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ABSTRACT Automated segmentation of histological structures in microscopy images is a crucial step in
computer-aided diagnosis framework. However, this task remains a challenging problem due to issues like
overlapping and touching objects, shape variation, and background complexity. In this work, we present a
novel and effective approach for instance segmentation through the synergistic combination of two deep
learning networks (detection and segmentation models) with active shape models. Our method, called
softmax-driven active shape model (SD-ASM), uses information from deep neural networks to initialize
and evolve a dynamic deformable model. The detection module enables treatment of individual objects
separately, while the segmentation map precisely outlines boundaries. We conducted extensive tests using
various state-of-the-art architectures on two standard datasets for segmenting crowded objects like cell
nuclei - MoNuSeg and CoNIC. The proposed SD-ASM consistently outperformed reference methods,
achieving up to 8.93% higher Aggregated Jaccard Index (AJI) and 9.84% increase in Panoptic Quality (PQ)
score compared to segmentation networks alone. To emphasize versatility, we also applied SD-ASMs to
segment hepatic steatosis and renal tubules, where individual structure identification is critical. Once again,
integration of SD-ASM with deep models enhanced segmentation accuracy beyond prior works by up to
6.2% in AJI and 38% decrease in Hausdorff Distance. The proposed approach demonstrates effectiveness in
accurately segmenting touching objects across multiple clinical scenarios.

INDEX TERMS Digital pathology, deep learning, hybrid frameworks, nuclei instance segmentation, active
shape models.

I. INTRODUCTION
Cellular microscopy imaging methods are essential for evalu-
ating and quantifying tissue characteristics like cell integrity,
viability, and disease state. Some of the main cellular
imaging methods include phase-contrast microscopy, flu-
orescent microscopy, brightfield microscopy and confocal
microscopy [1], [2]. These imaging methods often aim to
provide an analysis of a single object, which can often be
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hindered by the fact that cellular structures overlap and are
not easily separable [3], [4], [5].

One of the main medical applications of brightfield
microscopy is histopathological image analysis, where clin-
icians analyze images of explanted tissue from biopsies or
surgeries, which is fundamental for cancer diagnosis and
grading. Digital pathology has rapidly grown over the last
decade thanks mainly to slide scanners which are now able
to produce digital super-resolution whole slide images (WSI)
[6] that can be viewed on a traditional monitor as an alter-
native to the use of a conventional microscope. Digital
pathology presents a wide range of potential applications
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such as, but not limited to: normal and pathological cell
counting, region or object segmentation, tissue structure
recognition, cancer grade classification, cancer prognosis,
etc.

An accurate object detection is fundamental for cellular-
level analysis in computational pathology. In a clinical
setting, quantitative analysis of cell morphology is useful for
diagnostic decision making, prediction of treatment outcome,
and prognostic stratification. Precise segmentation of cellular
object boundaries is also important for grading cancer, from
which clinicians can obtain more pathological information
in clinical medicine and concurrently analyze the details of
spatial characteristics of tissues and targets. Segmentation of
individual histological structures is a very challenging task
due to large variations in morphology of the object to be
recognized as well as the existence of touching and poorly
defined structures in pathological conditions.

Deep learning-based methods have become the state-of-
the-art computational methods for medical image segmen-
tation, due to their dominating performance in numerous
computer vision tasks, such as object classification, detec-
tion, and segmentation. In particular, Convolutional Neural
Networks (CNN) present exceptional feature extraction and
generalization capabilities for image segmentation tasks,
which is one of the most common and relevant challenge for
medical image analysis.

Regarding the specific task of segmentation in histopatho-
logical images, there are two main challenges:

- Stain variability: during tissue preparation, a crucial
step is the staining process, where dyes are applied to
highlight specific cellular components. However, this
process introduces significant variability, resulting in
histological slides with the same stain appearing differ-
ent in terms of color and intensity. A solution to this
challenge is known as stain normalization, in which
stain-normalized images have their intensity distribution
mapped to match the color distribution of a chosen
template image [7].

- Overlapping and touching structures: histopathological
images often contain structures that overlap or touch
each other, making it difficult to distinguish them as
individual objects. This difficulty is exacerbated when
using deep learning techniques, as the encoder and
decoder of the CNN tend to lose some image details,
making the segmentation of touching objects more
challenging. Additionally, boundaries of histological
structures may become blurred during the staining and
scanning process, further complicating the segmentation
task.

Despite the various benefits offered by AI methods, deep
learning techniques are still mostly viewed as black-box
systems, making it challenging to understand the factors
that control their performance. Specifically, the semantic
segmentation performed by CNNs usually shows very high
pixel-level accuracy but is prone to merge different objects
that are close to each other or intersect [8]. Rather than

developing a new network architecture, this work presents a
hybrid framework that integrates deep learning segmentation
models with traditional deformable models. By combining
semantic predictions with localized shape refinement, our
goal is to overcome limitations in currentmethods for refining
instance segmentation. The key contributions of this paper
can be summarized as follows:

• We introduce a novel formulation of softmax-driven
active shape models (SD-ASMs). These dynamic
deformable models leverage object localization and
semantic content provided by two deep networks.
Specifically, the bounding boxes generated by a detec-
tion network are used to initialize each ASM. Addition-
ally, the probability map from a segmentation network
is employed to balance the internal and external forces
of each active shape model. SD-ASMs evolve directly
on the probability map provided by the segmentation
network, enabling accurate instance segmentation.

• We propose a hybrid deep learning framework that com-
bines the accuracy of active shape models (ASMs) with
the localization and semantic content created by two
deep networks. Our dynamic deformablemodels excel at
accurately separating individual cell instances by lever-
aging the detection and the segmentation modules. The
controllability of these hybrid ASMs allows to overcome
the limitations of current deep learning methods.

• To address the challenge of touching and partial over-
lapping nuclei, we incorporate a repulsive interaction
term in themathematical formulation of each ASM. This
interaction term is introduced to guide the evolution of
each ASM and effectively mitigate the issue of ‘‘partial
overlap’’.

• We conduct an extended validation by integrating the
proposed approach with state-of-the-art techniques for
nuclei segmentation in hematoxylin and eosin (H&E)
stained images. Results demonstrate that the introduc-
tion of SD-ASMs inside existing methods provide a
significant boost in instance recognition. Additionally,
we quantitatively assess generalizability on two clinical
applications - liver steatosis and kidney tubule segmen-
tation. In both cases, SD-ASM integration with deep
models enhances segmentation accuracy beyond prior
works.

The rest of this paper is organized as follows: Section II
presents an overview of the current approach for segmenting
individual instances of histological structures; Section III
provides an exhaustive description of the proposed approach;
Sections IV andV report and discuss the experimental results.

II. RELATED WORKS
In this section, we provide a concise overview of recent
advancements in instance segmentation for H&E-stained
histopathology images. While some existing methods rely on
traditional image processing techniques such as thresholding,
clustering, and edge detection [9], [10], our focus here is
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primarily on deep learning techniques, which have emerged
as the state-of-the-art in this field.

One of the earliest applications of deep learning in
histopathology involved nuclei segmentation, a crucial step in
cancer analysis and grading [11]. Veta et al. [11] proposed a
spatially constrained CNN that operates on the likelihood of a
pixel being the center of a nucleus. Pan et al. [12] introduced a
method based on sparse reconstruction to remove background
and enhance nuclei, followed by refining the CNN segmen-
tation using morphological operations and prior knowledge.
Lal et al. [13] presented NucleiSegNet, which consists of
robust residual, bottleneck, and attention decoder blocks.
While these studies showed promising results, they did not
specifically address the challenge of overlapping nuclei.

Other studies have specifically tackled the issue of over-
lapping nuclei in histology images. Xing et al. [14] combined
a two-class CNN for generating probability maps with sparse
shape models to separate touching nuclei. Naylor et al. [15]
tackled the problem of overlapping nuclei by regressing
the distance map and employing post-processing methods.
Graham and Rajpoot [16] introduced a CNN method for
simultaneous nuclear segmentation and classification, utiliz-
ing pixel distances to separate clustered nuclei. Cui et al. [17]
proposed a contour-aware CNN that outputs estimated nuclei
and boundarymaps. Xie et al. [3] employed theMask R-CNN
model and introduced structure preserving color normaliza-
tion along with a watershed algorithm to separate fused
nuclei, which however tended to produce irregular nuclei
shapes, which is detrimental to the subsequent morphological
analysis of nuclei. Wan et al. [18] proposed a technique
based on the integration of an atrous spatial pyramid pool-
ing U-Net (ASPPU-Net) and an improved concave point
detection algorithm to segment nuclei with high overlap.
Chanchal et al. [19] introduced an encoder–decoder architec-
ture with a separable convolution pyramid pooling network
(SCPP-Net), which focuses on increasing the receptive field.
The authors do not present any specific approach for the
problem of overlapping nuclei but claim that the increase
of the receptive field at a higher level helps overcome the
issue. Liu et al. [20] proposed the MDC-Net, incorporat-
ing distance maps and contour information for overlapping
nuclei segmentation. Wazir and Fraz [21] utilized a quick
attention module and multi-loss function to capture relevant
local and global features at multiple scales, enabling more
precise boundary detection. Vo et al. [22] integrated multi-
ple filter blocks into their Hover-Net architecture. Testing
showed these blocks enhanced the original model’s perfor-
mance [23] for instance segmentation tasks. Additionally,
Saednia et al. [24] employed a cascaded deep learning frame-
work with a customized pixel-wise weighted loss function.
This allowed their approach to segment nuclei with higher
accuracy by optimizing the loss calculation at each stage.

Another application in which it is critical to recognize indi-
vidual instances of histological structures involves the analy-
sis of tubules and glands. Their morphology is routinely used

by experienced pathologists to assess the degree of cancer
malignancy in various epithelial tissues such as the prostate,
breast, and colon [25], [26]. To obtain reliable morphologic
statistics for quantitative diagnosis, individual tubules/glands
must be precisely segmented. Qu et al. [27] proposed a three-
class CNN to segment touching glands, while Xu et al. [28]
combined three different CNNs (foreground segmentation,
edge detection, and single gland detection) for gland instance
generation. Chen et al. [25] introduced a deep contour-aware
network that depicted gland contours and produced probabil-
ity maps, addressing touching structures using upsampling
and morphological operators. Zhang et al. [29] proposed
the SGDANet model for gland instance segmentation, which
incorporates a geometric module to capture cell shapes along
with a parallel spatial-geometric dual-path attention mecha-
nism for enhanced feature extraction.

It is evident that the segmentation of overlapping and
touching histological structures remains an open problem.
In this work, we propose a novel approach that synergisti-
cally combines two deep learning networks with active shape
models. We demonstrate the effectiveness of our proposed
method through comparative evaluations with other com-
petitive state-of-the-art instance segmentation models across
different tissue types.

III. MATERIALS AND METHODS
In this paper, we present a fully supervised method for
instance segmentation in histopathological images. Fig. 1
illustrates the flowchart of our approach. Our method con-
sists of three steps: i) image normalization, ii) object
localization & semantic content extraction, iii) softmax-
driven active shape models. We will publicly release the
dataset and codes used in this study at the following
doi: 10.17632/nwnfh5x5j3.1. A detailed description of our
approach is provided in the next section.

A. IMAGE NORMALIZATION
The first step of the proposed pipeline is image normaliza-
tion. Stain normalization is a common pre-processing step
in almost all deep learning frameworks for digital pathol-
ogy [30], [31], [32]. Briefly, a stain normalizing procedure
allows to standardize the color appearance of a source image
with respect to the color profile of a template image. This
operation reduces the stain variability and improves the
robustness of computer-aided diagnostic and image quantifi-
cation algorithms [33].

In this work, we employed a GAN (Generative Adversarial
Network) [34] to address the task of stain normalization.
The goal is to translate the color pattern of images from one
domain (domain A) to the color pattern in another domain
(domain B), where domain A exhibits a wide range of color
patterns and domain B has a relatively uniform color pat-
tern [35]. Our generative model is a Pix2Pix GAN consisting
of a U-net architecture as the generator (G) and a three-layer
fully convolutional PatchGAN as the discriminator (D). The
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FIGURE 1. Overview of the proposed instance segmentation framework. During the training phase, three different deep networks are
developed: a generative adversarial network (GAN) for stain normalization, a faster R-CNN for object localization, and a DeepLabv3+ for
semantic content extraction. During inference, the outputs of these three networks are combined to initialize and evolve the
softmax-driven ASMs.

generator aims to generate normalized images that can fool
the discriminator into classifying them as real target images,
while the discriminator aims to correctly distinguish between
the real and generated images. A pixel-wise loss is used to
preserve the pixel-level correspondence between the original
and normalized images. The GAN is trained using a least
square objective function [36], which is defined as follows:

min
D

VLSGAN (D)=
1
2
Ex,y

[
D (x) −b2

]
+
1
2
Ex,z

[
(D (x,G (z)) −a)2

]
(1)

min
G

VLSGAN (G)=
1
2
Ex,z

[
(D (x,G (x, z)) −c)2

]
(2)

Here, a and b represent the labels for fake and real data,
respectively, and c denotes the value that G aims for D to
perceive as fake data.

The training process continues until convergence, during
which the generator network learns to produce high-quality
normalized images that closely resemble the target images.
Our model is trained for 150 epochs using instance normal-
ization. The initial learning rate is set to 0.0001 and reduced
by a factor of 0.5 every 50 epochs. Fig. 2 illustrates the effect
of the stain normalization procedure on three sample images.

B. OBJECT LOCALIZATION AND SEMANTIC CONTENT
EXTRACTION
In this study, a dual-branch deep learning approach is used
to both localize and perform an initial segmentation of indi-
vidual cells. The approach works by first decomposing the
training images into overlapping patches. These patches are
then input to separate detection and segmentation networks,

FIGURE 2. Stain normalization performed by the generative adversarial
network (GAN) for three tiles. The generative model is capable of
normalizing and reducing the color variability of histological images.

as depicted in Fig. 3. The figure provides an overview of the
localization strategy employed, which aims to extract rele-
vant semantic content from each input patch for downstream
analysis.

The detection branch is performed by a Faster R-CNN
using the detectron2 library [37]. The Faster R-CNN is a
region proposal network that simultaneously predicts object
boundaries and scores at each position. This detection net-
work consists of two modules: the first module is a deep fully

VOLUME 12, 2024 30827



M. Salvi et al.: Softmax-Driven Active Shape Model for Segmenting Crowded Objects

FIGURE 3. Dual-branch approach for nuclei localization and extraction of the semantic content. The detection network (first
branch) identifies each individual object while the segmentation network performs pixel-wise segmentation (blue: inner area,
green: border, red: background).

convolutional network (ResNet50) that proposes regions, and
the second module is a detector [38] that analyze and classify
the proposed regions. Instead of using pyramids of images
(i.e., multiple instances of the image but at different scales),
our detection network employs anchor boxes. An anchor box
is a reference box with a specific scale and aspect ratio. The
network was trained for 150 epochs with an early stopping
if validation performance did not improve for 25 epochs.
The learning rate is set to 10−3 with a batch size equal
to 8. Performance was calculated as a weighted average of
precision, recall, mAP@0.5 and mAP@0.5:0.95, focusing
on mAP@0.5 to roughly localize nuclei. During the training
process, data augmentation is applied to contain overfit-
ting problems. The applied transformations are summarized
with their respective probabilities (p): flipping (upside-down,
left-right, p = 0.30), random rotation (range 0-180◦, p =

0.5) and scale change (range: 0-0.2, p = 0.25). Prediction
on test tiles were made using a sliding windows approach
with merged predictions and the non-maximum suppression
(NMS) algorithm [39] to eliminate overlapping bounding
boxes (Fig. 3).

The second branch of our pipeline is composed of
the segmentation network. Specifically, we employed the
ResUNet [40] to extract the semantic content of the image.
The ResUNet combines the UNet architecture with resid-
ual connections from the ResNet backbone. This enables
the network to encode multi-scale contextual information
and gradually recover the spatial information by capturing
object boundaries. We designed a contour-aware model to
simultaneously predict the inner areas and boundaries of his-
tological structures using the ResUNet. The entire network is
trained on a three-class problem: the contour of each object is
extracted from the manual mask and a dilation with a 2-pixel
radius is performed to obtain a binary mask of the contours.
The pixels are then labeled into three classes: (i) background,

(ii) boundary and (iii) inner area. This joint approach of object
and edge detection helps define the spatial limits of each his-
tological structure based on location and contour information,
which has been shown to outperform single approaches [27],
[28]. The deep network is trained with a mini-batch size
of 8 and an initial learning rate of 10−3. Categorical cross-
entropy and the Adam optimizer are employed as a loss and
optimization function, respectively. The training process is
stopped after a maximum of 50 epochs, with a validation
patience of 10 epochs for early stopping.

During inference, we adopted the same patch aggregation
strategy as in our previous work [41]. Briefly, we synthesize
a mirror border in each direction and use a sliding window
approach to construct the probability map. The output of our
segmentation network is encoded as an RGB image: the red
channel represents the softmax probabilities for the ‘‘back-
ground’’ class; the green channel denotes the ‘‘boundary’’
class; and the blue channel indicates the ‘‘inner area’’ class.
Being a graphical representation of probabilities, the sum of
the three channels for any given pixel is always equal to one.
As can be seen from Fig. 3, the semantic segmentation alone
may not guarantee satisfactory detection of all cell nuclei. The
network output could contain incomplete cell contours, espe-
cially when two or more nuclei are fused together. To address
this issue, we propose a novel deformable model in the next
section, which can properly handle the segmentation of fused
nuclei that would otherwise be merged by the segmentation
network.

C. SOFTMAX-DRIVEN ACTIVE SHAPE MODELS
Active shape models (ASMs) [42], also known as dynamic
deformable models, are a set of computer vision techniques
used for object segmentation. These models utilize one or
more profiles to define the borders of the objects of interest,
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FIGURE 4. Steps followed by our softmax-driven active shape model
(SD-ASM) to segment individual instances of histological structures. The
deformable models are initialized at the center of the bounding boxes
generated by the detection network, and their evolution occurs directly
on the probability map created by the segmentation network. This allows
for precise segmentation of individual objects.

generating a parametric curve or contour. The curvature of the
contour is determined by the balance of external and internal
forces specified within the model. ASMs offer advantages
such as computational simplicity, ease of control, and the
ability to consider the simultaneous evolution of multiple
instances and their interaction. However, they are sensitive
to noise, initialization, and the complexity of the object being
segmented. Consequently, they can get stuck in local minima
and achieve suboptimal convergence.

In this work, we propose a hybrid model (deep learn-
ing + ASMs) to overcome the limitations of the individual
models. By leveraging the advantageous features of each
model, we aim to achieve robust segmentation. Specifically,
we introduce a softmax-driven active shapemodel (SD-ASM)
capable of performing reliable segmentation even in noisy
images with overlapping nuclei (Fig. 4). Our models evolve
directly on the probabilitymap generated by the segmentation
network, as this map provides stronger contrast between the
background and foreground compared to the original image
(Fig. 4a-b). The SD-ASM is parametrically defined in the
(x,y) plane of an image as:

v (s) = [x (s) , y (s)] (3)

where x(s), y(s) represents the coordinates along the active
shape curve, and s is the normalised arc length. The curve
v(s) is represented by a set of control points v0, v1, . . ., vN−1
and is linearly obtained by connecting these control points.
Each model is initialized at the center of each bounding
box generated by the detection network (Fig. 4c) using a
circumference of radius 5 pixels with a number of points
(N) equal to 40. Next, any ASM that lies in regions with a
predominant background probability (red channel of the seg-
mentation map) is removed, as they represent false positives
of the detection network.

After initialization, the SD-ASMs evolve on the probabil-
ity map generated by the segmentation network (Fig. 4d).
The evolution of all contours is processed simultaneously
to take advantage of code vectorization and increase overall
computational efficiency. The evolution of the contour v(s) is
regulated by four energy terms, two of which are modulated
by the local values of the segmentation map:

A. Smoothness contribution: this term seeks to maintain a
regular contour shape during evolution:

EINT(s) =
1
2
(α·

∣∣∣∣dvds
∣∣∣∣2 ) =

1
2
α[

(
xleft+xright

)
−x] (4)

This first-order term is designed to hold the curve
together, while the weight parameter α controls the
overall elasticity of the model. xleft and xright represent
the coordinates of the previous and next contour points
from the currently considered one.

B. Expansion contribution: this term controls the radial
inflation of the contour (outward force in radial direc-
tion). It is modulated by the local nuclear probability
(blue channel), so that the expansion can be reduced
and stopped as the contour approaches the edge of the
cell (green channel) or the background (red channel).
It is formulated as follows:

EEXT1 (s) = β·n⃗ (s) = β·pinner (x) ·
x−xb

max(x−xb)
(5)

where β is the magnitude of the force and n⃗ (s) stands
for the normal unitary vector of the curve at x(s).
In terms of coordinates in the plane (x,y), the new
coordinate of the point depends on the local inner cell
probability (pinner) of the pixel at the actual coordinate
x and the barycenter of the entire SD-ASM (xb).

C. Border contribution: this term is a gradient-based exter-
nal energy. It is used to stop the evolution of the model
near the actual border of the object by taking advantage
of the probability map of the boundary class (green
channel). It is described as:

EEXT2 (s)= −γ 1 ·∇P (v (s))

= −γ 1 [pborder (x+1, y)−pborder (x−1, y)]
(6)

where P is the potential associated to the external
forces, γ1 is the weight parameter associated to this
term and pborder represents the local object boundary
probability. In this way the curve is attracted by the
local minima of the potential (i.e., the local maxima
of the gradient). This term acts as a typical ‘‘line’’
term, attracting contour points to high values of green
intensity (nuclear boundary probability).

D. Mutual interaction contribution: this last term regulates
the interaction between two or more contours in the
case of any overlap during their evolution. Two given
contours are considered interacting when at least one of
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their points intersects the other. Each point that inter-
acts with a second contour is pushed back toward the
center of its own contour, following the relationship:

EEXT3 (s) =
γ 2

d (s)
=γ 2 ·

1∥∥x−x′′
∥∥ (7)

where d(s)= ∥x−x ′′
∥ represents the Euclidean distance

between the considered point and the centroid of the
interacting contour.

Each of the previously described energy terms has its
corresponding weighting parameters (α, β, γ1,γ2). These
parameters establish the impact of each energy term dur-
ing the evolution of the contours. The final values of these
parameters were derived following a tuning procedure by
monitoring performance on the training and validation sets
(Section IV-B).
The evolution of eachmodel is controlled by these stopping

criteria:
1. Convergence of the SD-ASM: if after a minimum num-

ber of iterations (set to 50), the average motion of all
points within a single iteration falls below 1 pixel, the
contour is considered converged, and its evolution is
stopped.

2. Maximum iterations: evolution of each SD-ASM ter-
minates if it reaches the maximum number of iterations
(set to 1000).

Once all models have evolved, any segmented objects
from the segmentation network that are not contained within
the final mask (i.e., nuclei without bounding boxes of the
detection network) are added to the final mask. Each contour
defines a single segmentation instance, resulting in the output
shown in Fig. 4e-f.

D. PERFORMANCE METRICS
The automatic segmentation obtained from the proposed SD-
ASM model are compared with the corresponding manual
segmentation to evaluate the performance of our instance seg-
mentation approach on histological structures. We quantify
segmentation accuracy using several pixel-based and object-
based metrics. At the pixel-level, we compute the binary
Dice score, which measures the spatial overlap between pre-
dictions and ground truth. At the instance-level, we use the
binary Panoptic Quality (PQ) metric [43], which jointly eval-
uates segmentation quality and detection correctness.We also
calculate the Hausdorff Distance (HD) to measure contour
adherence. The Aggregated Jaccard Index (AJI) [44] is used
as well, as it specifically evaluates nuclear instance segmen-
tationmethods by penalizing both object-level and pixel-level
errors.

IV. EXPERIMENTAL RESULTS
A. DATASETS
In this section, we used theMulti-Organ Nuclei Segmentation
(MoNuSeg) dataset [45] and the Colon Nuclei Identification
and Counting (CoNIC) dataset [46] to evaluate our method on

TABLE 1. Tuned hyperparameters and search ranges for the faster R-CNN,
and ResUnet evaluated on the MoNuSeg and conic datasets.

multiple tissue types and staining conditions. The MoNuSeg
dataset consists of 30 H&E-stained images of size 1000 ×

1000 pixels acquired at 40x magnification from 18 hospi-
tals. It contains images from seven organs (liver, kidney,
prostate, breast, colon, stomach, bladder) with 21,623 delin-
eated nuclei in total. For our study, we used the training,
validation and test image splits provided for four organ types:
liver, kidney, prostate, and breast. The CoNiC dataset con-
tains 4981 images of colon histology sections stained with
H&E. The images, acquired at 20x magnification, were man-
ually annotated by expert pathologists, containing around half
a million labelled nuclei. We downloaded the pre-extracted
256×256 patches and corresponding pixel-level nuclei masks
for training and evaluation. The 4,981 images were randomly
divided into three subsets for training (4000 images), valida-
tion (500 images), and testing (481 images).

By leveraging both datasets, which vary in tissue type,
staining protocol and data collection processes, we aimed
to develop a segmentation approach capable of handling
diversity present in real histopathology datasets. This allows
for more thorough validation of the model’s generalization
abilities.

B. HYPERPARAMETERS TUNING
In this study, we implemented three different methods: Faster
R-CNN, ResUNet and SD-ASMs. For each of them, the most
relevant hyperparameters were optimized:

1. Faster R-CNN: this network hasmany hyperparameters
most of which we set to recommended values [38]. The
network was pretrained on the COCO dataset [47] to
reduce training time. We tuned three hyperparameters:
input size, anchor boxes and aspect ratios. Anchor
boxes and aspect ratios are important for object detec-
tion as they define the default bounding boxes used
for training. Specifically, anchor boxes of different
sizes and aspect ratios are matched to ground truth
boxes to train the network. Tuning these anchors helps
the network learn more robust size features to detect
objects of various shapes and scales. We took the set
of hyperparameters that minimized the validation error
and measured the performance on the independent test
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TABLE 2. Hyperparameters tuning of the SD-ASMs for the MoNuSeg and
conic datasets.

set. Table 1 shows the hyperparameters used in this
study.

2. ResUNet: this network was pretrained on Ima-
geNet [48] to take advantage of transfer learning and
reduce the training time. For the segmentation network,
we tuned two hyperparameters: input size, and back-
bone. The final architecture was chosen as the one that
maximized the performance on the validation set in
terms of Dice score (Table 1).

3. SD-ASMs: during the mathematical formulation of the
softmax-driven active shape models, we tuned the four
weight parameters that govern the balance of internal
and external forces. In particular, the following were
optimized: α (smoothness contribution), β (expansion
contribution), γ1 (cell border contribution), and γ2
(mutual interaction contribution). The final values were
chosen as those that maximized performance (i.e., AJI)
on the validation set. As shown in Table 2, the optimal
parameters for the deformable models are identical
across both nuclei segmentation datasets. This lack
of variation is expected since the SD-ASMs evolve
based on the probability maps, which in turn depend
solely on the shape of the segmented objects. Given
that both datasets involve nuclear instance segmenta-
tion, the morphological properties of the nuclei remain
consistent between the two sets.

C. ABLATION STUDY AND EXECUTION TIME
We conducted an ablation study to understand the effects of
different module components of our pipeline. Specifically,
we evaluated:

- The proposed full model (ResUNet + SD-ASMs);
- ResUNet without stain normalization (ResUNet w/o
SN);

- ResUNet alone without deformable models;
- ResUNet with marker-controlled watershed [49].
Results on the MoNuSeg and CoNIC test sets are reported

in Table 3. The SD-ASM module consistently improved
performance, achieving the best AJI scores. This indicates
deformable models help overcome limitations from missing

contour in histopathology images. Compared to ResUNet
alone, the full model attained up to 8.93% higher AJI, demon-
strating improved boundary adherence. Hausdorff distances
were also lowest for our approach, confirming more accu-
rate segmentation. The integration of SD-ASMs with deep
networks outputs enables additional gains in PQ score above
the original baseline, increasing performance by up to 9.84%.
Notably, SD-ASMs consistently provide more accurate seg-
mentations than commonly used methods like watershed
transforms (Table 3).

Runtime was measured on a 10-core 3.8GHz CPU with
128G RAM. Deformable model evolution required average
times of 11.36 seconds/image for MoNuSeg and 5.72 sec-
onds/image for CoNIC. Images withmany touching cells take
longer due to the large number of interactions that must be
handled by the mutual interaction term. Visual performance
of the proposed method is shown in Fig. 5.

D. INTEGRATION AND COMPARISON WITH OTHER
SEGMENTATION METHODS
Three representative segmentation results of our method from
different organs are shown in Fig. 6. From the same figure,
we can see the ability of our method to correctly separate
individual cell instances (thanks to the detection module) and
perform accurate contour segmentation (thanks to the seman-
tic map and SD-ASM controllability). In simple cases where
nuclei are well separated (Fig. 6a), there is no difference
between network segmentation and SD-ASM. This is not
surprising: there are, for example, images with relatively few
nuclei and well-separated cells, where separation of touching
nuclei brings no benefit. In this case, the use of SD-ASM
processing is not advantageous. On the other hand, in the case
of fused and partially overlapping nuclei (Fig. 6b-c), the com-
bined use of the segmentation network and ASMs ensures
contours with high agreement with respect to ground truth.
The above experimental data can demonstrate the accuracy
and reliability of our approach in the segmentation of overlap-
ping cells. The proposed model can generate segmentations
closer to ground truth and successfully separate touching
nuclei into individual instances.

To further evaluate the effectiveness of SD-ASMs, we con-
ducted experiments using various state-of-the-art segmenta-
tion networks as baseline approaches. Specifically, we exam-
ined the impact of SD-ASM as a post-processing strategy
starting from the probability maps generated by the follow-
ing networks: DeepLabv3+ [50], K-Net [51], Twins [52],
large ConvNext [53], small ConvNext, SegNeXt [54], and
Mask2Former [55]. We then performed a paired t-test
(p <0.05) to assess whether the performance differences with
and without SD-ASMs were significant. The results for the
MoNuSeg test set are summarized in Tables 4 and 5, while
the CoNIC results are presented in Table 6.
In the MoNuSeg challenge paper [45], the authors re-

annotated all 14 test images and calculated the average AJI
between the new and previous annotations. The resulting AJI
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TABLE 3. Average computational time and performance of the different modules that compose our segmentation framework. SN: stain normalization,
SD-ASMs: softmax-driven active shape models. Best values are highlighted in bold.

FIGURE 5. Examples of tiles with different nuclear densities from the validation and test sets. In the case of
well-spaced cells (first row), the segmentation provided by solely the segmentation network is approximately equal to
that of our method. If the nuclei start to touch or be partially overlapping (second and third row), the advantage of
adopting our segmentation framework over the deep network alone is evident.

for the 14 test images was 0.653. For reference, we included
this value in Table 4 as an indication of inter-observer vari-
ability. For MoNuSeg dataset, the introduction of SD-ASM
systematically improves the performance of the entire deep
learning framework. For each of the tested architectures,
integrating SD-ASM as a post-processing strategy leads to
an increase in both pixel-level and object-level performance.
This improvement is particularly notable in the PQ score and
AJI, which are fundamental metrics for measuring instance
segmentation tasks. In Table 5, we summarized the perfor-
mance of prior publishedmethods in theMoNuSeg challenge.

The CoNIC dataset also shows similar results, where the
integration of SD-ASM statistically enhances performance
across all tested architectures. In fact, the AJI metric can
increase by up to 5.59% with the integration of SD-ASM.

E. GENERALIZATION EVALUATION AND EXTENSION TO
OTHER APPLICATIONS
The proposed modular SD-ASM framework directly seg-
ments objects on probability maps, enabling new digital
pathology applications requiring single-instance recognition.

Specifically, we tested hepatic steatosis and renal tubule
segmentation where individual structure identification is
critical. According to Banff consensus guidelines for trans-
plantation, histological assessment now analyzes individual
objects rather than occupied areas [64]. Single-instance
recognition is therefore essential. The aim of new standards is
to improve slide evaluation reproducibility and reduce inter-
observer variability.

Deep networks for steatosis/tubule detection and segmen-
tation were trained as described in Section III-B. SD-ASMs
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FIGURE 6. Performance of the segmentation network with and without the SD-ASMs module. Each row represents
sub-images taken from different samples of the test set, while segmentation results are shown in columns. The
original image and the corresponding manual annotations is displayed in the first and second columns, respectively.
The results provided by the segmentation network alone (ResUNet) are shown in the third column, while the results
provided by our proposed segmentation framework (ResUNet + SD-ASMs) are presented in the last column. Red
arrows indicate the nuclei fused by the segmentation network but separated correctly by our method.

TABLE 4. Performance of different state-of-the-art segmentation
networks with and without the SD-ASM module as post-processing in the
test set of MoNuSeg. Best values for each network are highlighted in
bold. (∗) denotes statistical difference respect to baseline.

(Section III-C) were then applied to probabilitymaps to refine
instance-level results. Quantitative metrics on these tasks
(Table 7) show SD-ASMs exceeding reference performances,
with significant gains in binary PQ score (steatosis: +6.6%,
tubules:+5.3%) and AJI (steatosis:+6.2%, tubules:+4.2%).
Furthermore, the Hausdorff Distance decreased by up to 38%
for both applications.

Fig. 7 demonstrates excellence across other applica-
tions in digital pathology, underlining the framework’s

TABLE 5. Comparison with state of the art on MoNuSeg dataset.

generalization. Segmenting individual steatosis lesions and
tubules is critical given new guidelines; our method addresses
this need through robust single-instance recognition. This
modularity and flexibility position SD-ASMs for widespread
use in digital pathology and beyond.

V. DISCUSSION
In the field of digital pathology, accurate segmentation of
histological structures is crucial for developing interpretable
models that can predict clinical variables, such as treatment
efficacy or the risk of relapse. Nuclei play a fundamental
role in tissue analysis, making their accurate segmentation a
cornerstone in building interpretable models. Once nuclei are
correctly segmented, it becomes possible to analyze spatial
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TABLE 6. Performance of different state-of-the-art segmentation
networks with and without the SD-ASM module as post-processing in the
test set of conic. Best values for each network are highlighted in bold. (∗)
denotes statistical difference respect to baseline.

TABLE 7. Pixel-based and object-based performance of our method for
liver steatosis segmentation and kidney tubules segmentation.
Comparison with the baseline method (reference paper) in the test set is
also provided. Best values are highlighted in bold.

and morphological features of the tissue in-depth, bridging
the gap between low-level molecular information and the
macroscopic characteristics of diseased tissue.

Recent studies have demonstrated the significance of
nucleus segmentation in various cancer types, such as lung,
bladder, and colorectal cancer, for grading and assisting in
diagnosis and treatment [66], [67], [68]. Accurate nucleus
detection and boundary segmentation are vital for these appli-
cations. Precise nucleus segmentation enables clinicians to
obtain more pathological information, analyze spatial char-
acteristics of tissues and targets, and perform morphometric
analysis. However, existing state-of-the-art deep learning
models still face challenges in handling the complex structure
of histology images, especially when nuclei overlap or touch
each other [3], [20], [44].

This study aims to propose an end-to-end pipeline for
instance segmentation, with a specific focus on the post-
processing stage. Our framework is designed to accurately
recognize and segment individual objects within crowded
images, effectively addressing the challenge of overlapping
objects while maintaining precise boundaries for subsequent
morphometry analysis. The proposed pipeline is applicable
not only to nucleus segmentation but also to the segmentation
of steatosis and tubules in digital pathology images.

FIGURE 7. Segmentation performance of our method in two other digital
pathology applications in which there are touching and overlapping
objects. (a) liver steatosis segmentation, (b) renal tubules segmentation.

The pipeline consists of a dual-branch deep learning
approach for object localization and coarse segmentation, fol-
lowed by a novel formulation of softmax-driven active shape
models (SD-ASMs). These dynamic deformable models
effectively separate individual object instances and achieve
accurate contour segmentation. To address the issue of touch-
ing and partially overlapping structures, a mutual interaction
term is incorporated into the SD-ASM, effectively alleviating
the problem and improving segmentation accuracy.

Experimental results demonstrate that the proposed seg-
mentation framework is well-suited for histological structure
segmentation, particularly in handling touching objects. The
method is benchmarked on a standard dataset specifically
designed for evaluating nuclear segmentation tasks, using
various pixel-level and object-level metrics. The evaluation
focuses on the Panoptic Quality (PQ) and Aggregated Jaccard
Index (AJI), two of the most comprehensive indicators of seg-
mentation quality. Our statistical analysis provides strong evi-
dence that SD-ASM post-processing significantly enhances
the performance of segmentation networks. As detailed in
Tables 4 and 6, the integration of SD-ASMs downstream
consistently delivered higher accuracy scores across multiple
state-of-the-art models and benchmark datasets, as validated
through paired t-testing. Additionally, experiments on steato-
sis and tubules datasets show that the proposed method
outperforms reference papers, showcasing its effectiveness.
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FIGURE 8. Examples of tiles where the performance of the detection
network is unsatisfactory. This is reflected in the performance of SD-ASM
which achieves AJI values comparable to the segmentation network
alone.

The high performance of the proposed approach can be
attributed to the synergistic combination of two deep neural
networks with the SD-ASM model. Stain normalization is
also essential for standardizing the intensity of histological
structures and enhancing the stability and performance of
the SD-ASM model. The modular design combining deep
networks and SD-ASMs endows flexibility to generalize
across diverse histology image domains. Despite datasets
exhibiting variability in staining type/intensity and structural
appearance, the SD-ASMs could still evolve reliably on the
segmentation network’s probability maps. This is because
regardless of the image source or target structures, the proba-
bility maps represent a more stable semantic representation
for the deformable models compared to raw pixels. The
proposed approach offers several advantages, including auto-
matic initialization, overcoming a major challenge of active
shape models.

While larger datasets may refine network performance, the
flexible nature of SD-ASMs allows our method to achieve
robust and accurate instance segmentation evenwhen training
data is limited. This resilience was evident in our experiments
utilizing datasets of varying sizes. For example, theMoNuSeg
benchmark contains a relatively small training dataset con-
sisting of only 16 labeled images from four organ types. Yet
integrating SD-ASMs consistently improved segmentation
quality beyond using the deep network alone, as validated
through metrics like AJI that systematically increased across
all tested architectures (Tables 4-6). This finding under-
scores the SD-ASM approach’s effectiveness in segmenting
histological structures even with restricted labeled data avail-
ability, thanks to its formulation operating on semantics-rich
probability maps rather than raw pixels. Our method also
shows competitive results respect to prior works (Table 5)

FIGURE 9. Joint plot of number of segmented objects and running time
for MoNuSeg dataset.

While our experiments demonstrated the ability of SD-
ASM to effectively handle touching and partially overlapping
objects, there may be some limitations. Images with highly
irregular, elongated or multi-lobed structures that cross with
each other could potentially challenge the separation of con-
tours during evolution. Very dense clusters with significant
overlap between 3 or more structures may also be diffi-
cult to segment correctly if the detection network does not
adequately recognize individual instances. This problem is
highlighted in Fig. 8 of the paper. In this case, the AJI
between just the segmentation network and the combined
detection-segmentation model with SD-ASM is comparable.
To address such failure modes, future work should systemat-
ically analyze failure cases to better characterize challenging
configurations. Potential strategies to improve accuracy could
include: 1) Incorporating shape priors derived from training
data to regularize irregular contour evolutions. 2) Improving
the detection and segmentation networks as their performance
directly reflects on the ability of SD-ASMs to correctly seg-
ment, since SD-ASMs evolve based on the probability maps
generated by these networks. An interesting future develop-
ment is represented by the HoverNet network [22], able to
perform simultaneous segmentation and recognition of nuclei
centroids.

Moreover, the computational cost is higher compared to
typical inference time of a CNN and depends on the number
of objects within the image to be segmented, as shown in
our runtime analysis (Fig. 9). For example, when segmenting
clustered cell nuclei as in the MoNuSeg dataset, SD-ASM
processing required an average of 11.36 seconds per image
versus 2.51 seconds for the CNN alone. In contrast, for
tasks involving fewer structures like tubule segmentation,
runtime increases were negligible. The computation of the
mutual interaction term, which handles multiple interacting
contours simultaneously, currently contributes nearly half of
the overall runtime. This highlights the need for optimization
to efficiently scale the approach to more densely packed
objects. Future work will focus on improving computational
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efficiency through parallel computing methods. Additionally,
efforts will be made to optimize the combined performance of
the two deep learning models and address scalability issues,
such as applying the proposed approach to large-scale data,
including whole-slide images (WSI). In future works, we also
aim to analyze the performance of our method on datasets
containing multiple histological structure classes where class
imbalance is systematically varied. Extending the deep net-
work training to include classification tasks will allow a more
direct assessment of how SD-ASM instance segmentation is
impacted by rare class representation.

From a broader perspective, the problem of segmenting
touching entities in biological data extends beyond nucleus
detection in histopathology. While our study applied the
SD-ASM method to segment nuclei, steatosis, and tubules,
further evaluation on additional tissue morphologies such as
glands or tubular structures could provide insights into its
versatility across diverse tissue types. Adapting the internal
and external energy terms or incorporating shape priors where
needed may also expand the method’s applicability.

Instance segmentation commonly arise in cellular-level
imaging techniques like fluorescence microscopy [69], live-
cell imaging, and electron microscopy, as they frequently
capture clusters of contiguous cells or organelles. Accurately
delineating individual objects that contact or overlap is crit-
ical for proper quantification and analysis in these domains.
We believe expanding our methods to other imaging modal-
ities, with modality-specific customization of structures as
required, could enhance robust segmentation. This is espe-
cially important for fields like digital pathology, immunoflu-
orescence, and electron microscopy that demand precise
single-instance object recognition in order to strengthen anal-
ysis through accurate quantification and characterization of
cellular components.

VI. CONCLUSION
In this work, we presented a novel and efficient formula-
tion of dynamic deformable models, driven by two deep
neural networks, to achieve robust and accurate segmenta-
tion of crowded objects in histology images. Our framework
is specifically designed to properly handle touching and
overlapping objects. This ability was demonstrated through
superior performance on the PQ and AJI metrics, which
independently evaluate both pixel-level segmentation and
object-level detection performance.

The proposed dual-branch pipeline is inherently general-
izable, as evidenced by successful application to segmenting
hepatic steatosis lesions and renal tubules. For the applica-
tion to other imaging modalities, the internal and external
energy terms governing contour evolution may need adapta-
tion depending on object shape, overlap patterns, and imaging
characteristics. The synergistic combination of deep learning
with interpretable and controllable deformable models shows
promise for robust single-instance recognition across diverse
biological and biomedical domains.
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