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A B S T R A C T

In Networked Control System (NCS), the absence of physical communication links in the loop leads to relevant
issues, such as measurement delays and asynchronous execution of the control commands. In general, these
issues may significantly compromise the performance of the NCS, possibly causing unstable behaviours. This
paper presents an original approach to the design of a complete digital control unit for a system characterized
by a varying sampling time and asynchronous command execution. The approach is based on the Embedded
Model Control (EMC) methodology, whose key feature is the estimation of the disturbances, errors and
nonlinearities affecting the plant to control and their online cancellation. In this way, measurement delays
and execution asynchronicity are treated as errors and rejected up to a given frequency by the EMC unit. The
effectiveness of the proposed approach is demonstrated in a real-world case-study, where the NCS consists
of a differential-drive mobile robot (the plant) and a control unit, and the two subsystems communicate
through the web without physical connection links. After a preliminary verification using a high-fidelity
numerical simulator, the designed controller is validated in several experimental tests, carried out on a
real-time embedded system incorporated in the robotic platform.
. Introduction

In recent years, the increase in complexity of control systems and
ontrol units design has introduced as by-products several conceptual
nd design innovations. Sensors, whose information does not neces-
arily has a physical connection to the plant to be controlled, and
ontrol algorithms, whose execution can be planned to be performed
emotely, are examples of such trend. In the majority of these cases, a
eliable communication system, connecting the plant with the sensors
nd the actuators, is required, thus paving the way to Networked
ontrol System (NCS) architectures. [1–4] review the main character-

stics and applications of NCS architectures, as well as the most used
ontrol algorithms. The fact that NCS have a communication network
etween the control unit and the process to control adds additional
ndesired phenomena, such as delays and/or loss of information (pack-
ge dropouts). When the delays and package dropouts are not taken
nto account from the early design phase, they can reduce the control
apabilities in NCS scenarios.

These problems have been studied and treated considering differ-
nt control strategies. In [5], a predictive control method for NCS
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C. Perez Montenegro).

is presented, where the network links are subject to random packet
dropouts. Differently [6] tackles the problem of a delay-dependent
asymptotic stability analysis, for neural networks with time-varying de-
lays. From the design perspective, [7] proposes an observer for the state
and disturbance estimation for electro-hydraulic-actuator systems. The
work [8] investigates a time-varying observer, for a linear continuous-
time plant with asynchronous sampled measurements, within an hybrid
systems framework. In [9], an approach to the asynchronous sensing
problem, based on event-triggered sub-count estimation, is presented.
In [10], the NCS control problem is tackled with a fuzzy-model-based
nonlinear system, showing a review of the recent advances. In [11],
Sliding Mode Control methods for NCS are reviewed, showing the per-
formances with time-delay, packet losses and different communication
protocols. However, even these state-of-the-art approaches may show
limitations due to their difficulty in dealing with large disturbances,
significant model uncertainties, and not well-known nonlinearities (real
NCS architectures are typically affected by these kinds of issues),
[12–14].
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Nomenclature

Embedded Model Control (EMC)

NCS Networked Control System
𝜆
𝐾
, 𝜆

𝑁
, 𝜆

𝑅
Discrete-time eigenvalues (control law,
noise estimator, reference dynamics)

𝐞 Tracking error
𝐀,𝐁,𝐂,𝐆 State, control, output and disturbance ma-

trices
𝐞𝑚 model output error
𝐊𝑐 Feedback gains
𝐊𝑟,𝐍𝑟 Reference generator gains
𝐋 Closed-loop prediction matrix
𝐌,𝐐 Rejector matrices
𝐮 Control/command input (Control law)
𝐮𝑑 Disturbance rejection term of 𝐮
𝐮𝑡𝑟𝑘 State feedback of 𝐮
𝜇
𝐾
, 𝜇

𝑁
, 𝜇

𝑅
Continuous-time eigenvalues (control law,
noise estimator, reference dynamics)

𝐫 Reference trajectory
𝐮 Feed-forward component of 𝐮
𝐱 Reference state
𝑇𝑠 Sampling time
𝐰 Noise vector
𝐮 Control input
𝐱 State
𝐱𝑐 Controllable (canonical) state
𝐱𝑑 Rejector state
𝐲 Measured output
𝐲𝑚 Estimated output from the internal model

DC motor

𝛽𝑡𝑜𝑡 Motor friction
𝜔 Motor angular speed (after gearbox reduc-

tion 𝑁)
𝜔𝑚 Motor angular speed
𝜏𝑎 Motor electrical time constant
𝜏𝑚 Motor mechanical time constant
𝑒 Back-electromotive force
𝑖𝑎 Armature current
𝐽𝑡𝑜𝑡 Motor inertia
𝑘𝑡 Motor torque constant
𝑘𝑣 Motor back electromotive force constant
𝑘′𝑣 Modified motor back electromotive force

constant
𝐿𝑎 Motor armature inductance
𝑁 Motor gearbox reduction
𝑅𝑎 Motor armature resistance
𝑇𝑚 Motor torque
𝑇𝑟 Resistive torque (motor)
𝑉𝑎 Motor armature voltage
PWM Pulse-Width Modulation

PID and LQR controllers

𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷, 𝑁PID PID controller gains
𝐾LQR LQR controller gains

The aforementioned limitations are overcome by means of a de-
ign approach based on the disturbance rejection principle. Generally
peaking, disturbance rejection is a significant research area in control
2

theory and practice. The disturbance rejection, still a crucial problem
within the automatic control research, [15], is often regarded as a
way to enhance the applicability of the design solution and its po-
tential impact on engineering practice, [16–18]. Within this domain,
several research contributions have been developed: for example, [19]
proposes a three disturbance observer and boundary controllers for
a flexible Timoshenko manipulator control, [20] shows an adaptive
disturbance observer for an active suspension system, instead [21]
reports an high order sliding-mode observer for external torque esti-
mation of robot manipulators. Among different disturbance rejection
methods, several model-based techniques can be found in the literature,
such as the Active Disturbance Rejection Control (ADRC), [15,22–24],
Adaptive Robust Control (ARC), [25,26], and EMC, [16,27–30]. These
methods are based on the estimation and online cancellation of the
disturbances/uncertainties affecting the plant to control.

Here is a concise comparison between EMC and ADRC, taken
from [31]: (i) In general, the ADRC does not consider any limitation to
the control bandwidth, hence the separation between the control law
and the uncertainty estimation for the ADRC is more difficult, whereas
the EMC is compelled to find out an optimal BW in the presence of
uncertainty. Furthermore, the EMC extends the ADRC concepts with
the following points, (ii) The ‘unknown’ disturbance dynamics may be
any and is driven by an unpredictable noise to be real-time estimated;
(iii) The noise input layout may establish that not all the state variables
are directly affected by uncertainty; (iv) the noise input is estimated by
a dynamic feedback driven by the model output error. Such guidelines,
from (i) to (iv), facilitate separation between uncertainty estimation
and control design. The main difference between ADRC and EMC is
that the former assumes that model output errors can be treated like
input disturbances, whereas EMC shows that high frequency neglected
dynamics cannot be treated as such. This result is further explained in
Section 3.1, with a stability analysis study.

Looking at the ARC method, it employs a different method com-
pared to the EMC, since it is based on an adaptive law to estimate the
unknown disturbances. Instead, an observer to estimate the unknown
disturbances is the core of the EMC approach and, as discussed above
in the comparison with the ADRC method, it is particularly suitable
to estimate and reject the effects of delays, asynchronous commands
and other disturbances. A second difference is that the EMC is a
model-based design method, which employs a simplified version of the
plant to be controlled, the internal model, embedded in the EMC unit.
The model neglected disturbances are estimated by the disturbance
observer, and rejected by a suitable control law. This allows to facilitate
the construction of the model for the plant to be controlled, and to
avoid the plant dynamics difficult to be modelled.

In any case, the fact that EMC is effective in solving the networked
system control problem does not exclude that other approaches may
work as well. Both ARC and ADRC have the potential to correctly
work when applied to a networked system. However, this investigation
would require an extensive presentation/discussion, which would be
out of the scope of the paper. In Section 5 of our paper, we decided
to compare the EMC controller with controllers obtained by means of
standard techniques, such as PID and LQR controllers.

The main contributions of this paper are two: (i) the standard
formulation of EMC is modified to allow the control of asynchronous
time systems, such as the NCS: an original approach is developed for
the design of a complete asynchronous control unit; (ii) the present
study expands the seminal ideas of [30], introducing experimental
tests of the designed EMC design framework with asynchronous timing
control. In terms of methodology, the differences between the EMC
version proposed in the present paper and [30] are: (i) the study of
several models for the disturbance estimator (the choices comprise
static or dynamic observers), finally choosing the best in terms of
control performances; (ii) a simplified version of the plant is controlled,
the internal model, embedded in the EMC unit. Moreover, in terms of

experimental results, the main improvement of this work compared to
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Fig. 1. Differential-drive robot experimental setup.
its predecessor, is that the EMC approach was tested not only with
numerical simulations, but with several experimental tests, too. The
experiments of the EMC validate its effectiveness with a real test case,
a differential-drive mobile robot in an NCS scenario, [16,27].

Specifically, as basis of the experimental setup, the designed digital
control unit, converted into C++ code via a robust automatic code gen-
eration from MathWorks Simulink, [32], was executed in a Raspberry
Pi board able to command the mobile robot remotely. These tests show
that the proposed disturbance rejection-based approach can be effec-
tive in allowing precise reference tracking under persisting external
disturbances, coming both from uncertain parameters/dynamics and
asynchronous sampling time in NCS scenario.

As a result, differently from other design methods, the complex
asynchronous control design problem can be cast into a simpler prob-
lem: the active estimation and rejection of the generalized disturbance
dynamics. In fact, following the EMC disturbance rejection design
principles, the controller was designed based on an input–output con-
trollable model and it is fixed, whereas any difference between the
controllable model and the reality is interpreted as a disturbance, to
be real-time estimated and rejected, [27]. This implies forcing the plant
physics to behave like the controllable model. Consequently, the knowl-
edge of the plant dynamics required for the control unit design results
to be reduced to a dramatic extent, thus an accurate model plant is not
strictly required. This substantially increases the practical applicability
of the designed solution, [15,33]. In addition, the disturbance rejection
control strategy is able to reduce the control effort to a minimum. This
is an advantage compared to other state-feedback controls, which may
require a large command activity, [33].

Among the disturbance rejection control methods, the EMC guar-
antees a systematic approach in the field of the asynchronous timing
systems. This means that the proposed method is specifically designed
for dealing with the disturbances generated by a system with a vari-
able sampling time, such as the NCS scenario. On the contrary, other
methodologies results to be adapted only to the asynchronous system,
such as the PID control method. To understand the aforementioned
EMC advantages, a comparison between the EMC and the PID control
methods is presented in Section 5, related to the experimental tests of
the paper. As a further result, stability and robustness properties of the
EMC method for the specific test case are guaranteed, [33].

This paper is organized as follows. Section 2 reviews the distinctive
features of the adopted mobile robot experimental test-bench and the
NCS scenario setup exploited for the robot tests. An overview of the
EMC design principles is presented in Section 3, and the asynchronous
EMC equations are derived for the specific mobile robot setup in Sec-
tion 4. In Section 5, the results of the designed asynchronous controller
experimental tests are reported and discussed. Finally, conclusions are
drawn in Section 6.
3

2. Experimental test-bench setup

2.1. Differential-drive mobile robot

The platform selected to test the disturbance-rejection-based asyn-
chronous controller presented in this study is a differential-drive mobile
robot, in which a real-time embedded system is incorporated.

The adopted mobile robot (which model is called GoPiGo3, manu-
factured by Dexter Industries company, [34]) is characterized by two
wheels (left and right) independently actuated by two DC motors,
Fig. 1, whose command voltage input is set via a Pulse-Width Mod-
ulation (PWM) square wave with a duty cycle from 0 to the maximum
voltage value. At the DC motor tail ends, the platform includes mag-
netic encoders, directly connected with the robot wheels rotating shaft,
to estimate the wheels angular position. A gearbox reduces the DC
motor speed by a factor of 𝑁 = 120 to establish a suitable load speed
level, at the two robot wheels. Finally, the power supply is guaranteed
by on-board batteries. In addition, two main boards are used to control
the robot: (i) an integrated hardware board, and (ii) a Raspberry Pi 3
Model B board. The integrated hardware board, directly supplied by the
manufacturer, provides the firmware, the communication interfaces, an
H-bridge to change direction and sign of the two motors output speed,
and a PWM generator, required to adjust the input voltage amplitude
and consequently the desired output speed of the wheels. Conversely,
the Raspberry Pi 3 Model B board is leveraged to control all the motor
functionalities as well as to implement the NCS scenario. In Table A.4
of Appendix A, the main features of the robotic platform are listed.

2.2. NCS experimental setup

To be fully representative of a Networked Control System scenario,
the experimental tests presented in this study are characterized by a
software emulation of asynchronous and variable sampling times, via
a random number generator directly implemented in the Raspberry Pi
control board. More in detail, uniform random numbers in a predefined
range are defined via the Raspberry Pi control board, to be then lever-
aged by real hardware timers to obtain the required discrete sampling
time.

As a matter of fact, such a design choice is devised so to have a
representative yet conservative test environment. Indeed, the range of
the random number generator is chosen to be conservative in the delays
produced, in order to further increase the fidelity of the experimental
test-bench. The resulting test setup, in which the time-stamp is received
with a certain variable delay, allowed to account for the control inputs
to be sent remotely.

Most notably, the established NCS software emulation environment
has allowed the authors to arbitrarily shape a wide range of possible
disturbance scenarios via a remote control, without the need of setting
up remote physical connection between the robot and remote control
devices. Inter alia, the setup also has allowed to impose critical con-
ditions, like very high sampling time variabilities, to experimentally
validate at larger extent the EMC asynchronous control unit.
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3. Asynchronous EMC design principles

This section generally details the building blocks and the governing
equations of the EMC asynchronous control unit. Thereafter, in Sec-
tion 4, the asynchronous EMC will be specifically designed to control
the mobile robot in an NCS environment where asynchronous sampling
times affect the whole system.

The typical EMC-controlled system (cf. Fig. 2) is mainly composed
by a digital control unit coupled with the system to be controlled or
its fine model (potentially, its digital twin). Inside the digital control
unit, the system to be controlled is modelled by means of a controllable
dynamics, in a block called internal model. In addition to the internal
model, the digital control unit typically includes: (i) a state predictor,
(ii) a reference dynamics, providing both the reference command, and
(iii) the control law, including a disturbance-rejector term, [15]. In
particular, the state predictor is based on an internal model of the
system to be controlled, completed by an output-to-state feedback (the
noise estimator, in Fig. 2).

The EMC internal model is written in discrete-time form and in-
cludes, in addition to the controllable dynamics, a disturbance model
(called disturbance dynamics, see Fig. 2), whose structure is designed to
fit the class of control problems to be addressed, [27]. This disturbance
model consists in a dynamic model of the unknown disturbances and
the parameter uncertainty, potentially affecting the plant, not included
into the controllable input–output model. As a result, the disturbance
model plays the role of the disturbances rejector, [15]. The EMC state
equations are as follows [27]:

𝐱(𝑘 + 1) =
[

𝐱𝑐
𝐱𝑑

]

(𝑘 + 1) =

[

𝐀𝑐 𝐇𝑐
𝟎𝑛𝑥𝑑 ×𝑛𝑥𝑐 𝐀𝑑

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

𝐱(𝑘) +

+
[

𝐁𝑐
𝐁𝑑

]

⏟⏟⏟
𝐁

𝐮(𝑘) +
[

𝐆𝑐
𝐆𝑑

]

⏟⏟⏟
𝐆

𝐰(𝑘),

𝐲𝑚(𝑘) =
[

𝐂𝑐 𝐂𝑑
]

⏟⏞⏟⏞⏟
𝐂

𝐱(𝑘),

(1)

where 𝑘 ∈ Z is the discrete-time index, 𝐱𝑐 (with dimension 𝑛𝑥𝑐 ) and
𝑑 (with dimension 𝑛𝑥𝑑 ) refer to the controllable (or canonical) and
he rejector states, respectively. The matrices 𝐀,𝐁,𝐂 are related to the
tate 𝐱, control input 𝐮 and estimated output from the internal model
𝑚, respectively. The matrix 𝐆 is present, for the estimation of the noise
ector 𝐰.

The noise vector 𝐰 includes bounded nonlinearities, unmodelled
ynamics, external disturbances, sensor noises and discretization er-
ors. In addition, the control disturbances due to delays and package
ropouts of an NCS scenario are included. As in [33,35], we assume
hat 𝐰 belongs to an uncertainty set  of bounded, zero-mean signals

respecting |𝐰| ≤ 𝐰𝑚𝑎𝑥.
In particular, the matrix 𝐀 is made by the sub-matrix 𝐀𝑐 related to

𝐱𝑐 , 𝐀𝑑 related to 𝐱𝑑 , and the 𝐇𝑐 matrix, which describes the interactions
of 𝐱𝑑 on 𝐱𝑐 . Similarly, there are the sub-matrices 𝐁𝑐 ,𝐁𝑑 for 𝐁 matrix,
𝐆𝑐 ,𝐆𝑑 for 𝐆 matrix, and 𝐂𝑐 ,𝐂𝑑 for 𝐂 matrix.

Given the controllable and disturbance models, the noise estimator
allows us to close the output-to-state feedback loop, thus building a
digital state predictor. The state predictor provides the control law
with a reliable estimate of: (i) the controllable states 𝐱𝑐 , to be driven
according to the reference dynamics, and (ii) the disturbances affecting
the plant 𝐱𝑑 , to be rejected. Hence, the noise estimator, with the aim
of recovering the disturbance states from the output measurements,
is crucial for active disturbance rejection control, [15,27]. The noise
estimator is fed with the model output error (cf. 𝐞𝑚 in Fig. 2), namely
the difference of plant measurement 𝐲 and the estimated output from
4

internal model 𝐲𝑚 (the estimated state 𝐱𝑐 in this case coincides with the
utput 𝐲𝑚). As a result, it holds that

𝐰(𝑘) = 𝐋𝐞𝑚(𝑘),
𝐞𝑚(𝑘) = 𝐲(𝑘) − 𝐲𝑚(𝑘),

(2)

where 𝐋 =
[

𝑙1,… , 𝑙𝑖
]𝑇 is the closed-loop predictor matrix, with 𝑖 = 𝑛𝑤

as the number of 𝐰 noise vector components. The close-loop predictor
gains

[

𝑙1,… , 𝑙𝑖
]

need to be designed and tuned to guarantee closed-loop
stability, cf. Section 4.3.

To conclude, the EMC control law can be expressed as

𝐮(𝑘) = 𝐮(𝑘) +𝐊
𝐶
𝐞(𝑘) −𝐌𝐱𝑑 (𝑘),

𝐞(𝑘) =
(

𝐱(𝑘) −𝐐𝐱𝑑 (𝑘)
)

− 𝐱𝑐 (𝑘).
(3)

Eq. (3) is made up by three terms (cf. Fig. 2): (i) the feed-forward
component 𝐮 obtained as the control input to generate a desired refer-
ence trajectory, (ii) the state feedback 𝐮𝑡𝑟𝑘 = 𝐊

𝐶
𝐞, being 𝐞 the tracking

error, and (iii) the disturbance rejection term 𝐮𝑑 = 𝐌𝐱𝑑 . 𝐱 is the desired
reference trajectory.

The EMC formulation in (1) is similar to a GESO (Generalized Ex-
tended State Observer) formulation, since the mismatched disturbances
of the system are inserted as additional states, and then estimated
with an observer-state controller with the same form of (2). However,
the difference between the EMC formulation and GESO resides on the
application of the aforementioned controller not directly to the plant,
but to a simplified model of the plant. Thanks to the application of
suitably designed control gains 𝐌,𝐐, defined in (3), the mismatched
disturbance can be compensated by the control action.

In Fig. 2, the basic EMC scheme is presented, highlighting the sub-
blocks explained above, the state predictor with the internal model
inside, the control law and the reference dynamics.

3.1. Stability analysis

In this subsection, we recap the robust stability result proven
in [33], regarding a closed-loop system consisting of a nonlinear plant
connected in feedback with an EMC controller. The recap is adapted to
the framework developed in the present paper.

Consider a continuous-time nonlinear system in the following form:

𝐱̇(𝑡) = 𝐱(𝑡) + 
(

𝐮(𝑡) + ℎ(𝐱, 𝑡) + 𝐰𝑥(𝑡)
)

(𝑡) = 𝐱(𝑡) + 𝐰𝑦(𝑡)
(4)

here 𝐱 is the state, 𝐮 is the input, 𝐲 is the output; 𝐰𝑥 is the process
isturbance and 𝐰𝑦 is the measurement error; , ,  and  are real
atrices of compatible dimensions; the function ℎ(⋅) contains all the

ystem nonlinearities.
Suppose that the plant (4) is subject to the control law (3). That

s, 𝐮(𝑡) is converted in discrete-time domain 𝐮(𝑘) by considering 𝑡 ∈
𝑘, 𝑘 + 1]𝑇𝑠 and 𝑘 = 0, 1, 2,…, where 𝑇𝑠 is the adopted sampling time
nd 𝐮(𝑘) is given by (3). This control law is based on the EMC model
1), which is constructed on the basis of the plant Eqs. (4). In particular,
he Eqs. (4) are first discretized using a suitable sampling time 𝑇𝑠. Then,
he matrices in (1) are directly obtained from the matrices in (4). The
oise 𝐰(𝑘) in (1) captures the effects of disturbances and nonlinearities
ppearing in (4).

Note that the control law (3) is robust with respect to the nonlin-
arity ℎ(⋅), in the sense that it does not use any detailed information
bout it. To guarantee closed-loop stability, ℎ(⋅) is only needed to be
ector-bounded. That is, each component ℎ𝑗 of ℎ is assumed to satisfy
he following inequalities:

− 𝑝𝑗𝑙 ≤ ℎ𝑗 (𝐱, 𝑡)∕𝑥𝑙 ≤ 𝑝𝑗𝑙 , ∀𝑗, 𝑙, ∀𝑡 ∈ [0,∞) (5)

where 𝑝𝑗𝑙 < ∞ and 𝑥𝑙 are the components of 𝐱.
When the plant (4) is subject to the control law (3), we obtain a

closed-loop system with three inputs: the disturbances 𝐰𝑥 and 𝐰𝑦, and
the reference 𝐱. Such a closed-loop system is named  . Let 𝐻(𝑠) be
𝐶𝐿
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Fig. 2. EMC basic scheme.
the transfer function matrix of 𝐶𝐿 from 𝐝𝑡𝑜𝑡 = ℎ+𝐰𝑥 to 𝐱. Assume that

max
𝑗

(

𝐻𝑗∞,𝑚𝑎𝑥, 𝑝𝑗,𝑚𝑎𝑥
)

< 1 (6)

where 𝐻𝑗∞,𝑚𝑎𝑥 = max𝑖‖𝐻𝑖𝑗‖∞, 𝐻𝑖𝑗 are the components of 𝐻 , ‖ ⋅ ‖∞ is
the H-infinity norm, and 𝑝𝑗,𝑚𝑎𝑥 > max𝑙𝑝𝑗𝑙.

According to the stability result given in [33], suitably adapted to
the framework of the present paper, we have the following statement:
Under assumptions (5) and (6), the closed-loop system 𝐶𝐿 is 2

Finite-Gain Asymptotically Stable. That is, the following properties hold:
(i) Finite constants 𝜆𝑤𝑥, 𝜆𝑤𝑦, 𝜆𝑥 and 𝜂 exist, such that the state signal

is bounded as

‖𝑥‖2 ≤ 𝜆𝑤𝑥
‖

‖

𝐰𝑥
‖

‖2 + 𝜆𝑤𝑦
‖

‖

‖

𝐰𝑦
‖

‖

‖2
+ 𝜆𝑥 ‖‖𝐱‖‖2 + 𝜂, (7)

where ‖ ⋅ ‖2 is the 2 signal norm.
(ii) Under null inputs 𝐰𝑥, 𝐰𝑦 and 𝐱,

lim
𝑡→∞

𝐱 (𝑡) = 0, (8)

for any bounded initial condition 𝐱(0).

These properties are robust, since they hold for all possible nonlinear-
ities ℎ which are sector-bounded according to (5) and (6). Inequality
(7) implies that, if the disturbances 𝐰𝑥 and 𝐰𝑦, and the reference 𝐱
are bounded, the state signal is bounded as well. In the case of the
mobile robot application considered in this paper, we have several
disturbances and sources of uncertainty. All of them are captured by
the noise vector 𝐰 in (1), which includes both bounded disturbances
(like sensor noises, external disturbances, delays, package dropouts)
and sector-bounded uncertainties (like linear unmodelled dynamics and
discretization errors).

4. Asynchronous EMC application to differential-drive mobile
robot control

This section is intended to derive the asynchronous control unit
block specifically designed for the differential-drive mobile robot. The
5

section is organized as follows: first an accurate model of the plant, i.e
the fine model, is presented in Section 4.1: this is the digital twin of the
platform. The fine model is needed both to test the designed algorithms,
using a high-fidelity numerical simulator, and as a starting point to
the internal model derivation. Secondly, in Section 4.2, a simplified
model of the plant, namely the Internal Model, is derived from the
fine one. The internal model plays a pivotal role in the EMC design,
being embedded in the control unit as the basis to build the state
and disturbance predictor (cf. Section 4.3 and Appendix B). Hence, the
internal model needs to result as simple as suitable to be implemented
in the remote control board of the mobile robot. Finally, the overall
asynchronous digital control unit is completed via an appropriate con-
trol law (Section 4.5), leveraging the state and disturbance predictor
output, jointly with a reference trajectory dynamics (Section 4.4).

4.1. Differential-drive mobile robot fine model

The fine model of a typical DC motor can be built by defining
2 state variables: (i) the armature current 𝑖𝑎 and the motor angular
speed 𝜔𝑚, without considering a gearbox reduction 𝑁 . These two state
variables refer to the electrical and mechanical parts of the DC motor,
respectively. The DC motor model equations, in the continuous time
domain, are as follows:

⎧

⎪

⎨

⎪

⎩

𝑖̇𝑎(𝑡) = −𝑅𝑎
𝐿𝑎

𝑖𝑎(𝑡) +
1
𝐿𝑎

[

𝑉𝑎(𝑡) − 𝑒(𝑡)
]

,

𝜔̇𝑚(𝑡) = − 𝛽𝑡𝑜𝑡
𝐽𝑡𝑜𝑡

𝜔𝑚(𝑡) +
1

𝐽𝑡𝑜𝑡

[

𝑇𝑚(𝑡) − 𝑇𝑟(𝑡)
]

,

𝑖𝑎(0) = 𝑖0, 𝜔𝑚(0) = 𝜔𝑚0,

𝑒(𝑡) = 𝑘𝑣𝜔𝑚(𝑡),

𝑇𝑚(𝑡) = 𝑘𝑡𝑖𝑎(𝑡),

(9)

where 𝑇𝑚 is the motor torque, depending on 𝑖𝑎, 𝑇𝑟 is the resistive torque,
due to possible external disturbances, while 𝑒 is the back-electromotive
force, depending on the motor output speed 𝜔𝑚. The motor 𝜔𝑚 is then
reduced through the gearbox to obtain suitable angular speeds at the
wheels level: 𝜔 = 𝜔 ∕𝑁 , being 𝑁 the reduction ratio. Further, in (9),
𝑚
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𝛽𝑡𝑜𝑡 and 𝐽𝑡𝑜𝑡 are the robot total friction and inertia respectively, 𝑅𝑎
and 𝐿𝑎 the armature resistance and inductance respectively, 𝑘𝑣 and 𝑘𝑡
the back electromotive force and torque constants, respectively. The
armature input voltage of the motor is 𝑉𝑎.

It is worth noticing that, given the mobile robot experimental test-
ench, the input armature voltage 𝑉𝑎 and the output reduced angular

speed 𝜔 are the only variables which can be directly measured. On the
other side, all the model parameters are obtained through dedicated
identification analyses (cf. Appendix A).

4.2. Mobile robot asynchronous EMC: Internal model

For the sake of simplicity, the following equations will refer to the
DC right motor only, being the left one similar with proper model
parameters set as per Table A.5.

The internal model of the differential-drive mobile robot is intended
to be directly implemented on the remote control board, a Raspberry
Pi 3 board, and it is the streamlined discrete-time conversion of the
continuous-time fine model detailed in (9), obtained through two de-
sign choices. Firstly, since the armature current 𝑖𝑎, and consequently
𝑇𝑚, cannot be directly measured, it is deemed suitable to treat the
electrical part of DC motor as a neglected dynamics, for the purpose
of the digital control unit design. This implies that, being not explicitly
included within the internal model, its effects were treated as unknown
disturbances to be estimated by the disturbance predictor and actively
rejected. Similarly, being the exact platform values of 𝛽𝑡𝑜𝑡 and 𝐽𝑡𝑜𝑡, and

potential external resistive torque 𝑇𝑟, difficult to assess, they are as
ell not explicitly included in the internal model.

These model simplifications do not affect the control performances
f the EMC unit. Indeed, as explained in [33], the model uncertainties
re directly included in the noise estimator state observer, which can
e rejected with an appropriate disturbance rejection control law gain.
his is true even with a large difference between the model and the
eality, since the motor model has significant unmodelled dynamics
elated to the friction and the inertia. As a result, even a less accurate
odel can be exploited maintaining the desired control performances.

Following the assumptions above, to derive the internal model, (9)
s first translated in the frequency domain, then written in function of
𝑎, 𝜏𝑚 time constants (for their definition refer to (A.1) in Appendix A),
nd 𝑘𝑣:

𝜔(𝑠)
𝑉𝑎(𝑠)

=
1∕𝑘𝑣

1 + 𝑠𝜏𝑚 + 𝑠2𝜏𝑚𝜏𝑎
. (10)

The analysis and simulation of (10) allowed us to make two crucial
considerations to derive the internal model of the plant. First of all, the
parameters in Table A.5 imply that 𝜏𝑎 ≈ 0.01 s is substantially lower
compared to 𝜏𝑚 ≈ 0.06 s. As a result, only 𝜏𝑚 and 𝑘𝑣 parameters affect
substantially the system behaviour. This result validates the hypotheses
of neglecting the electrical dynamics of the electric motor.

Secondly, 𝑘𝑣 is directly related to the motor angular speed at the
shaft 𝜔𝑚, which cannot be directly measured in the adopted platform.

ence, to simplify the model derivation, a motor without the gearbox
eduction but with an output speed reduced by the factor 𝑁 is consid-

ered. Consequently, the speed at the wheels, 𝜔 = 𝜔𝑚∕𝑁 , is assumed as
model state, and the relative model parameter becomes 𝑘′𝑣 = 𝑘𝑣𝑁 .

To sum up, the mobile robot DC motor model (9) in time domain
shrinks to

̇ (𝑡) = − 1
𝜏𝑚

𝜔(𝑡) + 1
𝜏𝑚𝑘′𝑣

𝑉𝑎(𝑡), 𝜔(0) = 𝜔0,

𝑦𝑚(𝑡) = 𝜔(𝑡),

𝑒(𝑡) = 𝑘′𝑣𝜔(𝑡).

(11)

Eq. (11) provides the final input–output controllable model, on which
the digital controller design is based. Finally, to complete the internal
model, the plant input–output description in (11) is paired with the
general disturbance estimation dynamics: the basis for the EMC rejector
6

e

(cf. Fig. 2). To build the EMC rejector, (11) was augmented by a
second-order stochastic disturbance dynamics [31,36], to account for
model parametric uncertainties, neglected dynamics, and other noise
components, i.e.

⎧

⎪

⎨

⎪

⎩

𝜔̇(𝑡) = − 1
𝜏𝑚
𝜔(𝑡) + 1

𝜏𝑚𝑘′𝑣
𝑉𝑎(𝑡) +𝑤1(𝑡) + 𝑥𝑑1(𝑡),

𝑥̇𝑑1(𝑡) = 𝑥𝑑1(𝑡) + 𝑥𝑑2(𝑡) +𝑤2(𝑡),
𝑥̇𝑑2(𝑡) = 𝑥𝑑2(𝑡) +𝑤3(𝑡),

𝑦𝑚(𝑡) = 𝜔(𝑡),

(0) = 𝜔0, 𝑥𝑑1(0) = 𝑥𝑑10, 𝑥𝑑2(0) = 𝑥𝑑20.

(12)

The noise estimates 𝑤𝑗 are selected to capture the DC motor dynamics,
hich is usually of second order: this is the reason why the disturbance
quations with states 𝑥𝑑1, 𝑥𝑑2 are of second order.

In (12), 𝑥𝑑1 and 𝑥𝑑2 represent the two disturbance state variables
aking up the disturbance predictor. In the noise estimator model

election, static and dynamic feedback disturbance estimators are stud-
ed. At the end, a static disturbance model is preferred rather than a
ynamic one, since it has lower complexity with comparable estimation
erformances. Among the static feedback disturbance models, in the
xperimental results first or second order estimators are investigated.1

As shown in Fig. 2, according to the EMC typical architecture, the
isturbance dynamics is driven by a noise vector 𝐰= [𝑤1, 𝑤2, 𝑤3]𝑇 ,

whose components are function of the model output error 𝐞𝑚 = 𝐲 − 𝐲𝑚
(measurement minus estimate), [31]. As a result, the full internal model
of the differential-drive mobile robot, discretized using the Forward-
Euler method for the implementation within the control unit, is given
by

⎧

⎪

⎨

⎪

⎩

𝜔(𝑘 + 1) =
(

− 1
𝜏𝑚
𝑇𝑠 + 1

)

𝜔(𝑘) + 𝑇𝑠
𝜏𝑚𝑘′𝑣

𝑉𝑎(𝑘) + 𝑑(𝑘),

𝑥𝑑1(𝑘 + 1) = (𝑇𝑠 + 1)𝑥𝑑1(𝑘) + 𝑇𝑠
[

𝑥𝑑2(𝑘) +𝑤2(𝑡)
]

,
𝑥𝑑2(𝑘 + 1) = (𝑇𝑠 + 1)𝑥𝑑2(𝑘) + 𝑇𝑠𝑤3(𝑘),

𝑦𝑚(𝑘) = 𝜔(𝑘),

𝑑(𝑘) = 𝑇𝑠
[

𝑤1(𝑘) + 𝑥𝑑1(𝑘)
]

,

𝜔(0) = 𝜔0, 𝑥𝑑1(0) = 𝑥𝑑10, 𝑥𝑑2(0) = 𝑥𝑑20,

(13)

where the sampling time 𝑇𝑠 is introduced. The sampling time 𝑇𝑠 is
variable within a certain range, leading to an asynchronous control
system.

It is worth notice that the Forward-Euler method resulted to be
sufficient for the discretization of the system (13), because the sampling
time 𝑇𝑠 is sufficiently small to guarantee low discretization errors.

Consequently, by shaping (13) as per (1), the state matrices of the
EMC equations hold

𝐀 =

[

𝐀𝑐 𝐇𝑐
𝟎𝑛𝑥𝑑 ×𝑛𝑥𝑐 𝐀𝑑

]

=
⎡

⎢

⎢

⎣

− 𝑇𝑠
𝜏𝑚

+1 𝑇𝑠 0
0 𝑇𝑠 + 1 𝑇𝑠
0 0 𝑇𝑠 + 1

⎤

⎥

⎥

⎦

,

𝐁 =
[

𝐁𝑐
𝐁𝑑

]

=

⎡

⎢

⎢

⎢

⎣

𝑇𝑠
𝜏𝑚𝑘′𝑣
0
0

⎤

⎥

⎥

⎥

⎦

,

𝐆 =
[

𝐆𝑐
𝐆𝑑

]

=
⎡

⎢

⎢

⎣

𝑇𝑠 0 0
0 𝑇𝑠 0
0 0 𝑇𝑠

⎤

⎥

⎥

⎦

,

𝐂 =
[

𝐂𝑐 𝐂𝑑
]

=
[

1 0 0
]

,

𝐅 =
[

𝐅𝑐 𝐅𝑑
]

= 𝐂,

𝐱𝑐 (𝑘) = 𝐲𝑚(𝑘) = 𝜔(𝑘), 𝐱𝑑 (𝑘) =
[

𝑥𝑑1 𝑥𝑑2
]𝑇 (𝑘),

𝐰(𝑘) =
[

𝑤1 𝑤2 𝑤3
]𝑇 (𝑘),

(14)

1 From now on, if not explicitly specified, the second order static distur-
ance model is considered in the experimental tests. However, in some of the
ests, cfr. Section 5.5, the first order disturbance model is preferred. In these
ases, to build a first order model noise estimator, the equations above are

asily modified, as explained in Appendix B.2.
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where the subscripts 𝑐 and 𝑑 refer to the matrices affecting the control-
lable and the disturbance states, respectively.

4.3. Mobile robot asynchronous EMC: Noise estimator

The model and the disturbance state predictor, directly coded into
the mobile robot control unit, play a key role in the EMC asynchronous
design. The discrete-time input–output model, augmented via the dis-
turbance state dynamics and driven by the noise vector 𝐰, cf. (14),
represents the basis to build the state predictor when coupled with a
suitable output-to-state feedback suitably designed to close the loop, see
Fig. 2. To this aim, a noise estimator block was designed with the two
goals of achieving the closed-loop stabilization of the predictor, as well
as to ensure a suitable disturbance estimation capability. As a matter of
fact, the noise estimator was designed as a properly-dimensioned static
feedback (cf. Appendix B)

𝐰(𝑘) =
⎡

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3

⎤

⎥

⎥

⎦

(𝑘) = 𝐋𝐞𝑚(𝑘) =
⎡

⎢

⎢

⎣

𝑙1
𝑙2
𝑙3

⎤

⎥

⎥

⎦

𝐞𝑚(𝑘),

𝐞𝑚(𝑘) = 𝐲(𝑘) − 𝐲𝑚(𝑘).

(15)

In (15), 𝐲𝑚 is the estimated output of the internal model, 𝐲 is the
measured output of the plant, while 𝐋 collects the closed-loop predictor
gains [𝑙1, 𝑙2, 𝑙3]𝑇 . As a result, the closed-loop predictor model can be
determined by designing and tuning the predictor gains trading-off
between the closed-loop stability and the estimation performance.

In this study, given the NCS scenario and the asynchronous control
unit, the discrete sampling time 𝑇𝑠 is variable at every step. As a matter
of fact, the noise estimator gains depend on the asynchronous 𝑇𝑠 and
hey are preliminary tuned by fixing the closed-loop complementary
igenvalues of the predictor state matrix (cf. Appendix B), via a pole
lacement, and then refined in simulations and experimental tests.
inally, being executed with asynchronous sampling times, Table 1 lists
he continuous-time noise estimator eigenvalues 𝜇

𝑁
, which are then

converted to discrete-time domain eigenvalues 𝜆
𝑁

, at every control
ime step. The relation between continuous and discrete sampling time
igenvalues, for the noise estimator block, is the sampling transfor-
ation mapping between the -transform and -transform, i.e. 𝜆

𝑁
=

𝑒𝜇𝑁 𝑇𝑠 .

4.4. Mobile robot asynchronous EMC: Reference dynamics

The reference generator provides the reference trajectory with: (i)
the nominal command 𝐮, and (ii) the reference canonical output and
tate 𝐲= 𝐱=𝜔 (where 𝜔 is the reference output speed) to compute the
racking error 𝐞, as depicted in Fig. 2.

In line with the EMC framework, in this study, a model-based
esign of the reference dynamics is proposed, based on the same input–
utput controllable dynamics in (11). Such a design choice is aimed at
educing significantly the feedback effort, since the reference state tra-
ectories are naturally compliant with the plant dynamics. Specifically,

static-state feedback was leveraged to obtain a reference trajectory
𝐫(𝑘) imposing as nominal control input 𝐮(𝑘) = −𝐊

𝑅
𝐱(𝑘) + 𝐍

𝑅
𝐫(𝑘),

here 𝐊
𝑅

= 𝑘
𝑅

and 𝐍
𝑅

= 𝑛
𝑅

are the reference generator gains, to
e designed and tuned using pole-placement techniques. Consequently,
he discrete-time reference dynamics state equations are

𝐱(𝑘 + 1) = 𝐀
𝑅
𝐱(𝑘) + 𝐁

𝑅
𝐫(𝑘),

𝐲(𝑘) = 𝐂
𝑅
𝐱(𝑘),

𝑅
= 𝐀𝑐 − 𝐁𝑐𝐊𝑅

, 𝐁
𝑅
= 𝐁𝑐𝐍𝑅

, 𝐂
𝑅
= 𝐂𝑐 .

(16)

By applying pole placement to (16), given the asynchronous setup, the
closed-loop gain 𝐊

𝑅
holds

𝐊 =
𝐀𝑐 − 𝑎

𝑅 , (17)
7

𝑅 𝐁𝑐
d

where 𝑎
𝑅

, i.e. the coefficient of the characteristic polynomial defined by
a user-defined eigenvalue, changes according to the sampling time 𝑇𝑠.
t is worth noticing that, from a frequency perspective, the eigenvalues
re placed as close to zero as possible (in continuous-time domain), in
rder to generate a quite slow reference dynamics. Such a design choice
ims at increasing the overall capability of the internal model system
o track the reference 𝐫.

Instead, the gain matrix 𝐍
𝑅

is determined by imposing the DC-gain
𝐊

𝐷𝐶
of the overall system transfer function 𝐖(𝑠) = 𝐲(𝑧)∕𝐫(𝑧) equal to

1, i.e., by rearranging (16):

𝐍
𝑅
=
[

𝐂
𝑅

(

I − 𝐀
𝑅

)−1
𝐁𝑐

]−1
. (18)

Table 1 reports the continuous-time reference dynamic eigenvalues
𝜇
𝑅

. As a matter of fact, since the control time step is asynchronous,
the eigenvalues 𝜇

𝑅
changes in line with asynchronous sampling times.

Hence, they need to be converted into discrete-time domain eigen-
values 𝜆

𝑅
. The reference dynamics continuous and discrete sampling

time eigenvalues are related by the sampling transformation mapping
between the -transform and -transform, i.e. 𝜆

𝑅
= 𝑒𝜇𝑅 𝑇𝑠 .

As a final note, also an explicit saturation constraint on the nominal
control input 𝐮 is introduced. Such a constraint avoids the commanding
of unattainable reference trajectories, imposing the maximum operative
voltage range of the DC motor (cf. 𝑉𝑎 ≈ ±11.5V, in Table A.4).

4.5. Mobile robot asynchronous EMC: Control law

The typical control law design leveraged within the EMC control
unit is expressed in (3), where the rejector matrices 𝐌,𝐐 and the feed-
back gains in 𝐊

𝐶
must be designed. In the case-study here presented,

𝐌 ∈ R1×2, determined from the Sylvester–Francis equation, [27,37],
allows to consider a disturbance dynamics of any order (second, in
this case) and holds 𝐌 =

[

𝜏𝑚𝑘′𝑣 0
]

. The matrix 𝐐 results with null
components, hence the tracking error in (3) reduces to 𝐞 = 𝐱 − 𝐱𝑐 .

Conversely, 𝐊
𝐶

is designed by means of pole placement, aiming
t reaching asymptotically stable closed-loop eigenvalues. To achieve
zero tracking error, a discrete proportional–integral (PI) controller

esign is selected. To this aim, the 𝐊
𝐶

= [𝑘𝑝, 𝑘𝑖] coefficients are
etermined by considering the closed-loop system dynamics, including
he system controllable dynamics and the PI controller, i.e.,

𝐱1
𝐱2

]

(𝑘 + 1) =
[

−𝐀𝑐 − 𝑘𝑝𝐁𝑐 𝑘𝑖𝐁𝑐
−1 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀𝑐𝑡𝑟𝑙

[

𝐱1
𝐱2

]

(𝑘) +

+
[

𝑘𝑝𝐁𝑐
1

]

⏟⏟⏟
𝐁𝑐𝑡𝑟𝑙

𝐞(𝑘),
(19)

where 𝐱1 = 𝐱𝑐 , 𝐱2 is the new state introduced by the integral action of
the controller, which leads to the augmented matrices 𝐀𝑐𝑡𝑟𝑙 ,𝐁𝑐𝑡𝑟𝑙. It is

orth notice that 𝐀𝑐 ,𝐁𝑐 depend on the sampling time 𝑇𝑠.
To conclude, by applying pole placement to (19), the closed-loop

feedback gains 𝑘𝑝 and 𝑘𝑖 are computed so to ensure asymptotic stability
and hold:

𝑘𝑝 =
𝑎𝑐1 + 𝐀𝑐 + 1

𝐁𝑐
, 𝑘𝑖 =

𝐁𝑐𝑘𝑝 − 𝐀𝑐 + 𝑎𝑐2
𝐁𝑐

, (20)

where 𝑎𝑐1 and 𝑎𝑐2 are the coefficients of the second-order characteristic
olynomial defined by the assigned eigenvalues set. As a matter of fact,
𝑝 and 𝑘𝑖, likewise the noise estimator gains, cf. (15), change according
o the considered discrete sampling time of 𝑇𝑠 (cf. Section 2.2). To sum

up, Table 1 reports the continuous-time control block eigenvalues 𝜇
𝐾

,
to be then converted to discrete-time eigenvalues 𝜆

𝐾
. The 𝜆

𝐾
eigen-

values change at each control time-step in line with the asynchronous
execution and sampling time. The sampling transformation between
the -transform and -transform maps the control law continuous and
iscrete-time eigenvalues, i.e. 𝜆 = 𝑒𝜇𝐾 𝑇𝑠 .
𝐾
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Fig. 3. Asynchronous Timestamp with range 0.01 to 0.03 s used for EMC experimental results.
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Table 1
Differential-drive mobile robot control: parameters for selected experimental
test.

Parameter Value

Experimental test time step 𝑇𝑠 [s] [0.01, 0.03]
Timestamp mean [s] 0.0195
NCS random generator seed Time since 01/01/1970

Reference dynamics eigenvalues 𝜇
𝑅

[−2.5647]
Feedback eigenvalues 𝜇

𝐾
[−2.5647,−2.5647]

Predictor eigenvalues 𝜇
𝑁

[−14.3842,−14.3842,−14.3842]

Finally, the overall command input 𝐮 is endowed with a variable
aturation constraint. Such a constraint is shaped so that, when battery-
owered, the mobile robot is allowed to leverage at full extent the
oltage that the batteries can supply, while continuously discharging.

. Experimental results

The test-campaign devised for the designed asynchronous control
nit focused on two sets of experimental results: (i) a high-fidelity
imulations campaign, in Matlab/Simulink, [32], and (ii) experimental
rials, in a range of different test manoeuvres and configurations,
ncompassing the selected robotic platform and a real-time embed-
ed system. After the simulation campaign, the designed discrete-time
ontrol unit was made hardware-tests-ready by: (i) translating the Mat-
ab/Simulink code into C++ language, using the Simulink Embedded
oder toolbox, (ii) encapsulating the control unit code within the
verall software to control the motors, including suitable I/O and com-
unications interfaces (I/F), (iii) testing the I/F and the functionalities

f the embedded control unit, via a set of interface and functional tests.
ore specifically, the overall on-board software of the robotic platform
as embedded on a Raspberry Pi board, adopting a Raspbian operating

ystem.
For the sake of brevity, this section reviews the experimental

rials of the designed EMC asynchronous control unit, applied to a
ifferential-drive mobile robot in an NCS scenario. In particular, after
he experimental setup description in Section 5.1, in Section 5.2 the
MC disturbance rejection capabilities are proven with a specific test.
urthermore, in Section 5.3 the EMC is studied in the two experimental
ases of disturbance rejection presence and absence. Finally, Section 5.5
escribes the results of a comparison between EMC and PID controllers
n the NCS scenario.

.1. Robotic platform tests in an NCS scenario — Setup

For conciseness, the presented results will only focus on the right
C motor of the mobile robotic platform (in loaded condition, when

obot moves on the ground), since the left one shows a very similar
8

ehaviour. t
After an extensive simulation campaign, the EMC asynchronous
ontrol unit was tested with real hardware, a differential-drive mo-
ile robotic platform. The tests were conducted in a representative
etworked controlled system (NCS) environment characterized by vari-
ble sampling times (cf. Section 2.2). The resulting parameters of
he asynchronous control unit are listed in Table 1, as well as the
ontinuous-time eigenvalues 𝜇

𝑅
, 𝜇

𝐾
, 𝜇

𝑁
respectively for the reference

dynamics, control law and state predictor blocks. The continuous-time
eigenvalues shown in Table Table 1 are obtained by trial and error
procedure.

The closed-loop stability of the system in case of asynchronous
sampling time, for 𝑇𝑠 varying from 0.01 s to 0.03 s, is studied in Fig. 15.

he stability analysis is analogous for different range sampling times.
n this figure the discrete-time domain eigenvalues are presented in the
olar plot, for reference dynamics 𝜆

𝑅
= 𝑒𝜇𝑅 𝑇𝑠 , control law 𝜆

𝐾
= 𝑒𝜇𝐾 𝑇𝑠

and predictor 𝜆
𝑁
= 𝑒𝜇𝑁 𝑇𝑠 . It can be seen that, even with asynchronous

sampling time, the values are always inside the unitary circle, thus
guaranteeing asymptotic stability. In addition, a theoretical analysis of
the closed-loop stability is detailed in [33].

The continuous variation of the sampling times is one of the distinc-
tive features of the experimental campaign implemented for this study.
The sampling time varies in a desired interval, which was designed in
order to have the fastest possible control, in line with the practical
limits of the hardware timers running on the adopted Raspberry Pi
control board. Unless specified, the asynchronous time range for the
tests was defined from 0.01 to 0.03 s (cf. Table 1 and Fig. 3), where the
lowest bound is near to the operational limit of the hardware timers,
while the maximum value lets the system be effectively affected by the
disturbances due to the asynchronous sampling times.

5.2. Test 1 — EMC disturbance rejection effectiveness in an NCS scenario

Figures from 6 to 8 depict a test aiming at practically showing
the effectiveness of the designed EMC asynchronous control unit in
estimating and rejecting disturbances and uncertainties, potentially
affecting the plant dynamics. As it can be seen in Fig. 6, a known
external disturbance step (−1 rad∕s, corresponding to the robot climbing
a ramp with a slope of ≈ 17%) was induced to the output speed, starting
at 5 s: in this way the output is in a known steady-state value (𝐲𝑠𝑠 =
6 rad∕s), while the effect of the induced disturbance step can be clearly
identified. In the figure the measured output 𝐲, the estimated output
𝐲𝑚 and the reference output 𝐲 are compared. As a result, the effect of
the disturbance can be clearly spotted on 𝐲 and 𝐲𝑚, in the time period
rom 5 to 6 s, showing the capability of the designed state predictor
o properly estimate the external disturbances potentially affecting the
lant dynamics.

Remark: The step input disturbance of this test was only considered
o understand the abilities to reject the unknown disturbances by

he EMC, every noise signal can be considered and, for simplicity, a
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Fig. 4. Test with delays and package dropouts — Measured output 𝐲 and reference 𝐲 speed.
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step signal was considered. In the next tests presented in this study,
the disturbances were more complex, comprising not only the DC
motor unmodelled dynamics (matched and mismatched), but also the
disturbance coming from the asynchronous timing control of the plant.

In Fig. 7 (top), the control input −𝐮𝑑 = −𝐌𝐱𝑑 (cf. Eq. (3)) resulting
from the robot climbing the ramp is shown. Interestingly, after the ini-
tial transient peak at the disturbance onset, starting at 5 s the command
value assumes an increased value of about 1 rad s−1, with respect to the
previous steady-state condition. As a matter of fact, such a value corre-
sponds to the required voltage input to obtain the requested reference
speed, with a unitary amplification factor (transducer). Indeed, the 𝐮𝑑
value cancels out the effect of the step disturbance on the output 𝐲.
Finally, the peak at the onset of the disturbance action (cf. Fig. 7, from
5 to ≈ 5.5 s) depicts the transition phase, where the EMC asynchronous
disturbance estimator is estimating the dynamics of the plant system,
and is strictly related to the predictor tuning. Fig. 7 (bottom) also
depicts the feedback activity (or tracking error), 𝐮𝑡𝑟𝑘. In this plot we
observe how, after the initial transient, 𝐮𝑡𝑟𝑘 has an almost zero value
(zero-mean). This implies that the disturbance estimator, once initial-
ized, allows the feedback portion of the controller to discharge, [33].
These results highlight as well the disturbance rejector block capability
to drive the robotic platform with a low feedback effort, while ensuring
a suitable performance: a very distinctive feature of a disturbance-
rejection-based control law, here proven to be valid also within an NCS
scenario, where the asynchronous timing causes the variation of the
output speed.

Furthermore, Fig. 8 depicts the model output error 𝐞𝑚 = 𝐲 − 𝐲𝑚
(measurement minus estimate), characterizing the disturbance rejec-
tion experimental test. The model output error, a key signal in the EMC
design, is shown to be in the range of the maximum encoder angular
speed resolution error, 𝑒𝑒𝑛𝑐 = 𝑟𝑒∕𝑇s,min = 0.8726 rad∕s. In particular,
𝑟𝑒 = 360∕PPR = 0.5 deg is the minimum encoder resolution, 𝑃𝑃𝑅 = 720
the Pulses per Revolution taken from Table A.4, and 𝑇s,min = 0.01 s is
the sampling time lower bound. This implies that, although including a
streamlined model of the plant to be controlled (i.e., the internal model,
cf. Section 4.2), the EMC predictor satisfactorily recovers the differ-
ences in terms of neglected dynamics and disturbances with respect to
the complete DC motor plant (i.e., the fine plant model, cf. Section 4.1).
Moreover, this also confirms the viability, also in a NCS experimental
scenario affected by continuously variable sampling times, of the static
design and gains tuning of the noise estimator (cf. Section 4.3).

5.3. Test 2 — EMC controller in case of disturbance rejection term absence,
NCS scenario

From Figs. 9 to 11, it is presented a 20 s test of the mobile robotic
platform, with and without considering the active disturbance rejection
part of the control law, 𝐮 (cf. Section 4.5). Specifically, Fig. 9 shows
9

𝑑

the DC motor output speed trajectories, with an indication of the
measured output 𝐲, in comparison with the reference one 𝐲.

In the case of no disturbance rejection, cf. Fig. 9(a), the disturbance
ejection term is 𝐮𝑑 = 0V, and only the tracking 𝐮𝑡𝑟𝑘 and reference 𝐮

portions of the control law are considered. High peaks can be seen in
the transient phases, before reaching the steady-state reference values.
Instead, in the disturbance rejection case, cf. Fig. 9(b), the real-time
estimation provided by the EMC predictor suitably tracks the measured
signal. This implies that the designed model-based asynchronous state
predictor, embedded in the control unit, effectively describes the plant
dynamics up to a meaningful frequency bandwidth, although the con-
straints and the harsh environmental conditions imposed by the NCS
scenario. It is worthwhile to notice how the disturbance-based com-
mand departs from the saturation condition earlier. In turn, this implies
faster response and convergence times, thus a lower tracking error in
case of tricky manoeuvres, along the manoeuvre time-interval. Such a
result is confirmed by the comparison of Fig. 10(a) and 10(b), where the
tracking error 𝐞 = 𝐲−𝐲𝑚 = 𝐱−𝐱𝑐 is depicted in the two considered cases
or the control law (without and with the disturbance rejection). It can
e noticed how the disturbance-rejection-based control law behaves
ubstantially better in terms of tracking performance, during the action
f the unexpected disturbance as well as in the transient phase.

From these experimental results, it can be thus inferred the com-
elling advantage of the proposed disturbance-rejection-based
pproach, in a scenario characterized by high uncertainty and variabil-
ty, like NCS systems.

A further result of the designed EMC asynchronous control unit con-
erns the feedback activity. Fig. 11(a) and 11(b) describe the feedback
ctivity, during the experimental trial, for the two control laws, without
nd with the disturbance rejection, respectively. Fig. 11(b) highlights
n unbiased and very faint feedback command and shows that, when
he disturbance rejection term is available, the activity of the feedback
s significantly reduced. Specifically, in Fig. 11(b), maximum peaks
o not exceed |1.5|V as absolute value, in contrast with much higher
alues, nearly |4|V as absolute value, highlighted in Fig. 11(a). This is
typical and remarkable characteristic of an EMC control law, due to

he active disturbance rejection enabled by the disturbance estimation
ynamics (cf. Fig. 7). Indeed, when an active disturbance rejection is
vailable, the feedback control portion 𝐮𝑡𝑟𝑘 only needs to manage the
esidual error after the intervention of 𝐮𝑑 . This minimizes the feedback
ctivity, thus improving the overall control robustness, [33].

.4. Test 3 — EMC controller with time delay and package dropouts

In Figs. 4 and 5 a test is shown, where the timestamp was not only
ffected by sampling time delays in the range [1 − 50]ms, but also with
ackage dropouts. The package dropouts are obtained by randomly
orcing the timestamp to be very low, near 0 s. The variable timestamp
s presented in Fig. 5. Instead, in Fig. 4 the measured output speed 𝐲
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Fig. 5. Test with delays and package dropouts — Variable timestamp.
Fig. 6. Step external disturbance of −1 rad s−1 applied on 𝐲 — Measured output 𝐲, reference 𝐲, and estimated 𝐲𝑚 speed values.
Fig. 7. Step external disturbance of −1 rad s−1 applied on 𝐲 — Negative control input −𝐮𝑑 (top) and feedback activity 𝐮𝑡𝑟𝑘 (bottom).
Fig. 8. Step external disturbance of −1 rad s−1 applied on 𝐲 — Model output error
𝐞𝑚 = 𝐲 − 𝐲𝑚 for DC motor speed.
10
and the reference speed 𝐲 to be tracked are compared. Apart from a
low number of spikes in the measurements, 𝐲 is able to track with a
low tracking error the reference 𝐲, thus proving the EMC effectiveness
even in presence of package dropouts.

5.5. Test 4 — EMC controller compared to PID and LQR controllers in an
NCS scenario

Finally, a comparison between an EMC, PID and LQR controllers
is presented, with focus on the output motor speed. To understand
the limits of the two controllers, a critical asynchronous scenario is
considered, with sampling time 𝑇𝑠 spanning in the range [1 − 70]ms, for
the control models. The timestamp range and the controller parameters
are summarized in Table 2.

In this test case study, the EMC control unit parameters were
obtained with a tuning procedure taking into account the simplified
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model dynamics of the plant. The noise estimator is selected of the first
order, thus (15) is easily modified as in Appendix B.2. In this case, the
continuous-time control law 𝜇

𝐾
and the noise estimator 𝜇

𝑁
eigenvalues

re modified to fit the reduced order noise estimator, and their values
re reported in Table 2.

In addition, the noise estimator was selected of the first-order since,
ith high sampling time ranges, the tracking error capabilities were
etter than the second order disturbance model, cfr. Appendix B.2.
urthermore, the tuned PID parameters were computed through the
losed-loop Ziegler–Nichols method. Finally, the LQR parameters are
btained by minimizing the infinite horizon cost function

(𝐱(𝑘),𝐮(𝑘)) =
∞
∑

𝑘=0
𝐱𝑇 (𝑘 + 1)𝐐

𝐿𝑄𝑅
𝐱(𝑘 + 1) + 𝐮𝑇 (𝑘 + 1)𝐑

𝐿𝑄𝑅
𝐮(𝑘 + 1)

𝐮⋆(𝑘) = arg min
𝑢(𝑘),𝑘∈[0,∞)

𝐽 (𝐱(𝑘),𝐮(𝑘)) = −𝐾
𝐿𝑄𝑅

𝐱(𝑘)
(21)

The matrices 𝐐
𝐿𝑄𝑅

≥ 0 and 𝐑
𝐿𝑄𝑅

> 0 are the design parameters
chosen according to the desired performance tradeoff. The optimal
input value 𝐮⋆(𝑘) of (21) can be found by solving the discrete-time
Algebraic Riccati Equation. An additional state is added, the integral
of the output speed error, for the LQR integral action. The final gain
vector 𝐾

𝐿𝑄𝑅
is found with a static-state feedback control law, and its

value is resumed in Table 2.
In the comparison test of Fig. 12, PID control is characterized by

oscillations of 𝐲 around the reference 𝐲. Such a behaviour can be linked
to the presence of such a high variation of the time-step. The LQR shows
better output control performances than the PID controller, however
even in this case small oscillations appears on 𝐲 output compared to the
reference 𝐲. Conversely, the EMC measured output 𝐲 appears not to be
affected by such oscillations, although facing the same experimental
dynamics of the PID and LQR control units. In fact, the EMC control
unit benefits from the presence of the disturbance-rejection-based con-
troller, that is able to counteract the disturbances introduced by the
asynchronous sampling time shaping the experimental scenario. Such
a compensation allows the feedback 𝐮𝑡𝑟𝑘 to be substantially reduced
in magnitude, thus allowing for an enhanced tracking performance, cf.
Fig. 13.

To conclude, Fig. 14 compares the tracking errors achieved ex-
perimentally by the EMC and PID control units. To understand the
controllers tracking capabilities, the Root Mean Square Error (RMSE)
parameter is computed.2 For the EMC this value is RMSE𝐸𝑀𝐶 =
0.1477 rad s−1, instead for the PID it results to be RMSE𝑃𝐼𝐷 =
0.9185 rad s−1, and for the LQR is RMSE𝐿𝑄𝑅 = 0.3223 rad s−1: hence the
EMC has significantly higher tracking performances than PID and LQR.

To better understand the EMC disturbance rejection capabilities
in NCS scenarios, in Table 3 the tracking error RMSE for the three
controllers are reported. Several experiments were accounted with
different sampling time ranges, from [1 − 30]ms to a critical condition
of [1 − 100]ms. The results show that for all asynchronous time ranges,
the RMSE𝐸𝑀𝐶 is lower that RMSE𝑃𝐼𝐷 and RMSE𝐿𝑄𝑅, thus confirming
he disturbance rejection EMC performances with asynchronous 𝑇𝑠.

6. Conclusion

In this study, the Embedded Model Control (EMC) methodology is
applied to design a complete digital control unit for a differential-drive
mobile robot controlled in a network system (NCS), thus operating
in a scenario characterized by a varying sampling time and asyn-
chronous command execution. EMC is a model-based control technique
leveraging an internal model of the plant, consisting of a simplified

2 RMSE =
√

1∕(𝑁 −𝑁0)
∑𝑁

𝑡=𝑁0+1
𝐲(𝑡)2 where 𝑁 is the total number of

samples, 𝑁0 is the number of samples accounting for incorrect initial
measurements, which can be discarded.
11
Fig. 9. DC motor measured 𝐲 and reference 𝐲 output speed — EMC comparison with
nd without disturbance rejection.

Fig. 10. DC motor output speed tracking error 𝐞 = 𝐲 − 𝐲𝑚 = 𝐱 − 𝐱𝑐 - EMC comparison
ith and without disturbance rejection.
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Table 2
EMC, PID and LQR controller experimental test parameters.

Parameter Value

Experimental test time step 𝑇𝑠 [s] [0.01, 0.07]

EMC ref. dynamics eigenvalues 𝜇
𝑅

[−2.5647]
EMC feedback eigenvalues 𝜇

𝐾
[−11.1572 − 11.1572]

EMC predictor eigenvalues 𝜇
𝑁

[−11.1572 − 11.1572]

PID proportional gain 𝐾𝑃 1.8
PID integral gain 𝐾𝐼 24
PID derivative gain 𝐾𝐷 0.0338
PID derivative closed pole gain 𝑁PID 10

LQR gains 𝐾LQR [−1.3788,−0.4988]

Table 3
EMC, LQR and PID tracking error RMSE.

Sampling time range [ms]

[1 − 30] [1 − 50] [1 − 70] [1 − 100]

Controller
EMC 0.0769 0.1161 0.1477 0.2009
LQR 0.2590 0.2308 0.3223 0.3887
PID 0.2476 0.3092 0.9185 3.8655

Fig. 11. DC motor control law feedback activity 𝐮𝑡𝑟𝑘 - EMC comparison with and
without disturbance rejection.

controllable model plus a disturbance rejector. The asynchronous EMC
rejector allows us to extend the validity of the simplified controllable
model, in case of discrepancies between the model and the real plant.
As a result, a straightforward model-based control law is pursued in
this study, although measurements and control inputs are executed
in an NCS environment, characterized by a varying sampling time
and asynchronous command execution. Finally, a versatile NCS ex-
perimental setup is implemented to validate the asynchronous control
unit design through a wide range of experimental tests, including a
12
benchmark study with alternative control schemes. The obtained results
indicate that the designed asynchronous disturbance-rejection-based
control unit performs properly, even in presence of disturbances due
to NCS environments characterized by highly variable sampling times.
Moreover, the experimental results highlight the practical advantages
of the proposed asynchronous EMC architecture in reducing, to a great
extent, the complexity of the NCS control problem, thus enhancing
the applicability of the design solution and the potential impacts on
engineering practice.

The EMC approach with fixed sampling time was already studied
and successfully applied to several applications such as aerial systems
(quadrotors, satellites) and industrial systems (electrovalves). As ex-
tension, after the foundation work laid out in this paper, the next
step of this study will apply the asynchronous EMC approach to the
aforementioned applications, by adding a communication network in
the control loop design.
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ppendix A. Experimental test-bench setup parameters

The platform selected to test the disturbance-rejection-based asyn-
hronous controller presented in this study is a differential-drive mobile
obot, in which a real-time embedded system was incorporated, cf.
ig. 1. Table A.4 lists the main features of the selected robotic platform,
hile Table A.5 shows the identified parameters of the DC motor
odel, which were included in the motor internal model (cf. (9)).
he motor parameters were identified via the least-squares estimation
ethod, whose initial estimate was then refined with the Simulink Op-

imization Toolbox from MathWorks, through a nonlinear least-squares
ethod.

Among the various platform parameters, the mechanical 𝜏𝑚 and
rmature (electrical) 𝜏𝑎 time constants are detailed below. These values,
roviding the time characteristics of the plant output transfer functions,
old

𝑚 =
𝐽𝑡𝑜𝑡𝑅𝑎 , 𝜏𝑎 =

𝐿𝑎 . (A.1)

𝑘𝑣𝑘𝑡 𝑅𝑎
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Fig. 12. EMC, PID and LQR output speed comparison — Experimental test with timestamp 𝑇𝑠 = [10 − 70] ms.
Fig. 13. EMC, PID and LQR comparison: tracking control input 𝐮𝑡𝑟𝑘 — Experimental test with timestamp 𝑇𝑠 = [10 − 70] ms.
Fig. 14. EMC, PID and LQR comparison: tracking error 𝐞 with RMSE — Experimental test with timestamp 𝑇𝑠 = [10 − 70] ms.
Table A.4
Differential-drive mobile robot parameters.

Robot parameter

Wheel inter-axis 𝑊 [m] 0.0585
Robot length 𝑙 [m] 0.2200
Wheel radius 𝜌 [m] 0.0325
Nominal weight [kg] 0.6160
Gearbox speed reduction 𝑁 [−] 120
Encoder Pulses per Revolution PPR [−] 720
PWM period DC motors [s] 0.02
Power supply range [V] 8 − 11.5 ca.
DC motor operative voltage range 𝑉𝑎 [V] ≈ ±11.5
13
Table A.5
Differential-drive mobile robot model: estimated model parameters.
Parameter Left motor Right motor

𝛽𝑡𝑜𝑡 [Nm(rad∕s)−1] 2.1032 × 10−20 4.8623 × 10−14

𝐽𝑡𝑜𝑡 [kgm2] 3.6898 × 10−7 4.2876 × 10−7

𝐿𝑎 [H] 0.24336 0.24735
𝑅𝑎 [Ω] 19.154 17.781
𝑘𝑣 [V s] 0.010179 0.011553
𝑘𝑡 [NmA−1] 0.010179 0.011553
𝜏𝑚 [s] 0.0682 0.0571
𝜏𝑎 [s] 0.0127 0.0139
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Fig. 15. Polar plot of the stability conditions of the control system, for 𝑇𝑠 =
0.01, 0.03] 𝑠.

ppendix B. EMC noise estimator: Static design and gains tuning

.1. Second order model noise estimator

The characteristics of the mobile robot model envisaged in this
tudy, described by (1), when parametrized according to (14), allow
static feedback noise estimator to be sufficient to retrieve the noise

𝐰 in (15), while ensuring closed-loop stability of the state predictor.
Indeed, the dimension of the state vector, characterizing the system in
this study, is dim 𝐱 = 𝑛𝑥 = 3, while the one of the disturbance vector is
im𝐰 = 𝑛𝑤 = 3. Therefore, being 𝑛𝑥 = 𝑛𝑤, a static gain matrix 𝐋 can be
eemed as sufficient, as proven in [27].

The suitability of the adopted noise estimator architecture can be
urther proven by pursuing an output feedback pole placement pro-
edure. Specifically, a necessary (but not sufficient) condition for a
tatic feedback structure, in a stable closed-loop predictor, is 𝑛𝑤 × 𝑛𝑦 ≥
𝑥, [35]. Being in this case 𝑛𝑦 = dim 𝐲 = 1 the dimension of the known
utput (i.e., the DC motor output speed), the former relation results to
e satisfied.

As a result, given the static noise estimator structure in (15),
rom (1), parametrized as per (14), 𝐰 was derived by determining

the components 𝑙𝑖 of 𝐋. Those are in turn obtained by equalizing: (i)
the coefficients 𝑎𝑐𝑙,𝑖, 𝑖=1,… , 3, of the characteristic polynomial of the
closed loop matrix 𝐀

𝐶𝐿
= 𝐀 − 𝐆𝐋𝐂, computed with det[𝐀

𝐶𝐿
− 𝜆

𝑁
I],

and (ii) the coefficients 𝑎𝑛,𝑖, 𝑖=1,… , 3, of a characteristic polynomial
ith discrete-time eigenvalues [𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3], arbitrarily designed so to
uarantee asymptotic internal stability (𝑅𝑒(𝜆

𝑁
) < 1). Hence, if the

haracteristic and desired polynomials respectively hold:

𝜆3
𝑁
+ 𝑎𝑐𝑙,1𝜆

2
𝑁
+ 𝑎𝑐𝑙,2𝜆𝑁

+ 𝑎𝑐𝑙,3 =

= (𝜆
𝑁
− 𝑝𝑛1)(𝜆𝑁

− 𝑝𝑛2)(𝜆𝑁
− 𝑝𝑛3) =

= det
[

𝐀𝐂𝐋 − 𝜆
𝑁
I
]

.

(B.1)

he coefficients 𝑙𝑖 of matrix 𝐋, with 𝑖 = 1,… , 3, depend on the discrete
ampling time 𝑇𝑠, which can be considered as variable at every step.
s a result, the DC motor noise estimator gain parameters hold

1 =

(

2𝑇𝑠 + 𝑎𝑛,1 + 3
)

𝜏𝑚 − 𝑇𝑠
𝜏𝑚𝑇𝑠

,

𝑙2 =
2(𝑇𝑠 + 1)𝑎𝑛,1 + 𝑎𝑛,2 + 6𝑇𝑠 + 3𝑇 2

𝑠 + 3
𝑇 2
𝑠

,

3 =

[

1 + 2𝑇𝑠 + 𝑇 2
𝑠
]

𝑎𝑛,1
𝑇 3
𝑠

+

+

(

1 + 𝑇𝑠
)

+ 𝑎𝑛,2 + 𝑎𝑛,3 + 3𝑇𝑠 + 3𝑇 2
𝑠 + 𝑇 3

𝑠 + 1
3

(B.2)
14

𝑇𝑠
As a matter of fact, the noise estimator block has, at every time-
step, the information about the asynchronous timing acting on the plant
system, thanks to the dependence of the 𝑙𝑖 coefficients from 𝑇𝑠. This,
in turn, allows the noise estimator to inject this information into the
estimated noise signal 𝐰.

B.2. First order model noise estimator

The noise estimator can be simplified from a second order to a
first order model, if in some experimental tests the tracking and model
output error performances start to degrade, when high sampling time
ranges are considered.

The EMC internal model in (13) can be simplified as

⎧

⎪

⎨

⎪

⎩

𝜔(𝑘 + 1) =
(

− 1
𝜏𝑚
𝑇𝑠 + 1

)

𝜔(𝑘) + 𝑇𝑠
𝜏𝑚𝑘′𝑣

𝑉𝑎(𝑘) + 𝑑(𝑘),

𝑥𝑑 (𝑘 + 1) = (𝑇𝑠 + 1)𝑥𝑑 (𝑘) + 𝑇𝑠𝑤2(𝑡)

𝑦𝑚(𝑘) = 𝜔(𝑘),

𝑑(𝑘) = 𝑇𝑠
[

𝑤1(𝑘) + 𝑥𝑑 (𝑘)
]

,

𝜔(0) = 𝜔0, 𝑥𝑑 (0) = 𝑥𝑑0,

(B.3)

The noise estimator equation in (15) can be reduced as

𝐰(𝑘) =
[

𝑤1
𝑤2

]

(𝑘) = 𝐋𝐞𝑚(𝑘) =
[

𝑙1
𝑙2

]

𝐞𝑚(𝑘), (B.4)

and the coefficients 𝑙𝑖 of matrix 𝐋, for 𝑖 = 1, 2 can be then computed,
solving an eigenvalue placement problem and equalizing: (i) the coeffi-
cients 𝑎𝑐𝑙,𝑖 of the characteristic polynomial 𝜆2

𝑁
+𝑎𝑐𝑙,1𝜆𝑁

+𝑎𝑐𝑙,2 = det[𝐀
𝐶𝐿

−
𝜆
𝑁
I] of the controlled closed loop system; (ii) the coefficients 𝑎𝑛,𝑖 of a

desired characteristic polynomial (𝜆
𝑁
−𝑝𝑛1)(𝜆𝑁

−𝑝𝑛2) = 𝜆2
𝑁
+𝑎𝑛,1𝜆𝑁

+𝑎𝑛,2

𝑙1 =

(

2 + 𝑇𝑠 + 𝑎𝑛,2
)

𝜏𝑚 − 𝑇𝑠
𝑇𝑠𝜏𝑚

𝑙2 =
2𝑇𝑠 + 𝑇 2

𝑠 +
(

1 + 𝑇𝑠
)

𝑎𝑛,2 + 𝑎𝑛,3 + 1
𝑇 2
𝑠

(B.5)
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