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The Fitted q-Gaussian Function, from Voigt 
Profile to Kubo Lineshape 

Amelia Carolina Sparavigna1
 

1Department of Applied Science and Technology, Polytechnic University of Turin, Italy 

 

About: Several previously discussed cases have shown that the q-Gaussian Tsallis functions can be used for fitting the bands of Raman spectra. 
Here, considering an article by Thibault et al., 2002, we can add the case of the Raman Q branch of carbon monoxide, for mixtures with Argon at 

different temperatures. In Thibault et al., a plot is available for the Q(5) line with a fitted Voigt function. A q-Gaussian Tsallis function can be 

used for fitting this line too. We will note that the fitted q-Gaussian has the wings which are not Lorentzian. At the same time, the wings are not 
Gaussian. Besides the use of q-Gaussians, a discussion will be proposed about the time correlation functions related to different line shapes (q-

Gaussian, Egelstaff-Schofield, Kubo, BWF, Voigt, speed-dependent Voigt, Galatry, Rautian, HTP). Some of these line shapes have been 

proposed for the high-resolution spectroscopy of gases; however, their knowledge can be relevant also for the condensed matter spectroscopy. 

Keywords: Raman Spectroscopy, q-Gaussian Tsallis Lines, Time Correlation Functions, WolframAlpha 

 

Introduction 

The Voigt functions, convolutions of Gaussian and 

Lorentzian functions, and the q-Gaussian Tsallis 

functions can be used as line shapes in Raman 

spectroscopy for the analysis of spectra (Sparavigna, 

2023). The Voigtian convolution possesses a bell 

shape with a Gaussian kernel and wings (tails) which 

are of the Lorentzian form. According to Cope and 

Lovett, 1987, the asymptotic solution of Voigtian 

expansion has the leading term equal to      
 , 

where x is the variable. The Voigt functions, or their 

approximations as pseudo-Voigtian functions, which 

are linear combinations of Gaussian and Lorentzian 

profiles, are suggested for instance in Meier, 2005, 

because of their corresponding time correlation 

functions related to the fundamental mechanisms of 

Raman photonic emissions. Let us also note that the 

Voigt profiles are intermediate between the 

Lorentzian and Gaussian outlines. The reason of 

using the Voigt functions is therefore also motivated 

by the fact that ―intermediate‖ profiles are usually 

displayed by the Raman spectral lines (Kirillov, 

2004). 

The q-Gaussian functions have intermediate profiles 

too. The q-Gaussians, also known as "Tsallis 

functions", are probability distributions derived from 

the Tsallis statistics (Tsallis, 1988, 1995, Hanel et al., 

2009). The q-Gaussians are based on a generalized 

form of the exponential function (see discussion in 

Sparavigna, 2022), characterized by a continuous 

parameter q in the range 1 < q < 3.  As given by 

Umarov et al., 2008, the q-Gaussian is based on 

function   ( )     (   
 ) , where   ( ) is the q-

exponential function and   a constant. The q-

exponential has expression: 

    ( )  ,  (   ) -
 (   )  .  (1a) 

The function  ( ) possesses a bell-shaped profile. In 

the case that we have the peak at position   , the q-

Gaussian is: 

q-Gaussian =      (  (    )
 )   

  ,  (   ) (    )
 - (   )    (1b) 

For q equal to 2, the q-Gaussian is the Cauchy-

Lorentzian distribution (Naudts, 2009). For q close to 

1, the q-Gaussian is a Gaussian. For the q-parameter 

between 1 and 2, the shape of the q-Gaussian 

function is intermediate between the Gaussian and 

the Lorentzian profiles. 

The q-Gaussian functions can imitate the Voigt 

convolutions, but they are different functions, in 

particular for what is regarding the behavior of the 

wings. So let us stress once more that, as told by 

Townsend, 2008, the Voigt function ―looks like 

Gaussian for small x (i.e., near line center), and like 

Lorentzian for large x (i.e., out in line wings)‖. We 

can also appreciate the same by observing the 

pseudo-Voigt function, which is generally used for 

approximating the Voigt function. Being the pseudo-

Voigt the linear combination of Gaussian and 

Lorentzian functions, the wings must be necessarily 

Lorentzian and the kernel Gaussian-like. 

Consequently, if we use Voigt functions or pseudo-

Voigt functions for fitting spectra, the wings of the 

Raman lines will be always described by a 

Lorentzian behavior. However, is this always the 

experimental case? That is, are we always observing 

Lorentzian wings for the Raman bands? To answer 

these questions, we started investigation in 

ChemRxiv1. We observed that a generalization of the 

pseudo-Voigt functions obtained by means of a linear 

combination of two q-Gaussians can help us in 

describing the leading term of the line wings. In this 

https://chemrxiv.org/engage/chemrxiv/article-details/6537e2fe87198ede072ce2ab
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manner, we can quantitatively measure the wing 

power law as well as answering qualitatively whether 

it is Lorentzian or not. The q-Gaussians are therefore 

the proper solution for investigation. Actually, for the 

spectra previously considered (Sparavigna, 2023), the 

fitted functions are successfully in several cases, for 

instance graphite, ChemRxiv2, anatase ChemRxiv3, 

SERS spectra,  ChemRxiv4, and so on, SSRN.  

For what is regarding the physics of Voigt function, 

let us consider the convolution theorem. This 

theorem states that the Fourier transform of a 

convolution is the product of the Fourier transforms 

of the convoluted functions. It means that the two 

related phenomena must have probability 

distributions which are independent (see discussion 

in Sparavigna, 2023). In the case of the Voigt 

convolution, the two distributions are those that we 

can find discussed for photonic emission in Svelto, 

1970. They are the exponential decay and the 

Gaussian time functions, so that a spectral Lorentzian 

function is generally assumed as describing the 

photonic emission (or the broadening due to photonic 

interactions with phonons), and a spectral Gaussian 

function is considered to represent the thermal effects 

(or the effect of instrumentation). 

In the case of the q-Gaussian function, the physics of 

the q-parameter is in its ability to evaluate the power 

law of the wings, as previously discussed. Moreover, 

as recently shown in ijSciences, 2024, properly fitted 

q-Gaussian functions can be also proposed for the 

Kubo lineshapes, which are the Fourier transforms of 

Kubo stochastic time-correlation functions. In this 

manner a q-Gaussian function, with its simple 

analytic expression, can be used as a substitute of 

Kubo lineshape, which is requiring a numerical 

Fourier transform calculation. The value of the q-

parameter turns out to the related to the time scales of 

dynamics (fast q=2, mid q=1.4, and slow q=1). Then, 

besides its ability of evaluating the wing power law, 

the q-Gaussian is also providing an estimation of the 

process modulation. 

Besides investigating the q-Gaussians for the Raman 

spectroscopy of condensed matter, here we start 

considering further Raman bands, such as those of 

the isolated lines of gases, to explore the behavior of 

the wings and the scale of modulation processes.  

 

Convolution 

As previously told, the Voigt profile is a convolution 

of a Lorentz distribution L and a Gaussian 

distribution G given by: 

 (     )   

* * +( )  ∫  (    ) (      )   
 

  

 

where k, in spectroscopy, is representing the shift 

from the line center, and: 

 (   )  
   

 (   )⁄

 √  
 

 (   )  
 

 (     )
 

The convolution theorem states that the Fourier 

transform of a convolution of two functions is the 

pointwise product of their Fourier transforms. Let us 

consider two functions  ( )  ( ) and their Fourier 

transforms  ( )  ( ). As in the case of the Voigt 

function, the convolution is: 

 ( )  * * +( )  ∫  (  ) (    )   
 

  

 

And according to the convolution theorem: 

 * ( )+( )   {* * +( )}( ) =  * ( )+( )  

 * ( )+( )   ( )   ( ) 

Please consider that operator   indicates the Fourier 

transform.  

Burke et al., 2019, in their introduction to radio 

astronomy, consider the convolution theorem ―easily 

proven‖ and with ―many practical applications‖ 

(Burke et al., 2019). For instance, the Fourier 

transform of the Voigt function is the pointwise 

product of the Fourier transforms of Gaussian and 

Lorentzian functions: 

 * * +( )   

 * ( )+( )   * ( )+( )   ( )   ( ) 

The Fourier transform of a Gaussian is a Gaussian, so 

that, in the Wolfram formalism: 

 ( )   *    
 
+( )  √

 

 
   

     , 

and in the case of the Lorentzian function: 

 ( )   ,
 

 

   

(    )
  (   ) 

- ( ) 

=    (             ) 

This is the characteristic function of the Cauchy 

distribution. If we put the center ko at zero: 

 ( )     (      ) 

If we consider variable x as the time, we have that the 

Fourier transform of the Voigt function is 

proportional to the product: 

 * ( )+( )     (      )     (    ) 

that is an exponential decay over time and a Gaussian 

function. 

https://chemrxiv.org/engage/chemrxiv/article-details/64b3aa73ae3d1a7b0dcd52fb
https://chemrxiv.org/engage/chemrxiv/article-details/64d26de769bfb8925a975e60
https://chemrxiv.org/engage/chemrxiv/article-details/65092658b6ab98a41cb436e4
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4445044
https://doi.org/10.18483/ijsci.2732
https://www.ijsciences.com/pub/article/2742
https://mathworld.wolfram.com/ConvolutionTheorem.html
https://mathworld.wolfram.com/FourierTransformGaussian.html
https://mathworld.wolfram.com/FourierTransformLorentzianFunction.html
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Let us note that methods for the fast computation of 

Voigt Function are based on the Fourier transform 

too (Schreier, 1992, Mendenhall, 2007, see please 

also the discussion by Vogman, 2010). 

The use of the convolution theorem has been also 

appreciated for the comparison of different 

algorithms to evaluate the Voigt function (Abousahl 

et al., 1997). The approach by Abousahl and 

coworkers is based on      Fourier anti-transform, so 

that: 

 ( )  * * +( )     * ( )   ( )+( ) 

 

Convolution (literature) 

Before considering the time correlation function 

corresponding to a q-Gaussian, let us further discuss 

for a while convolution and transfer function. 

As already made in ChemRxiv5, let us consider the 

words by Orazio Svelto, 1970, about the 

homogeneous broadening of the photonic emission. 

In the case that we have a dipole damped oscillator 

model, we can observe the spectral line of the 

spontaneous emission with a ―natural‖ or ―intrinsic‖ 

broadening. This homogeneous broadening produces 

a line profile described by a Lorentzian function. 

Svelto is also mentioning the photon-phonon 

interaction as generating homogeneous broadening 

and therefore a Lorentzian line shape too. An 

inhomogeneous broadening (such as those caused by 

Doppler effect and thermal effect) is giving a 

Gaussian line shape. However, in spectroscopy, the 

most observed case is that of an intermediate profile, 

given by the convolution of the resonance relative 

probability and the broadening function, because the 

natural band can be modified by several different 

mechanisms (Svelto, 1970). 

We have mentioned the natural broadening giving a 

Lorentzian profile, the thermal broadening 

introducing a Gaussian profile, and the general 

intermediate profiles as the most commonly observed 

case. A consequence is that the Voigt profile, that is 

the convolution of Gaussian and Lorentzian 

functions, is generally used to simulate the 

intermediate case. 

Voigt profile is also used in the case of the spin 

resonance lines. In solids, these lines ―are broadened 

by a number of mechanisms‖ (Stoneham, 1972). 

―Some of these mechanisms give a Gaussian 

lineshape, such as dipolar broadening in concentrated 

crystals (Van Vleck, 1948) and strain broadening by 

dislocations (Stoneham, 1966, 1969). Other 

mechanisms lead to a Lorentzian lineshape, such as 

the relaxation broadening due to the finite lifetime of 

a state‖ (Stoneham, 1972, is referring to the 

analogous broadening mechanism that we find in 

Svelto, 1970). According to Stoneham, ―If the 

mechanisms which lead to Lorentzian and Gaussian 

broadening are independent, the lineshape is just the 

convolution of a Gaussian and a Lorentzian‖. That is, 

a Voigt function. 

―Alternatively, [we can] suppose that the line is 

scanned by a spectrophotometer with a Gaussian 

sensitivity function‖ (Tatum, 2022). Then, in this 

experimental framework, we have the convolution of 

the line with the instrumental function profile. Let us 

remember that ―the general expression that takes 

account of all the instrumentally induced distortion of 

the true band shape can be called the instrument 

function‖ (Seshadri and Jones, 1963). It is also 

known as the ―instrumental transfer function‖ 

(Merlen et al., 2017). As told by S.G. Rautian, 1958: 

―Each monochromatic component 𝜑( )   of the true 

radiation is replaced by the apparatus [instrument] 

function, as a result of which, at some arbitrary point 

 ′, there is created an illumination (or current) 

 ( ′− )𝜑( )  . Other monochromatic components 

of the true distribution also make a corresponding 

contribution to the illumination at the point  ′, and as 

a result the observed distribution  ( ′) will be 

expressed by the following integral‖: 

 (  )  ∫  
  

  

(    )𝜑( )   

In the integral we have function  ( ) that considers 

―distortions both in the optical and recording parts of 

the apparatus‖ (Rautian, 1958). In Rautian, 1958, we 

can find several different instrumental functions that 

can be convoluted with the true radiation. And the 

true radiation can be a convolution of different 

broadening mechanisms. 

The Voigt convolution is based on Lorentzian and 

Gaussian profiles because the analysis starts from a 

Lorentzian damping model (natural radiation) with a 

weight which is a Gaussian one. Different 

approaches exist (Kirillov, 2004), so that the true 

radiation line can be assumed different from a 

Lorentzian function; moreover, the weight function 

can be different from a pure Gaussian function. 

 

Neglecting the transfer function 

In Merlen et al., 2017, researchers are telling that ―If 

we do not take into account the instrumental transfer 

function that can be negligible in many cases (...), the 

total intensity of one phonon mode with a 

wavevector  0 and a frequency 𝜔( 0), in a perfect 

crystal, is spread on a symmetric profile which is 

Lorentzian‖. Merlen et al. are also discussing the 

presence of asymmetric peaks in the framework of 

the approach by Richter et al., 1981. In the case of 

investigating the first order region of the Raman 

https://chemrxiv.org/engage/chemrxiv/article-details/6537e2fe87198ede072ce2ab
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spectra of carbonaceous materials, for its fitting 

procedure, Merlen et al. suggest the use of 

Lorentzian and Gaussian functions for symmetric 

profiles and of the Breit-Wigner-Fano (BWF) line 

shape for asymmetric peaks. 

In discussing the spectroscopy of carbonaceous 

materials, in particular G and G’ bands, Merlen and 

coworkers tell the following. For ―One band: The G 

band is fitted by a Lorentzian if symmetric, and by a 

BWF if not symmetric‖. We have discussed G and 

G’ bands of graphite in ChemRxiv2 and we used q-

Gaussians. We used q-Gaussians too for other 

carbonaceous materials (biochar and nanotubes) in 

SSRN. The behavior of the peaks we considered is q-

Gaussian, that is, not Lorentzian or Gaussian but q-

Gaussian. For what is regarding the BWF 

asymmetric line shape, we started investigation about 

the Raman LO mode band in Silicon Carbide. 

 

WolframAlpha approach 

―The physical argument employed in establishing the 

Voigt profile is that the effects of Doppler and 

collision broadening are decoupled. Thus we argue 

that every point on a collision-broadened lineshape is 

further broadened by Doppler effects‖ (Ronald K. 

Hanson, 2018). Hanson is mentioning refinements 

with Galatry profiles (collision narrowing) and 

Berman profiles (speed-dependent broadening). 

Before the discussion of refinements of the Voigt 

profile, let us consider software WolframAlpha to 

visualize the behavior of a Voigtian time correlation 

function, that is the product of exponential decay and 

Gaussian time functions. This product is producing, 

by means of its Fourier transform, a spectral Voigt 

convolution. Software is providing the plot of the 

function and its Fourier transform, as in the following 

example. 

 

where erf is the error function and erfc the complementary error function.   

 

q-Gaussians and Bessel functions 

For what is regarding the q-Gaussian function and its 

Fourier transform, we need to tell that the specific 

formulation of the transform is quite complex 

(Rodrigues & Giraldi, 2015). However, we can find 

that the Fourier transform of q-Gaussian contains the 

K functions (modified Bessel function of the second 

kind). Here, let us consider (1) in the following form, 

with dimensionless variable   about     : 

q-Gaussian =      (  
 )   

 ,  (   )  - (   )       (2) 

and search for the Fourier transform of it, 

remembering that the Fourier transform of a 

Lorentzian line shape is producing a time correlation 

function which is an exponential decay over time, 

and that, in the case of the Gaussian line shape, we 

have a correlation with is a Gaussian function of 

time. Being the q-Gaussian a line shape which is 

intermediate between Lorentzian and Gaussian 

profiles, the related time correlation function must be 

intermediate between the exponential decay over 

time and a Gaussian function. 

As previously told, Rodrigues and Giraldi, 2015, 

have considered in detail the Fourier transform of q-

Gaussian functions. Here we use a more 

phenomenological approach. Let us start from the 

link between the q-Gaussians and the Bessel 

functions.  

In Wikipedia we find that the ―Bessel functions can 

be described as Fourier transforms of powers of 

quadratic functions‖. Function    is a modified 

Bessel function of the second kind, order  . For 

instance: 

 

To have further cases, we can use the Fourier 

transform calculator by WolframAlpha. Following 

the notation in Wikipedia, we can find, for instance: 

https://chemrxiv.org/engage/chemrxiv/article-details/64b3aa73ae3d1a7b0dcd52fb
http://dx.doi.org/10.2139/ssrn.4445044
https://chemrxiv.org/engage/chemrxiv/article-details/6510296660c37f4f765ceb3e
https://en.wikipedia.org/wiki/Bessel_function
https://www.wolframalpha.com/
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√  
∫ (  (  ) )    
 

  

      

 
 

√  
 √
 

 
   (

    

√  
) 

Note that, in this example, we can see evidenced the 

time/frequency scaling, by using A factor.  

 

The Fourier transform (WolframAlpha) of the 

function with exponent   (   ) , that is  

 (   )  as in (2), from the frequency domain w to 

the time domain t (dimensionless variables) is given 

as follows: 

 

 

  [(   
 )  (   ) ]( ) = 

 

 .
 

   
/
  

   

       
 

   
 
 

    

   
 
 

 

(  sgn( )) 

Posing    (   ) :   [(   
 )  ]( )=

 

 ( )
  (   )       

 

   
  

 

 

(  sgn( )) 

 

To illustrate the behavior of the Fourier transform, let 

us consider different values of q, starting from q=3, 

including q=2 (Lorentzian), to find the corresponding 

time correlations. 

From WolframAlpha, we have: 

  [(   
 )  (   ) ]( )  √

 

 
  (  sgn( )) 

By the way, the q-Gaussian is defined for q ranging 

from 1 to 3. 

 

 

Fourier transform in the case q=3 (plot courtesy 

WolframAlpha) 

 

 

 

  [(   
 )  (     ) ]( )

                               (  sgn ) 

  [(   
 )  (   ) ]( )  √

 

 
        (a) 

 

 

(Fourier transform of the Lorentzian function). In (a) we can find the Laplace distribution, that is the exponential 

decay over time.  

  [(   
 )  (        ) ]( )                            (  sgn )    (a’) 

We can deduce that the exponential decay is equal to a K Bessel function multiplied by a square root, so that: 

    (  sgn )  √
 

 

 

√   
     . 

  [(   
 )  (     ) ]( )                                (  sgn )    (b) 

  [(   
 )  (     ) ]( )                                (  sgn )   (c) 

  [(   
 )  (     ) ]( )  

        

  
            (     ) =                (     )   (d) 

  [(   
 )  (        ) ]( )                      (  sgn ) 

We have, as given by WoframAlpha, that:     ( )  
           

√ 
  (  )  .

 

 
  /, and therefore (d). 

 

  [(   
 )  (     ) ]( )                  (  sgn ) 
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  [(   
 )  (     ) ]( )                               (  sgn ) 

  [(   
 )  (      ) ]( )                              (  sgn ) 

 

Fourier transforms of four cases given above (plots courtesy WolframAlpha). 

 

Let us add some further results, obtained by means of WolframAlpha.  

  [(   
 )  (      ) ]( )  

 

  sgn( ) 
          sgn( )√  sgn( ) 

  (            sgn( )             sgn( )             sgn( )          ) 

 

  [(   
 )  (     ) ]( )  

  

  sgn( ) 
          sgn( )√  sgn( ) 

   (             sgn( )              sgn( )             sgn( )             sgn( )          ) 

 

And also: 

 

Using the results given above and considering the scaling (   )   into   √(   ) , we can plot some time 

correlations as in the Figure 1 (linear and semi logarithmic scales). 

 

Figure 1: Left: Fourier transforms of q-Gaussians as given by WolframAlpha, for some values of the q parameter. Right: The same, in semi-
logarithmic scale. For q=2, we have a time correlation which is an exponential decay function (straight red line). For q closer to 1, the curve is 

Gaussian-like (parabolic behavior in the semi-log plot). 

 

In Wikipedia we can find mentioned the Sargan 

distributions, given in the following form:   ( )  
 

 
   (     )

  ∑   
 
        

 

  ∑  
 
      

 

https://it.wikipedia.org/wiki/Distribuzione_di_Laplace
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Note the presence of the exponential decay. 

In the functions given above, we can find suggested 

the Sargan distributions indeed. 

As told by Kotz and coworkers (2001), for modified 

Bessel functions, with order ―       , where   
is a non-negative integer, the Bessel function    has 

the closed form": 

      ( )  √
 

  
   ∑

(   ) 

(   )   

 

   

(  )   

(*) 

This is formula A.0.10 in Kotz et al., 2001. For   
 , we have (A.0.11): 

    ( )  √
 

  
    

(see also the discussion at 4.4.3 in Kotz et al., 2001). 

Let us consider again     ( )  
           

√ 
  (  )  

.
 

 
  /, for instance. It is easy to find that this 

expression agrees with (*). 

For further discussion, see Appendix. 

We have not to be surprised to find time correlations 

containing Bessel functions. For instance, in Hall and 

Helfand, 1982, we can find them in time-correlation 

functions of the conformational state relaxation in 

polymers. Hall and Helfand studied the ―relaxation 

processes in polymer molecules which proceed via 

conformational transitions of the chain backbone 

from one rotational isomeric state to another. … The 

resulting correlation functions contain a modified 

Bessel function which is associated with the 

diffusional nature of the process. This functional 

form has recently proven useful in fitting time-

correlation functions determined in polymer 

simulations, which indicates that it will be of value in 

fitting data obtained in relaxation experiments on 

polymers‖ (Hall & Helfand, 1982). 

 

Egelstaff-Schofield lineshape 

With the aim of formulating the Fourier transform of 

the q-Gaussian function in a simpler manner (that is, 

to have a simpler function for the time correlation), 

in a previous article we discussed the Egelstaff-

Schofield (ES) line shapes and the related fitted q-

Gaussians. In fact, the ES profiles can be imitated by 

the q-Gaussians.  

Let us stress that the ES profiles can be Fourier 

transformed into a simple analytical expression 

(Kirillov, 1999): 

 ( )     { [(     
 )      ]    } 

According to Kirillov, 1999, this function becomes 

Gaussian for     , and decaying exponential for 

    .  

Let us write the expression previously given as: 

 ( )     { [(     )     ]   }. 

The following plot is giving the behavior of this 

function. 

 

 

Fig.2: Behavior of the Egelstaff-Schofield time correlation. From the semi log scale, we can appreciate the deviation from the exponential decay 

(red line) at short times.  

 

Breit-Wigner-Fano lineshape 

Since we have mentioned it before, let us consider 

how can we express the time correlation function 

related to the Breit-Wigner-Fano line shape.  

 

Let us consider it as defined in Origin, with the same 

parameters. In WolframAlpha, let us use the input 

written as (1+w/40)^2/(1+(w/4)^2), we have plots: 

https://iris.polito.it/handle/11583/2977455
https://www.originlab.com/doc/Origin-Help/BWF-PAFunc
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Plots courtesy WolframAlpha for the input given above. 

 

The Fourier transform (Wolfram Alpha) is given as: 

 

 

Plot of the BWF Fourier transform (courtesy WolframAlpha). 

 

In the case that    , the Fourier transform reduces to: (          )√
 

 
    . In general, for input 

(q+w)^2/(1+w^2), that is 
(   ) 

(    )
 as in Misochko and Lebedev, 2015, we find (WolframAlpha): 

 
This is the expression given for q and t real. In the case    , it remains the exponential decay. 

 

Beyond the Voigt profile 

Besides the behavior of the wings, a relevant problem 

for the use of Voigt functions needs to be noted. To 

evaluate these functions, it is required a numerical 

approach because the convolution is an integral 

which cannot be solved analytically. The result is 

consequently depending on the model representing 

the convolution and, also, on the language used to 

implement the calculus and the related compiler 

required to obtain the numerical results. Some could 

claim that, today, due to the speed of computers we 

have no problems in any numerical calculus, 

however the problem of the used models remains, 

because it has nothing to do with the speed of the 

calculus. 

About the experimental data used for fitting, we must 

further consider that the raw signals have been 

processed by instrumentation and related software, 

before being proposed to the user as ―raw‖ data for 

further processing. As previously told, the ―transfer 

function‖ exists. We can guess it is negligible, but it 

could be not so. 

Forthomme et al., 2015, asserted that the ―Voigt 

profile (VP) is the standard lineshape model used in 

high resolution spectroscopy databases for its 

simplicity and its fast computation time‖.  
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An example of database is HITRAN (high-resolution 

transmission molecular absorption database) which 

contains a compilation of molecular spectroscopic 

parameters. It ―is used by various computer codes to 

predict and simulate the transmission and emission of 

light in gaseous media (with an emphasis on 

terrestrial and planetary atmospheres)‖ (Gordon et 

al., 2022). 

However, as observed in Forthomme et al., 2015, 

―with the ever-increasing sensitivity and accuracy of 

measurement techniques, more subtle effects on the 

experimental data are now commonly observed‖. 

Therefore, the Voigt profile needs to be revised. At 

low to moderate pressures, the ―attempts to model 

measured lineshapes with a VP typically leaves a 

‖w‖ shaped residual‖ (Forthomme et al., 2015). This 

difference is ―associated with the narrowing that is 

not represented in the VP‖ (Forthomme et al. are 

mentioning the book by Hartmann et al., 2008). Let 

us note that the ―w‖ shape residual is produced also 

by the fact that the wings of Voigt functions are 

Lorentzian. In our previously investigated cases, 

Sparavigna, 2023, the wings of the spectrum are not 

Lorentzian. Therefore, we can consider further lines 

from Raman spectroscopy, such as those of the 

isolated lines of gases, to evaluate the behavior of the 

wings by means of a q-Gaussian power law. 

―A wide variety of models of various degrees of 

complexity have been proposed‖ to investigate 

spectral lines and to consider deviations from the 

Voigt profile: Forthomme and coworkers used the 

Hartmann-Tran profile. Besides this profile, we can 

find as quite popular the Rautian and Galatry 

symmetric profiles, and the asymmetric speed-

dependent Voigt profile (Ivanov et al., 2014). The 

use of the Hartmann-Tran profile (HTP) was 

recommended in a IUPAC technical report regarding 

the ―line profiles of isolated high-resolution 

rotational-vibrational transitions perturbed by 

neutral gas-phase molecules‖ (Tennyson et al., 

2014). Tennyson and coworkers are stressing that the 

Voigt profile has ―well-documented inadequacies‖ 

(no references are given, and inadequacies not 

mentioned at all). We can find told that HT profile 

―can be computed in a straightforward and rapid 

manner, and reduces to simpler profiles, including 

the Voigt profile, under certain simplifying 

assumptions‖. 

The HT profile is given in Eqs. (5),(6),(7) in arXiv, 

and it contains seven parameters. According to Table 

II, the HT profile can be reduced to Voigt, Rautian, 

speed-dependent Voigt and speed-dependent Rautian 

functions. Let us stress, however, that we must 

calculate the complex Voigt integrals (with error 

function, see Eq. 6 in the arXiv article) by numerical 

methods and therefore we need to refer to some 

related models. Voigt and complex error functions 

and related computational methods have been 

discussed by Schreier, 1992.  

 

The Q(5) line 

Being the Tsallis q-Gaussian function characterized 

by three parameters C,β and q, instead of comparing 

it with HTP (seven parameters when normalized to 

unit area), let us consider the Voigt function. We do 

comparison to understand the behavior of the spectral 

line wings for gases. Let us start from a Raman line 

in the Q branch of the carbon monoxide in mixture 

with Argon, that we can find in an article by Thibault 

et al., 2002. A plot is available for the Q(5) line and 

its fitted Voigt function. Here, in the following 

Figure 3, we show that a q-Gaussian Tsallis function 

can be fitted onto data recovered from Thibault et al.   

From the Figure 3 we can note that the wings are not 

Lorentzian. The q parameter is equal to 1.87 (left). 

This means that the Raman lines of gases are 

interesting for further research about the power law 

of line wings. 

Thibault and coworkers tell that the ―spectral lines 

were individually fitted to the Voigt profile and the 

hard collision model profile of Rautian and 

Sobel’man. Since the collisional width determined 

from both models was within the error bars of the 

fitted parameter, [Thibault and coworkers] used only 

the Voigt profile for all measured lines. Figure 1 [in 

Thibault et al.] shows, as an example, the Q(5) line at 

195 K and total pressure of 123.8 mbar for a 3% 

CO/Ar mixture spectrum. From the observed fitted 

residuals, it can be seen that the Voigt model fits the 

observed profile to within the noise‖. Being within 

the noise, the Voigt line is proper for fitting. 

The difference between the data recovered from 

Fig.1 in Thibault et al. and fitted q-Gaussian, shown 

in the lower part of the Figure 3, is of about 

plus/minus 1%. According to the Figure 1 of Thibault 

et al., 2002, the Voigt function is giving a difference 

of about plus/minus 3%. Our fitted q-Gaussian seems 

being able of giving even better results than the fitted 

Voigt function.  

In the Figure 3 here proposed, data and q-Gaussians 

are given as functions of integers n (equally spaced 

points used in fitting), for the x-axis which is 

representing the Raman shift. A convenient scale is 

used for the y-axis (intensity axis). The fitting 

calculation is obtained by minimizing the sum of the 

squares of the deviations (sum from n=1 to n=270).  

 

https://arxiv.org/pdf/1409.7782.pdf
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Fig.3: Left - The Q(5) Raman line of the carbon monoxide as given in the Figure 1 of the article by Thibault et al., 2002, is here 
proposed with red points. The peak is at about 2142.75 cm−1.The blue line is its fitted q-Gaussian. The q parameter of this function is 

equal to 1.87 . In the lower part of the figure, the difference between data and q-Gaussian function is given. Note please that the 

difference is oscillating between plus/minus 1%. Right -  The green line is representing the fitted linear combination of two q-
Gaussians. The q parameter of the main component (blue) is equal to 1.84 . In the lower part of the figure, the difference between data 

and two-q-Gaussians combination is given. Note please that the difference is oscillating between plus/minus 0.65%. 

 

Let us stress that our ―data‖ are the intensity values 

that we can obtain from the Figure 1 of Thibault et 

al., 2002, interpolated to have the red dots shows in 

our Figure 3.  

Fitted q-Gaussian seems being better than fitted 

Voigt function, because of a lower misfit. But we 

must remark that our ―data‖ are not the original point 

values obtained by Thibault and coworkers. 

Therefore, any further specific comparison could be 

questionable.  

The Voigt function is usually approximated by a 

linear combination of a Lorentzian and a Gaussian 

function. This linear combination is known as the 

pseudo-Voigt. Here we can try to fit the peak in the 

Figure 3 (right) with a linear combination of two q-

Gaussians. Is the fit in Figure 3 (right) better than 

that given in the Fig.3 (left)? In the Figure 3 (right) 

the misfit is lower, however both fits seem being 

within the ―noise‖ band as depicted in the figures, 

and therefore we cannot assert that the fitted line in 

Fig.3 (right) is better than the fitted line in Figure 3 

(left). In any case, the value of q of the main 

component changed just of 1.5%. 

 

Discussion 

Tennyson and coworkers tell that the ―spontaneous 

emission of radiation is responsible for the natural 

lifetime broadening or intrinsic line width. This 

component of the overall line shape is described by a 

Lorentzian profile which is, however, sufficiently 

narrow to be safely neglected in favour, …‖ of two 

contributions which are the Doppler effect and the 

collisional broadening. The ―well-known Doppler 

effect‖ has a profile (Doppler profile, DP), which is 

―expressed in terms of the Doppler half-width, ΓD, by 

a Gaussian function‖ (Tennyson et al., 2014). The 

collisional broadening is producing a Lorentzian 

profile. ―At low pressures the Doppler effect 

dominates, and as the pressure increases the effects 

of collisions become increasingly important. As a 

first approximation to get the resulting line shape, the 

convolution of an inhomogeneous Doppler profile 

with a homogeneous Lorentzian profile is commonly 

used. It defines the so-called VP [Voigt profile], 

which contains Doppler and Lorentzian shapes as 

limiting cases.‖ (Tennyson et al., 2014). And also: 

―The standard three-parameter VP, as already 

mentioned above, is the simplest line shape 

accounting for the pressure and Doppler effects.‖ Let 

us stress once more that the wings of VP are always 

of Lorentzian type, and that VP is based on causes of 

broadening which are statistically independent. 

In Thibault et al., 2002, a detailed discussion is given 

about the determination of the Lorentzian 

contribution in the fitted Voigt profile, to evaluate the 

collisional width. The researchers ―fixed the 

Gaussian width in the Voigt profile to that 
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corresponding to the convolution of the expected 

Doppler width for every line and temperature, and a 

Gauss function of 0.0026 cm
−1

 FWHM [full width at 

half maximum] to account for the apparatus function. 

Then, the collisional width was obtained as the 

Lorentz width resulting from the fit‖ (Thibault et al., 

2002). In our Figure 3 the wings are not Lorentzian, 

because the fitted q-Gaussians have q-parameters 

equal to 1.87 and 1.84. These values of q-parameters 

tell us that we are quite close to a Lorentzian wing, 

so the collisional effect is the most relevant one.  

 

The apparatus 

In Thibault et al. we find mentioned the role of the 

apparatus, given as Gaussian. When the VP approach 

is used, many researchers assume that the Gaussian 

in the convolution is coming from the apparatus, with 

the result of a pure Lorentzian profile for the 

photonic emission. However, other effects, such as 

the Doppler effect considered in Thibault et al., with 

Gaussian influences participate to the broadening. 

Moreover, the Dicke effect exists producing a 

narrowing of Doppler broadening. The Dicke Effect, 

that is the ―collision narrowing‖, is the following. In 

the case that the mean free path of an atom is quite 

smaller than the wavelength of the radiative 

transition, a narrowing of the line is produced. The 

atom is changing its speed and direction several 

times during photonic emission or absorption. In 

average on the different Doppler states, we find that 

the atomic line width is narrower than the Doppler 

width (Basu, 2007, Demtröder, 1982).  

―Of course, the choice of an appropriate line shape 

function is not a purely theoretical exercise and must 

be guided by fits to high accuracy measurements, 

which also need to consider the appropriate 

instrumental line shape function‖ (Tennyson et al., 

2014). About the instrumental function and its role in 

the choice of the line shape, no discussion is given by 

Tennyson and coworkers. 

 

Doppler effect and q-Gaussians 

The q-Gaussian Tsallis distribution has been 

proposed by Silva Jr et al., 1998, for being applied to 

the q-Doppler broadening of spectral lines. Silva Jr 

and coworkers discussed the Doppler effect ―using 

the q-Maxwellian velocity distribution‖. However, 

the q-Gaussian is a function which can be able of 

expressing not only the Doppler (inhomogeneous) 

limiting case, but also the (homogeneous) collisional 

limiting case. Therefore, the q-Gaussian profile needs 

to be considered in a more general framework. 

 

Time correlation functions 

In Rohart et al., the time correlation function of the 

Voigt model is given as: 

     * 𝜔      (
     

 
)
 

+ 

or the product of two exponential functions: 

     , 𝜔     -     * (
     

 
)
 

+ 

𝜔    are the line center frequency and the collisional 

relaxation rate (given in s
−1

). The wave number and 

the most probable value of the absorber speed are  

  𝜔        √       . T is the temperature, 

kB the Boltzmann constant and ma the molecular mass 

of the absorber.  

Beyond VP, we find in Ngo et al., 2013, mentioned 

the work by Boone et al., 2007, in relation to the 

speed-dependent Voigt (SDV) profile. This profile 

―is the real part of the Fourier transform of the 

polarization correlation function‖ as given by Rohart, 

et al., 2003. The modification of the Voigt function, 

shown by Rohart et al., maintains the exponential 

factor related to the Fourier transform of the 

Lorentzian function, but the Gaussian is substituted 

by two factors, one of which is containing an 

irrational function. As proposed in the Eq.9 by 

Rohart et al., 2003, and Eq.7 in 2008, we have: 

     * 𝜔   (        ) +  
 

(     )
   

    ,
 (     )

 

 (     )
- 

(2) 

where       are the mean relaxation rate over 

molecular speeds, and the speed dependence of the 

relaxation rate. Rohart and coworkers are also 

mentioning the Galatry profile (the HTP has not it as 

limit case). So let us show what is the correlation 

function generating the Galatry profile: 

     , 𝜔      - 

    {
 

 
(      )  *        (   )+} 

(3) 

where     are the relaxation rate and the optical 

diffusion rate.  We can find the Galatry profile given 

also in Dore, 2003.  

In Ivanov et al., 2014, the Voigt and the Rautian 

profiles are formulated in the following manner (see 

please the parameters x,y,z defined in the article by 

Ivanov et al.). The Voigt profile: 

  (   )          , (   )- 

where 

 (   )  
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And the Rautian profile: 

  (     )= 

        *
 (     )

  √     (     )
+ 

For what is regarding the Rautian line shape, we can 

find it proposed in Rautian and Sobel'man, 1967. "A 

simultaneous account of radiative decay and the 

Doppler effect involves no difficulties, since these 

causes of broadening are statistically independent. As 

we know, the correlation function in this case equals 

the product of the correlation functions describing 

each of the causes of broadening individually". But 

Rautian and Sobel'man are also stressing that 

"broadening due to interaction and that due to the 

Doppler effect are statistically dependent in the 

general case. Broadening due to interactions involves 

a phase shift of the atomic oscillator when the atom 

collides with surrounding particles. Obviously, both 

the phase of the oscillations and the velocity of 

translational motion of the atom can be altered in the 

same collision."  

The Rautian and Sobel'man correlation function is 

not proposed in the simple forms as in (2) and (3). 

This is also the case of the correlation giving HTP 

line shape. Let us add that the Lorentzian profile is 

not a lower-order line model of HTP, that is, the 

Lorentzian profile is not given in the Table II by 

Tennyson et al. 

 

Caveats 

Adkins and Hodges, 2019, in their ―assessment of the 

precision, bias and numerical correlation of fitted 

parameters‖ obtained by means of the Hartmann-

Tran profile, tell that IUPAC-recommended HTP 

―has emerged as a widely utilized spectroscopic 

model profile for high resolution spectroscopy with 

the caveat that its use requires high signal-to-noise 

ratio data, adequate constraints, and a wide pressure 

range‖.  Adkins and Hodges also tell: ―Many 

laboratories … use custom software for conducting 

multi-spectrum HTP fits with known and unknown 

differences in how the line shape and other 

parameters are defined. Differences between models 

used in the fitting and parameterization for 

spectroscopic databases can lead to incompatibility in 

line parameters and down-stream algorithms such 

that they cannot be used to reproduce fits to 

experimental data‖. Let us add that, if we need 

functions which are numerically calculated, we have 

also to know the numerical methods used to define 

them, that is, the used subroutines, and the compiler 

involved in calculations too. 

 

The Kubo case 

Kubo, in 1969, proposed a stochastic theory of line 

shapes. His Gaussian–Markovian approach, or Kubo 

approach, ―remains the most common and widely 

used in spectroscopic practice‖ (Kirillov, 1999). 

Kirillov is referring to condensed matter 

spectroscopy. The correlation is given by (M2 is the 

second spectral moment and τω a relaxation time): 

     *     
 ,   (     )        -+ 

that is 

     *      + 

    *    
 ,     (     )-+ 

(4) 

Here the frequency is referred to the position of the 

unshifted frequency. Note please once more that 

correlations (2) and (3), such as (4), have an 

exponential decaying factor, which is the Fourier 

transform of a Lorentzian function; that is, we have 

the line subjected to homogeneous broadening 

mechanisms. Let us also remember that, considering 

independent phenomena, they appear as factors in the 

correlations. 

The Kubo case, in the Lecture Notes by Tokmakoff, 

2009, is given as: 

     ,     
 (   (     )        )- 

where    is the time scale of dynamics. Parameter 

       is introduced, and three cases are given: 

fast,                 , mid,        
     , and slow               . The 

absorption lineshapes are given by Tokmakoff as in 

the following plot (Fig.4). 
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Fig.4. 

 

―We see that for a fixed distribution of frequencies   

the effect of increasing the time scale of fluctuations 

through this distribution (decreasing   ) is to 

gradually narrow the observed lineshape from a 

Gaussian distribution of static frequencies with width 

(FWHM [Full width at half maximum]) of         

to a motionally narrowed Lorentzian lineshape with 

width (FWHM) of      ." (Tokmakoff, 2009). 

Here again we are facing the problem to find the 

―intermediate‖ function between Lorentzian and 

Gaussian profiles. 

Of this profile, we discussed in detail in the article 

―Kubo Lineshape and its Fitted q-Gaussian Tsallis 

Function‖, in 2024 ijSciences. It has been shown that 

properly fitted q-Gaussian functions can be proposed 

for the Kubo lineshape, which is the Fourier 

transform of Kubo stochastic time-correlation 

function. As already told in the introduction, the 

value of the q-parameter turns out to the related to 

the time scale of dynamics (fast q=2, mid q=1.4 and 

slow q=1). The q-Gaussian can provide an estimation 

of the process modulation. 

In Kirillov, 2004, it is told that ―the Kubo TCF [time 

correlation function] corresponds to vibrational lines 

whose profiles vary from Gaussian to Lorentzian‖.  

In the analysis proposed in ijSciences, where we used 

fitted q-Gaussians to characterize the Kubo profile 

with the q-parameter, we concluded that the fast case 

has a q-parameter equal to 2 and the Kubo line shape 

is almost equal to a Lorentzian function. However, 

the slow case does not become a Gaussian profile. 

The result is shown in the following Figure 5. The 

difference is in the far wing.  

 

 

Fig. 5: Kubo line shapes in red and q-Gaussian in green. Being 

the line shape symmetric, only the right side is given in the semi-
log plot. 

 

The generalized Kubo case 

As previously told, Kirillov, 1999, proposed a time 

correlation function corresponding to the Egelstaff-

Schofield (ES) line shape. His aim was that of being 

able to manage the Rothschild-Kubo model 

(Rothschild et al., 1987, Feng and Wilde, 1988). 

―Efforts to apply a simple Gauss-Markov theory have 

proven unsuccessful for aqueous ionic solutions, 

where strong Coulombic and dipolar forces promote 

vibrational relaxation, and the hydrogen bonding of 

the water inhibits anion reorientation. An alternate 

modeling function, the stretched exponential, has 

been proposed to explain inhomogeneously 

broadened Raman spectra‖ (Feng & Wilde, 1988). 

Feng and Wilde consider the ―vibrational 

autocorrelation function C(t), which is obtained by 

Fourier transforming the isotropic band‖. C(t) is 

given here as: 

     ( 𝜔   ∫ (   )
 

 

 ( )  )   ;  

 ( )       * (   ) + 

M2 is the second spectral moment. 

Rothschild et al., 1987, wrote this time correlation as: 

https://www.ijsciences.com/pub/article/2742
https://www.ijsciences.com/pub/article/2742
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(5) 

In fact, Rothschild and coworkers, in 1987, aimed to 

improve the Kubo model using the stretched 

exponentials. In Kirillov, 2004, we can find the 

Rothschild-Perrot-Guillaume (RPG) model as in 

Eq.(5), discussed with the Burshtein-Fedorenko-

Pusep (BFP) model too. 

"Differences in TCFs [time correlation functions] 

lead to very unlike line profiles. …  the Kubo TCF 

corresponds to vibrational lines whose profiles vary 

from Gaussian to Lorentzian‖ (Kirillov, 2004). 

However, it is better to remember that, in the case of 

slow modulation, the Kubo line is not precisely a 

Gaussian. ―The Rothschild-Perrot-Guillaume TCF 

corresponds to vibrational lines of quite specific, 

over-Gaussian form. They are less sharp than 

Gaussian in their central part, and much faster fall to 

zero in the wings. The Burshtein, Fedorenko and 

Pusep TCF corresponds to over-Lorentzian line 

profiles. They are sharper than true Lorentzians in 

their central part, and broader in the wings" (Kirillov, 

2004). In the cases of RPG and BFP lines, further 

research is required to grasp the meaning of ―over-

Gaussian‖ and ―over-Lorentzian‖ behaviors. 

To use (5) in spectroscopy, we need its Fourier 

transform to determine the corresponding line profile. 

Being the Fourier transform calculation too heavy for 

Raman bands deconvolution, Tagliaferro et al., 2020, 

have proposed a synthetic profile mimicking the 

lineshape. It is a profile named ―GauLor‖, which is a 

piecewise symmetric function with a Lorentzian 

central part and wings which are Gaussians; actually, 

it seems being the opposite of the Voigt profile 

(Gaussian central part and Lorentzian wings). In 

GauLors, the onset of the wing happens at a 

frequency threshold, determined by the overall fitting 

approach. At the threshold, the Lorentzian and 

Gaussian piece functions and their derivatives are 

continuous. Supposing the existence of the threshold 

within the Raman scan range, the GauLor has the 

onset of the Gaussian wing which can be very close 

to the center of the line (in the kernel) or quite far 

from it (in the far line wings). In fact, we have two 

families of intermediate functions between 

Lorentzian and Gaussian line shapes, and they are the 

q-Gaussians and the GauLors.  

Further investigation is necessary about the 

generalization of the Kubo line shapes. 

 

Appendix 

In Yin and Dong, 2023, we can find the ―Bessel 

function expression of characteristic function‖.  The 

researchers are proposing a ―unified method to derive 

the classical characteristic functions of all elliptical 

and related distributions in terms of Bessel 

functions‖. They are presenting ―the simple closed 

form of characteristic functions for commonly used 

distributions such as multivariate t, Pearson Type II, 

Pearson Type VII, Kotz type and Bessel 

distributions‖, so we can enlarge the basin of 

functions which can be investigated by means of 

WolframAlpha. In fact, in Yin and Dong arXiv, we 

can find the modified Bessel function of the second 

kind, with order ν, defined by the following 

WolframAlpha integral: 

 

√
 

 
∫ (    ) (     ) 

 
   (  )   =  

            (     ( ))

 (     )
 

This is the Fourier transform that we can obtain by 

means of the WolframAlpha software of function: 

(    ) (     ) 

The expression of Pearson Type VII, is given in 

Origin-Help for instance, where it is told that the 

―peak function is a Lorentz function raised to a 

power‖. In this case too we can use WolframAlpha to 

obtain its Fourier transform and therefore its time 

correlation function. 
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