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† Politecnico di Torino, Department of Control and Computer Engineering (DAUIN) - Turin, Italy

∗ Cairo University, Department of Electronics and Electrical Communications Engineering - Giza, Egypt

Abstract—Arithmetic circuits form the foundation of modern
digital computation, enabling us to conduct precise mathemat-
ical operations and drive the digital age. They are integral
components in nearly every digital circuit, such as processors’
arithmetic and logic units. Especially in safety-critical domains
like automotive and aviation, the flawless operation of these
circuits is of paramount importance. This paper presents a case
study involving two variants of Dadda multipliers and assesses
their intrinsic reliability when affected by permanent hardware
faults. We conducted extensive fault injection campaigns on the
circuit models under various datasets, presenting the aggregated
statistical errors in the form of the mean absolute error (MAE)
for each case. Specifically, we performed fault injection cam-
paigns in which the operands are sourced from trained quantized
weights of a convolutional neural network, as well as randomly
generated sets of integers. The results not only reveal differences
between the two circuits but also show significant variations when
different datasets are used in the fault injection campaigns.

Index Terms—Reliability, Stuck-At Fault, Fault Injection Cam-
paign, Arithmetic Circuits, Dadda Multipliers

I. INTRODUCTION

Reliability is a paramount concern in the realm of modern
digital systems. As our reliance on digital technology con-
tinues to expand, the accurate and dependable operation of
arithmetic circuits has become integral to our daily lives, since
even minor errors can have profound consequences. Hence, the
evaluation of arithmetic circuit reliability is a major concern.

Multiplication is a fundamental operation extensively uti-
lized in different circuits used also in safety-critical domains.
As an example, multipliers are part of CPUs and GPUs
used in several crucial applications, such as in-flight control
computers that govern critical aspects of aircraft operation and
safety. In the area of autonomous vehicles, multipliers are
key components employed in various systems (e.g., arithmetic
processors, tensor processing units) and used for the execution
of machine learning applications. For instance, multipliers
enable the operation of the mathematical convolution (in
convolutional neural networks) for local feature extraction
from the input data and for down-sampling (pooling) to shrink
the size of the input data representation.

The presence of a fault in a critical component (e.g., a
multiplier within a tensor core executing computer vision al-
gorithms for an autonomous vehicle) could potentially produce
a system failure that could have catastrophic consequences for
the surrounding environment or endanger human life. Hence,
in such scenarios, the manufacturers must further provide
strict reliability guarantees, as mandated by the respective

standards. The safety standards mandate first of all certain
high fault coverage thresholds to be met during the testing
phases. Additionally, each system to be used in a safety-critical
environment must undergo failure mode effects and criticality
analysis (FMECA) [1]. FMECA is an inductive analytical
process used to chart the probability of failure modes against
the severity of their consequences. It proposes a methodology
to assess the criticality of the system overall and identify
failure modes of the system, such as an erroneous output under
the presence of a fault. In this way, the overall reliability of
the system can be identified.

In summary, the evaluation of arithmetic circuit reliability
is of major importance in modern digital systems. Through
adherence to safety standards, fault coverage testing, and the
application of methodologies like FMECA, manufacturers can
ensure that their systems meet the required levels of relia-
bility and safety. By addressing potential failure modes and
their consequences, these practices contribute to the overall
dependability and accuracy of circuits, thereby minimizing the
risks associated with system failures.

A wide variety of multiplier architectures have been pro-
posed [2] differing in terms of area, speed, power, and
reliability. It is up to the designer to identify the circuit
version that best suits the application criteria. In this paper
we describe an approach to characterize the reliability of
an arithmetic module, considering two variants of integer
multiplier circuits as a test case. We present the results of
an extensive reliability analysis performed on the two circuit
variants. We consider the case of permanent hardware faults
and present the results of fault injection campaigns performed
on both circuits under various workloads. Most importantly,
in the set of stimuli used for our fault injection experiments,
we also include stimuli taken from a processor trace from
the execution of a convolutional neural network application.
We also evaluate the overall reliability of the two circuits
by considering aspects such as circuit area and commercial
ATPG results. Besides experimentally identifying the more
resilient multiplier architecture, we show that the presence
of application-specific stimuli plays a vital role in accurately
forming a reliability verdict for a design.

The rest of the paper is organized as follows. In section II-A
we present some relevant works in the area, whereas in section
II-B we provide some information about the architecture of our
two multipliers, which we use as circuits under test (CUTs). In
section III we present our fault injection campaign flow, and



in section IV we present the experimental results we gathered.
Lastly, in section V we draw some conclusions and provide
insights on our future work.

II. BACKGROUND

In this section, we will first provide some information
on relevant topics in the general area of the reliability of
arithmetic circuits and will then provide some information
about the Dadda multipliers, which we use as CUTs in our
experiments.

A. Related Works

Considerable research effort has been put on the topic
of the accurate reliability evaluation of integrated circuits
that resulted in the introduction of rigorous mathematical
tools [3, 4, 5].

In [6] the authors evaluate the reliability of various majority
gates full adder circuits while comparing against XOR-based
full-adders at the gate level. The study reveals that majority
gates adders demonstrate superior robustness. While the num-
ber of gates is a reliability factor, the specific implementation
and interconnection of these gates play a crucial role in
determining the reliability of the circuit.

In [7] the authors present a comprehensive approach to
understanding and predicting errors in arithmetic operations,
particularly focusing on addition. They introduce a novel
error model to analyze the behavior of a common arithmetic
unit, emphasizing the importance of enhancing the reliability
of arithmetic operations in computing systems, especially in
safety-critical applications where undetected errors can lead to
significant issues.

Regarding the general area of arithmetic circuits, in [8] the
authors present a novel approach for evaluating the reliability
of combinational arithmetic circuits at the transistor level.
They develop a framework for calculating output probabilities
of basic logic primitives and propose an efficient algorithm for
computing the overall circuit reliability. They demonstrate how
transistor-level reliability analysis can inform design choices
by providing insights into achieving high reliability without
significant hardware expansion.

In [9] the authors perform a comprehensive comparative
analysis of various approximate multipliers, considering both
error and circuit characteristics, and applying these findings to
a practical image processing application to assess real-world
performance.

Lastly, regarding arithmetic circuits based on the approx-
imate computing paradigm, in [10] the authors present a
detailed overview of the test and the reliability of such circuits.
They discuss the intricate balance between the achieved system
reliability and the efficiency gains from using approximate
hardware, with a focus on strategies like fault classification,
error detection, and selective hardening techniques.

B. Multiplication

Multiplication is one of the most critical operations in an
arithmetic circuit, since it significantly impacts the circuit’s

speed and power dissipation. This is due to the complex
nature of multiplication algorithms and the extensive number
of logic gates required to perform the operation. Efficient
multiplication is crucial in various digital systems, such as
processors, signal processors, and other computational devices,
where speed and power efficiency are paramount.

In the general case of two n bit numbers, their multiplication
is performed as:

an−1 an−2 . . . a0
× bn−1 bn−2 . . . b0

z0,n−1 z0,n−2 . . . z0,0
z1,n−1 z1,n−2 . . . z1,0

. .
.

. .
.

. .
.

. .
.

+ zn−1,n−1 zn−1,n−2 . . . zn−1,0

p2n−1 p2n−2 p2n−3 . . . p1 p0

However, in this “brute-force” approach, the summands
(zi,j) that are generated by the shifting of the multiplicand
are equal to the number of bits (n). Hence, an inefficiently
large amount of full-adders (FAs) and half-adders (HAs) must
be used, introducing more area to the circuit. Furthermore, the
usage of more FA and HA primitives would further cascade
the delay of the circuit [11].

i

ii

ii

iii

Figure 1: Summand reduction using Dadda strategy for d=3,2
(see [12, 11]). Dots represent zi,j summands and red/blue
boxes represent HAs/FAs, respectively.

Wallace [13] and Dadda [12] tree multipliers are high speed
multipliers. The main idea behind these multipliers is to carry
out any HA or FA operation in a given bit position as soon
as its operands are ready, irrespective of their partial product
(row) position. In fact, these multiplier architectures try to
run as many HA or FA operations in parallel as possible.
Consequently, they gain in terms of speed. The multiplier
operation is split into several phases. For each phase, the ready
FA or HA operations are carried out, and thus, the tree depth
is reduced as we move from phase i to phase i + 1 until
the number of tree rows is reduced to two rows. These two
rows are, then, passed to a fast n-bit adder (e.g. carry-look-
ahead adder) to get the final multiplication result. The detailed
algorithms of Wallace or Dadda tree multipliers include several
tweaks to ensure that the final tree is reduced uniformly to two
rows across as many bit positions as possible.



In Figure 1, we illustrate an example of the Dadda multipli-
cation algorithm for 4-bit operands. The algorithm is carried
in the following phase sequence:

i. The zi,j summands are re-organized into a tree structure
and divided into HA/FA groups.

ii. The tree depth is recursively trimmed by the usage of
HAs and FAs according to the Dadda algorithm until it
reaches a depth of 2.

iii. The final 2 rows are passed to a fast n-bit adder to get
the final multiplication result.

FAs are alternatively called 3:2 compressors as they com-
press their three input into two-bit outputs. Similarly, HA are
called 2:2 compressors. The research community further dived
into the reduction process (step ii) and besides the HAs/FAs;
further compressor schemes have been proposed [14], which
resulted in even faster and more efficient multiplier circuits.
In this paper, we will use the 32-bit Dadda multipliers as a
reliability case study without loss of generality. That is, the
same evaluation methods can be applied to any kind of digital
combinational multiplier circuit.

III. EXPERIMENTAL SETUP

Our goal is to perform a fair comparison between the two
versions of a signed multiplier circuit in terms of intrinsic
reliability. The two signed combinational multiplier circuits
at the RT-level, initially designed by members of the Aoki
laboratory at Tohoku University, were synthesized using a
technology library to obtain their gate-level representations.
This process is facilitated through the use of commercial EDA
tools. After the gate-level model is produced along with the
respective circuit information (number of cells, area, etc.) we
proceed to the next step in our flow, which is to perform
automatic test pattern generation (ATPG) for permanent stuck-
at faults (once again resorting to commercial EDA tools). As
the circuits are combinational, the ATPG process is anticipated
to achieve high coverage percentages. Upon completing this
process, we export the results (i.e., fault coverage and number
of patterns), including the collapsed fault lists for the circuits
generated by the fault manager. Subsequently, we move on
to the final step, which involves conducting fault injection
campaigns to comprehensively assess the resilience of the
circuits under each permanent fault but also under each input
stimulus source.

Fault Injection Campaigns

The effort and time of a fault injection campaign strongly
depend on the total number of faults that have to be injected
in the CUT. Typically, due to the huge number of possible
error configurations in circuits, a random selection of a subset
of potential faults is usual in practical experiments. In our
case however, given that we consider circuits that are typically
used as a part of a system (e.g., the ALU of a processor)
exhaustive fault injection campaigns can be performed since
the total number of collapsed stuck-at faults is reasonable.

Another important aspect of the fault injection campaigns is
the stimulus source for the CUT. Specifically, for the case of

1 Results ← ∅
2 foreach stimulus source D do
3 Errors ← ∅
4 foreach stuck-at fault sa in fault list do
5 FM responses ← ∅
6 GM responses ← ∅
7 inject_fault(sa)
8 foreach operand pair (a, b) in D do
9 FM responses = FM responses ∪ CUT (a, b)

10 GM responses = GM responses ∪ a× b
11 end
12 remove_fault(sa)
13 Errors = Errors ∪ mae(FM responses, GM responses)
14 end
15 Results = Results ∪ { (Errors, D) }
16 end
17 return Results

Figure 2: Fault Injection Campaigns routine for CUT.

the multiplier circuits, the stimuli specify the pairs of integer
operands that will be fed to the circuit while a stuck-at fault
is present at a time. There are two kinds of stimuli that
we have considered for this work, namely, quantized 8-bit
integers from a convolutional neural network and randomly
generated pairs of 8/16/32-bit integers. In greater detail, the
former set was identified and extracted by the execution trace
of a convolutional neural network on a RISC-V processor. A
testbench housing the processor core and a memory loaded
with the cross-compiled version of the trained network was
used for dumping at each clock cycle the executed instruction
and its operands. The operand pairs from the classification
phase of the network were identified and stored as our first
stimulus source for our fault injection campaigns.

The second input stimulus source is not application-specific
and was artificially generated. We considered three distinct
scenarios, specifically involving 8x8-bit operands, 16x16-bit
operands, and 32x32-bit operands, respectively. Each set of
random operands within these three cases comprises 20,000
numbers, forming a total of 10,000 pairs. These pairs serve
as the second stimulus source for the CUTs during the fault
injection campaigns. The chosen stimuli sample sizes were
computed with a 95% confidence level, incorporating a margin
of error of approximately 1%.

The fault injection campaign is orchestrated via a testbench
circuit. The testbench is responsible for importing the fault
list and an input stimulus source, and in an iterative fashion,
it injects one stuck-at fault at a time into the CUT. Under the
presence of the fault, the CUT becomes the faulty machine
(FM). Then, the testbench feeds the operand pairs to the FM
while logging its responses. In parallel to that, the testbench
circuit performs the fault-free computation acting as the golden
machine (GM). When all operands have been processed, the
FM and GM responses are post-processed to compute the
Mean Absolute Error (MAE) of each injected stuck-at fault.
The MAE is computed as 1

N ×
∑N

i=1 |XGM
i −XFM

i |, where N is
the total number of operand pairs of the input stimulus source,
XGM

i the response of the golden machine for the operand
pair i and XFM

i the response of the faulty machine for the
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Figure 3: ATPG results.

operand pair i. The fault injection campaigns are summarized
in pseudo-code format in Figure 2.

IV. EXPERIMENTAL RESULTS

To provide an example of the application of the proposed
method, we considered two different implementations of a
32-bit Dadda multiplier. Namely, Circuit A is a variant that
uses 7 to 3 compressors and a carry look-ahead adder for
the final addition, and Circuit B is a variant that uses 3 to
2 compressors and a Han-Carlson adder, respectively [14].
All of our experiments were performed in a system using
2 Intel(R) Xeon(R) Gold 6238R processors with 256 GB of
RAM. The convolutional neural network from which the first
input stimulus source of 8-bit quantized integers was derived
was LeNet [15], trained on the MNIST dataset of handwritten
digits and executed on the RI5CY [16] processor. Both circuits
were synthesized using the Nangate 45nm technology library
[17] via Synopsys Design Compiler. The first half of Table I
shows the details of the logic synthesis for both circuits.
Circuit A has more cells than circuit B and occupies a smaller
area.

Table I: Circuits’ details.

Circuit Area Cells # Stuck-AtComb. Seq. Buf./Inv.
A 4,912.22 3,299 0 708 12,456
B 5,721.92 2,729 0 250 10,512

A. ATPG

The next step in our flow is to run an ATPG, resorting
to TestMAX by Synopsys. This step primarily generates the
two collapsed stuck-at fault lists of the circuits needed for our
subsequent fault injection campaigns. Given the combinational
nature of both CUTs, the ATPG process is expected to yield
high fault coverage percentages and thus can be considered
trivial. Albeit trivial, it further acts as an extra validation step
to our synthesis flow, e.g., by showing no untested faults in
the circuits. The rightmost part of Table I shows both circuits’
collapsed, stuck-at fault list sizes. As expected, given that
circuit A is composed of more cells, its fault list is more

extensive than the fault list of circuit B, making it statistically
more fault-prone. The results of the ATPG are shown in
Figure 3. As expected, we achieve > 99.98% of fault coverage
for both circuits. A difference can be observed in the number
of patterns needed for the two circuits, with circuit A requiring
127 patterns and circuit B 104, respectively. Regarding circuit
B, one stuck-at fault was not detected during the ATPG (no
matter the effort) due to a blockage in its propagation path.
Thus, the fault was marked as not observable. Performing
ATPG alone doesn’t provide insights into the impact and
criticality of each stuck-at fault. Therefore, we move on to
the next step, which involves fault injection campaigns.

B. Fault Injection Campaigns

The primary goal of the fault injection campaigns was to
assess the impact that possible permanent faults may produce
on the results produced by the CUT.

The environment used for performing the fault injection
campaigns is based on QuestaSIM by Siemens EDA. In
Figure 4, we compare the behavior of the two circuits for
each input stimulus source. A fault injection campaign was
conducted for each source, during which every stuck-at fault
was injected. Subsequently, MAE values were computed based
on the results of each campaign. The computed MAE values
for each circuit and each input source were also binned into
statistical quartiles (that we call Fault Severity Bins). The
quartiles are defined as:

Table II: Average MAE per circuit and input source.

Circuit Average MAE Input source
A 4.3929e+16
B 6.3396e+16 LeNet 8-bit

A 4.9119e+16
B 8.5936e+16 Random 8-bit

A 4.8181e+16
B 6.9117e+16 Random 16-bit

A 3.2906e+16
B 3.1933e+16 Random 32-bit
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Figure 4: Fault Injection campaigns’ results per dataset.

Q0: The minimum value of the distribution.
Q1: The value under which the 25% of the data are located.
Q2: The value under which the 50% of the data are located.
Q3: The value under which the 75% of the data are located.
Q4: The maximum value of the distribution.

For all experiments, the Q0 bin contains the stuck-at faults,
which do not impact the outcome of the multiplication. Each
other bin contains the faults for which the MAE value belongs
to the interval (Qi−1, Qi]. Moreover, Table II provides the
average MAE value (over all faults) for each circuit and input
stimulus source. These same values are also incorporated into
the legends of the corresponding plots in Figure 4. Faults
belonging to the highest bins (i.e., Q3 and Q4) are those the
FMECA procedure will identify as most critical.

1) LeNet Trace Source: Regarding the input stimulus
source derived from the execution of LeNet (Figure 4a), we
observe that circuit A is more resilient than B since, in its
case, a larger number of faults exist with minimum severity.
In particular, 37.35% and 29.63% of the total stuck-at faults
were found to produce an MAE of 0 for circuits A and B,
respectively. When comparing the two circuits against faults
in the Q2 and Q3 bins, we observe an almost similar trend with

small differences in the absolute number of faults in each bin.
Lastly, for the faults with the highest severity (i.e., the stuck-at
faults in the Q4 bin), the percentages are quite similar, with
circuit A having 3.24% and circuit B having 3.70% of faults
in this bin. Overall, Circuit A’s average error is lower than
Circuit B’s, rendering it more resilient.

2) Randomly Generated Sources: Regarding the randomly
generated input source (Figures 4b to 4d), we can initially
make a general observation: as the operand size increases,
the number of faults producing 0 MAE values decreases in
an inversely-proportional manner. This phenomenon can be
explained by considering a fault in the multiplier part respon-
sible for processing the upper 24 or 16 bits of the operands
when the actual operands are merely 8 or 16, respectively. In
such cases, the fault is highly likely not to produce any effect.
This probability of fault masking is attributable to the zero-
padding of operands to a 32-bit length. As the actual operands
are smaller, they are extended with zeros to meet the 32-bit
requirement. The multiplication with zero during this padding
process substantially augments the likelihood of nullifying the
fault effect. Regarding the resilience of the circuits, we can
see that Circuit A once again has a greater resilience than
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Figure 5: Accumulated MAE plots. Legend entries’ subscripts indicate the input source and superscripts the CUT.

Circuit B.
Emphasizing the significance of application-specific data is

crucial. Notably, when examining Figure 4a and Figure 4b,
discernible differences are evident for both circuits since the
number of faults producing potentially critical failures changes
significantly. Once again, the percentage of faults producing
the largest error (rightmost bin) is larger for random datasets
than for the LeNet ones. In other words, the variations in error
distribution are closely tied to the specific stimulus source
under consideration. In this specific case, we could thus say
that using random values, we get pessimistic results in terms
of safety. This disparity can be ascribed to the nature of the
application-specific input source, which consists of smaller
values compared to its randomly generated 8-bit counterpart.
This discrepancy likely arises from the presence of zeros in
the trained weights of the neural network, aimed at eliminating
redundant connections within the hidden layers of the network.
Therefore, forming a conclusive judgment based solely on
randomly applied patterns during our reliability evaluation
would lack precision and accuracy.

To further validate this behavior, we increased the data
binning granularity and plotted in a semi-log scale the MAE
for each randomly generated stimulus source (Figure 5b)
against the MAE values for the LeNet derived one (Figure 5a)
for the two CUTs. We again see that with the randomly
generated input source data, a higher percentage of faults
produce more critical effects.

V. CONCLUSIONS

The evaluation of arithmetic circuit reliability is of major
importance in modern digital systems. In this paper, we
consider the case of two integer multiplication circuits, and
we report results coming from a thorough reliability evaluation
under various stimuli sources by performing exhaustive stuck-
at fault injection campaigns.

The experimental results show that the presence of
application-specific stimulus plays a significant role in the

evaluation of the reliability of a CUT and that a randomly
generated input stimulus source may not be accurate enough
to model a real application scenario. In future work, we plan
to further investigate this observed difference by considering
different application-specific stimuli and different arithmetic
circuits as our CUTs. We also plan to extend our work to
consider other types of fault models.
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