 =

∑
E∈Mh

aE
h (vh, vh) , ∀vh ∈ Vk,`.

Then, we can prove the following well-posedness result.

Theorem 4.1. Under Assumption 4.1, we have, ∀E ∈Mh and for h sufficiently small,

∃C > 0:
∑

E∈Mh

BE
h (vh, vh) ≥ C |||vh|||

2 , ∀vh ∈ Vk,`.

Proof. Let vh ∈ Vk,` be given. First, exploiting the definition of τE in (3.4), the inverse inequality (3.3)
and Young inequalities, we get∣∣∣dE

h (vh, vh)
∣∣∣ = τE

∣∣∣∣(ε∇ · (Π0,E
k−1∇vh

)
, β · Π0,E

k+`E−1∇vh

)
E

∣∣∣∣
≤

mkh2
E

4ε

∥∥∥∥ε∇ · (Π0,E
k−1∇vh

)∥∥∥∥2

E
+
τE

2

∥∥∥β · Π0,E
k+`E−1∇vh

∥∥∥2

E

Mathematics in Engineering Volume 6, Issue 1, 173–191.
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≤
1

2ε

∥∥∥εΠ0,E
k−1∇vh

∥∥∥2

E
+
τE

2

∥∥∥β · Π0,E
k+`E−1∇vh

∥∥∥2

E

≤
ε

2

∥∥∥Π0,E
k−1∇vh

∥∥∥2

E
+
τE

2

∥∥∥β · Π0,E
k+`E−1∇vh

∥∥∥2

E

≤
ε

2

∥∥∥Π0,E
k+`E−1∇vh

∥∥∥2

E
+
τE

2

∥∥∥β · Π0,E
k+`E−1∇vh

∥∥∥2

E

=
1
2

aE
h (vh, vh) .

Thus, it follows

aE
h (vh, vh) + dE

h (vh, vh) ≥
1
2

aE
h (vh, vh) =

1
2
|||vh|||

2
E . (4.2)

Moreover, since b (vh, vh) = 0, we get∣∣∣∣∣∣∣ ∑E∈Mh

bE
h (vh, vh)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ ∑E∈Mh

(
β · Π0,E

k−1∇vh,Π
0,E
k−1vh

)
E

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ ∑E∈Mh

(
Π0,E

k−1

(
β · Π0,E

k−1∇vh

)
, vh

)
E

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ ∑E∈Mh

(
Π0,E

k−1

(
β · Π0,E

k−1∇vh

)
− β · ∇vh, vh

)
E

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ ∑E∈Mh

(
β · Π0,E

k−1∇vh − β · ∇vh,Π
0,E
k−1vh − vh

)
E

∣∣∣∣∣∣∣
≤

∑
E∈Mh

∥∥∥∥β · (Π0,E
k−1∇vh − ∇vh

)∥∥∥∥
E

∥∥∥Π0,E
k−1vh − vh

∥∥∥
E

≤ Cεβ

∑
E∈Mh

hE |||vh|||
2
E ,

where Cεβ depends in particular on the problem data and the equivalence constant in (4.1). Collecting
the latest estimate and (4.2), we get the thesis:∑

E∈Mh

BE
h (vh, vh) ≥

(
1
2
−Cεβh

)
|||vh|||

2 .

�

Notice that the above result is analogous to the one obtained in [20] in the case of standard VEM.
Other choices are possible to discretize the transport term (see [32]), and they would lead to a similar
well-posedness results.

5. Error analysis

In this section we address the a priori error analysis of the proposed scheme, under Assumption 4.1.
The analysis follows the techniques already used to prove a priori estimates for standard VEM
schemes [9, 20, 32].
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We provide some details on the interpolation properties of the considered space, since it is a slight
modification of the classical VEM spaces, due to the enlarged enhancement property of VE

k,`E
. The

proof follows the one in [33] for the interpolation on standard VEM spaces. First, we prove an auxiliary
result, introducing an inverse inequality in VE

k,`E
.

Lemma 5.1. Let E ∈Mh and let w ∈ H1(E) such that ∆w ∈ Pk+`E (E), for some chosen `E ≥ 0. Then,
there exists a constant CI such that

‖∆w‖E ≤ CIh−1
E ‖∇w‖E . (5.1)

The constant CI depends on k, `E and on the mesh regularity parameter κ.

Proof. First, let p ∈ Pk+`E (E). Then, let ψE ∈ H1
0(E) be a bubble function defined on a regular sub-

triangulation of E (see [33]), such that 1 ≥ ψE ≥ 0. Then, since ψE p ∈ H1
0(E),

‖p‖H−1(E) = sup
v∈H1

0(E)

(p, v)E

‖∇v‖E
≥

(
ψE, p2

)
E

‖∇(ψE p)‖E
≥ CB

‖p‖2E
h−1

E ‖p‖E
= CBhE ‖p‖E ,

where we use the fact that, since ψE is non-negative and bounded,
√(
ψE, p2)

E is a norm on Pk+`E (E),
and thus equivalent to ‖p‖E. Similarly, since ψE ∈ H1

0(E), ‖∇(ψE p)‖E is a norm on Pk+`E (E), and
standard scaling arguments provide the weight h−1

E . It follows that CB depends on k, `E and on the
shape regularity of E. Taking p = ∆w in the above result and applying Green’s theorem and a Cauchy-
Schwarz inequality, we conclude, defining CI = C−1

B ,

‖∆w‖E ≤ CIh−1
E sup

v∈H1
0(E)

(∆w, v)E

‖∇v‖E
= CIh−1

E sup
v∈H1

0(E)

(−∇w,∇v)E

‖∇v‖E

≤ CIh−1
E ‖∇w‖E .

�

Theorem 5.1. Let u ∈ Hs(Ω), 1 ≤ s ≤ k + 1. Let `E ∈ N be given ∀E ∈Mh. There ∃uI ∈ Vk,` such that

∃C > 0: ‖u − uI‖Ω + h ‖∇(u − uI)‖Ω ≤ Chs |u|s,Ω . (5.2)

Proof. Following [33], let Th be the sub-triangulation of Mh obtained as the union of local sub-
triangulations of each polygon E ∈ Mh, linking each vertex to the center of the ball with respect
to which E is star-shaped. Th inherits the shape-regularity of Mh. Let uC ∈ Pk(Th) be the piecewise
polynomial Clément interpolant of u over Th. It holds true that (see [34, Theorem 1])

|u − uC |m,Ω ≤ CCl,khs−m |u|s m ≤ s, (5.3)

where CCl,k depends on the shape-regularity of Mh and the order k. Let wI ∈ H1(Ω) be the function
that solves, ∀E ∈Mh, −∆wI = −∆Π0,E

k uC, in E,

wI = uC, on ∂E.
(5.4)
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By the definition of wI we have that, ∀E ∈Mh, Π0,E
k uC − wI solves the following problem:−∆(Π0,E

k uC − wI) = 0, in E,

Π0,E
k uC − wI = Π0,E

k uC − uC, on ∂E.

It follows that∥∥∥∇(Π0,E
k uC − wI)

∥∥∥
E

= inf{‖∇z‖E , z ∈ H1(E) : γ∂E(z) = Π0,E
k uC − uC} ≤

∥∥∥∇(Π0,E
k uC − uC)

∥∥∥
E
,

which implies, exploiting the continuity of the operator Π0,E
k and (5.3),

‖∇(uC − wI)‖E ≤
∥∥∥∇(uC − Π0,E

k uC)
∥∥∥

E
+

∥∥∥∇(Π0,E
k uC − wI)

∥∥∥
E

≤ 2
∥∥∥∥∇ (

Π0,E
k uC − uC

)∥∥∥∥
E

≤ 2CΠ,k ‖∇uC‖E

≤ 2CΠ,kCCl,k ‖∇u‖E , (5.5)

where CΠ,k depends on the shape-regularity of E and the order k. We define uI ∈ Vk,` such that ∀E ∈Mh

γe(uI) = γe(wI) , ∀e ∈ ∂E, (5.6)
(uI − wI , p)E = 0, ∀p ∈ Pk−2(E) , (5.7)(
uI − Π∇,Ek wI , p

)
E

= 0, ∀p ∈ Pk+`E ,k−2(E) . (5.8)

Notice that applying Green’s theorem we get from (5.6) and (5.7) that Π∇,Ek uI = Π∇,Ek wI . Thus (5.8)
implies (

uI − Π∇,Ek uI , p
)

E
= 0, ∀p ∈ Pk+`E ,k−2(E) . (5.9)

We now prove (5.2) for uI . Concerning H1(Ω)-seminorm of u − uI , recalling (5.3) we get

‖∇(u − uI)‖Ω ≤ ‖∇(u − uC)‖Ω + ‖∇(uC − uI)‖Ω

≤ CCl,khs−1 |u|s,Ω +

 ∑
E∈Mh

‖∇(uC − uI)‖2E


1
2

.

Moreover, from the definition of wI (5.4) and the definition of uI (5.6) we get γe(uC) = γe(wI) = γe(uI)
for each edge e of Mh. Thus,

uC − uI ∈ H1
0(E), ∀E ∈Mh.

We can thus estimate the L2(Ω)-norm of u − uI as follows:

‖u − uI‖Ω ≤ ‖u − uC‖Ω + ‖uC − uI‖Ω

≤ CCl,khs |u|s,Ω + h

 ∑
E∈Mh

Cp,E ‖∇(uC − uI)‖2E


1
2

, (5.10)
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where Cp,E depends on the shape-regularity of E. We now focus on estimating ‖∇(uC − uI)‖E ∀E ∈Mh.
Applying (5.5) we get

‖∇(uC − uI)‖E ≤ ‖∇(uC − wI)‖E + ‖∇(wI − uI)‖E
≤ 2CΠ,kCCl,k ‖∇u‖E + ‖∇(wI − uI)‖E . (5.11)

Finally, the last term can be bounded applying Green’s theorem (recall that wI − uI ∈ H1
0(E)), (5.7),

(5.9), the fact that Π∇,Ek uI = Π∇,Ek wI , a Cauchy-Schwarz inequality, the approximation properties of
polynomial projections, (5.5) and the inverse inequality (5.1) we get

‖∇(wI − uI)‖2E = − (∆(wI − uI),wI − uI)E

= −
(
∆(wI − uI) − Π0,E

k−2 (∆(wI − uI)) ,wI − uI

)
E

= −
(
∆(wI − uI) − Π0,E

k−2 (∆(wI − uI)) ,wI − Π∇,Ek uI

)
E

= −
(
∆(wI − uI) − Π0,E

k−2 (∆(wI − uI)) ,wI − Π∇,Ek wI

)
E

≤
∥∥∥∆(wI − uI) − Π0,E

k−2 (∆(wI − uI))
∥∥∥

E

∥∥∥wI − Π∇,Ek wI

∥∥∥
E

≤ C ‖∆(wI − uI)‖E · hE ‖∇wI‖E

≤ C ‖∆(wI − uI)‖E · hE ‖∇u‖E
≤ C ‖∇(wI − uI)‖E ‖∇u‖E .

Then, collecting (5.10), (5.11) and the last estimate, we obtain (5.2). �

The interpolation estimate provided by Theorem 5.1 along with approximation results analogous to
the ones obtained in [20, 32] are used to prove the following a priori error estimates, whose proof is
omitted since it is analogous to the one in the cited references.

Theorem 5.2. Assume u ∈ Hs+1(Ω) and f ∈ Hs−1(Ω). Then, under the current regularity assumptions
and if `E is chosen ∀E ∈Mh in such a way that (4.1) holds,

|||u − uh||| ≤ Chs

(
max
E∈Th
{
√
ε,

√
hEβE} ‖u‖s+1 + C f ,εβ ‖ f ‖s−1

)
,

where C is independent of h and on the problem coefficients and C f ,εβ depends on local variations of
the problem coefficients.

6. Numerical results

In this section we present three numerical experiments. In the first and second tests we confirm the
convergence rates predicted by the a priori error analysis of Section 5 and we compare our method with
the standard SUPG virtual element discretization [20] in terms of relative energy errors. In the third
test we consider a classic problem taken from [31] involving approximation of internal and boundary
layers. In all the numerical tests our aim is to assess the robustness of the approach in case of advection
dominated regime. Therefore, all the benchmark problems are characterized by large mesh Péclet
numbers. Moreover, for each type of polygon in each mesh considered in the tests, we have done a
preliminary assessment of the minimum `E that satisfies Assumption 4.1, as detailed in the following
section. We consider SFVEM of different orders from one to four and a unit square domain Ω =

(0, 1) × (0, 1).
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6.1. Test 1

In this first test, we consider an advection-diffusion problem characterized by a diffusivity parameter
ε = 10−9 and a transport velocity field β = (1, 0.545). The size of the meshes is chosen to guarantee
that for the selected value of ε the mesh Péclet number is much greater than one for all k. The forcing
term f and the boundary conditions are such that the exact solution (depicted in Figure 1) is

u(x, y) = c1 xy (x − 1)(y − 1) e−c2(c4(c2−x)2+c3(c2−y)2−c3(c2−x)(c2−y)),

where c1 = 3
√

2π
, c2 = 1

2 , c3 = 1000 and c4 = 1
3.3 · 103. In Figure 1, we can see that the solution exhibits

a strong boundary layer in a direction approximately perpendicular to the direction of the transport
velocity field β.

Figure 1. Test 1: exact solution u(x, y) and transport velocity field β(x, y) (red arrows).

We consider three different families of meshes (T1, T2 and T3) and four different refinements for
each one of them. The first mesh of each sequence is reported in Figure 2.

(a) T1 (b) T2 (c) T3

Figure 2. Meshes.

The mesh family T1 consists of standard cartesian elements, the mesh family T2 is composed of
both concave and convex polygons and the mesh family T3 is created by Polymesher [35]. The first
two groups of meshes are refined splitting the existing elements in half, while the mesh family T3 is
refined by Polymesher. Consequently, the tessellations of this family include polygons having different
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numbers of edges. In Table 1 we report the mean mesh Péclet number for the first mesh and the last
mesh of each mesh family.

Regarding the choice of `E, we follow the approach in [27, 28]. On each polygon E of each mesh
we perform an eigenvalue analysis on the local matrix

AE
i j =

(
Π0,E

k+`E−1∇φ j,Π
0,E
k+`E−1∇φi

)
E

and select the smallest value of `E such that the numerical rank of the matrix is NE
dof,k − 1, NE

dof,k being
the number of local degrees of freedom. In particular, we select `E such that the matrix AE has NE

dof,k−1
eigenvalues that are greater than 1e− 8. The resulting values are shown in Table 2. Notice that `E does
not depend only on the number of vertices of the polygon, but also on its geometry. Indeed, if we
consider the line corresponding to k = 2 in Table 2, we can see that we require `E = 2 for T1, where
quadrilaterals are all squares, and `E = 1 for T3, that features generally shaped quadrilaterals.

Table 1. Test 1: mean values of the mesh Péclet number for the first mesh M f irst and last
mesh Mlast of the mesh families T1, T2 and T3.

T1 T2 T3

k 1 2 3-4 1 2 3-4 1 2 3-4
M f irst 2 · 107 4 · 106 1 · 106 1 · 107 3 · 106 8 · 105 6 · 106 2 · 106 4 · 105

Mlast 2 · 106 5 · 105 1 · 105 2 · 106 4 · 105 1 · 105 2 · 106 5 · 105 1 · 105

Table 2. Values of `E for the proposed method and tessellations T1, T2 and T3, related to the
number of vertices NV

E of the polygons in each mesh.

T1 T2 T3

NV
E 4 5 3-4 5 6 7

k = 1 1 1 1 1 2 2
k = 2 2 1 1 1 2 2
k = 3 2 1 1 1 2 2
k = 4 2 2 1 2 3 4

In Figures 3–5 we show the convergence curves in log-log scale for orders from 1 to 4. We report the
relative errors computed in the energy norm plotted against the maximum diameter of the discretization
for both the SFVEM and the classical VEM [20]. The computed relative error is based on the difference
between the exact solution and the projection Π∇,Ek of the discrete solution uh and it is given by the
following expression

err =

√√√√∑
E∈Mh

∥∥∥√ε∇(u − Π∇,Ek uh)
∥∥∥2

E
+ τE

∥∥∥β · ∇(u − Π∇,Ek uh)
∥∥∥2

E∑
E∈Mh

∥∥∥√ε∇u
∥∥∥2

E
+ τE ‖β · ∇u‖2E

.
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Figure 3. Test 1: convergence curves (tessellation T1).
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Figure 4. Test 1: convergence curves (tessellation T2).
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Figure 5. Test 1: convergence curves (tessellation T3).

The plots in Figures 3–5 display two y-axis: the one on the left is related to the relative energy error,
whereas the one on the right is related to the ratio between the VEM error and the SFVEM error. In
the legends, alpha denotes the numerical rates of convergence, computed using the last two meshes of
each refinement. The numerical rates of convergence for both the two methods are in agreement with
the theoretical findings for the energy norm of the problem (Theorem 5.2).

Figure 3a shows that for order k = 1 the two methods provide very close results on the mesh family
T1, whereas Figures 4a and 5a show that the SFVEM performs better than the classical VEM on the
mesh families T2 and T3. Thus, the results suggest that the SFVEM is able to decrease the magnitude
of the error with respect to the classical VEM when dealing with solutions characterized by strong
anisotropies. An analogous trend is observed for k = 2. Moreover, in Figure 4a,4b, we notice that the
error difference between the SFVEM and the VEM is stronger than the one observed in Figures 3a,3b
and 5a,5b.

Figures 3c,3d, 4c,4d, and 5c,5d show that for k = 3 and k = 4 the VEM and the SFVEM exhibit
an almost equivalent behaviour for all the considered meshes. A similar trend was also observed for
anisotropic elliptic problems in [24]. Indeed, for higher orders we expect that the polynomial part
of the standard VEM bilinear form is more relevant than the stabilizing part, reducing the error gap
between the two methods.

6.2. Test 2

In this second test, we consider an advection-diffusion problem characterized by a diffusivity
parameter ε = 10−9 and a transport velocity field β = (1, 0). The forcing term f and the boundary
conditions are such that the exact solution is u(x, y) = sin(2πx) sin(80πy). We compare the relative
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energy errors of VEM and SFVEM only on T3. Indeed, the results of the two methods coincide on
T1 and T2 since they are by construction aligned with the principal directions of the error (see for
details [36]). Concerning the choice of `E for the application of SFVEM, we follow Table 2.

In Figure 6, we report the convergence plots for both methods. The results in the lowest order
case show a larger difference between the two methods with respect to the previous test. As observed
in [24], this is due to the highly oscillating behaviour of the solution.
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Figure 6. Test 2: convergence curves (tessellation T3).

6.3. Test 3

For the third test, we consider a classic benchmark problem in the SUPG literature characterized by
the presence of different layers. This problem was originally proposed in the context of Finite Element
Methods in [31]. The computational domain Ω as well as the boundary conditions are depicted in
Figure 7. Notice the discontinuous Dirichlet boundary condition on the left side of the domain. We
set ε = 10−6 and β = (cos θ, sin θ), where θ = π

4 , and the forcing term f is zero. The solution
features an internal boundary layer due to the discontinuity of the Dirichlet boundary conditions and
the highly convective regime, whereas at the outflow boundary another steep layer is produced due to
the homogeneous boundary conditions.

We solve the problem using tessellation T2, depicted in Figure 2b. The resulting Péclet number is
very large (around 106). In Figure 8 we display the discrete solutions obtained by the SFVEM scheme
and the standard VEM scheme. As it is typical for this problem we notice the presence of undershoots
and overshoots near the internal boundary layer.
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Figure 7. Test 3: computational domain and boundary conditions.

(a) SFVEM, k = 1 (b) VEM, k = 1

(c) SFVEM, k = 3 (d) VEM, k = 3

Figure 8. Test 3: SFVEM and VEM solutions for k = 1 and k = 3 on T2.
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7. Conclusions

We presented a numerical investigation of the performances of SUPG-stabilized stabilization-free
VEM, assessing the possibility of using higher-order polynomial projectors in the definition of the
discrete bilinear form and avoiding the use of a non-polynomial stabilizing bilinear form that does not
preserve the structure of the problem operator. We also provided an interpolation estimate for the new
scheme, analogous to the one obtained for standard VEM. Numerical results show that the possibility
of avoiding a non-polynomial stabilizing bilinear form can enhance the performances of low order
classical VEM methods in the case of advection-dominated problems. Indeed, we observed a reduced
magnitude of the error especially comparing the lowest order methods, while similar behaviours are
observed when choosing higher orders.
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