POLITECNICO DI TORINO Repository ISTITUZIONALE

Challenges in calibration of acoustical models for historic virtual reality auralizations

Original Challenges in calibration of acoustical models for historic virtual reality auralizations / Shtrepi, Louena; Lavagna, Lorenzo; Bevilacqua, Antonella; Farina, Angelo; Astolfi, Arianna ELETTRONICO (2022), pp. 39-39. (Intervento presentato al convegno International Symposium on The Acoustics of Ancient Theatres - SAAT2022 tenutosi a Verona nel 6-8 July 2022) [10.58874/SAAT.2022.190].
Availability: This version is available at: 11583/2986475 since: 2024-02-29T23:21:58Z
Publisher: Associazione Italiana di Acustica
Published DOI:10.58874/SAAT.2022.190
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright
(Article begins on next page)

02 January 2025

PROCEEDINGS of the 2nd Symposium: The Acoustics of Ancient Theatres 6-8 July 2022 Verona, Italy

Challenges in calibration of acoustical models for historic virtual reality auralizations

Louena Shtrepi¹; Lorenzo Lavagna²; Antonella Bevilacqua³; Angelo Farina⁴; Arianna Astolfi⁵

- ¹ Politecnico di Torino, Italy, louena.shtrepi@polito.it
- ² Politecnico di Torino, Italy, lorenzolavagna@gmail.com
- ³ University of Parma, Italy, antonella.bevilacqua@unipr.it
- ⁴ University of Parma, Italy, angelo.farina@unipr.it
- ⁵ Politecnico di Torino, Italy, arianna.astolfi@polito.it

ABSTRACT

The digital acoustic simulation has always been subject to discussion among experts in relation to the type of software employed and relative setup. The application becomes more challenging, especially in the context of unroofed performance spaces like ancient theatres. This paper deals with the calibration process within two geometrical acoustic-based software. The simulations have been performed in order to assess the calculation methodologies upon impulse responses (IRs). The evaluation has been carried out by placing the same number of sources and receivers into a digital model realized with Autocad software and representing the architectural features of the Greek-Roman theatre of Tyndaris. Thereafter, the outcomes gathered by the calibration process have been compared with the on-site measured values related to the main acoustic parameters as outlined by ISO 3382. The model calibration has been characterized by the determination of absorbing and scattering coefficients applied to different finish materials.

10.58874/SAAT.2022.190