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A B S T R A C T

In this paper, we propose and analyze a Stabilization Free Virtual Element Method (SFVEM),
that allows the definition of bilinear forms that do not require an arbitrary stabilization term,
thanks to the exploitation of higher-order polynomial projections on divergence free vectors
of polynomials. The method is introduced in the lowest order formulation for the Poisson
problem. We provide a sufficient condition on the polynomial projection space that implies
the well-posedness, proved on particular classes of polygons, and optimal order a priori error
estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical
convergence rates and show that the method is suitable for solving problems characterized by
anisotropies.

1. Introduction

In recent years, the study of polygonal methods for solving partial differential equations has received a huge attention. The main
reason for this great interest relies in the flexibility of polygonal meshes to discretize domains with high geometrical complexity.
One of the most recent developments in this field is the family of the Virtual Element Methods (VEM). These methods were first
introduced in primal conforming form in [1] and were later on applied to most of the relevant problems of interest in applications.

Standard VEM discrete bilinear forms are the sum of a singular part maintaining consistency on polynomials and a stabilizing form
enforcing coercivity. In the literature, the stabilization term has been extensively studied, for instance in [2], and remains a somehow
arbitrarily chosen component of the method with several possible effects on the stability and conditioning of the method. Due to the
issues that can be caused by the arbitrary choice of the stabilization (see for instance SUPG stabilizations [3,4], multigrid analysis [5],
complex non-linear problems [6]), in the last years the idea of proposing a new VEM formulation that does not require an arbitrary
non-polynomial stabilization has grown. In [7] the so called Enlarged Enhancement Virtual Element Method (E2VEM) was proposed,
based the definition of bilinear forms that involves only polynomial projections. This method is based on the exploitation of higher
order polynomial projections that are made computable by suitably enlarging the enhancement property of local virtual spaces,
without modifying the degrees of freedom. The degree of polynomial enrichment is chosen locally on each polygon, such that the
discrete bilinear form is coercive, and depends on the geometry of the polygon. The definition of a VEM scheme based on higher order
polynomial projections has been studied numerically and applied in many different contexts, and in particular on elasticity problems
[8–11], in the study of eigenvalue problems [12], in case of convection-dominated problems [13] and on problems characterized by
anisotropies [7]. Numerical results show that a stabilization-free formulation can speed up convergence in the case of anisotropic
diffusion tensors, and can reduce the magnitude of the error in some situations, in general being never worse than the standard
one. In [14], in the context of a comparison between the proposed method and standard Virtual Elements [15], a stabilization free
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method that involves projection operators defined on spaces of harmonic polynomials was proposed. This scheme can be defined
without changing the definition of the VEM space. Similarly, in [16] a mixed SFVEM scheme was proposed and theoretically studied
for the particular case of quadrilaterals. At the meantime, other Virtual Element schemes for which no stabilization form is required
have been recently presented in [17,18] and new studies about the stabilization have been proposed in [19,20].

In this work, we propose a new Stabilization Free Virtual Element Methods (SFVEM), designed to allow the definition of a
oercive bilinear form that involves higher order polynomial projections with respect to the standard one [15], while the original
iscrete space is untouched. In particular, we prove explicitly that on general quadrilateral elements the projection of gradients of
EM functions in the space of curls of quadratic harmonic polynomials is a coercive operator. Regarding more general geometries,
e identify sufficient conditions that the local polynomial space has to satisfy such that the gradient projection is coercive. These

onditions can be verified numerically in the projection construction to build a coercive projection of VEM gradients that is a
ivergence-free polynomial. Moreover, we provide explicit sufficient conditions for convex polygons, polygons with one concavity
nd an edge belonging to their kernel, and polygons with arbitrary number of aligned edges whose boundary lies on exactly three
traight lines.

For the sake of simplicity, we focus on the two dimensional Poisson’s problem with homogeneous Dirichlet boundary conditions,
he extension to general boundary conditions and more general second order elliptic problems being analogous to what is done for
lassical VEM, since the results about the projection of gradients depend only on the element’s geometry and not on the operator.
oreover, the formulation and proofs presented in this work can also be easily extended to the case of a non constant anisotropic

iffusion tensor.
The outline of the paper is as follows. In Section 2 we state our model problem. In Section 3 we introduce the approximation

unctional spaces and projection operators and we state the discrete problem. Section 4 contains the theoretical results about the
ell-posedness. In Section 5 we present optimal order H1 and L2 a priori error estimates. Section 7 contains some numerical results

assessing the stability of the method and confirming the predicted rates of convergence, as well as some comparisons with standard
VEM schemes. Finally, Appendix contains some theoretical results about sufficient projection degrees for certain classes of polygons.

Throughout the work, (⋅, ⋅)𝜔 denotes the standard L2 scalar product defined on a generic 𝜔 ⊂ R2, ‖⋅‖𝜔 denotes the corresponding
norm, 𝛾𝜕𝜔 denotes the trace operator, that restricts on the boundary 𝜕𝜔 an element of a space defined over 𝜔 ⊂ R2. Inside the proofs,
the symbol 𝐶 denotes any constant, independent of the mesh size.

2. Model problem

Let 𝛺 ⊂ R2 be a bounded open set. We are interested in solving the following problem:
{

−𝛥𝑢 = 𝑓 in 𝛺,
𝑢 = 0 on 𝜕𝛺.

(1)

Assuming 𝑓 ∈ L2(𝛺), the variational formulation of (1) is given by: find 𝑢 ∈ H1
0(𝛺) such that,

(∇𝑢,∇𝑣)𝛺 = (𝑓, 𝑣)𝛺 ∀𝑣 ∈ H1
0(𝛺) . (2)

3. Discrete formulation

Let ℎ denote a conforming polygonal tessellation of 𝛺 and 𝐸 ∈ ℎ denotes a generic polygon. Let ℎ𝐸 denote the diameter of
each 𝐸 ∈ ℎ and ℎ ∶= max𝐸∈ℎ

ℎ𝐸 . Let {𝑉𝑖}
𝑁𝐸
𝑖=1 be the 𝑁𝐸 vertices of 𝐸 clockwise ordered, 𝐸 the set of its edges and 𝒏𝑒𝑖 = (𝑛𝑒𝑖𝑥 , 𝑛

𝑒𝑖
𝑦 )

the outward-pointing unit normal vector to the edge 𝑒𝑖 of 𝐸, which links the vertex 𝑉𝑖 to the vertex 𝑉𝑖+1 (with the usual notation
𝑉𝑁𝐸+1 ≡ 𝑉1). We assume that ℎ satisfies the standard mesh assumptions for VEM (see for instance [2,21]), i.e. ∃𝜅 > 0 such that

A.1 for all 𝐸 ∈ ℎ, 𝐸 is star-shaped with respect to a ball of radius 𝜌 ≥ 𝜅ℎ𝐸 ;
A.2 for all edges 𝑒 ∈ 𝐸 , |𝑒| ≥ 𝜅ℎ𝐸 .

For any given 𝐸 ∈ ℎ, let P𝑘(𝐸) be the space of polynomials of degree up to 𝑘 defined on 𝐸. Let 𝛱∇,𝐸
1 ∶ H1(𝐸) → P1(𝐸) be the

H1(𝐸)-orthogonal projection defined up to a constant by the orthogonality condition:

∀ 𝑢 ∈ H1(𝐸),
(

∇
(

𝛱∇,𝐸
1 𝑢 − 𝑢

)

,∇𝑝
)

𝐸
= 0 ∀ 𝑝 ∈ P1(𝐸) . (3)

In order to define 𝛱∇,𝐸
1 uniquely, we set ∫𝜕𝐸 𝛾𝜕𝐸

(

𝛱∇,𝐸
1 𝑢

)

= ∫𝜕𝐸 𝛾𝜕𝐸 (𝑢). In the following, for the sake of simplicity we omit the trace

operator 𝛾 when it is clear from the integration domain.
For any given 𝐸 ∈ ℎ, let 𝐸

ℎ,1 be the local Virtual Element Space of order 1:

𝐸
ℎ,1 ∶= {𝑣 ∈ H1(𝐸) ∶ 𝛥𝑣 ∈ P1(𝐸) , 𝛾𝑒(𝑣) ∈ P1(𝑒) ∀𝑒 ∈ 𝐸 , 𝑣 ∈ 𝐶0(𝜕𝐸)

(𝑣, 𝑝)𝐸 =
(

𝛱∇,𝐸
1 𝑣, 𝑝

)

𝐸
∀𝑝 ∈ P1(𝐸)} .

We recall that the degrees of freedom of this space are the values of functions at the vertices of 𝐸 (see [15,22]). Moreover, we
define the global discrete space as

 ∶= {𝑣 ∈ H1(𝛺)∶ 𝑣 ∈ 𝐸 }.
2

ℎ,1 0 |𝐸 ℎ,1
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To define our local discrete bilinear form, for any given 𝐸 ∈ ℎ, let 𝓁𝐸 ∈ N be given, as detailed in the following, where we
will choose 𝓁𝐸 depending on 𝐸.

Let �̂�0,𝐸
𝓁𝐸

∇ ∶ H1(𝐸) → 𝐜𝐮𝐫𝐥P𝓁𝐸+1
(𝐸) be the L2(𝐸)-projection operator of the gradient of functions in H1(𝐸), defined, ∀𝑢 ∈ H1(𝐸),

y the orthogonality condition
(

�̂�0,𝐸
𝓁𝐸

∇𝑢, 𝐜𝐮𝐫𝐥 𝑝
)

𝐸
= (∇𝑢, 𝐜𝐮𝐫𝐥 𝑝)𝐸 ∀𝑝 ∈ P𝓁𝐸+1

(𝐸) , (4)

where for any 𝑝 ∈ P𝓁𝐸+1
(𝐸), 𝐜𝐮𝐫𝐥 𝑝 =

(

𝜕𝑝
𝜕𝑦 ,−

𝜕𝑝
𝜕𝑥

)

. Notice that for any 𝑝 ∈ P𝓁𝐸+1
(𝐸), 𝐜𝐮𝐫𝐥 𝑝 = 𝟎 if and only if 𝑝 is constant.

For each function 𝑢ℎ ∈ 𝐸
ℎ,1, the above projection is computable given the degrees of freedom of 𝑢ℎ applying the Gauss–Green

ormula, indeed ∀𝑝 ∈ P𝓁𝐸+1
(𝐸) we have, thanks to known results about De Rham diagrams in Sobolev spaces, see e.g. [23]

(

∇𝑢ℎ, 𝐜𝐮𝐫𝐥 𝑝
)

𝐸 =
(

∇𝑢ℎ ⋅ 𝒕𝜕𝐸 , 𝑝
)

𝜕𝐸 . (5)

emark 1. It can be easily seen that, thanks to Schwartz theorem,

𝐜𝐮𝐫𝐥P𝓁𝐸+1
(𝐸) = {𝒑 ∈

[

P𝓁𝐸 (𝐸)
]2

∶∇ ⋅ 𝒑 = 0}.

oreover, it holds ∇P1(𝐸) = 𝐜𝐮𝐫𝐥P1(𝐸).

Let 𝑎𝐸ℎ ∶H1(𝐸) × H1(𝐸) → R be defined as

𝑎𝐸ℎ
(

𝑢ℎ, 𝑣ℎ
)

∶=
(

�̂�0,𝐸
𝓁𝐸

∇𝑢ℎ, �̂�
0,𝐸
𝓁𝐸

∇𝑣ℎ
)

𝐸
∀𝑢ℎ, 𝑣ℎ ∈ H1(𝐸) , (6)

and 𝑎ℎ ∶H
1(𝛺) × H1(𝛺) → R as

𝑎ℎ
(

𝑢ℎ, 𝑣ℎ
)

∶=
∑

𝐸∈ℎ

𝑎𝐸ℎ
(

𝑢ℎ, 𝑣ℎ
)

∀𝑢ℎ, 𝑣ℎ ∈ H1(𝛺) . (7)

We can state the discrete problem as: find 𝑢ℎ ∈ ℎ,1 such that

𝑎ℎ
(

𝑢ℎ, 𝑣ℎ
)

=
∑

𝐸∈ℎ

(

𝑓,𝛱0,𝐸
0 𝑣ℎ

)

𝐸
∀𝑣ℎ ∈ ℎ,1 , (8)

where 𝛱0,𝐸
0 𝑣ℎ = 1

|𝐸|

∫𝐸 𝑣ℎ, computable by standard VEM techniques [24].

4. Well-posedness

This section is devoted to prove the well-posedness of the discrete problem stated by (8). First we focus on the proof of the
continuity and the coercivity of the local discrete bilinear form 𝑎𝐸ℎ defined in (6), which implies that the bilinear form 𝑎ℎ of the
problem (8) satisfies the hypotheses of the Lax–Milgram theorem. Then, in Section 4.3 we prove the coercivity of the global discrete
problem (8) with respect to the H1

0(𝛺) norm.
In Proposition 1, we prove the continuity of the local discrete bilinear form 𝑎𝐸ℎ defined in (6). The proof of the coercivity of

the local discrete bilinear form 𝑎𝐸ℎ is split in two cases. First, in Section 4.1 (Theorem 1), we prove the coercivity in the case
of quadrilaterals, showing that the gradient projection in the space of curls of quadratic harmonic polynomials is coercive. In
Section 4.2, for each 𝐸 ∈ ℎ with 𝑁𝐸 ≥ 5, we provide a sufficient condition on the polynomial projection space that implies
the coercivity. In Appendix we provide proofs of the validity of this sufficient condition for some classes of polygons. We omit the
proof of the coercivity if 𝐸 is a triangle (𝑁𝐸 = 3 and 𝓁𝐸 = 0), indeed in this case 𝐸

ℎ,1 = P1(𝐸) and then �̂�0,𝐸
0 ∇𝑣ℎ = ∇𝑣ℎ.

Proposition 1. For every 𝐸 ∈ ℎ, the discrete bilinear form 𝑎𝐸ℎ defined by (6) satisfies

𝑎𝐸ℎ
(

𝑢ℎ, 𝑣ℎ
)

≤ ‖

‖

∇𝑢ℎ‖‖𝐸 ‖

‖

∇𝑣ℎ‖‖𝐸 ∀𝑢ℎ, 𝑣ℎ ∈ 𝐸
ℎ,1 . (9)

The proof can be derived immediately applying the definition of �̂�0,𝐸
𝓁𝐸

and the Cauchy–Schwarz inequality.

4.1. Local coercivity for 𝑁𝐸 = 4

In this section we focus on the case 𝑁𝐸 = 4 and we follow an approach similar to the one used in [16]. We choose 𝓁𝐸 = 1, so
that �̂�0,𝐸

1 ∇ projects onto the space of 𝐜𝐮𝐫𝐥 of quadratic polynomials, see (4).
Let 𝜉ℎ ∈ 𝐸

ℎ,1 be defined such that

𝜉ℎ(𝑉𝑖) = (−1)𝑖 ∀𝑖 = 1,… , 4 , (10)

then we introduce the virtual space

H(𝐸) ∶= span(𝜉 ) ⊂ 𝐸 . (11)
3

ℎ ℎ,1
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Notice that H(𝐸) is a one dimensional space and that 𝜉ℎ ∉ P1(𝐸), in fact by definition (10) ∫𝑒 𝜉ℎ = 0 for each edge 𝑒 ⊂ 𝜕𝐸, then
(

∇𝜉ℎ,∇𝑝1
)

𝐸 =
(

𝜉ℎ,∇𝑝1 ⋅ 𝒏𝜕𝐸
)

𝜕𝐸 =
∑

𝑒⊂𝜕𝐸
∇𝑝1 ⋅ 𝒏𝑒 ∫𝑒

𝜉ℎ = 0 . (12)

hen H(𝐸) is H1(𝐸)-orthogonal to P1(𝐸) and

𝐸
ℎ,1 = P1(𝐸)⊕ H(𝐸) , (13)

.e. any function 𝑣ℎ ∈ 𝐸
ℎ,1 can be uniquely written as 𝑣ℎ = 𝑝1 + 𝑐 𝜉ℎ, for some polynomial 𝑝1 ∈ P1(𝐸) and some constant 𝑐 ∈ R.

inally, from the boundedness of the norms of gradients of standard VEM basis functions (see [25, Lemma 4.9]), we immediately
btain that there exists 𝐶𝜉ℎ > 0, independent of ℎ𝐸 , such that

‖

‖

∇𝜉ℎ‖‖𝐸 ≤ 𝐶𝜉ℎ . (14)

he following auxiliary result is the fundamental tool to prove the well-posedness in the case of quadrilaterals.

emma 1. Under the mesh assumptions A.1, A.2, for every 𝐸 ∈ ℎ with 𝑁𝐸 = 4, there exists 𝐶∗ > 0, independent of ℎ𝐸 , such that
‖

‖

‖

�̂�0,𝐸
1 ∇𝑢𝐻ℎ

‖

‖

‖𝐸
≥ 𝐶∗

‖

‖

‖

∇𝑢𝐻ℎ
‖

‖

‖𝐸
∀𝑢𝐻ℎ ∈ H(𝐸) . (15)

roof. By definition of H(𝐸) (11), it is sufficient to prove (15) for 𝑢𝐻ℎ = 𝜉ℎ. Using (4) and (5), we get

‖

‖

‖

�̂�0,𝐸
1 ∇𝜉ℎ

‖

‖

‖𝐸
= sup

𝑝2∈P2(𝐸)

(

�̂�0,𝐸
1 ∇𝜉ℎ, 𝐜𝐮𝐫𝐥 𝑝2

)

𝐸
‖

‖

𝐜𝐮𝐫𝐥 𝑝2‖‖𝐸
= sup

𝑝∈P2(𝐸)

(

∇𝜉ℎ ⋅ 𝒕𝜕𝐸 , 𝑝2
)

𝜕𝐸
‖

‖

𝐜𝐮𝐫𝐥 𝑝2‖‖𝐸
. (16)

For each edge 𝑒𝑖 ∈ 𝐸 , by definition of 𝜉ℎ (10) and since the trace of 𝜉ℎ is a linear polynomial on each edge of 𝐸, we have

∇𝜉ℎ ⋅ 𝒕𝑒𝑖 =
2(−1)𝑖+1

|

|

𝑒𝑖||
. (17)

Let 𝑀𝑖, with 𝑖 = 1,… , 4, be the edge midpoints. Now, we construct 𝑝∗2 ∈ P2(𝐸) such that

𝑝∗2(𝑀𝑖) = (−1)𝑖+1, ∀ 𝑖 = 1,… , 4 . (18)

Notice that by Varignon’s theorem, the quadrilateral 𝐾𝐸 whose vertices are the edge midpoints {𝑀𝑖}4𝑖=1 is a non degenerate
parallelogram (under assumptions A.1 and A.2), whose area is equal to |𝐸|

2 . Without loss of generality, let us assume 𝑀4 = (0, 0),
so that 𝑀2 = 𝑀1 +𝑀3, and we define 𝑀1 = (𝑚1𝑥, 𝑚1𝑦), 𝑀3 = (𝑚3𝑥, 𝑚3𝑦). Moreover, let ‖

‖

𝑀1
‖

‖

2 = 𝑚2
1𝑥 + 𝑚2

1𝑦 and ‖

‖

𝑀2
‖

‖

2 = 𝑚2
2𝑥 + 𝑚2

2𝑦,
we can define 𝑝∗2 as

𝑝∗2(𝑥, 𝑦) = −1 + 2

(

𝑚1𝑥

‖

‖

𝑀1
‖

‖

2
+

𝑚2𝑥

‖

‖

𝑀2
‖

‖

2

)

𝑥 + 2

(

𝑚1𝑦

‖

‖

𝑀1
‖

‖

2
+

𝑚2𝑦

‖

‖

𝑀2
‖

‖

2

)

𝑦

−2

(

𝑚1𝑥𝑚2𝑥 − 𝑚1𝑦𝑚2𝑦

‖

‖

𝑀1
‖

‖

2
‖

‖

𝑀2
‖

‖

2

)

(𝑥2 − 𝑦2) − 4

(

𝑚1𝑥𝑚2𝑦 + 𝑚1𝑦𝑚2𝑥

‖

‖

𝑀1
‖

‖

2
‖

‖

𝑀2
‖

‖

2

)

𝑥𝑦 . (19)

It is not hard to verify that 𝑝∗2 satisfies (18) and that there exists 𝐶𝑝∗ > 0, independent of ℎ𝐸 such that
‖

‖

‖

𝐜𝐮𝐫𝐥 𝑝∗2
‖

‖

‖𝐸
= ‖

‖

‖

∇𝑝∗2
‖

‖

‖𝐸
≤ 𝐶𝑝∗ . (20)

Finally, starting from (16), and applying Cavalieri–Simpson’s quadrature rule, (14), (18) and (20), we have that

‖

‖

‖

�̂�0,𝐸
1 ∇𝜉ℎ

‖

‖

‖𝐸
≥

(

∇𝜉ℎ ⋅ 𝒕𝜕𝐸 , 𝑝∗2
)

𝜕𝐸
‖

‖

‖

𝐜𝐮𝐫𝐥 𝑝∗2
‖

‖

‖𝐸

=

∑4
𝑖=1

(−1)𝑖+1
3

(

𝑝∗2(𝑉𝑖) + 4𝑝∗2(𝑀𝑖) + 𝑝∗2(𝑉𝑖+1)
)

‖

‖

‖

∇𝑝∗2
‖

‖

‖𝐸

=

∑4
𝑖=1

4(−1)𝑖+1
3 𝑝∗2(𝑀𝑖)

‖

‖

‖

∇𝑝∗2
‖

‖

‖𝐸

≥ 16
3𝐶𝑝∗

≥ 16
3𝐶𝑝∗𝐶𝜉ℎ

‖

‖

∇𝜉ℎ‖‖𝐸 ,

(21)

Thus (15) hold with 𝐶∗ = 16
3𝐶𝑝∗𝐶𝜉ℎ

. □

Notice that by definition (19), the inf–sup polynomial 𝑝∗2 used in the above proof is harmonic. Then, similarly to [16], let
𝐻
2 (𝐸) = span{𝑥, 𝑦, 𝑥𝑦, 𝑥2 − 𝑦2} be the space of non-constant harmonic polynomials of degree ≤ 2, when 𝐸 is a quadrilateral we
efine the projection operator �̂�0,𝐸

1 ∇ ∶ H1(𝐸) → 𝐜𝐮𝐫𝐥P𝐻
2 (𝐸) ⊂ 𝐜𝐮𝐫𝐥P2(𝐸) with P𝐻

2 (𝐸)-orthogonality condition in (4).

heorem 1. Under the mesh assumptions A.1, A.2, for every 𝐸 ∈ ℎ with 𝑁𝐸 = 4, the discrete bilinear form 𝑎𝐸ℎ defined in (6) with
𝐸 = 1 is coercive, namely there exists 𝛼𝐸∗ > 0, independent of ℎ𝐸 , such that

𝐸 ( ) 𝐸
‖ ‖

2 ∀𝑢 ∈ 𝐸
4

𝑎ℎ 𝑢ℎ, 𝑢ℎ ≥ 𝛼∗ ‖

∇𝑢ℎ‖𝐸 ℎ ℎ,1 . (22)
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a

T

U

Proof. Let 𝑢ℎ ∈ 𝐸
ℎ,1 be given. Applying (13), we have the following orthogonal decomposition 𝑢ℎ = 𝑝1 + 𝑢𝐻ℎ , where 𝑝1 ∈ P1(𝐸)

nd 𝑢𝐻ℎ ∈ H(𝐸), and
(

∇𝑢𝐻ℎ ,∇𝑝1
)

𝐸 = 0, that implies ‖

‖

∇𝑢ℎ‖‖
2
𝐸 = ‖

‖

‖

∇𝑢𝐻ℎ
‖

‖

‖

2

𝐸
+ ‖

‖

∇𝑝1‖‖
2
𝐸 . Applying the definition of the projection �̂�0,𝐸

1 (4),
Lemma 1 and noticing �̂�0,𝐸

1 ∇𝑝1 = ∇𝑝1, we obtain

𝑎𝐸ℎ
(

𝑢ℎ, 𝑢ℎ
)

=
(

�̂�0,𝐸
1 ∇𝑢ℎ, �̂�

0,𝐸
1 ∇𝑢ℎ

)

𝐸

=
(

∇𝑝1,∇𝑝1
)

𝐸 + 2
(

∇𝑢𝐻ℎ ,∇𝑝1
)

𝐸 +
(

�̂�0,𝐸
1 ∇𝑢𝐻ℎ , �̂�0,𝐸

1 ∇𝑢𝐻ℎ
)

𝐸

≥ ‖

‖

∇𝑝1‖‖
2
𝐸 + 𝐶2

∗
‖

‖

‖

∇𝑢𝐻ℎ
‖

‖

‖

2

𝐸
≥ min{1, 𝐶∗} ‖‖∇𝑢ℎ‖‖

2
𝐸 ,

(23)

which yields the thesis, with 𝛼𝐸∗ ∶= min{1, 𝐶∗}. □

4.2. Local coercivity for 𝑁𝐸 ≥ 5

In this section we deal with the case 𝑁𝐸 ≥ 5. This proof requires the following assumption on 𝓁𝐸 .

H.1 𝓁𝐸 is such that there exists a set of degrees of freedom for 𝑝 ∈ P𝓁𝐸+1
(𝐸) which contains the integral mean 1

|𝑒| ∫𝑒 𝑝 on each
edge 𝑒 ∈ 𝐸 .

heorem 2. Under assumptions A.1, A.2 and H.1, for every 𝐸 ∈ ℎ, the discrete bilinear form 𝑎𝐸ℎ defined by (6) is coercive, namely
there exists 𝛼𝐸∗ > 0, independent of ℎ𝐸 , such that

𝑎𝐸ℎ
(

𝑢ℎ, 𝑢ℎ
)

≥ 𝛼𝐸∗ ‖

‖

∇𝑢ℎ‖‖
2
𝐸 ∀𝑢ℎ ∈ 𝐸

ℎ,1 . (24)

Proof. ∀𝐸 ∈ ℎ, ∀𝑛 ∈ N we define the auxiliary space:

P0
𝓁𝐸+1

(𝐸) =
{

𝑝 ∈ P𝓁𝐸+1
(𝐸) ∶ ∫𝜕𝐸

𝑝 = 0
}

.

Using the definition of the norm of the operator �̂�0,𝐸
𝓁𝐸

, (4) and (5), we get, ∀𝑢ℎ ∈ 𝐸
ℎ,1,

‖

‖

‖

�̂�0,𝐸
𝓁𝐸

∇𝑢ℎ
‖

‖

‖𝐸
= sup

𝑝∈P0
𝓁𝐸+1(𝐸)

(

�̂�0,𝐸
𝓁𝐸

∇𝑢ℎ, 𝐜𝐮𝐫𝐥 𝑝
)

𝐸
‖𝐜𝐮𝐫𝐥 𝑝‖𝐸

= sup
𝑝∈P0

𝓁𝐸+1(𝐸)

(

∇𝑢ℎ ⋅ 𝒕𝜕𝐸 , 𝑝
)

𝜕𝐸
‖𝐜𝐮𝐫𝐥 𝑝‖𝐸

. (25)

Denoting by {𝜙}𝑁𝐸
𝑖=1 the set of Lagrangian basis functions of 𝐸

ℎ,1, we have that 𝑢ℎ =
∑𝑁𝐸

𝑖=1 𝑐𝑖𝜙𝑖 and for each edge 𝑒𝑖 ∈ 𝐸

∇𝑢ℎ ⋅ 𝒕𝑒𝑖 =
𝑐𝑖+1 − 𝑐𝑖

|

|

𝑒𝑖||
, (26)

Moreover, let 𝛿𝑖 ∶= 𝑐𝑖+1 − 𝑐𝑖. For each 𝑝 ∈ P0
𝓁𝐸+1

(𝐸) we get

(

∇𝑢ℎ ⋅ 𝒕𝜕𝐸 , 𝑝
)

𝜕𝐸 =
𝑁𝐸
∑

𝑖=1

𝛿𝑖
|

|

𝑒𝑖|| ∫𝑒𝑖
𝑝 . (27)

nder assumption H.1 we can define �̃� ∈ P0
𝓁𝐸+1

(𝐸) such that its degrees of freedom are

1
|

|

𝑒𝑖|| ∫𝑒𝑖
�̃� =

ℎ𝐸
|

|

𝑒𝑖||
𝛿𝑖 ∀𝑖 = 1,… , 𝑁𝐸 ,

and all other degrees of freedom of �̃� are zero. Since ∑𝑁𝐸
𝑖=1 𝛿𝑖 = 0, then ∫𝜕𝐸 �̃� = ℎ𝐸

∑𝑁𝐸
𝑖=1 𝛿𝑖 = 0 and, applying the equivalence of norms

between ‖∇�̃�‖𝐸 and the 𝑙2-norm of the vector of degrees of freedom of �̃�, ∃𝐶𝑝 > 0 independent of ℎ𝐸 such that

‖𝐜𝐮𝐫𝐥 �̃�‖2𝐸 = ‖∇�̃�‖2𝐸 ≤ 𝐶2
𝑝

𝑁𝐸
∑

𝑖=1

(

1
|

|

𝑒𝑖|| ∫𝑒𝑖
�̃�

)2

≤
𝐶2
𝑝

𝜅

𝑁𝐸
∑

𝑖=1

ℎ𝐸
|

|

𝑒𝑖||
𝛿2𝑖 =

𝐶2
𝑝

𝜅
|

|

𝑢ℎ||
2
𝜕𝐸 , (28)

where we define |

|

𝑢ℎ||𝜕𝐸 ∶=
(

ℎ𝐸
∑𝑁𝐸

𝑖=1
‖

‖

∇𝑢ℎ ⋅ 𝒕𝑒𝑖‖‖
2
𝑒𝑖

)
1
2 =

(

∑𝑁𝐸
𝑖=1

ℎ𝐸
|𝑒𝑖|

𝛿2𝑖
)

1
2 . It was proved in [2,21] that, considering 𝑢ℎ ∈ 𝐸

ℎ,1 such that
∫𝜕𝐸 𝑢ℎ = 0 then |

|

𝑢ℎ||𝜕𝐸 is a norm for 𝑢ℎ,

| | ‖ ‖
5

|

𝑢ℎ|𝜕𝐸 ≥ 𝐶𝑢 ‖∇𝑢ℎ‖𝐸 , (29)
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holds true with a constant 𝐶𝑢 only depending on the radius 𝜌 of the mesh assumption A.1. With the above definition of �̃� and
applying (28), and (29), starting from (25) we get,

‖

‖

‖

�̂�0,𝐸
𝓁𝐸

∇𝑢ℎ
‖

‖

‖𝐸
= sup

𝑝∈P0
𝓁𝐸+1(𝐸)

(

∇𝑢ℎ ⋅ 𝒕𝜕𝐸 , 𝑝
)

𝜕𝐸
‖𝐜𝐮𝐫𝐥 𝑝‖𝐸

≥

∑𝑁𝐸
𝑖=1 𝛿𝑖

1
|𝑒𝑖|

∫𝑒𝑖 �̃�

‖𝐜𝐮𝐫𝐥 �̃�‖𝐸

=

∑𝑁𝐸
𝑖=1 𝛿

2
𝑖

ℎ𝐸
|𝑒𝑖|

‖𝐜𝐮𝐫𝐥 �̃�‖𝐸
≥

√

𝜅 |

|

𝑢ℎ||
2
𝜕𝐸

𝐶𝑝
|

|

𝑢ℎ||𝜕𝐸
≥

√

𝜅𝐶𝑢

𝐶𝑝
‖

‖

∇𝑢ℎ‖‖𝐸 .

(30)

Then, (24) is proved. □

In Appendix we provide some theoretical results about the validity of Assumption H.1 for certain classes of polygons. The
following theorem summarizes those results.

Theorem 3. Let 𝐸 ∈ ℎ be such that 𝑁𝐸 ≥ 5. Then the following results hold true.

• If 𝐸 is strictly convex, then Assumption H.1 is satisfied by 𝓁𝐸 = 𝑁𝐸 − 3.
• If 𝐸 has one reentrant corner and such that at least one edge lies on the boundary of the kernel of the polygon, then, Assumption H.1
is satisfied by 𝓁𝐸 = 𝑁𝐸 − 3. This also holds if 𝐸 has two aligned edges.

• If 𝐸 is a polygon with aligned edges such that the edges lie on exactly three straight lines, then Assumption H.1 is satisfied by
𝓁𝐸 = 𝑁𝐸 − 4.

Notice that the case of convex polygons is a direct consequence of a known result about mean value interpolation (see [26,
Theorem 12.1 and Definition 9.9]).

In Section 7 we provide an algorithm for the numerical computation of 𝓁𝐸 ensuring coercivity. In general, the computed 𝓁𝐸
results to be smaller than the ones that guarantee coercivity by the above theorem.

4.3. Global coercivity

Now, we state the coercivity of the global bilinear form 𝑎ℎ defined in (7) with respect to the standard H1
0(𝛺) norm.

Theorem 4. For each 𝐸 ∈ ℎ we assume that

• if 𝑁𝐸 = 3, 𝓁𝐸 = 0,
• if 𝑁𝐸 = 4, 𝓁𝐸 = 1 and the local projection operator �̂�0,𝐸

1 ∇ is defined onto the space of 𝐜𝐮𝐫𝐥 of quadratic harmonic polynomials,
• if 𝑁𝐸 ≥ 5, H.1 is satisfied.

Then, ∃𝐶∗ independent of ℎ such that

𝑎ℎ
(

𝑣ℎ, 𝑣ℎ
)

≥ 𝐶∗
‖

‖

∇𝑣ℎ‖‖
2
𝛺 ∀𝑣ℎ ∈ ℎ,1 . (31)

Proof. Applying the definition of 𝑎ℎ and local coercivity Theorems 1 and 2, we have

𝑎ℎ
(

𝑣ℎ, 𝑣ℎ
)

=
∑

𝐸∈ℎ

𝑎𝐸ℎ
(

𝑣ℎ, 𝑣ℎ
)

≥
∑

𝐸∈ℎ

𝛼𝐸∗ ‖

‖

∇𝑣ℎ‖‖
2
𝐸 ≥ 𝐶∗

‖

‖

∇𝑣ℎ‖‖
2
𝛺 , (32)

where 𝐶∗ ∶= min𝐸∈ℎ
𝐶(𝐸). □

This theorem and the global continuity of 𝑎ℎ, which follows from Proposition 1, imply that 𝑎ℎ satisfies the hypothesis of the
Lax–Milgram theorem, hence the discrete problem (8) admits a unique solution.

5. A priori error analysis

The proof of a priori error estimates for problem (8) is obtained following the same analysis done in [15]. First, we recall some
auxiliary results that are well-known in the literature about polynomial approximation.

Lemma 2. Under the current mesh assumptions, ∀𝐸 ∈ ℎ, if 𝑢 ∈ H1(𝐸) then ∃𝐶 > 0 independent of ℎ𝐸 such that
‖

‖

‖

𝑢 −𝛱0,𝐸
0 𝑢‖‖

‖𝐸
≤ 𝐶ℎ𝐸 ‖∇𝑢‖𝐸 . (33)

Moreover if 𝑢 ∈ H2(𝐸) then ∃𝐶 > 0 independent of ℎ𝐸 such that
‖

‖

‖

∇𝑢 −𝛱0,𝐸
0 ∇𝑢‖‖

‖𝐸
≤ 𝐶ℎ𝐸 |𝑢|2 . (34)

Furthermore, we recall the following interpolation estimate, that was proved in [27].
6
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Lemma 3. Under the current mesh assumptions, ∀𝐸 ∈ ℎ, if 𝑢 ∈ H2(𝐸) then there exists 𝑢𝐼 ∈ 𝐸
ℎ,1 such that

‖

‖

𝑢 − 𝑢𝐼‖‖𝐸 + ℎ𝐸 ‖

‖

∇𝑢 − ∇𝑢𝐼‖‖𝐸 ≤ 𝐶ℎ2𝐸 |𝑢|2 , (35)

with a constant 𝐶 independent of ℎ𝐸 .

The above theoretical tools are used to prove the following a priori error estimate.

Theorem 5. Let 𝑢 ∈ H2(𝛺) be the exact solution to (2) and let 𝑢ℎ ∈ 𝐸
ℎ,1 be the solution to the discrete problem (8), with 𝓁𝐸 chosen locally

∀𝐸 ∈ ℎ according to Sections 4.1 and 4.2. Then, under the current mesh regularity assumptions,

‖

‖

∇𝑢 − ∇𝑢ℎ‖‖ ≤ 𝐶ℎ

(

|𝑢|2 +
∑

𝐸∈ℎ

‖

‖

‖

𝑓 −𝛱0,𝐸
0 𝑓‖‖

‖

)

, (36)

with a constant 𝐶 independent of the mesh-size.

Proof. Exploiting Lemma 3, there exists 𝑢𝐼 ∈ ℎ,1 such that

‖

‖

∇𝑢 − ∇𝑢ℎ‖‖ ≤ ‖

‖

∇𝑢 − ∇𝑢𝐼‖‖ + ‖

‖

∇𝑢𝐼 − ∇𝑢ℎ‖‖ ≤ 𝐶ℎ |𝑢|2 + ‖

‖

∇𝑢𝐼 − ∇𝑢ℎ‖‖ .

Then, let 𝑒ℎ = 𝑢𝐼 − 𝑢ℎ ∈ ℎ,1. Since 𝓁𝐸 is chosen in order to provide well-posedness, exploiting problems (8) and (2) we get

‖

‖

∇𝑢𝐼 − ∇𝑢ℎ‖‖
2 ≤ 1

𝛼∗

∑

𝐸∈ℎ

𝑎𝐸ℎ
(

𝑢𝐼 − 𝑢ℎ, 𝑒ℎ
)

= 1
𝛼∗

∑

𝐸∈ℎ

𝑎𝐸ℎ
(

𝑢𝐼 − 𝑢, 𝑒ℎ
)

+ 𝑎𝐸ℎ
(

𝑢, 𝑒ℎ
)

−
(

∇𝑢,∇𝑒ℎ
)

𝐸 +
(

𝑓, 𝑒ℎ −𝛱0,𝐸
0 𝑒ℎ

)

𝐸
.

The first local term is estimated using the continuity of 𝑎𝐸ℎ (9) and the interpolation estimate (35):

𝑎𝐸ℎ
(

𝑢𝐼 − 𝑢, 𝑒ℎ
)

≤ ‖

‖

∇𝑢𝐼 − ∇𝑢‖
‖𝐸

‖

‖

∇𝑒ℎ‖‖𝐸 ≤ 𝐶ℎ𝐸 ‖

‖

∇𝑒ℎ‖‖𝐸 |𝑢|2,𝐸 .

Regarding the second and third local terms, they provide the approximation error with respect to polynomials and can be bound
exploiting the definition of �̂�0,𝐸

𝓁𝐸
(4), and a Cauchy–Schwarz inequality as follows:

𝑎𝐸ℎ
(

𝑢, 𝑒ℎ
)

−
(

∇𝑢,∇𝑒ℎ
)

𝐸 =
(

�̂�0,𝐸
𝓁𝐸

∇𝑢 − ∇𝑢,∇𝑒ℎ
)

𝐸
≤ ‖

‖

‖

�̂�0,𝐸
𝓁𝐸

∇𝑢 − ∇𝑢‖‖
‖𝐸

‖

‖

∇𝑒ℎ‖‖𝐸 ,

and the above projection error, since
[

P0(𝐸)
]2 ⊆ 𝐜𝐮𝐫𝐥P𝓁𝐸+1

(𝐸) ∀𝓁𝐸 ≥ 0, can be bound exploiting (34):

‖

‖

‖

�̂�0,𝐸
𝓁𝐸

∇𝑢 − ∇𝑢‖‖
‖𝐸

= inf
𝒑∈𝐜𝐮𝐫𝐥P

𝓁𝐸+1(𝐸)
‖𝒑 − ∇𝑢‖𝐸 ≤ ‖

‖

‖

𝛱0,𝐸
0 ∇𝑢 − ∇𝑢‖‖

‖𝐸
≤ 𝐶ℎ𝐸 |𝑢|2 .

Finally, the term involving the right-hand side can be bound exploiting the definition of 𝛱0,𝐸
0 and the projection estimate (33):

(

𝑓, 𝑒ℎ −𝛱0,𝐸
0 𝑒ℎ

)

𝐸
=
(

𝑓 −𝛱0,𝐸
0 𝑓, 𝑒ℎ −𝛱0,𝐸

0 𝑒ℎ
)

𝐸

≤ ‖

‖

‖

𝑓 −𝛱0,𝐸
0 𝑓‖‖

‖𝐸
‖

‖

‖

𝑒ℎ −𝛱0,𝐸
0 𝑒ℎ

‖

‖

‖𝐸
≤ 𝐶ℎ𝐸

‖

‖

‖

𝑓 −𝛱0,𝐸
0 𝑓‖‖

‖𝐸
‖

‖

∇𝑒ℎ‖‖𝐸 .

Collecting the above estimates, we obtain (36) □

Following the same proof as in [15, Theorem 5.2] and exploiting estimate (36), we can also obtain the following a priori estimate
in the 𝐿2-norm.

Theorem 6. Let 𝑢 be the exact solution to (2) and let 𝑢ℎ ∈ 𝐸
ℎ,1 be the solution to the discrete problem (8), with 𝓁𝐸 chosen locally

∀𝐸 ∈ ℎ according to Sections 4.1 and 4.2. Then, under the current mesh regularity assumptions if 𝑢 ∈ H2(𝛺) then, assuming 𝑓 ∈ H1(𝐸)
∀𝐸 ∈ ℎ,

‖

‖

𝑢 − 𝑢ℎ‖‖ ≤ 𝐶ℎ2
(

|𝑢|2 +
∑

𝐸∈ℎ

‖∇𝑓‖𝐸

)

, (37)

Remark 2. The local regularity of the right-hand side required in Theorem 6 can be relaxed if we discretize the right-hand side
with a projection of test functions on P1(𝐸). In that case, with 𝑓 ∈ L2(𝛺) we get

‖

‖

𝑢 − 𝑢ℎ‖‖𝐸 ≤ 𝐶ℎ2
(

|𝑢|2 +
∑

‖

‖

‖

𝑓 −𝛱0,𝐸
1 𝑓‖‖

‖𝐸

)

.

7

𝐸∈ℎ
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a

T

d

Remark 3 (Extension to more general elliptic problems). Consider a uniformly elliptic tensor  ∈ L∞(𝛺), a scalar function 𝛾 ∈ L∞(𝛺)
nd the following model problem:

{

−∇ ⋅ (∇𝑢) + 𝛾𝑢 = 𝑓 in 𝛺 ,
𝑢 = 0 on 𝜕𝛺 .

(38)

he coercivity of the bilinear form defined by (6) and (7) allows the discretization: find 𝑢ℎ ∈ ℎ,1 such that
∑

𝐸∈ℎ

(

�̂�0,𝐸
𝓁𝐸

∇𝑢ℎ, �̂�
0,𝐸
𝓁𝐸

∇𝑣ℎ
)

𝐸
+
(

𝛾𝛱0,𝐸
0 𝑢ℎ,𝛱

0,𝐸
0 𝑣ℎ

)

𝐸
=

∑

𝐸∈ℎ

(

𝑓,𝛱0,𝐸
0 𝑣ℎ

)

𝐸
(39)

for each 𝑣ℎ ∈ ℎ,1 . Indeed, if the local projection operators are coercive on each polygon, we can prove the well-posedness of (39),
exploiting the ellipticity of  and following [15, Lemma 5.7]. Optimal order a priori error estimates can be proved proceeding as
in Theorem 5 and [15, Theorem 5.1 and 5.2].

6. Computation of �̂�𝟎,𝑬
𝓵𝑬

𝛁

Algorithm 1 Algorithm for the computation of 𝓁𝐸 on a given polygon
Input: A polygon 𝐸 ∈ ℎ with 𝑁𝐸 ≥ 5

Let 𝓁𝐸 be the smallest number satisfying (41)
Compute the matrix 𝐵 such that 𝐵𝑖𝑗 =

( 𝜕𝜑𝑗
𝜕𝒕 , 𝑝𝑖

)

𝜕𝐸
∀𝑝𝑖 basis of P𝓁𝐸+1

(𝐸)
Perform a QR decomposition of 𝐵⊺: 𝐵⊺ = 𝑄𝑅
𝑁 ← number of diagonal elements of 𝑅 whose absolute value is ≥ 1e − 12
while 𝑁 < 𝑁𝐸 − 1 do

𝓁𝐸 ← 𝓁𝐸 + 1
Compute �̃� such that �̃�𝑖𝑗 =

( 𝜕𝜑𝑗
𝜕𝒕 , �̃�𝑖

)

𝜕𝐸
∀�̃�𝑖 basis of P𝓁𝐸+1

(𝐸) ∕P𝓁𝐸
(𝐸)

Perform a QR decomposition of the matrix �̃�⊺ −𝑄𝑄⊺�̃�⊺ = �̃��̃�
𝐵⊺ ←

[

𝐵⊺ �̃�⊺
]

𝑅 ←

[

𝑅 𝑄⊺�̃�⊺

0 �̃�

]

𝑄 ←
[

𝑄 �̃�
]

𝑁 ← number of diagonal elements of 𝑅 whose absolute value is ≥ 1e − 12
end while
return 𝓁𝐸 , 𝐵

Let us describe the construction of �̂�0,𝐸
𝓁𝐸

∇ on a generic polygon 𝐸 ∈ ℎ. The computation of the matrix representing the gradient
projection follows standard VEM practice (see [24]). We recall it here for the sake of clarity of exposition. In the case 𝑁𝐸 = 4 we use
curls of harmonic polynomials of degree 2, while in other cases we use curls of generic polynomials. In general, given a polynomial
space (𝐸), let �̂�0,𝐸

𝓁𝐸
∇∶𝐸

ℎ,1 → 𝐜𝐮𝐫𝐥(𝐸) be such that

∀𝜑 ∈ 𝐸
ℎ,1 ,

(

�̂�0,𝐸
𝓁𝐸

∇𝜑 − ∇𝜑, 𝐜𝐮𝐫𝐥 𝑝
)

𝐸
= 0 ∀𝑝 ∈ (𝐸).

Let {𝜑𝑗 , 𝑗 = 1,… , 𝑁𝐸} be a basis of 𝐸
ℎ,1 and consider a basis {𝑚𝑘, 𝑘 = 1,… , dim(𝐸) − 1} of (𝐸)∕P0(𝐸). Since �̂�0,𝐸

𝓁𝐸
∇𝜑𝑗 ∈

𝐜𝐮𝐫𝐥(𝐸), we have

�̂�0,𝐸
𝓁𝐸

∇𝜑𝑗 =
dim(𝐸)−1

∑

𝑘=1
𝜋𝑘𝑗𝐜𝐮𝐫𝐥𝑚𝑘.

It is then easy to check that the matrix �̂� collecting the coefficients 𝜋𝑘𝑗 is obtained by solving the matrix system

𝐺�̂� = 𝐵 , (40)

where 𝐺𝑖𝑘 =
(

𝐜𝐮𝐫𝐥𝑚𝑖, 𝐜𝐮𝐫𝐥𝑚𝑘
)

𝐸 =
(

∇𝑚𝑖,∇𝑚𝑘
)

𝐸 is symmetric and positive definite and 𝐵𝑖𝑗 =
(

∇𝜑𝑗 ⋅ 𝒕, 𝑚𝑖
)

𝜕𝐸 .
If 𝑁𝐸 = 4, we set (𝐸) = {𝑝 ∈ P2(𝐸) ∶𝛥𝑝 = 0} and solve (40). Notice that in this case the computation of 𝐺 can be performed

by computing boundary integrals, indeed in this case
(

∇𝑚𝑖,∇𝑚𝑘
)

𝐸 =
(

𝑚𝑖,
𝜕𝑚𝑘
𝜕𝑛

)

𝜕𝐸
.

If 𝑁𝐸 ≥ 5, we implement the following algorithm designed to numerically enforcing coercivity. Given a polygon 𝐸 ∈ ℎ and a
egree 𝓁𝐸 , let {𝑚𝑖, 𝑖 = 1,… , 12 (𝓁𝐸 + 2)(𝓁𝐸 + 3) − 1} be a set of basis functions of P𝓁𝐸+1

(𝐸) ∕P0(𝐸). Since dim𝐸
ℎ,1 = 𝑁𝐸 , and thus

dim∇𝐸
ℎ,1 = 𝑁𝐸 − 1, then �̂�0,𝐸

𝓁𝐸
∶∇𝐸

ℎ,1 → 𝐜𝐮𝐫𝐥P𝓁𝐸+1
(𝐸) is injective if and only if the dimension of its range is 𝑁𝐸 − 1. This implies

̂

8

that the desired rank of 𝛱 is 𝑁𝐸 − 1 and, since 𝐺 is non-singular, this is guaranteed if the rank of 𝐵 is also 𝑁𝐸 − 1. In order to
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Table 1
Convex polygons. Values of 𝓁𝐸 provided by Algorithm 1 and corresponding 𝜎𝑁𝐸−1. The asterisk denotes the use of curls
of harmonic polynomials of degree 2 (see Lemma 1).

determine for each polygon 𝐸 the minimum 𝓁𝐸 providing numerically the coercivity, we apply Algorithm 1. We first set 𝓁𝐸 equal
to the necessary condition of the injectivity for the projector �̂�0,𝐸

𝓁𝐸
∶∇𝐸

ℎ,1 → 𝐜𝐮𝐫𝐥P𝓁𝐸+1
(𝐸), i.e.

dim 𝐜𝐮𝐫𝐥P𝓁𝐸+1
(𝐸) = dimP𝓁𝐸+1

(𝐸) − 1 ≥ dim∇𝐸
ℎ,1 = dim𝐸

ℎ,1 − 1

⟺ (𝓁𝐸 + 2)(𝓁𝐸 + 3) ≥ 2𝑁𝐸 . (41)

Then, we start by computing the corresponding matrix 𝐵, we perform its QR decomposition and we evaluate if the number of
non-zero elements of the diagonal of the matrix R is equal to the dimension of the space of gradients of VEM functions, i.e. 𝑁𝐸 −1.
If not, we increase 𝓁𝐸 until we satisfy the condition. Notice that the QR decomposition is updated at each iteration and that the
algorithm is based on the computation of boundary integrals only. Once we have the value of 𝓁𝐸 and the corresponding matrix 𝐵,
we compute the matrix 𝐺 and solve (40). Note that the additional cost of performing Algorithm 1 with respect to knowing 𝓁𝐸 in
advance is the QR decomposition of a matrix of dimension dimP𝓁𝐸+1

(𝐸) ×𝑁𝐸 . In the numerical tests, we consider the set of basis
functions of the space P𝓁𝐸+1

(𝐸) ⧵ P0(𝐸) defined as follows:

𝓁𝐸+1
(𝐸) =

{

𝑚 ∈ P𝓁𝐸+1
(𝐸) ∶𝑚(𝑥, 𝑦) =

(𝑥 − 𝑥𝐸 )𝛼1 (𝑦 − 𝑦𝐸 )𝛼2
ℎ𝐸

,

∀𝛼1, 𝛼2 > 0 such that 1 ≤ 𝛼1 + 𝛼2 ≤ 𝓁𝐸 + 1
}

.

Remark 4. Notice that the elements of 𝐵 are invariant with respect to rescaling of the polygon, and the same holds for ‖𝐜𝐮𝐫𝐥 𝑝‖𝐸 ,
∀𝑝 ∈ (𝐸)∕P0(𝐸). This implies that the smallest non zero singular value of 𝐵 is independent of ℎ𝐸 , and thus it holds true that, ∀𝜑𝑖,

‖

‖

‖

�̂�0,𝐸
𝓁𝐸

∇𝜑𝑖
‖

‖

‖𝐸
= sup

𝑝∈P
𝓁𝐸+1(𝐸)

(

∇𝜑𝑖 ⋅ 𝒕𝜕𝐸 , 𝑝
)

𝜕𝐸
‖𝐜𝐮𝐫𝐥 𝑝‖𝐸

≥ 𝛼∗ ‖‖∇𝜑𝑖
‖

‖𝐸 , (42)

with 𝛼∗ independent of ℎ𝐸 .

7. Numerical results

Here, we first consider single polygons and investigate numerically which is the minimum degree 𝓁𝐸 providing coercivity, then
we carry out some convergence tests.

7.1. Coercivity tests

In this section, we consider different sets of polygons and we investigate numerically the minimum 𝓁𝐸 chosen by Algorithm 1
comparing it with the 𝓁𝐸 given by the necessary condition (41) and, if available, with the sufficient condition theoretically proved
in Appendix. To test numerically the coercivity of the bilinear form 𝑎𝐸ℎ , for each polygon we compute the (𝑁𝐸 −1)th from largest to
smallest singular value of the local stiffness matrix 𝐴𝐸 ∈ R𝑁𝐸 ,𝑁𝐸 , denoted by 𝜎𝑁𝐸−1, using the value of 𝓁𝐸 provided by Algorithm
1; 𝜎𝑁𝐸−1 ≠ 0 ensures the rank of the stiffness matrix be equal to 𝑁𝐸 − 1.

We consider five sets of polygons chosen in order to highlight different geometrical features that can influence the choice of the
local polynomial projection degree.
9
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Table 2
Regular polygons. Values of 𝓁𝐸 provided by Algorithm 1 and corresponding 𝜎𝑁𝐸−1.

𝑁𝐸 3 4 5 6 7 8 9 10 11
𝓁𝐸 0 1a 1 2 2 3 3 4 4
𝜎𝑁𝐸−1 8.2e−01 3.3e−01 6.3e−01 5.8e−01 5.3e−01 5.0e−01 4.7e−01 4.5e−01 4.3e−01

𝑁𝐸 12 13 14 15 16 17 18 19 20
𝓁𝐸 5 5 6 6 7 7 8 8 9
𝜎𝑁𝐸−1 4.1e−01 3.9e−01 3.8e−01 3.7e−01 3.5e−01 3.4e−01 3.3e−01 3.2e−01 3.2e−01

a Denotes the use of curls of harmonic polynomials of degree 2 (see Lemma 1).

Fig. 1. Comparison between the 𝓁𝐸 provided by Algorithm 1 (pink line) and the ones relative to theoretical results, that is 𝓁𝐸 = 𝑁𝐸 −3, provided by Theorem 3
(red line) and the necessary condition on 𝓁𝐸 , satisfying (41) (blue line). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Examples of ‘‘triangular’’ polygons.

7.1.1. Convex polygons
First, we consider two family of convex polygons. Table 1 refers to a sequence of generic convex polygons, displayed in the table.

Table 2 we consider regular convex polygons, defined by the vertices 𝑉𝑖 =
(

cos
(

𝛽𝑖
)

, sin
(

𝛽𝑖
))

, with 𝛽𝑖 =
(𝑖−1)𝜋
𝑁𝐸

𝑖 = 1,…𝑁𝐸 . In Table 1
we can see that the computed singular values 𝜎𝑁𝐸−1 are significantly larger than machine precision. Concerning Table 2, we can
see that the polynomial degree provided by the algorithm corresponds to the one that we obtain if we use harmonic polynomials
only (see [14]). We notice that, in the case of regular polygons, the scheme is stable if and only if the projection space contains the
curls of harmonic polynomials of degree at least 𝓁𝐸 + 1 = 𝑁𝐸−3

2 + 1, i.e. with the choice 2𝓁𝐸 ≥ 𝑁𝐸 − 3.
From Fig. 1, we can observe that the projection degree computed numerically is much smaller than the one provided by

Theorem 3.

7.1.2. Polygons with edges on three straight lines
The third test that we consider relates to the third point of Theorem 3 (whose proof is given by Proposition 4 in Appendix). We

consider polygons whose boundary can be described by three straight lines, that in the following are called, for the sake of brevity,
‘‘triangular polygons’’. Following the notation of Proposition 4, let 𝛼𝑖 (𝑖 = 1, 2, 3) denote the number of aligned edges of the polygon
on each edge 𝜂𝑖 of the underlying triangle. We consider polygons obtained starting from a triangle creating 𝛼𝑖 aligned edges of the
same length on each 𝜂 . Each polygon in this sequence is identified by the triplet (𝛼 , 𝛼 , 𝛼 ). Fig. 2 depicts the starting triangle and
10
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Table 3
‘‘Triangular’’ polygons. Values of 𝓁𝐸 provided by Algorithm 1 and corresponding 𝜎𝑁𝐸−1.

𝑁𝐸 5 5 6 6 6
(𝛼1 , 𝛼2 , 𝛼3) (2,2,1) (3,1,1) (2,2,2) (3,2,1) (4,1,1)
𝓁𝐸 1 1 2 1 2
𝜎𝑁𝐸−1 4.4e+00 4.4e+00 4.3e+00 4.2e+00 4.3e+00

𝑁𝐸 7 7 7 7
(𝛼1 , 𝛼2 , 𝛼3) (5,1,1) (4,2,1) (3,2,2) (3,3,1)
𝓁𝐸 3 2 2 2
𝜎𝑁𝐸−1 4.1e+00 4.0e+00 4.0e+00 4.0e+00

Table 4
Concave polygons. Values of 𝓁𝐸 provided by Algorithm 1 and corresponding 𝜎𝑁𝐸−1. The asterisk denotes the use of curls of harmonic
polynomials of degree 2 (see Lemma 1). The second polygon of the table was suggested by Professor A. Russo.

Table 5
Regular stars. Values of 𝓁𝐸 provided by Algorithm 1 and corresponding 𝜎𝑁𝐸−1.

𝑁𝐸 6 8 10 12 14 16 18 20
𝓁𝐸 2 3 4 5 6 7 8 9
𝜎𝑁𝐸−1 5.1e−01 4.5e−01 4.0e−01 3.7e−01 3.4e−01 3.2e−01 3.0e−01 2.8e−01

some polygons of the sequence. Table 3 shows the computed 𝜎𝑁𝐸−1, corresponding to the 𝓁𝐸 provided by Algorithm 1, which are
all 𝑂(1).

7.1.3. Concave polygons and regular stars
In Table 4 for non-regular concave polygons, we report the values 𝓁𝐸 provided by Algorithm 1 and the computed 𝜎𝑁𝐸−1, all

well-detached from zero. Finally, we consider a sequence of regular stars. The 2𝑛 vertices of these stars are defined for 𝑖 = 1,… , 𝑛
by

𝑉2𝑖−1 = 𝜌max

⎛

⎜

⎜

⎝

cos
(

(2𝑖−2)𝜋
𝑛

)

sin
(

(2𝑖−2)𝜋
𝑛

)

⎞

⎟

⎟

⎠

, 𝑉2𝑖 = 𝜌min

⎛

⎜

⎜

⎝

cos
(

(2𝑖−1)𝜋
𝑛

)

sin
(

(2𝑖−1)𝜋
𝑛

)

⎞

⎟

⎟

⎠

and we choose 𝜌max = 1.5 and 𝜌min = 0.5. Table 5 displays the values 𝓁𝐸 provided by Algorithm 1, for which we notice that the
value 𝓁𝐸 corresponds to having in the polynomial basis a number of harmonic polynomials of degree 𝓁𝐸 + 1 with 𝓁𝐸 ≥ 𝑁𝐸−3

2 . Also
in this case, the computed 𝜎𝑁𝐸−1 are well-detached from zero.

Fig. 3 displays the 𝓁𝐸 computed by Algorithm 1 and the 𝓁𝐸 corresponding to the necessary condition (41). Also in this case the
comment provided for Fig. 1 holds true.

7.2. Convergence tests

Let us consider problem (1) on the unit square with homogeneous Dirichlet boundary conditions and the right-hand side defined
such that the exact solution is

𝑢(𝑥, 𝑦) = 16𝑥𝑦(1 − 𝑥)(1 − 𝑦).
11
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Fig. 3. Comparison between the sufficient 𝓁𝐸 obtained numerical and the one relative to theoretical results. Pink: computed 𝓁𝐸 . Blue: necessary condition on
𝓁𝐸 (satisfying (41)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Meshes used for convergence tests.

In the following, we show, the convergence curves of the L2 and H1 errors that we measure as follows,

L2 error = 1
‖𝑢‖

√

∑

𝐸∈ℎ

‖

‖

‖

𝛱∇,𝐸
1 𝑢ℎ − 𝑢‖‖

‖

2

𝐸
,

H1 error = 1
‖∇𝑢‖

√

∑

𝐸∈ℎ

‖

‖

‖

∇𝛱∇,𝐸
1 𝑢ℎ − ∇𝑢‖‖

‖

2

𝐸
,

where 𝑢ℎ is the discrete solution of (8), obtained selecting locally 𝓁𝐸 as described in the previous section. We also solve the test
problem with the standard VEM method [15], where

𝑎𝐸ℎ
(

𝑢ℎ, 𝑣ℎ
)

=
(

𝛱0,𝐸
0 ∇𝑢ℎ,𝛱

0,𝐸
0 ∇𝑣ℎ

)

𝐸
+ 𝑆𝐸

(

(𝐼 −𝛱∇,𝐸
1 )𝑢ℎ, (𝐼 −𝛱∇,𝐸

1 )𝑣ℎ
)

(43)

and 𝑆𝐸 ∶𝐸
ℎ,1 × 𝐸

ℎ,1 → R denotes the local dofi-dofi stabilizing bilinear form

𝑆𝐸 (

𝑢ℎ, 𝑣ℎ
)

= 𝜒𝐸 (𝑢ℎ) ⋅ 𝜒𝐸 (𝑣ℎ) ∀𝑢ℎ, 𝑣ℎ ∈ 𝐸
ℎ,1,

with 𝜒𝐸 (𝑣ℎ) defined as the vector of degrees of freedom of 𝑣ℎ on 𝐸. We consider five sequences of meshes for the convergence
test. The first sequence, labeled DistortedCartesian, is a tessellation made by quadrilaterals, obtained perturbing a cartesian
mesh, as shown in Fig. 4(a). The second sequence, shown in Fig. 4(b) and labeled ConvexConcave, is made by pentagons, half of
which are concave. Then, the third and the fourth sequences, depicted in Figs. 4(c) and 4(d), labeled Random and Polymesher
12
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Fig. 5. Tests on Poisson problem: H1 convergence plots.

Fig. 6. Tests on Poisson problem: L2 convergence plots.

respectively, are made by convex polygons and are obtained using Polymesher [28], with two different smoothing parameters. Finally,
the last sequence, labeled Star, is a non-convex tessellation made by octagons and nonagons, shown in Fig. 4(e). For the five mesh
13
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F
F
p

Fig. 7. Test with anisotropic diffusivity: convergence plots.

Fig. 8. Test with anisotropic refinement: first two meshes.

sequences, we report the trend of the H1 and the L2 errors in Fig. 5 and in Fig. 6. In the legends, we report the computed convergence
rates with respect to ℎ, denoted by 𝑚. We see that we get the expected values for all the meshes, as obtained in Theorems 5 and 6.
The behavior of the H1 error is similar for the two methods, whereas in the L2 error we can appreciate a smaller value of the error
for the stabilization-free approach. On the right of the panels of Figs. 5 and 6 we report the ratios between the errors corresponding
to the standard VEM and the SFVEM.

7.3. Convergence tests on anisotropic problem

In this section, we consider problem (38) where 𝛺 is the unit square,  =
[

10−2 0
0 1

]

is an anisotropic diffusivity tensor and

𝛾 = 0. The right-hand side 𝑓 is defined such that the exact solution is given by 𝑢(𝑥, 𝑦) = 10−4𝑥𝑦(1 − 𝑥)(1 − 𝑦)(0.5 − 𝑥)(0.3 − 𝑦)𝑒20𝑥. We
aim to compare the behavior of standard VEM and SFVEM in terms of energy and L2 errors, the first one being defined as

Energy error =

√

√

√

√

∑

𝐸∈ℎ

‖

‖

‖

‖

√


(

∇𝛱∇,𝐸
1 𝑢 − ∇𝑢

)

‖

‖

‖

‖

2

L2(𝐸)
.

According to [15], the standard VEM discretization of (38) with 𝛾 = 0 can be given by: find 𝑢ℎ ∈ ℎ,1 such that
∑

𝐸∈ℎ

(

𝛱0,𝐸
0 ∇𝑢ℎ,𝛱

0,𝐸
0 ∇𝑣ℎ

)

𝐸
+ ‖‖L∞(𝐸) 𝑆

𝐸
(

(𝐼 −𝛱∇,𝐸
1 )𝑢ℎ, (𝐼 −𝛱∇,𝐸

1 )𝑣ℎ
)

=

∑

𝐸∈ℎ

(

𝑓,𝛱0,𝐸
0 𝑣ℎ

)

𝐸
∀𝑣 ∈ ℎ,1 . (44)

or the proposed method, the discrete formulation is the one presented in (39), using the family of meshes Polymesher (Fig. 4(d)).
rom Fig. 7 we can see that the proposed method performs better in this test case, noting that the L2 rate of convergence is still
14

re-asymptotic. This feature of the method was already observed in other similar test cases, see [7,14].
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Fig. 9. Test with anisotropic refinement: convergence plots.

7.4. Convergence test on anisotropic mesh refinement

To conclude our numerical tests, we consider a test that was performed also in [16], featuring a mesh that is refined following
an anisotropic rule. We solve the same problem as in Section 7.2, starting from the mesh in Fig. 8(a), and refining the mesh by
a factor 𝛼 in the horizontal direction and by a factor 𝛼2 in the vertical direction. Fig. 9 shows the convergence plots in the error
norms defined above. As observed in [16], the standard VEM method is not properly converging, while the method proposed here
exhibits an optimal convergence behavior.

8. Conclusions

We presented a Virtual Element Method whose discrete bilinear form is stabilization-free, in the sense that we do not write it as
the sum of a bilinear form involving polynomial projections and a non-operator preserving stabilizing bilinear form. On general
quadrilaterals, we proved that such a bilinear form can be obtained by using polynomial projections on the space of curls of
harmonic polynomials of degree 2. For more general polygons, we identified a sufficient condition for choosing the degree of the
polynomial projection. Moreover, we proposed an algorithm providing the polynomial projection degree ensuring stability. The
algorithm requires the computation of edge integrals needed for the construction of the polynomial projection and an incremental
local QR factorization. Numerical coercivity tests suggest that choosing locally 𝓁𝐸 such that 2𝓁𝐸 ≥ 𝑁𝐸 − 3 is sufficient for all the
shapes. However, the application of the proposed algorithm for polygons without particular shape symmetries leads to a smaller
𝓁𝐸 . Numerical results show that the method is especially suitable for solving problems characterized by anisotropic coefficients and
solutions and is more robust with respect to anisotropic refinements, whereas in isotropic cases it is equivalent to standard Virtual
Elements, usually providing a smaller L2-error.
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ppendix. Proof of the validity of assumption H.1 for some classes of polygons

In this section, we construct sets of unisolvent degrees of freedom that ensure Assumption H.1 for particular sets of polygons.
n details, we analyze convex polygons, polygons that have only one reentrant corner and an edge lying on the boundary of the
ernel of the polygon, and polygons that can be seen geometrically as triangles (with aligned edges). These results are intended to
rovide sufficient conditions to satisfy Assumption H.1.

roposition 2 (Convex polygons). Let 𝐸 be a strictly convex polygon with 𝑁𝐸 ≥ 5. In P𝑁𝐸−2
(𝐸), we have the following degrees of freedom

or 𝑝 ∈ P𝑁𝐸−2
(𝐸):

S.1 For each edge 𝑒𝑖 with 𝑖 = 1,… , 𝑁𝐸 − 3, the moments 1
|𝑒𝑖|

∫𝑒𝑖 𝑝𝑞𝑗 , for each 𝑞𝑗 basis function of P𝑁𝐸−1−𝑖
(

𝑒𝑖
)

.

S.2 For each edge 𝑒𝑖 with 𝑖 = 𝑁𝐸 − 2, 𝑁𝐸 − 1, 𝑁𝐸 , the moment
1
|𝑒𝑖|

∫𝑒𝑖 𝑝.

Then assumption H.1 holds choosing 𝓁𝐸 = 𝑁𝐸 − 3.

Proof. We start by noticing that the total number of degrees of freedom defined in S.1 plus degrees of freedom defined in S.2 equals
dimP𝑁𝐸−2

(𝐸) = 𝑁𝐸 (𝑁𝐸−1)
2 . Then, to conclude the proof it is enough to see that a polynomial 𝑝𝑁𝐸−2 ∈ P𝑁𝐸−2

(𝐸), such that for each
dge 𝑒𝑖 with 𝑖 = 1,… , 𝑁𝐸 − 3,

1
|

|

𝑒𝑖|| ∫𝑒𝑖
𝑝𝑁𝐸−2 𝑞 = 0 ∀𝑞 ∈ P𝑁𝐸−1−𝑖

(

𝑒𝑖
)

, (A.1)

nd for 𝑖 = 𝑁𝐸 − 2, 𝑁𝐸 − 1, 𝑁𝐸 ,
1
|

|

𝑒𝑖|| ∫𝑒𝑖
𝑝𝑁𝐸−2 = 0 , (A.2)

is identically zero in 𝐸. In order to prove this, let us consider (A.1) with 𝑖 = 1. This implies that the trace of 𝑝 on 𝑒1 is zero, then,
applying the factorization of polynomials we obtain that ∃! 𝑝𝑁𝐸−3 ∈ P𝑁𝐸−3

(𝐸) such that

𝑝𝑁𝐸−2 = 𝑟1𝑝𝑁𝐸−3 , (A.3)

where 𝑟1 ∈ P1(𝐸) is such that 𝑟1(𝑥, 𝑦) = 0 ∀(𝑥, 𝑦) ∈ 𝑒1. Then, we consider (A.1) with 𝑖 = 2 together with (A.3), obtaining

1
|

|

𝑒2|| ∫𝑒2
𝑟1𝑝𝑁𝐸−3 𝑞 = 0 ∀𝑞 ∈ P𝑁𝐸−3

(

𝑒2
)

(A.4)

Since 𝐸 is a convex polygon, we have that 𝑟1 does not vanish at any internal point of 𝑒2 (being either positive or negative) then the
previous relation implies that ∃! 𝑝𝑁𝐸−4 ∈ P𝑁𝐸−4

(𝐸) such that

𝑝𝑁𝐸−2 = 𝑟1𝑟2𝑝𝑁𝐸−4 . (A.5)

Applying the same argument for all the remaining edges considered in (A.1), we obtain that ∃! 𝑝1 ∈ P1(𝐸) such that

𝑝𝑁𝐸−2 = 𝑝1
𝑁𝐸−3
∏

𝑖=1
𝑟𝑖 . (A.6)

Finally, we notice that (A.2) implies that there exist three points internal to 𝑒𝑁𝐸−2, 𝑒𝑁𝐸−1 and 𝑒𝑁𝐸
respectively, at which 𝑝𝑁𝐸−2

vanishes. Since 𝐸 is convex, these three points are not aligned and they do not belong to any of the straight lines 𝑟𝑖, 𝑖 = 1,… , 𝑁𝐸−3.
Then, 𝑝1 takes zeros at those three points, which implies that 𝑝1 ≡ 0 and thus that 𝑝𝑁𝐸−2 ≡ 0. □

Notice that another set of unisolvent degrees of freedom for P𝑁𝐸−2
(𝐸) on convex polygons can be found in [26, Theorem 12.1].

The following Proposition states that the degrees of freedom used in Proposition 2 can also be used on polygons with a single
angle ≥ 𝜋, provided at least one of the edges sees all vertices, i.e. belongs to the boundary of the kernel of the polygon. The degrees
of freedom are defined provided the edges are numbered in a particular way. The reader can refer to Fig. A.10 for an example of
the numbering of the edges used in the Proposition, in the case of an hexagon.

Proposition 3. Let 𝐸 be a non convex polygon with 𝑁𝐸 ≥ 5, having only one internal angle with amplitude ≥ 𝜋 and at least one edge
lying on the boundary of the kernel of the polygon. Let 𝑒𝑁𝐸−2 denote one of such edges, and let 𝑒𝑁𝐸−1 and 𝑒𝑁𝐸

of the reentrant corner.
16

Then, for a polynomial 𝑝 ∈ P𝑁𝐸−2
(𝐸) we have the following degrees of freedom:
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𝑒
𝑒

𝑖
c

T

Fig. A.10. Example of a polygon satisfying the hypothesis of Proposition 3. The numbering of the edges is the one used in the Proposition. Here edge 𝑒4 lies
on the boundary of the kernel of the polygon, while edge 𝑒5 and 𝑒6 are the ones realizing the non-convexity. The other edges are numbered arbitrarily.

S∗.1 For each edge 𝑒𝑖 with 𝑖 = 1,… , 𝑁𝐸 − 3, the moments 1
|𝑒𝑖|

∫𝑒𝑖 𝑝𝑞𝑗 , for each 𝑞𝑗 basis function of P𝑁𝐸−1−𝑖
(

𝑒𝑖
)

.

S∗.2 For each edge 𝑒𝑖 with 𝑖 = 𝑁𝐸 − 2, 𝑁𝐸 − 1, 𝑁𝐸 , the moment
1
|𝑒𝑖|

∫𝑒𝑖 𝑝.

Then assumption H.1 holds choosing 𝓁𝐸 = 𝑁𝐸 − 3.

Proof. The proof follows the same steps as the one of Proposition 2. First, if the set of dofs defined by S∗.1 is zero for a polynomial
𝑝𝑁𝐸−2 ∈ P𝑁𝐸−2

(𝐸), then 𝑝𝑁𝐸−2 = 𝑝1
∏𝑁𝐸−3

𝑖=1 𝑟𝑖 for some 𝑝1 ∈ P1(𝐸). Now, consider the convex hull of 𝐸. ∏𝑁𝐸−3
𝑖=1 𝑟𝑖 does not vanish

inside 𝑒𝑁𝐸−2 because it is on the boundary of the convex hull. Moreover, ∏𝑁𝐸−3
𝑖=1 𝑟𝑖 does not vanish inside 𝑒𝑁𝐸−1 and 𝑒𝑁𝐸

because
they are in the interior of the convex hull of 𝐸. This implies that ∫𝑒𝑖 𝑝𝑁𝐸−2 = 0 if and only if 𝑝1 vanishes at three points, each internal
to one of 𝑒𝑁𝐸−2, 𝑒𝑁𝐸−1, and 𝑒𝑁𝐸

. These three points cannot be aligned because the straight lines defining 𝑒𝑁𝐸−1, 𝑒𝑁𝐸
cannot intersect

𝑁𝐸−2 internally, by hypothesis. For example, considering Fig. A.10, we can see that the hull of all straight lines intersecting 𝑒5 and
6 is the region of the plane above the cone defined by the two dashed half-lines. □

The last result of this section deals with polygons with aligned edges forming a triangle. In the following, P𝑘(𝜔) ∕P𝑚(𝜔) denotes
the space of polynomials in P𝑘(𝜔) that are L2(𝜔)-orthogonal to P𝑚(𝜔).

Proposition 4. Let 𝐸 be a polygon with 𝑁𝐸 ≥ 5 such that the minimum number of straight lines necessary to cover 𝜕𝐸 is 3. Then, let 𝜂𝑖
= 1, 2, 3 denote the 𝑖th geometrical edge of the triangle, 𝑟𝑖 ∈ P1(𝐸) be such that 𝑟𝑖 ≡ 0 on 𝜂𝑖, and let 𝛼𝑖 be the number of aligned edges
ontained in 𝜂𝑖. Let us distinguish three different cases:

T.1 𝛼1 = 𝛼2 = 1 and 𝛼3 = 𝑁𝐸 − 2,
T.2 𝛼1 = 1, 𝛼2 = 2 and 𝛼3 = 𝑁𝐸 − 3,
T.3 If 𝑁𝐸 ≥ 6, 1 ≤ 𝛼𝑖 ≤ 𝑁𝐸 − 4 ∀𝑖 and 𝛼1 + 𝛼2 + 𝛼3 = 𝑁𝐸 .

hen for a polynomial 𝑝 ∈ P𝑁𝐸−3
(𝐸), we have the following degrees of freedom:

S𝑇 .1 The internal scaled moments 1
|𝐸|

∫𝐸 𝑝 𝑏, where 𝑏 = 𝑟1𝑟2𝑟3 𝑞 ∈ P𝑁𝐸−3
(𝐸), for each 𝑞 ∈ P𝑁𝐸−6

(𝐸) (with P−1(𝐸) = {0}),
S𝑇 .2 For each edge 𝑒𝑖 ∈ 𝐸 , the moment

1
|𝑒𝑖|

∫𝑒𝑖 𝑝,

S𝑇 .3 If T.1:

• the value of 𝑝 at the vertex of the triangle given by 𝜂1 ∩ 𝜂2,
• if 𝑁𝐸 ≥ 6, for each 𝑖 = 1, 2 the moments 1

|𝜂𝑖|
∫𝜂𝑖 𝑝 𝑞, for each 𝑞 basis function of P𝑁𝐸−5

(

𝜂𝑖
)

∕P0
(

𝜂𝑖
)

.

If T.2:

• the value of 𝑝 at the vertex defined by 𝜂2 ∩ 𝜂3,
• if 𝑁𝐸 ≥ 6,

– the moments 1
|𝜂1|

∫𝜂1 𝑝 𝑞, ∀𝑞 basis function of P𝑁𝐸−5
(

𝜂1
)

∕P0
(

𝜂1
)

.

– the moments 1
|𝜂2|

∫𝜂2 𝑝 𝑞, ∀𝑞 basis function of P𝑁𝐸−3
(

𝜂2
)

∕P2
(

𝜂2
)

,

17

If T.3:
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T

𝑝

T
o

t

R

• the value of 𝑝 at the three vertices of the triangle,
• the moments 1

|𝜂𝑖|
∫𝜂𝑖 𝑝 𝑞 ∀𝑞 basis function of P𝑁𝐸−3

(

𝜂𝑖
)

∕P𝛼𝑖+1
(

𝜂𝑖
)

, ∀𝑖 = 1, 2, 3.

Then assumption H.1 holds choosing 𝓁𝐸 = 𝑁𝐸 − 4.

Proof. We start by noticing that the total number of degrees of freedom defined in S𝑇 .1, S𝑇 .2 and S𝑇 .3 equals dimP𝑁𝐸−3
(𝐸) =

(𝑁𝐸−2)(𝑁𝐸−1)
2 , in all three configurations. To prove the unisolvence of the degrees of freedom for P𝑁𝐸−3

(𝐸), we first notice that it if
𝑝 ∈ P𝑁𝐸−3

(𝐸) is such that 𝛾𝜕𝐸 (𝑝) = 0, then 𝑝 = 𝑟1𝑟2𝑟3𝑞 for some 𝑞 ∈ P𝑁𝐸−6
(𝐸) and, if

1
|𝐸|

∫𝐸
𝑝 𝑏 = 0, where 𝑏 = 𝑟1𝑟2𝑟3 𝑞 ,∀ 𝑞 ∈ P𝑁𝐸−6

(𝐸) (A.7)

then 𝑝 is identically zero on 𝐸. Then, it is sufficient to prove that the nullity of the dofs defined by S𝑇 .2 and S𝑇 .3 implies that the
trace of the polynomial is null on the boundary 𝜕𝐸, i.e. 𝛾𝜕𝐸 (𝑝) = 0. Let us prove it, considering separately the cases T.1, T.2 and
T.3.

Case T.1. Let 𝑝 ∈ P𝑁𝐸−3
(𝐸) and assume that all degrees of freedom are zero. By S𝑇 .2 we have that for each 𝑒𝑖 ⊂ 𝜂3,

1
|𝑒𝑖|

∫𝑒𝑖 𝑝 = 0.
hen there exist 𝑁𝐸 −2 distinct points lying on 𝜂3 where 𝑝 is zero. Then, since 𝛾𝜂3 (𝑝) ∈ P𝑁𝐸−3

(

𝜂3
)

, then 𝛾𝜂3 (𝑝) ≡ 0, and in particular
𝑝(𝜂3 ∩ 𝜂1) = 𝑝(𝜂3 ∩ 𝜂2) = 0.

Let us consider 𝜂1. By S𝑇 .2 and S𝑇 .3 conditions, we have that

1
𝜂1 ∫𝜂1

𝑝 𝑞 = 0, ∀ 𝑞 ∈ P𝑁𝐸−5
(

𝜂1
)

, (A.8)

and that 𝑝 is zero at the endpoints of 𝜂1, then, by polynomial factorization, 𝛾𝜂1 (𝑝) = 𝑝2𝑝𝑁𝐸−5, where 𝑝𝑁𝐸−5 ∈ P𝑁𝐸−5
(

𝜂1
)

and
𝑝2 ∈ P2

(

𝜂1
)

is null at the endpoints of 𝜂1 and positive inside 𝜂1. Conditions (A.8) with 𝑞 = 𝑝𝑁𝐸−5 imply that ∫𝜂1 𝑝2𝑝
2
𝑁𝐸−5

= 0, then
𝑁𝐸−5 = 0 and 𝛾𝜂1 (𝑝) = 0. The same argument can be applied for 𝛾𝜂2 (𝑝). Then 𝑝 is zero on 𝜕𝐸.
Case T.2. Let 𝑝 ∈ P𝑁𝐸−3

(𝐸) and assume that all degrees of freedom are zero. By S𝑇 .2 we have that for each 𝑒𝑖 ⊂ 𝜂3,
1
|𝑒𝑖|

∫𝑒𝑖 𝑝 = 0.
hen, there exist 𝑁𝐸 −3 distinct points that lie inside 𝜂3 where 𝑝 is zero. By S𝑇 .3, we also have that 𝑝 is zero at one of the endpoints
f 𝜂3, in particular the vertex 𝑉2−3 = 𝜂2 ∩ 𝜂3. Then 𝛾𝜂3 (𝑝) = 0. Now, let us consider 𝜂2. Since by S𝑇 .3

1
|

|

𝜂2|| ∫𝜂2
𝑝 𝑞 = 0 , ∀ 𝑞 ∈ P𝑁𝐸−3

(

𝜂2
)

∕P2
(

𝜂2
)

, (A.9)

then 𝛾𝜂2 (𝑝) is L2(𝜂2)-orthogonal to P𝑁𝐸−3
(

𝜂2
)

∕P2
(

𝜂2
)

, then 𝛾𝜂2 (𝑝) ∈ P2
(

𝜂2
)

. Moreover, considering that for each 𝑒𝑖 ⊂ 𝜂2

1
|

|

𝑒𝑖|| ∫𝑒𝑖
𝑝 = 0 , (A.10)

which implies that there exists two distinct points inside of 𝜂2 such that 𝑝 vanishes at that points, together with 𝑝(𝑉2−3) = 0, then
𝛾𝜂2 (𝑝) = 0. Finally, since we obtain that 𝑝 vanishes at the endpoints of 𝜂1, and by exploiting S𝑇 .3 and S𝑇 .2 for 𝜂1, we have

1
|

|

𝜂1|| ∫𝜂1
𝑝 𝑞 = 0, ∀ 𝑞 ∈ P𝑁𝐸−5

(

𝜂1
)

, (A.11)

using the same arguments as in the previous case, we have that 𝛾𝜂1 (𝑝) = 𝑝2𝑝𝑁𝐸−5, where 𝑝𝑁𝐸−5 ∈ P𝑁𝐸−5
(

𝜂1
)

and 𝑝2 ∈ P2
(

𝜂1
)

is
null at the endpoints of 𝜂1 and positive inside 𝜂1. Conditions (A.11) with 𝑞 = 𝑝𝑁𝐸−5 imply that ∫𝜂1 𝑝2𝑝

2
𝑁𝐸−5

= 0, then 𝑝𝑁𝐸−5 = 0 and
𝛾𝜂1 (𝑝) = 0. Then 𝑝 is zero on 𝜕𝐸.

Case T.3. Let 𝑝 ∈ P𝑁𝐸−3
(𝐸), by the conditions in S𝑇 .3, we have that for each 𝜂𝑖, with 𝑖 = 1, 2, 3,

1
|

|

𝜂𝑖|| ∫𝜂𝑖
𝑝 𝑞 = 0 ∀ 𝑞 ∈ P𝑁𝐸−3

(

𝜂𝑖
)

∕P𝛼𝑖+1
(

𝜂𝑖
)

, (A.12)

which implies that 𝛾𝜂𝑖 (𝑝) ∈ P𝛼𝑖+1
(

𝜂𝑖
)

for each 𝑖 = 1, 2, 3. Then, applying the condition in S𝑇 .2 such that for each edge 𝑒𝑖 ∈ 𝐸 , the
moment 1

|𝑒𝑖|
∫𝑒𝑖 𝑝 = 0 and the condition in S𝑇 .3 such that the value of 𝑝 is zero at the three vertices of the triangle, then for each 𝜂𝑖

here exist 𝛼𝑖 + 2 distinct points where the value of 𝑝 is zero. Then 𝑝 is zero on 𝜕𝐸. □
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